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Abstract

Given a graph G = (V; E) with edge costs and an integer vector r ∈ZV+ associated with the nodes of V , the survivable
network design problem is to 6nd a minimum cost subgraph of G such that between every pair of nodes s; t of V , there are at
least min{r(s); r(t)} edge-disjoint paths. In this paper we consider that problem when r ∈{1; 2}V . This case is of particular
interest to the telecommunication industry. We show that the separation problem for the so-called partition inequalities reduces
to minimizing a submodular function. This yields a polynomial time separation algorithm for these inequalities in that case.
c© 2002 Elsevier Science B.V. All rights reserved.
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1. Introduction

Given a graph G = (V; E) with edge costs and an
integer vector r ∈ZV+ associated with the nodes of V ,
the survivable network design problem (SNDP) is to
6nd a minimum cost subgraph of G such that between
every pair of nodes s; t of V , there are at least

min{r(s); r(t)} (1)

edge-disjoint paths. The integers r(v); v∈V are called
the node connectivity types and conditions (1.1) are
called the survivable conditions.

The SNDP has applications to the design of surviv-
able telecommunication networks [11,14,16].
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In 6ber optic networks, all nodes are of connectiv-
ity type one or two, and are called ordinary and spe-
cial oKces, respectively. This topology has shown to
be cost eLective and provides an adequate level of
survivability [11,16]. In this paper we consider the
SNDP in that case, that is when r(v)∈{1; 2} for all
v∈V . We show that the separation problem for the
so-called partition inequalities reduces to minimizing
a submodular function. This yields a polynomial time
seperation algorithm for these inequalities in this case.

The SNDP is NP-hard when r ∈{1; 2}V . It includes
as special case the 2-edge connected subgraph prob-
lem (r(v) = 2 for all v∈V ) which is known to be
NP-hard. It has been extensively investigated in the
past. Monma and Shallcross [16] devised heuristics
for designing survivable networks with node connec-
tivity types r ∈{1; 2}V . Ko and Monma [14] extended
these heuristics to the design of k-edge and k-node
connected networks. GrMotschel et al. [9,10] studied
a polyhedral approach for the SNDP. Goemans and
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Bertsimas [7] devised a heuristic with worst case guar-
antee for the SNDP when the use of multiple copies
of an edge is allowed. For a complete survey of the
SNDP, see [11,19].

In the next section we present the class of partition
inequalities. In Section 3 we discuss the submodular
function minimization problem. In Section 4 we study
the separation problem for the partition inequalities.

2. Partition inequalities

Let G = (V; E) be a graph and r ∈{0; 1; 2}V
a requirement vector. For W ⊆ V let r(W ) =
max{r(v); v∈W} and con(W )=min{r(W ); r(V\W )}.
If W ⊆ V , the set of edges having exactly one node
in W is called a cut and denoted by �(W ). Clearly,
the following inequalities, called cut inequalities, are
valid for the SNDP(G; r):

x(�(W ))¿ con(W ) for all W ⊆ V;W �= ∅ �=V:
(2.1)

In [9] GrMotschel et al. introduced a class of valid in-
equalities for the SNDP (G; r) called partition inequal-
ities, that generalize inequalities (2.1). Let (V1; : : : ; Vp)
be a partition of V such that r(Vi)¿ 1 for i=1; : : : ; p.
Let �(V1; : : : ; Vp) be the set of edges between the el-
ements of the partition. The partition inequality in-
duced by (V1; : : : ; Vp) is given by

x(�(V1; : : : ; Vp))¿

{
p− 1 if I2 = ∅;
p otherwise;

(2.2)

where I2={i | con(Vi)=2; i=1; : : : ; p}. GrMotschel et al.
[9] gave suKcient conditions and necessary conditions
for inequalities (2.2) to de6ne facets.

The separation problem for a class of inequalities
consists of deciding whether a given vector Ox∈RE
satis6es the inequalities, and if not to 6nd an inequal-
ity that is violated by Ox. GrMotschel et al. [10] showed
that the separation problem for inequalities (2.2) is
NP-hard. Actually they showed that the separation
problem is NP-hard for the subclass of partition in-
equalities.

x(�(V1; : : : ; Vp))¿p− 1; (2.3)

for every partition (V1; : : : ; Vp) of V with r(Vi)=1 for
i=1; : : : ; p. Inequalities (2.3) are valid for the Steiner
tree polytope [3].

If r(v) = 1 for all v∈V , as shown by Cunning-
ham [4] and Barahona [2], the separation problem for
inequalities (2.3) can be solved in polynomial time.
Cunningham showed that this can be reduced to |E|
minimum cut problems. Barahona’s algorithm permits
to reduce the problem to |V | minimum cut problems.

In what follows we show that the separation prob-
lem for inequalities (2.2) when r ∈{1; 2}V can be re-
duced to the minimization of a submodular function,
and therefore, can be solved in polynomial time. But
6rst we discuss some properties of submodular func-
tions.

3. Submodular functions

Given a 6nite set S, a function f : 2S → R is called
submodular if

f(A ∪ B) + f(A ∩ B)6f(A) + f(B)

for all A; B ⊆ S:

Minimizing a submodular function has always been
an important problem in combinatorial optimization
[6,8,15]. GrMotschel et al. [8] showed that this problem
can be solved in polynomial time using the ellipsoid
method. In [17] Queyranne presented a combinatorial
and polynomial time algorithm for solving the prob-
lem for the class of symmetric submodular functions (a
function f is symmetric if f(A)=f(S\A) for all A ⊆
S). Purely combinatorial and polynomial algorithms
for minimizing a submodular function have been re-
cently developed by Schrijver [18], and Iwata et al.
[12]. The two algorithms use diLerent approaches.

