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ABSTRACT

In this paper, we consider a variant of the transportation problem where any demand may be dropped off elsewhere than at
its destination, picked up later by the same or another vehicle, and so on until it has reached its destination. We present two
mixed integer linear programming formulations based on a space-time graph. We also develop a branch-and-cut algorithm
for the problem and present some computational results.
Keywords: Transportation problem, mixed integer linear program, multicommodity flow, metric inequalities, branch-and-cut.

1. INTRODUCTION

Transportation problems mainly consist of carrying
through a given network some products, goods or people
from their origins to their destinations. Because of im-
portant economic and ecologic stakes, operations research
practitioners have been giving more and more attention to
these problems. Many variants have then been introduced
in order to match as close as possible the real-world appli-
cations. One of these variants allows demands to be un-
loaded and then reloaded in order to get better trips for the
vehicles and to reduce the total cost. In this paper, we con-
sider such a variant of the transportation problem.

This problem arises in a wide variety of freight and pas-
senger transportation systems. This is the case for instance
in postal services as described by Grünert and Sebastian
in [8]. They present a problem encountered by the Deutch
Post AG in its transportation chain, and that is as follows.
Mail is first collected from customers and mail boxes and
is then brought to the nearest Letter Mail Center (LMC).
After being sorted, mail is sent from its origin LMCs to
its destination ones. This transportation is performed by
car, truck, aircraft or railway. Finally, after another sorting
stage, mail is delivered to the given addresses by postmen.
In this transportation problem, several optimization prob-
lems may be considered. The first step is thus a capaci-
tated vehicle routing problem (introduced by Dantzig and
Ramser in [4]), the second one for the ground problem is
nothing but our problem and the last step is an arc routing
problem (e.g., Chinese postman problem [6]).

We now precisely describe the problem studied in this pa-
per. We consider a network specified by a set of nodes (e.g.,
cities) that are connected with each other by links (e.g.,
roads). Suppose that a set of demands is also given, each
demand specified by an origin node, a destination node and
a volume. The demands need to be carried through the net-
work from their origins to their destinations using vehicles
of a given fleet. All the vehicles have the same transporta-
tion capacity, and they all can begin and end their trips at
any node of the network.
A demand can be unloaded at an intermediate node (i.e.,
a node different from its destination one), and can then
be picked up later by the same or another vehicle. This
unloading/picking-up process, called a reload, can be per-
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formed at any node of the network and can be repeated
several times for a demand until its destination node is
reached. Moreover, any demand can be splitted onto dif-
ferent trips and can be carried by several vehicles.
With each link of the network is associated a cost (e.g., fee)
that corresponds to what must be paid to use the link. Yet,
reload costs and time are neglected. The Capacitated Vehi-
cle Routing Problem with Reloads (CVRPR) then consists
of finding the vehicle trips so that all the demands are car-
ried to their destinations, a vehicle is never overloaded, and
the total cost is minimum.

The CVRPR can be seen as a relaxation of the standard
Pickup and Delivery Problem (PDP). In fact in the latter,
reloads are not allowed. (See [17] for a thorough descrip-
tion of the PDP.) As illustrated by the two following ex-
amples, this relaxation may lead to important savings. The
first example shows that allowing reloads tends to bypass
the limited vehicle capacity whereas in the second one,
reloads are nothing but transshipments.

Fig. 1: Reloads with one vehicle
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We first consider the network given in Figure 1 where each
edge represents two opposite arcs. Suppose we have one
vehicle and two demands p1 and p2 (represented by dashed
arcs) such that the volume of each demand is lower than the
capacity of the vehicle but that of both demands is greater
than it.
An optimal solution of the PDP consists of making the ve-
hicle start from v1, bring p1 to v3 passing by v4, then go
back to v4 where it loads p2 and finally carry it to v2. The
associated cost is then 31. When reloads are allowed, an
optimal solution can be as follows. The vehicle begins its
trip by transporting p1 from v1 to v4 where it unloads p1

and loads p2. It then carries p2 from v4 to v2 and goes back
directly to v4. It finishes its trip by reloading p1 at v4 and
conveying it to v3. The associated cost is then 22.

