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For the past few decades, combinatorial optimization
techniques have been shown to be powerful tools for
formulating and solving optimization problems arising
from practical situations. In particular, many network
design problems have been formulated as combinato-
rial optimization problems. With the advances of optical
technologies and the explosive growth of the Internet,
telecommunication networks have seen an important
evolution and therefore designing survivable networks
has become a major objective for telecommunication
operators. Over the past years, much research has been
carried out to devise efficient methods for survivable
network models, and particularly cutting plane based
algorithms. In this paper, we attempt to survey some
of these models and the optimization methods used
for solving them. © 2005 Wiley Periodicals, Inc. NETWORKS,
Vol. 46(1), 1–21 2005
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1. INTRODUCTION

The concept of robust networks is among the most fre-
quently recurring one in the problems of designing telecom-
munication networks. There exist several ways to express
the network robustness, yet it can be defined as the con-
tinued ability of the network to perform its function in the
face of damage and outages. The network design process
is extremely complicated because it manages the traffic, the
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performance, and the resources of the network together so
one cannot consider it as a single optimization problem.
Therefore, it should be broken down into several optimiza-
tion problems (topology computation, traffic prediction, and
modeling, dimensioning, etc.), which may have their own
robustness component. In this article, we are only interested
in the topology computation problem where a network is rep-
resented as a collection of nodes (switches, routers, hubs,
multiplexers, satellites, base stations, etc.) and connections
between them by edges (optical fibers, electrical wires, etc.),
and the robustness of the network topology will come from
its reliability. The latter depends on the equipment (i.e., link
or node) reliability, but also on the manner in which nodes
are connected together. Therefore, the network reliability can
be characterized by many parameters such as degree of each
node, average distance between every pair of nodes, connec-
tivity, etc. In this article, we base the network reliability on
the presence of alternate paths (i.e., the connectivity parame-
ter) and then consider the survivability of the network, which
can be described as below.

Telecommunication networks, whatever is the nature of
the particular layer (e.g., SDH/SONET, ATM, WDM, IP),
have to be immune to equipment failures. This concept of sur-
vivability allows networks to remain functional when links
are severed or nodes fail, that is, network services can be
restored in the event of catastrophic failures. Therefore, one
of the main concerns when designing telecommunication
networks is to compute network topologies that provide pro-
tection against network equipment failures. The topology
computation problem is usually the first stage of the over-
all network design optimization process; the following ones
involve some traffic and routing issues.

The introduction of new control plans [e.g., Generalized
MultiProtocol Label Switching (GMPLS) in optical net-
works] has created, over the last years, a movement
toward networks that should have more complex topolo-
gies than rings. This fact leads to the specification of cer-
tain survivability conditions, usually modeled in terms of
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node or link connectivity, which should be ensured. Thus,
the topology computation problem we are interested in, called
the survivable network design problem and denoted by SNDP,
consists of selecting links so that the sum of their costs is
minimized and some given requirements for the number of
paths between every pair of nodes are satisfied. To respond to
node (respectively link) failures scenarios, the paths between
two nodes should fulfill the additional property that they
cannot share any other node (respectively any link), imply-
ing the so-called node-survivability conditions (respectively
link-survivability conditions). The survivable network design
problem can then be stated in two slightly different ver-
sions according to which of the two kinds of survivability
conditions should be considered.

Consider an undirected graph G = (V , E), where V
represents the node set, and E the set of edges or poten-
tial links. To express the survivability conditions, we need
to introduce the following graph-theoretic concepts. Given
two distinct nodes s and t of V , an st-path is a sequence
P = (v0, e1, v1, . . . , ek , vk), where k ≥ 1, v0, v1, . . . , vk are
distinct nodes, v0 = s, vk = t, and ei is an edge connecting
vi−1 and vi (for i = 1, . . . , k). A collection P1, P2, . . . , Pl of
st-paths is called node-disjoint (respectively edge-disjoint) if
any node except for s and t (respectively, any edge) appears in
at most one path. A subgraph H of G is called node-survivable
(respectively, edge-survivable) if for any s, t ∈ V , H contains
at least a prespecified number of node-disjoint (respectively,
edge-disjoint) st-paths. Suppose that each edge e ∈ E has a
certain cost c(e) ∈ R+ (e.g., the cost of digging down a cable
and the price of the equipment facilitating communication),
then the node-survivable network design problem, denoted by
NSNDP, consists of finding a node-survivable subgraph of G
with minimum total cost, where the cost of a subgraph is the
sum of the cost of its edges. Similarly, the link-survivable net-
work design problem, denoted by LSNDP, consists of finding
a minimum-cost edge-survivable subgraph of G.

