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Abstract

Given a graph G = (V,E) with edge costs and an integer vector » € Z' associated with the nodes of ¥, the survivable
network design problem is to find a minimum cost subgraph of G such that between every pair of nodes s, of V, there are at
least min{r(s), ()} edge-disjoint paths. In this paper we consider that problem when r € {1,2}". This case is of particular
interest to the telecommunication industry. We show that the separation problem for the so-called partition inequalities reduces
to minimizing a submodular function. This yields a polynomial time separation algorithm for these inequalities in that case.
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1. Introduction

Given a graph G = (V, E) with edge costs and an
integer vector r € Z' associated with the nodes of 7/,
the survivable network design problem (SNDP) is to
find a minimum cost subgraph of G such that between
every pair of nodes s, ¢ of V, there are at least

min{r(s),7(¢)} (1)

edge-disjoint paths. The integers 7(v), v € V are called
the node connectivity types and conditions (1.1) are
called the survivable conditions.

The SNDP has applications to the design of surviv-
able telecommunication networks [11,14,16].
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In fiber optic networks, all nodes are of connectiv-
ity type one or two, and are called ordinary and spe-
cial offices, respectively. This topology has shown to
be cost effective and provides an adequate level of
survivability [11,16]. In this paper we consider the
SNDP in that case, that is when r(v) € {1,2} for all
ve V. We show that the separation problem for the
so-called partition inequalities reduces to minimizing
a submodular function. This yields a polynomial time
seperation algorithm for these inequalities in this case.

The SNDP is NP-hard when r € {1,2}”. It includes
as special case the 2-edge connected subgraph prob-
lem (r(v) = 2 for all ve V') which is known to be
NP-hard. It has been extensively investigated in the
past. Monma and Shallcross [16] devised heuristics
for designing survivable networks with node connec-
tivity types 7 € {1,2}”. Ko and Monma [14] extended
these heuristics to the design of k-edge and k-node
connected networks. Grotschel et al. [9,10] studied
a polyhedral approach for the SNDP. Goemans and
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Bertsimas [7] devised a heuristic with worst case guar-
antee for the SNDP when the use of multiple copies
of an edge is allowed. For a complete survey of the
SNDP, see [11,19].

In the next section we present the class of partition
inequalities. In Section 3 we discuss the submodular
function minimization problem. In Section 4 we study
the separation problem for the partition inequalities.

2. Partition inequalities

Let G = (V,E) be a graph and r€{0,1,2}"
a requirement vector. For W C V let n(W) =

max{r(v),v € W} and con(W )=min{r(W),r(V\W)}.

If W C V, the set of edges having exactly one node
in W is called a cut and denoted by o(W). Clearly,
the following inequalities, called cut inequalities, are
valid for the SNDP(G, r):

x(6(W)) = con(W) forall W CV,W £0#V.
2.1)

In [9] Grotschel et al. introduced a class of valid in-
equalities for the SNDP (G, r) called partition inequal-
ities, that generalize inequalities (2.1). Let (Vy,...,V})
be a partition of ¥ such that »(V;) = 1 fori=1,..., p.
Let o(V1,...,V,) be the set of edges between the el-
ements of the partition. The partition inequality in-
duced by (V1,...,V),) is given by

1 L =0
aamw”nnz{p o (22)

p otherwise,

where L={i | con(V;)=2;i=1,..., p}. Grotschel et al.
[9] gave sufficient conditions and necessary conditions
for inequalities (2.2) to define facets.

The separation problem for a class of inequalities
consists of deciding whether a given vector X € RE
satisfies the inequalities, and if not to find an inequal-
ity that is violated by x. Grotschel et al. [10] showed
that the separation problem for inequalities (2.2) is
NP-hard. Actually they showed that the separation
problem is NP-hard for the subclass of partition in-
equalities.

X(6(V1s.. V) = p—1, (2.3)

for every partition (V1,...,V,) of V with r(V;)=1 for
i=1,..., p. Inequalities (2.3) are valid for the Steiner
tree polytope [3].

If (v) =1 for all veV, as shown by Cunning-
ham [4] and Barahona [2], the separation problem for
inequalities (2.3) can be solved in polynomial time.
Cunningham showed that this can be reduced to |E]
minimum cut problems. Barahona’s algorithm permits
to reduce the problem to |V | minimum cut problems.

In what follows we show that the separation prob-
lem for inequalities (2.2) when r € {1,2}" can be re-
duced to the minimization of a submodular function,
and therefore, can be solved in polynomial time. But
first we discuss some properties of submodular func-
tions.

3. Submodular functions

Given a finite set S, a function f:25 — R is called
submodular if

S(AUB)+ f(ANB) < f(4)+ f(B)
forall 4, B CS.