In the second example shown in Figure 2, suppose we have



two vehicles with an infinite capacity and three demands
(represented again by dashed arcs). In an optimal solution
without reloads, one vehicle conveys the demands p1 and
p2 from v1 to v4 where p2 is dropped off. Its finishes its
trip by delivering p1 at v3. The second vehicle carries p3

from v2 to v4 passing by v5. The associated cost is 48. For
the CVRPR, we obtain a cheaper solution. The first vehi-
cle picks up p1 and p2 in v1, goes to v5 where it unloads
p2 and ends its trip at v3 where it delivers p1. The second
vehicle uses the path v2, v5, v4 as for the reloadless ver-
sion problem but this time, it loads p2 at v5 and finishes its
transportation from v5 to v4. The total cost is 40 and in this
case, the reload is in fact a transshipment.

Fig. 2: Transshipment for one demand
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Oertel [14] studied a variant of the PDP where reloads are
permitted. But only unsplitable routing is allowed for the
demands and reloads are only feasible on certain nodes,
called hubs. He studied some properties of reloads and
developped a local search algorithm for reload problems,
taking into account additional constraints such as time win-
dows.

Grünert and Sebastian [8] gave an integer linear program-
ming formulation for the vehicle and request flow network
design problem. This problem is close to the CVRPR but
several additional constraints are taken into account such as
time windows constraints and a limited capacity of reload
at each node of the network (due to the time necessary to
sort mail during the reloads). Moreover, reload costs and
time are not neglected and it is imposed that each vehicle
has to be unloaded whenever it reaches a location. To for-
mulate this problem, Grünert and Sebastian used a multi-
commodity flow formulation on a space-time graph. They
didn’t purpose any algorithm to solve the problem.

The CVRPR can also be considered as a constrained ver-
sion of the Minimum Cost Capacity Installation for Mul-
ticommodity network flows (MCCI), studied by Bienstock
et al. in [3]. In fact, transportation capacity of vehicles
can always be brought back to one (by dividing any de-
mand volume by this capacity) since all the vehicles have
the same capacity. The CVRPR is then a version of the
MCCI in which the chosen capacities on arcs have to res-
pect additional constraints in order to form feasible trips for
the vehicles.

Despite the CVRPR is a relaxation of the PDP, it remains
an NP-hard problem when there are several demands. It is

easy to see it since the CVRPR is equivalent to the PDP
if there is only one vehicle with an infinite capacity (in this
case, reloads cannot be transshipments and they can then be
removed by supposing that the demands stay in the vehicle
instead). As the PDP is also NP-hard (the TSP with prece-
dence constraints can be reduced to it), so is the CVRPR.
On the other hand, if there is only one demand, the CVRPR
can then be solved in polynomial time since it can be re-
duced to a sequence of shortest paths.

The remainder of the paper is organized as follows. In the
next section, we introduce some notations and give, af-
ter having defined the construction of an auxiliary graph,
two mixed integer linear programming formulations for the
problem. We then present inequalities we add in order to
strengthen the associated linear relaxations and we study
their separation problems. We finally describe the branch-
and-cut algorithm used to solve these two models and we
present some computational results.

2. MIXED INTEGER LINEAR PROGRAMMING
FORMULATIONS

Some notations and a more formal definition of the CVRPR
are required at this point. To represent the network, we
consider a directed graph G = (V, A), called initial graph,
where V corresponds to the set of vertices (i.e., nodes in the
network) and A to the set of arcs (i.e., links in the network).
For each arc a ∈ A, let ca ∈ R+ be the cost for a vehicle
to use the associated link, and let la ∈ Z+ be the time a
vehicle need to go through a.
We denote by F the fleet of vehicles and by B ∈ Z+ their
transportation capacity. Let P be the set of demands that
have to be carried through the network. With every demand
p ∈ P , we associate a triplet (op, dp, qp) where op ∈ V
represents its origin node, dp ∈ V its destination node and
qp ∈ Q+ its volume.