Polyhedral combinatorics is a well-established approach
to combinatorial optimization problems (see, i.e., Schrijver
[110]), which may lead to new exact and approximate solu-
tion methods. This article provides a review and synthesis
of polyhedral approaches to the two versions of the sur-
vivable network design problem. The article is divided into
10 sections. In the second section, we precisely present the
model that will be studied throughout the article, and we
discuss the complexity issue. In Section 3, we overview
some polynomially-solvable cases as well as some of the
main heuristics and approximation algorithms devised for
the survivable network design problem. Section 4 is ded-
icated to an integer linear programming formulation for
the SNDP and to a brief description of the so-called poly-
hedral approach. Some facet-defining inequalities are then
presented in Section 5, where their separation problems are
also mentioned. Section 6 concerns some linear descriptions
of the polytopes associated with the problem on some spe-
cial classes of graphs. The concept of critical extreme points
is then discussed in Section 7, along with their algorithmic
implications. Some of the theoretical results presented in the

first seven sections were then used in a branch-and-cut algo-
rithm that is presented in Section 8, together with a discussion
of computational results. Finally, before giving some con-
cluding remarks in a last section, we are interested in the
survivable network design problem with length constraints
in Section 9.

The rest of this introduction is devoted to additional defini-
tions and notation that will be used in this article. The graphs
we consider are finite, loopless, and connected.

We consider a graph G = (V , E), and we denote by n the
number of nodes of G, that is, n = |V |. For W ⊆ V , we
let W = V \ W . Given two distinct nodes u and v of V , an
edge between both is denoted by uv. For a nonempty node
subset W � V , the set of edges having exactly one endnode
in W is called a cut or a cutset, and is denoted by δG(W).
Moreover, if s ∈ W and t /∈ W , then δ(W) is called an st-cut.
The sets W and W are called the shores of the cut δ(W). If
W = {u}, we then write δG(u) for δG({u}). If W1 and W2

are two disjoint subsets of V , then [W1, W2] denotes the set
of edges having one endnode in W1 and the other in W2.
A partition of V is a collection of disjoint subsets of V with
union V . The elements of the partition are called its classes.
Given a partition {V1, . . . , Vp} of the node set V , we denote by
δG(V1, . . . , Vp) the set of edges with endnodes in two different
classes. For all our notation, we do not use the subscript G
whenever the graph G can be deduced from the context. For
F ⊆ E, we denote by V(F), the set of nodes that are spanned
by the edges in F. For W ⊆ V , we denote by E(W), the set of
edges with both endnodes in W , and by G(W) = (W , E(W)),
the subgraph induced by W . Given e = uv ∈ E, contracting
e means deleting e, identifying u and v, deleting the resulting
loops and keeping the new parallel edges. If F ⊆ E, then G/F
denotes the graph obtained from G by contracting F, that is,
by contracting all edges in F. If Z ⊆ V , G\Z is then the graph
obtained from G by deleting Z and the edges incident to Z . If
Z = {u}, we then write G \ u for G \ {u}. The dimension of a
polyhedron P, denoted by dim(P), is the maximum number
of affinely independent points in P minus 1. Let a ∈ Rn be
a row vector. An inequality ax ≥ α is said to be valid for
P if P ⊆ {x | ax ≥ α}; the set F = {x ∈ P | ax = α} is
called the face defined by ax ≥ α. If dim(Fa) = dim(P) − 1,
and Fa �= ∅, then Fa is called a facet, and ax ≥ α is called
a facet-defining inequality. Given a polytope P ⊆ Rn, the
dominant of P is the polyhedron given by P + Rn+.

2. A MODEL FOR THE SURVIVABLE NETWORK
DESIGN PROBLEM

The survivable network design problem has received con-
siderable attention in the past, and two models precisely
specifying the survivability conditions have been mainly
considered. The first one, originally formulated by Steiglitz
et al. [111] and later called the generalized Steiner problem
by Winter [122], is as follows.