In [1] BaMRou et al. studied the partition inequalities
of the form

x(�(V1; : : : ; Vp))¿ ap+ b;

where a and b are scalar. They showed that the sepa-
ration problem for these inequalities reduces to min-
imizing a symmetric submodular function, and then
be solved in polynomial time using Queyranne’s al-
gorithm [17].
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Given a submodular function f on the subsets of a
set V , the Dilworth truncation of f;f∗ is de6ned on
the subsets of V as follows

f∗(∅) = 0;
f∗(S) = min{f(S1) + · · · + f(Sk) | (S1; : : : ; Sk)

is a partition of S}

In [15] LovSasz proved the following.

Theorem 3.1 (Lov*asz [15]). If f is a submodular
function; then its Dilworth truncation f∗ is also
submodular.

In what follows we shall show that the separation
problem for inequalities (2.2) when r ∈{1; 2}V re-
duces to O(|V |) minimizations of a function that is
the Dilworth truncation of a cut function.

4. Separation of partition inequalities

Let G = (V; E) be a graph and r ∈{1; 2}V a con-
nectivity type vector. Let Ox∈RE and (V1; : : : ; Vp) be
a partition of V . We shall consider two cases.

Case 1: I2 = ∅. That is all the nodes of type 2 are
in the same set Vi. In this case, inequality (2.2) is of
type (2.3). Let G′ =(V ′; E′) be the graph obtained by
shrinking the set of nodes of type 2. Let us associate
with the resulting node, say w, the connectivity type
r(w) = 1. Therefore all the nodes of V ′ have connec-
tivity type one. It is clear that 6nding a violated par-
tition inequality on G (where I2 = ∅) with respect to
Ox is equivalent to 6nding a violated inequality of type
(2.3) on G′ with respect to Ox′, the restriction of Ox on
E′. Now the separation problem for inequalities (2.3)
on G′ can be solved in polynomial time using either
Cunningham’s algorithm [4] or Barahona’s algorithm
[2].
Case 2: |I2|¿ 2. Thus there are at least two sets

Vi and Vj with r(Vi) = r(Vj) = 2. In consequence,
inequality (2.2) can be written as

x(�(V1; : : : ; Vp))¿p: (4.1)

Consider the problem

min{x(�(V1; : : : ; Vp)) − p} (4.2)

with p¿ 2, which is called the multicut problem.
Problem (4.2) is equivalent to minimizing

g(S)=x(�(S))−2+min{x(�S(S1; : : : ; Sk))− (k−1)};

where S ⊂ V and (S1; : : : ; Sk) is a partition of S (see
[1]). Here �S(S1; : : : ; Sk) is the set of edges between
the Si.

Lemma 4.1. g is submodular.

Proof. Let f(S) = 1
2x(�(S)) − 1 for S ⊂ V . The

Dilworth truncation of f;f∗; is given by

f∗(S) = min

{
k∑
i−1

( 1
2x(�(Si)) − 1)| (S1; : : : ; Sk)

is a partition of S

}

= min{x(�s(S1; : : : ; Sk)) − k} + 1
2x(�(S)):

Thus g(s)=f∗(S)+ 1
2x(�(S))−1. Asf is submodular;

by Theorem 3.1; we have that f∗ is submodular; and
hence the lemma follows.

Let U2 = {v1; : : : ; vs} be the set of nodes of connec-
tivity type 2. Then the separation problem for inequal-
ities of type (4.1) is equivalent to

min{g(S); S ∩ U2 �= ∅ �= (V\S) ∩ U2}: (4.3)

For every node vi ∈U2\{v1}, let us consider two
weight vectors wi; Owi ∈RV , associated with the nodes
of V , given by

wi(v) =




0 if v∈V\{v1; vi};
M if v= v1;

−M if v= vi

and

Owi(v) =




0 if v∈V\{v1; vi};
−M if v= v1;

M if v= vi;

where M is a big value. Let gi and Ogi be the functions
on the subsets of V such that gi(S)=g(S)+wi(S) and
Ogi(S)=g(S)+ Owi(S). Clearly, as g is submodular, gi and
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Ogi are so. Moreover, problem (4.3) is now equivalent
to minimize

{min{gi(S)};min{ Ogi(S)}};
for vi ∈U2\{v1}. So problem (4.3) reduces to solving
O(|U2|) submodular function minimization problems.
As this can be done in polynomial time [8,12,18], we
then have the following.

Theorem 4.2. If r ∈{1; 2}V ; then the separation
problem for inequalities (2.2) can be solved in poly-
nomial time.

By the ellipsoid method [8], Theorem 4.2 implies
that the (1, 2)-survivable network design problem can
be solved in polynomial time in the graphs for which
the partition inequalities together with the trivial and
the so-called cut inequalities suKce to describe the
(1,2)-survivable network polytope. It would thus be
interesting to characterize that class of graphs. A par-
tial characterization of these graphs is given in [13].
Fonlupt and Mahjoub [5] have characterized these
graphs when r(v) = 2 for all v∈V .
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