Any solution of the CVRPR has to satisfy what we call
precedence conditions. In fact, because of the reload pol-
icy, part of a demand p ∈ P may be dropped off at a node
v ∈ V that is different from its destination dp and then
picked up later. Therefore, the vehicle that carries this part
of p on the leg started at v has to pass by v once the part
of the demand is arrived at v, that is the leg ended at v is
completed. To handle such conditions, we consider an aux-
iliary directed graph that is based on a space-time graph.
(Similar graphs can be found in [1] where it is referred as
time-expanded network and in [8].) We then need to be
given a completion time limit T ∈ Z+ that corresponds to
the latest any demand of P arrives at its destination node.
(Remark that T can be as big as necessary to keep the initial
solution space.)

2.1. Space-time graph

This subsection is devoted to the construction of the space-
time graph, denoted by Gst = (Vst, Ast), from the initial
graph G. For each vertex v ∈ V , we associate T + 1 ver-
tices v0, v1, . . . , vT in Gst. The vertex vt ∈ Vst represents
v ∈ V at time t ∈ {0, . . . , T}. (Note that time is con-
sidered discrete.) We then consider a first arc set of Gst,
AT = {(vt, vt+1) | v ∈ V, t ∈ {0, . . . , T − 1}}, where
an arc a = (vt, vt+1) ∈ AT corresponds to a vehicle or a
demand that stays at a node for one time unit. We also con-



sider a second arc set Ã = {(utvt+l(u,v)
) | (u, v) ∈ A, t ∈

{0, . . . , T − l(u,v)}}, where an arc a = (ut, vt′) ∈ Ã corre-
sponds to a vehicle that goes from node u at time t to node
v at time t′ with t′ = t + l(u,v). The arcs in AT have a zero
cost whereas an arc a = (ut, vt′) ∈ Ã has its cost ca equal
to c(u,v).
Graph Gst is then defined by the vertex set Vst = {vt | v ∈
V, t ∈ {0, . . . , T}} and the arc set Ast = AT ∪ Ã. This
graph has |V |(T + 1) vertices and up to T (|A|+ |V |) arcs.

2.2. Auxiliary graph

We now define an auxiliary graph G′ = (V ′, A′) obtained
from Gst by adding two additional vertices O and D and
2|V | arcs as follows. Vertices O and D respectively rep-
resent the origin and the destination of the vehicle trips.
(Remark that since all the vehicles begin and end their
trips at any node of the network, O and D can then be
seen as dummy depots.) Without loss of generality, we
force all the vehicles of the fleet to start their trip at time
0 and finish it at time T . We then add arcs (O, v0) and
(vT , D) for all vertices v ∈ V , both having a zero cost. Let
AO = {(O, v0) | v ∈ V } and AD = {(vT , D) | v ∈ V }.
We have V ′ = Vst ∪ {O, D} and A′ = Ast ∪ AO ∪ AD .

Below is an example of the construction of the auxiliary
graph G′ from the initial graph G = (V, A) given in Fig-
ure 3. We suppose that all the arcs a ∈ A have a duration
time la equal to one and T equals two. Starting with an ini-
tial graph having 3 vertices and 3 arcs, we end up with an
auxiliary graph that has 11 vertices and 18 arcs as shown in
Figure 4.

Fig. 3: Initial graph G
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2.3. Multicommodity flow based formulation

In this formulation, we consider a multicommodity flow to
represent the routing of the demands in the network and a
flow to model the trips of the vehicles. We then have two
types of variables that are:

• y ∈ Z
|A′|
+ where ya represents the number of vehicles

passing through arc a ∈ A′,

• x ∈ R
|Ast|×|P |
+ where xp

a represents the amount of
demand p ∈ P carried on the arc a ∈ Ast.