Given an undirected graph G = (V , E) and a cost vector
c ∈ RE+ on the edges, the node-survivability (respectively,
link-survivability) conditions are specified by a symmetric
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integer n × n matrix R = [rst], where the entry rst prescribes
the number of node-disjoint (respectively, edge-disjoint) st-
paths needed for s, t ∈ V . This model has been extensively
investigated (see, i.e., [26, 28, 55, 94]), and is a special case
of a more general model introduced by Grötschel and Monma
[75], where, for any s, t ∈ V , survivability is also measured
by a minimum number rst of disjoint st-paths remaining after
the deletion of any node subset having a given cardinality kst .
This model is a kind of general framework for the SNDP, and
it requires the knowledge of considerable amount of data to
specify particular connectivity requirements for every pair of
nodes. Yet, some data may not be available in real-world
applications, and therefore, a slightly more restricted and
realistic model was introduced by Grötschel et al. [76–78]
(see also Stoer [112]). This second model is based on the
specification of node types to model the survivability condi-
tions as described below, and captures the important aspects
of practical problems.

A generic telecommunication network consists of access
networks that connect the terminals (e.g., user nodes) to
concentrators (e.g., switches, multiplexers) and a backbone
network that interconnects these concentrators or connects
them to a central unit. The access and backbone networks
can be fully or partially connected according to the level of
survivability that is required, and their topologies may differ.
The backbone network can also be partitioned into smaller
subsets of nodes, which in turn, can be partitioned into even
smaller subsets of nodes, implying eventually different levels
of survivability requirements. The partitioning of the network
creates a hierarchical structure and makes some nodes more
important than some other ones, because of their specific
functions. The lowest level of the hierarchy corresponds to
the terminals that only require being connected to the net-
work, whereas for a node of the backbone network, the higher
the level of the hierarchy to which it belongs, the “higher” the
degree of survivability it requires. This hierarchical structure
of telecommunication networks leads us to grade the nodes
in the order of their relative importance as described below.

Consider an undirected graph G = (V , E), where each
edge e ∈ E has a cost c(e) ∈ R+. To each node u ∈ V is
associated a nonnegative integer r(u), called its connectiv-
ity type, which represents the importance of communication
from and to that node. The integer vector r = (ru, u ∈ V)

will then be called the connectivity type vector. The node-
survivability (respectively, link-survivability) conditions are
then stated as the requirement of the existence of at least

r(s, t) = min{r(s), r(t)} (1)

node-disjoint (respectively, edge-disjoint) paths in the sub-
graph of G for any pair of nodes s, t ∈ V . We remark that
modeling the survivability conditions using node types is a
particular case of the generalized Steiner problem; it corre-
sponds to the case where rst = min{r(s), r(t)} for any s, t ∈
V . Yet, as mentioned above, such modeling is particularly
suitable for telecommunication networks. Moreover, this
connectivity type-based model can be used to model numer-
ous other applications having hierarchical structures, such as

distribution networks (involving, i.e., major central facilities,
minor regional depots), wireless networks (involving, for
instance, base transceiver stations, base station controllers,
transcoder/rate adapter units, mobile switching centers),
etc.

Let us denote by rmax the maximum connectivity type,
that is,

rmax = max{r(u) | u ∈ V}.
If rmax ≤ 2, we then deal with the low-survivability case
which was shown to be cost effective and provides an ade-
quate level of survivability for telecommunication networks
[103]. In fact, as failures are not very common in practice,
telecommunication network designers consider protection
strategies that will withstand single network equipment fail-
ures. This fact implies the classification of the nodes into
three kinds: specific nodes, which must be protected from
single equipment failures [i.e., nodes u ∈ V with r(u) = 2];
ordinary nodes, which simply have to be connected to the
network [i.e., nodes u ∈ V with r(u) = 1]; and optional
nodes, which may be considered in the network, depend-
ing only on some design considerations [i.e., nodes u ∈ V
with r(u) = 0]. However, this traditional protection for
telecommunication networks tends to be now outdated (it
was essentially dedicated to circuit-switched telephone net-
works), and the new generation networks (e.g., packet based
data networks carrying voice, video, or data traffic) require
more complicated and adaptive protection strategies to face
the competitive environment. This practical motivation, com-
bined with the interesting theoretical framework of the model,
leads us to consider also the high-survivability case, that is,
where rmax ≥ 3.