Minimizing a submodular function has always been
an important problem in combinatorial optimization
[6,8,15]. Grotschel et al. [8] showed that this problem
can be solved in polynomial time using the ellipsoid
method. In [17] Queyranne presented a combinatorial
and polynomial time algorithm for solving the prob-
lem for the class of symmetric submodular functions (a
function f is symmetric if f(4)= f(S\A) forall4 C
S). Purely combinatorial and polynomial algorithms
for minimizing a submodular function have been re-
cently developed by Schrijver [18], and Iwata et al.
[12]. The two algorithms use different approaches.

In [1] Baiou et al. studied the partition inequalities
of the form

x(0(V1,....Vp)) = ap + b,

where a and b are scalar. They showed that the sepa-
ration problem for these inequalities reduces to min-
imizing a symmetric submodular function, and then
be solved in polynomial time using Queyranne’s al-
gorithm [17].
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Given a submodular function f on the subsets of a
set V, the Dilworth truncation of f, f* is defined on
the subsets of V' as follows

1 @) =0,
S8 =min{f(S1) + -+ f(Se) | (S, Sk)

is a partition of S}
In [15] Lovasz proved the following.

Theorem 3.1 (Lovasz [15]). If [ is a submodular
function, then its Dilworth truncation f* is also
submodular.

In what follows we shall show that the separation
problem for inequalities (2.2) when r € {1,2}" re-
duces to O(|V|) minimizations of a function that is
the Dilworth truncation of a cut function.

4. Separation of partition inequalities

Let G = (V,E) be a graph and € {1,2}" a con-
nectivity type vector. Let X € RE and (V1,...,V,) be
a partition of V. We shall consider two cases.

Case 1: I, = (). That is all the nodes of type 2 are
in the same set V;. In this case, inequality (2.2) is of
type (2.3). Let G’ = (V',E") be the graph obtained by
shrinking the set of nodes of type 2. Let us associate
with the resulting node, say w, the connectivity type
r(w) = 1. Therefore all the nodes of ¥’ have connec-
tivity type one. It is clear that finding a violated par-
tition inequality on G (where I, = () with respect to
X is equivalent to finding a violated inequality of type
(2.3) on G’ with respect to ¥, the restriction of X on
E’. Now the separation problem for inequalities (2.3)
on G’ can be solved in polynomial time using either
Cunningham’s algorithm [4] or Barahona’s algorithm
[2].

Case 2: || = 2. Thus there are at least two sets
Vi and V; with »(V;) = r(V;) = 2. In consequence,
inequality (2.2) can be written as

x(0(Vi,....Vp)) = p. (4.1)
Consider the problem
min{x(6(",...,V,)) — p} 4.2)

with p > 2, which is called the multicut problem.
Problem (4.2) is equivalent to minimizing

9(8)=x((5)) =2 +min{x(d5(S,..., S)) = (k= 1)},

where S C V and (Sy,...,S;) is a partition of S (see
[1]). Here d5(Si,...,S;) is the set of edges between
the Sl'.

Lemma 4.1. g is submodular.

Proof. Let f(S) = 1x(5(S)) — 1 for S C V. The
Dilworth truncation of f, /™, is given by

k
/() =min {Z(wa(&)) — D) (St i)

i—1
is a partition of S }

=min{x(5,(S1,...,5)) — k} + 3x(8(S)).

Thus g(s)=f"(S)+ %x(é(S))f 1. As f is submodular,
by Theorem 3.1, we have that /* is submodular, and
hence the lemma follows. [J

Let U, ={vy,...,0s} be the set of nodes of connec-
tivity type 2. Then the separation problem for inequal-
ities of type (4.1) is equivalent to

min{g(S),S N Us £ 0 #(V\S)N Us}. (4.3)

For every node v; € Up\{v,}, let us consider two
weight vectors wi, w' € R, associated with the nodes
of V, given by

0 if ve V\{v1,v;},
ww)y={ M
M ifv=v;

if v=uv,

and
0 if ve V\{vi,v:},
w)=< —M
M if v=u,,

if v=uy,

where M is a big value. Let g; and g; be the functions
on the subsets of  such that g:(S)=¢(S) + wi(S) and
3,(8)=g(S)+w'(S). Clearly, as g is submodular, g; and
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g, are so. Moreover, problem (4.3) is now equivalent
to minimize

{min{g:($)}, min{g(S)}},

for v; € U>\{v1}. So problem (4.3) reduces to solving
O(|U,|) submodular function minimization problems.
As this can be done in polynomial time [8,12,18], we
then have the following.

Theorem 4.2. If re€{1,2}V, then the separation
problem for inequalities (2.2) can be solved in poly-
nomial time.

By the ellipsoid method [8], Theorem 4.2 implies
that the (1, 2)-survivable network design problem can
be solved in polynomial time in the graphs for which
the partition inequalities together with the trivial and
the so-called cut inequalities suffice to describe the
(1,2)-survivable network polytope. It would thus be
interesting to characterize that class of graphs. A par-
tial characterization of these graphs is given in [13].
Fonlupt and Mahjoub [5] have characterized these
graphs when »(v) =2 forallve V.
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