For a vertex v ∈ Vst and a demand p ∈ P , the number bp
v

defined by

bp
v =







qp if v = op
0,

0 if v 6= op
0, d

p
T ,

−qp if v = dp
T ,

represents the supply/demand associated to vertex v with
respect to demand p. We remark that for a given p ∈ P ,
there are exactly two vertices of Vst for which bp

v is non
null. These two vertices are op

0 and dp
T , that is, the origin

node of p at time 0 and the destination one at time T respec-
tively. The correctness of the definition of bp

v is implied by
the equivalence between demand p (or part of it) staying
for some time at a node of the network and a path using
only arcs of AT in G′.

The CVRPR can then be formulated as a mixed integer
linear program using an arc-node based approach [1] as
follows.

min
∑

a∈Ast

caya

s.t.
∑

a∈AO

ya ≤ |F | (1)

∑

a∈δ+(v)

ya −
∑

a∈δ−(v)

ya = 0 ∀ v ∈ Vst, (2)

∑

a∈δ+(v)
a∈Ast

xp
a −

∑

a∈δ−(v)
a∈Ast

xp
a = bp

v ∀ p ∈ P, ∀ v ∈ Vst, (3)

∑

p∈P

xp
a ≤ Bya ∀ a ∈ Ast \ AT , (4)

xp
a ≥ 0 ∀ a ∈ Ast, ∀ p ∈ P, (5)

ya ≥ 0 ∀ a ∈ A′, (6)

ya integer ∀ a ∈ A′, (7)

where δ+(v) (resp. δ−(v)) denotes the set of arcs of A′

having v ∈ V ′ as a tail (resp. head). The objective fuc-
tion states that the total vehicle-related cost must be mini-
mized. (We remark that this objective function can easily
be extended if costs proportionate to the demand amounts
carried on arcs are considered.) Constraints (1) force the
number of used vehicles to be at most |F |. Constraints (2)
(resp. (3)) are the flow conservation constraints associated



with the vehicles (resp. demands). Constraints (4) impose
the amount of the demands carried on an arc of Ast\AT to
be no more than the total capacity of the vehicles passing
through this arc.

2.4. Metric constraints based formulation

In the formulation given in the previous subsection, we de-
termine the routing of the demands even though the value
of the objective function only depends on the vehicle trips
and no additional constraints on the demand routing are
considered. Therefore, it would be enough to only focus
on determining the vehicle trips that allow a feasible rout-
ing of the demands. This can be achieved by considering
no other variables than ya for all a ∈ A′ and replacing con-
straints (3) and (4) by the so-called metric constraints as
described as below.

Metric constraints have been introduced independently by
Iri [10] and Onaga and Kakhuso [15]. They permit to check
if there exists a feasible multicommodity flow for a given
graph when demands and capacities are fixed. Their result,
known as Japonese theorem, can be briefly presented as
follows. Let Ḡ = (V̄ , Ā) be a complete directed graph and

w ∈ R
|Ā|
+ (resp. r ∈ R

|Ā|
+ ) be the capacity (resp. demand)

vector indexed on the arcs of Ā. The capacity vector w
allows the transportation of the demands of r if and only if
all the metric constraints

(w − r)T π ≥ 0 ∀ π ∈ Metn (8)
are satisfyied where
Metn = {π ∈ RĀ

+ | πik + πkj − πij ≥ 0 ∀i 6= j 6= k 6= i}
is the metric cone.

For our problem, the metric cone is the one induced by the
complete graph on Vst, capacity and demand vectors are
given by

wa =

{

+∞ if a ∈ AT ,
Bya ifa ∈ Ast\AT ,
0 otherwise,

and

ra =

{

qp if a = (op
0, d

p
T ) for some p ∈ P,

0 otherwise,

for all a ∈ Vst × Vst. Using metric constraints (8) instead
of constraints (3) and (4), we now introduce the following
integer linear formulation for the CVRPR:

min{
∑

a∈Ast

caya | y satisfies (1), (2), (8), (6), (7)} (9)

This linear program contains less variables than the first
one (i.e., |A′| versus |A′|+ |Ast|× |P |), but it has an expo-
nential number of constraints whereas the first model con-
tains a polynomial number of constraints. As it will be
shown in Section 3, the exponential number of metric con-
straints can be tackled in polynomial time.