Expressing the survivability requirements using the con-
nectivity types allows us to model a wide variety of well-
known combinatorial optimization problems that have been
intensely studied for several decades. For instance, if the
connectivity type vector r is uniform, say r(u) = k for
all u ∈ V where k is a positive integer, then the NSNDP
(respectively, LSNDP) is nothing but the k-node connected
network problem denoted by kNCNP (respectively, k-edge
connected network problem denoted by kECNP). Further-
more, the 2-node connected network problem includes the
traveling salesman problem (i.e., find a simple circuit, also
called tour, passing through all the nodes, for which the cost
is minimized) as a special case. In fact, if a large constant is
added to the cost of each edge, any optimal solution of the
2NCNP will have a minimum number of edges, and such a
solution will be an optimal traveling salesman tour. Another
famous version of the SNDP is where the entries of the con-
nectivity type vector r take their values in {0,1}. This is
the Steiner tree problem, which consists of finding a mini-
mum tree of G, spanning the so-called terminal nodes [i.e.,
the nodes u ∈ V with r(u) = 1]. [The nodes u ∈ V with
r(u) = 0 are called Steiner nodes.] We notice that this equiv-
alence between the Steiner tree problem and the survivable
network design problem with r ∈ {0, 1}V holds only if the
cost of each edge is positive.

NETWORKS—2005 3



Because the survivable network design problem contains,
as special cases, known NP-hard problems such as the travel-
ing salesman problem and the Steiner tree problem, [58] it is
clearly NP-hard in general. Moreover, the traveling salesman
problem is known to be NP-hard in the strong sense, which
means that it cannot be solved by a pseudopolynomial time
algorithm unless P = NP. Therefore, we have:

Theorem 1 [58]. The survivable network design problem
is strongly NP-hard.

In this article, we only consider the second model to
express the connectivity requirements, that is, the connectiv-
ity type-based model. Nevertheless, we may also deal with
the first model in the next section, which reviews some of the
most noteworthy research on the survivable network design
problem, with a main focus on the polynomially-solvable
cases as well as some devised heuristics and approximation
algorithms.

3. SPECIAL CASES, HEURISTICS, AND
APPROXIMATION ALGORITHMS

In addition to the problems mentioned above, some other
special cases of the survivable network design problem have
received considerable attention over the last century. Hence,
there exists a plentiful literature on the different problems
related to the SNDP, and the aim of this section is to present
a brief, but as complete as possible, overview of it.

3.1. Polynomially Solvable Cases

Despite the NP-hardness of the survivable network design
problem, it happens that this problem may be solved in poly-
nomial time, depending on some special connectivity type
vectors, some special edge cost functions and/or some special
classes of graphs.

The survivable network design problem was shown to be
polynomially solvable if r(u) = 1 for all u ∈ V . In fact, this
version of the SNDP is nothing but the minimum spanning
tree problem which is a well-solved combinatorial optimiza-
tion problem [3]. If we now have some nodes having their
connectivity type equal to 0, we then deal with the Steiner tree
problem, which is a well-known NP-hard problem. However,
Lawler [92] gave two algorithms for solving the Steiner tree
problem, which are either polynomial in the number of ter-
minal nodes and exponential in the number of Steiner nodes,
or vice versa. Therefore, if r ∈ {0, 1}V and either the number
of nodes of connectivity type 0 or the number of nodes of
connectivity type 1 is restricted, the SNDP can be solved in
polynomial time.

Another famous version of the survivable network design
problem is where all the nodes have connectivity types equal
to 0 except for exactly two nodes, u1 and u2, which have
r(u1) = r(u2) = 1. This is actually the shortest path problem
between u1 and u2, for which there exist different polynomial-
time algorithms provided there are no negative-cost cycles.

Moreover, if the shortest path must satisfy a hop-constraint,
that is, it has no more than L links where L is a positive inte-
ger, a dynamic programming approach then permits one to
solve the problem [3]. The hop-constraint is meaningful for
telecommunication networks because of some routing con-
siderations that might be taken into account (see Section 9).
If the connectivity types associated with u1 and u2 are now
equal to k, where k is a fixed positive integer, one deals with
the k-shortest path problem, which can also be solved in
polynomial time [114, 115].

Some other polynomially solvable cases of the survivable
network design problem arise from special edge cost func-
tions. If the edge costs are uniform, that is, they are restricted
to be equal to 1, the problem then consists of finding a node-
survivable or edge-survivable subgraph having a minimum
number of edges. For this kind of edge cost function, the
SNDP with node-survivability conditions has not been solved
yet. On the other hand, the SNDP with link-survivability con-
ditions and uniform edge costs was shown to be polynomially
solvable provided r(u) ≥ 1 for all u ∈ V , and the use of par-
allel edges is allowed [112]. The algorithm for solving this
problem is similar to the one given by Chou and Frank [26]
for the generalized Steiner problem with link-survivability
conditions, uniform edge cost function, and the possibility of
using parallel edges in the solution. Chou and Frank [27] con-
sidered the same version of the generalized Steiner tree prob-
lem when no parallel edges but additional nodes are allowed,
and they gave a polynomial-time algorithm to solve it.