Furthermore, once we have an optimal solution of (9), de-
termining the routing of the demands (i.e., the variables xp

a

for all a ∈ Vst and for all p ∈ P in the first formulation)
can be performed in polynomial time. It is actually nothing
but a continuous multicommodity flow problem which is a
well known polynomially-solvable problem [1].

2.5. Formulation strengthening

In this section, we introduce constraints known as biparti-
tion constraints that we will use in our branch-and-cut algo-
rithm to strengthen both linear relaxations of the CVRPR.
These constraints have been already considered in various
optimization problems. (See [2, 3, 5, 13] for instance.)

These new constraints are based on the notion of cut in
Gst. Given a vertex subset W ⊆ Vst so that W 6= ∅,
W 6= Vst, the cut induced by W is denoted by δ+(W ) and
corresponds to the set of arcs of Ast having their tails in W
and their heads in Vst\W . To clearly present the bipartition
constraints, we introduce the following notations. Let z ∈
RA′

be a vector and X ⊆ A′ a subset of arcs, we will write
z(X) for

∑

x∈X z(x). For a vertex subset W ⊆ Vst, let us
denote by q[W, Vst\W ] the total volume of the demands of
P having their origin vertex in W and their destination one
in Vst\W .

Theorem 1 Let W ⊆ Vst induce a cut δ+(W ) so that
δ+(W ) ∩ AT = ∅. The bipartition constraint

y(δ+(W )) ≥

⌈

q[W, Vst\W ]

B

⌉

(10)

is valid for the CVRPR.

Proof: The constraint By(δ+(W )) ≥ q[W, Vst\W ] is ob-
viously valid for the CVRPR. In fact, it expresses that the
whole vehicle capacity of the arcs of δ+(W ) must exceed
the whole demand from W to Vst\W . Since y is inte-
ger, dividing the two members of this inequality by B and
rouding-up the right-hand side yields (10). �

We remark that we only consider cuts that do not inter-
sect AT because capacity constraints do not apply for these
arcs. (In the first formulation, there are no constraints (4)
for these arcs and in the second one, we consider an infinite
capacity on them.) This comes directly from the fact that
any demand (or part of it) can stay without any conditions
at any node of the network.

The number of bipartition constraints is exponential. In the
next section, we show how to manage these constraints in
our branch-and-cut algorithm.

3. SEPARATION PROBLEM

One of the most important parts of an efficient branch-and-
cut algorithm is the so-called separation problem than can
be described as follows.
Given a constraint system Ax ≤ b based on Rn and a point
x of Rn, the separation problem associated with this sys-
tem consists of deciding whether all the constraints of the
system are satisfyied by x and if not, of finding a constraint
violated by x. Grötschel, Lovasz and Schriver [7] have
shown that if the separation problem of a constraint system
Ax ≤ b is polynomial, then an optimization problem over
this system is polynomial even if the number of constraints
of the system Ax ≤ b is exponential.

In this section, we consider the separation problems for the
metric constraints (8) and the bipartition constraints (10)
with respect to a given vector ȳ ∈ RA′

.



3.1. Separation of metric constraints

The separation problem for metric constraints can be
solved in polynomial time. In fact, it can be reduced to
the following continuous linear program:

min(w − r)T π

s.t.

π ∈ Metn,

where Metn, w and r are defined as in Subsection 2.4. Let
π∗ be an optimal solution of this linear program. If the
objective value associated with π∗ is negative, the metric
constraint (w−r)T π∗ ≥ 0 is then violated by ȳ. Otherwise,
we can assert that ȳ satisfies all the metric constraints.

3.2. Separation of bipartition constraints

The separation problem associated with bipartition con-
straints (10) is NP-hard in general. We can notice that this
problem is also NP-hard without considering the rounding-
up of the right-hand side of (10). In fact, Barahona [2]
showed that the max-cut problem can be reduced to this
problem.
In our branch-and-cut algorithm, we then need to use
heuristics to separate the bipartition constraints. We have
devised the three following separation heuristics that are
based on previous works [3, 5]. In the description of those
heuristics, W will always represent a vertex subset of Vst

so that δ+(W ) ∩ AT = ∅.

The first one is nothing but the so-called n-Cut heuris-
tic that was developed by Bienstock et al. for the MCCI
[3]. This heuristic works as follows. For any demand
p ∈ P , we check whether there exists a path from op

0 to
dp

T in the graph G′ where we only consider the arc set
AT ∪ {a ∈ Ã | ȳa > 0}. This can obviously be performed
using any kind of search algorithm. If there is not such a
path, it is straightforward to see that there exists a violated
constraint (10). This constraint is indeed induced by a ver-
tex set W so that op

0 ∈ W , dp
T ∈ Vst\W and the vertices of

Vst reachable from op
0 belong to W . (δ+(W ) ∩ AT = ∅ is

guaranteed because all the arcs of AT are considered.)
If a path from op

0 to dp
T is found for all the demands p ∈ P ,

we then randomly pick out some vertices of Vst to form a
set W . We then check if the bipartition constraint associ-
ated with W is violated or not.

The second heuristic is based on the so-called n-partition
heuristic devised by Bienstock et al. in [3]. We only con-
sider the case n=2 since we seek violated bipartition con-
straints (10). We start with a randomly chosen demand
p ∈ P and the two vertex subsets of Vst, V1 = {op

t | t =
0, . . . , T} and V2 = {dp

t | t = 0, . . . , T}. We then itera-
tively assign the vertices of Vst\(V1 ∪ V2) to either V1 or
V2 as described below. (At the end of the heuristic, we will
consider the bipartition constraint induced by W = V1.) At
each iteration, we randomly select a vertex v ∈ V \{op, dp}
that has not been considered yet. We then assign up to
T + 1 vertices of {vt | t = 0, . . . , T} to V1 (the other ver-
tices of {vt | t = 0, . . . , T} being assigned to V2) in order
to obtain sets V1 and V2 so that δ+(V1) ∩ AT = ∅ and
Bȳ(δ+(V1) ∩ δ−(V2)) − q[V1, V2] is minimum. (δ−(V2)
denotes the set of arcs of Ast entering V2.) Once all the
vertices of V \{op, dp} have been considered, we check

wheither the bipartition constraint induced by W = V1 is
violated.

The last heuristic is an extension of the one developed by
Gabrel et al. in [5]. Given a demand p ∈ P , let W
be a randomly chosen set so that op

0 ∈ W and dp
T ∈

Vst\W . This heuristic consists of iteratively switching ver-
tices (except op

0 and dp
t for all t = 0, . . . , T ) in-between

W and Vst\W in order to increase the value of p(W ) =
dq[W, Vst\W ]/Be /ȳ(δ+(W )). This process stops when
no switchings increase the ratio p(W ).
To find the switching, we compute for each vertex v ∈
V \{op, dp} that has not been considered yet the value
α(v). The latter corresponds to the assignment of the ver-
tices vt for all t = 0, . . . , T to the subsets W and Vst\W
that maximizes p(W ). (The assignment of the other ver-
tices does not change.) We then only modify the assign-
ment of the vertices {vt | t = 0, . . . , T} associated with
the vertex v for which α(v) is maximum. We repeat it un-
til all the vertices of V \{op, dp} have been considered. At
this point, we obtain the new subset W .
Once no switching increases the ratio, we test if the bipar-
tion constraint induced by the obtained set W is violated.
We repeat this algorithm for all the demands p ∈ P .

4. BRANCH-AND-CUT ALGORITHM

In this section we describe a branch-and-cut algorithm for
the CVRPR based on the formulations given in Section 2.
We assume the reader to be familiar with this method. If
not, one can refer to [16] for a description of this technique.
We will also present some computational results.