The survivable network design problem with edge costs
in {0, 1} is known as the augmentation problem, which can
be stated as follows. It consists of augmenting a graph by
a minimum number of edges in V × V (possibly using
parallel edges) such that the survivability requirements are
met. This version of the SNDP is equivalent to augment-
ing the graph induced by the edges having costs equal to 0
using eventually the edges having costs equal to 1. Frank
[55] solved this problem for the link-survivability conditions
(more precisely for the generalized Steiner problem), and he
generalized many results related to the uniform connectiv-
ity type vector case. For the node-survivability conditions,
some polynomial-time algorithms were given to augment a
graph to a 2-node connected one [48, 80], and in those algo-
rithms, no parallel edges are allowed. Moreover, when some
nodes are subject to node-survivability conditions and the
other ones are only subject to link-survivability conditions,
Hsu and Kao [80] devised a polynomial-time algorithm to
solve the augmentation problem if r(u) = 2 for all u ∈ V .

The survivable network design problem may also be
solved in polynomial time for special connectivity type vec-
tors and underlying graphs belonging to certain classes. Some
of the results related to those polynomially solvable cases will
be discussed in Section 6, and therefore we content ourselves
with summarizing the most important ones below. Thus, let
us first define the three classes of graphs we are going to con-
sider hereafter and in Section 6, and in which the survivable
network design problem has been extensively investigated. A
homeomorph of K4 (i.e., the complete graph on four nodes) is
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a graph obtained from K4 when its edges are subdivided into
paths by inserting new nodes of degree 2. A graph is called
series-parallel if it contains no homeomorph of K4 as a sub-
graph. A graph is called outerplanar if it can be drawn in the
plane as one cycle with noncrossing chords. We note that out-
erplanar graphs are also series-parallel. A graph is said to be
a Halin graph if it consists of a cycle and a tree without nodes
of degree 2 whose leaves are precisely the nodes of the cycle.

If r ∈ {0, 1}V , the survivable network design prob-
lem, which is related to the Steiner tree problem in that
case, can then be solved in polynomial time on series-
parallel graphs as shown by Takamizawa et al. [116]. For the
three classes of graphs mentioned above, Winter [119–121]
gave polynomial-time algorithms to solve the SNDP with
r ∈ {0, 2}V and either the node-survivability or the link-
survivability conditions. On Halin graphs, Winter [122] also
gave polynomial-time algorithms to solve the survivable net-
work design problem for both survivability conditions and
r ∈ {0, 3}V . If the graph G does not have W4 (the wheel on
five nodes) as a minor or if G is a Halin graph, Coullard
et al. [32] devised a linear time algorithm for the SNDP
with the node-survivability conditions and r ∈ {0, 2}V . (A
graph H is a minor of a graph G if H arises from G by a
series of deletions and contractions of edges and deletions
of nodes.) Kerivin and Mahjoub [86] showed that the link-
survivable network design problem with r(u) even for all
u ∈ V can be solved in polynomial time on series-parallel
graphs. The k-edge connected network problem was shown to
be polynomially solvable by Didi Biha and Mahjoub [46] on
series-parallel graphs, where k is a positive integer. Recently,
Didi Biha et al. [45] gave a polynomial-time algorithm, based
on the ellipsoid method, for solving the survivable network
design problem where r ∈ {1, 2}V and the underlying graph
belongs to a subclass of series-parallel graphs that strictly
contains all the outerplanar ones.

3.2. Heuristics and Approximation Algorithms

As the survivable network design problem is NP-hard, a
considerable amount of research has been conducted into the
design of heuristics and approximation algorithms. (Recall
that a ρ-approximation algorithm is an algorithm that always
delivers a solution of cost at most ρ times the optimum.) The
rest of this section is devoted to reviewing some among the
most important results for these two non-exact approaches.

In the design of efficient heuristics, the knowledge of struc-
tural properties of the solution is often very useful because
of the possible improvements in the problem formulations. If
the edge cost function satisfies the triangle inequalities (i.e.,
c(e1) ≤ c(e2) + c(e3) for every triplet of edges (e1, e2, e3)

defining a triangle), Frederickson and Jájá [56] showed that
a 2-edge connected graph can be transformed into a 2-node
connected one without any increase of the cost. This result
leads to an equivalence between the node-survivability con-
ditions and the link-survivability ones if the connectivity
types are uniform and equal to 2. For the same kind of
edge cost function, Monma et al. [102] obtained a structural

description of the optimal solutions of the 2-node connected
network problem, and this work was later generalized to the
k-node connected network problem by Bienstock et al. [17].
In the latter, it is also proven that optimal k-node and k-edge
connected subgraphs may have different costs.