4.1. Solving method

To start the optimization for the first model, we consider
its linear relaxation. For the metric constraint based model,
the optimization starts with inequalities (1) and (2). If an
optimal solution of the linear relaxation of the problem is
not optimal, then the branch-and-cut algorithm tries to gen-
erate violated bipartition constraints using the heuristics
described above. For the second model, if no constraint
of this type is found, the algorithm then generates violated
metric inequalities, if there is any. The branching proce-
dure is based on the strong branching operation introduced
in CPLEX 7.5 [9].

4.2. Computational results

The branch-and-cut algorithm is implemented in C++ using
the free software COIN-OR [12]. We use BCP module to
manage the branching tree, CLP module as the linear solver
and OSI module as the interface between CLP and BCP. It
is tested on a Pentium IV 3.2 Ghz with 1GB of RAM and a
running time limited to 5 hours.
The instances consist in randomly generated complete
graphs with arc costs equal to the rounded euclidian dis-
tances and arc duration time equal to one. The tests were
performed with T = 5.

Table 1 reports the results obtained using our algorithm.
For each test, we solve three instances with different de-
mands. Each of the instances is solved with four random
number generators. Each line of Table 1 gives the average
results for one test.



In Table 1 are specified the number of vertices |V |, the
number of demands |P |, the number of vehicles |F |, the
number of generated bipartition (resp. metric) constraints
bip (resp. met). It is also indicated the gap Gap between
the best upper bound and the lower bound obtained at the
root node of the branch-and-cut tree, the number Opt of
instances solved to optimality over the number of tested in-
stances, the number No of nodes of the branch-and-cut tree
and the CPU time in seconds.

Tab. 1: Results for the CVRPR

|V| |P| |F| Bip Met Gap Opt No CPU

5 4 1 19.00 - 0.00 12/12 5.67 0.17

6 8 4 228.67 - 0.61 12/12 873.17 225.46

7 9 5 272.50 - 0.00 12/12 850.00 421.30

8 6 2 85.92 - 1.19 12/12 10.33 3.04

9 11 6 92.33 - 0.37 6/12 4.00 7.40

10 8 3 158.33 - 2.01 12/12 19.67 15.78

5 4 1 17.92 0.00 26.71 12/12 22.33 0.51

6 8 4 87.42 4.78 0.61 12/12 408.50 31.85

7 9 5 116.50 12.40 0.51 12/12 449.67 118.90

8 6 2 68.92 3.36 32.44 12/12 237.00 339.94

9 11 6 457.58 1673.00 2.08 12/12 2161.33 5112.18

10 8 3 144.91 1.91 30.56 11/12 544.09 6826.85

The first part of Table 1 summarizes the results for the arc-
node model. The second one concerns the metric constraint
based model. Each test is performed for both models. We
remark that for most of the tests, the whole set of instances
is solved to optimality in a reasonnable computational time.
We also remark that for both models the algorithm gener-
ates an important number of bipartition inequalities. Al-
though the instances are relatively small, some of them
could not be solved to optimality within the time limit. For
instance, for the arc-node model and graphs on 9 nodes,
only half of the instances have been solved to optimality.
However, with the second model, all the instances have
been solved. Also note that the instances on 10 nodes with
the first model have been solved in a few seconds whereas
for the same instances, in the second model, an average of
two hours was needed to solve them. Moreover, one of
them could not even be solved within the time limit. So
one cannot decide which of the two models would be more
efficient. But, as these experimental results are still in a
very preliminary version, more investigations may help to
compare the two models. This is our research direction in
the near future [11].

5. CONCLUSION

In this paper, we have proposed two models for the capaci-
tated vehicle routing problem with reloads. We have devel-
oped a branch-and-cut algorithm for solving both models.
These can be extended in order to take into account more
constraints such as a vehicle depot or vehicles with differ-
ent capacities.
Moreover, it would be interesting to develop a model which
does not use time indexation. Such a model would be use-
ful for solving larger instances. This is also our aim for
future work.
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