The first heuristics for the survivable network design prob-
lem appeared with the work of Steiglitz et al. [111]. Actually,
they considered the generalized Steiner problem, and their
method is based on a randomized greedy algorithm to produce
an initial feasible solution that is then improved by a local-
search approach. For the SNDP where r ∈ {1, 2}V , Monma
and Shallcross [103] used a similar approach consisting of
improving an initial solution generated from information
given by the structural properties of the solution of the 2-node
and 2-edge connected network problems. Their improve-
ment heuristics is inspired from some local search heuristics
devised from the traveling salesman problem (e.g., 2-opt,
pretzel). Later, Monma-Shallcross’s heuristics were modified
by Ko and Monma [91] to tackle both k-node and k-edge con-
nected network problems, and by Clarke and Anandalingam
[29], who added a new heuristic to generate initial feasible
solutions.

Over the last 2 decades, the question of designing approxi-
mation algorithms for the survivable network design problem
has been extensively investigated. In [118], Williamson
et al. (see also [57]) used a primal-dual method for approxi-
mation algorithms [63] to achieve an approximation factor
of 2rmax. Later, Goemans et al. [61] refined the approach of
[118], and improved their approximation factor to 2H(rmax),
where H(n) = 1+ 1

2 + 1
3 +· · ·+ 1

n is the nth harmonic number.
Jain [83] proposed a factor 2 approximation algorithm, which
is based on first solving the linear relaxation of the problem
and then iteratively rounding the solution. We notice that
those algorithms were actually devised for a more general
problem, which consists of finding a minimum cost sub-
graph having at least f (S) edges crossing each cut δ(S), where
S ⊂ V and f is a proper function. (A function f : 2V → Z+
is proper if f (V) = 0, f is symmetric, that is, f (S) = f (V \S)

for all S ⊆ V , and f satisfies the maximality property, that is,
f (A ∪ B) ≤ max{f (A), f (B)} for any disjoint A, B ⊆ V .)

For connectivity type vectors in {0, 1, 2}V , Balakrishnan
et al. [10] gave a 3

2 -approximation algorithm for the link-
survivable network design problem. Ravi and Williamson
[108] presented a 2H(k)-approximation algorithm for the
k-node connected network problem, and they also gave a 3-
approximation algorithm for the generalized Steiner problem
where R ∈ {0, 1, 2}V×V . For the k-node connected net-
work problem, a 2-approximation algorithm was devised by
Khuller and Raghavachari [89], provided that the edge cost
function satisfies the triangle inequalities. Using a weighted
matroid intersection algorithm, Khuller and Vishkin [90]
gave a 2-approximation algorithm for the k-edge connected
network problem. There also exist approximation algorithms
for the survivable network design problem where parallel
edges are allowed. Goemans and Bertsimas [60] thus gave a
min{2H(rmax), 2q}-approximation algorithm for the SNDP
with r ∈ Z+ based on a new analysis of a well-known
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algorithm for the Steiner tree problem, where q denotes the
number of distinct connectivity type values. Using a primal-
dual approach, Aggarwal et al. [2] obtained a 2(log2 rmax)-
approximation algorithm for the survivable network design
problem with general connectivity type vectors. Goemans
and Williamson [62] used the way in which primal-dual algo-
rithms solve combinatorial linear programs that have integer
optimal solutions to devise a 2H(rmax)-approximation algo-
rithm for the generalized Steiner problem where R ∈ ZV×V+ .
Recently, Aggarwal and Garg [1] improved this result by
giving a 2(log2 |V |)-approximation algorithm using a scaling
technique.

4. INTEGER LINEAR PROGRAMMING
FORMULATION AND ASSOCIATED
POLYHEDRA

The purpose of this article is to survey the polyhedral
combinatorics-based results obtained, over the last decade,
for the survivable network design problem where the sur-
vivability requirements are modeled using connectivity type
vectors. Therefore, we now start with formulating the SNDP
as an integer linear program.

For the sake of clarity, we recall the statement of the
problems. Given an undirected graph G = (V , E), a con-
nectivity type vector r ∈ ZV+ and an edge cost function
c ∈ RE+, the node-survivable (respectively, link-survivable)
network design problem consists of finding a subgraph H
of G such that for any pair of distinct nodes s, t ∈ V , H
contains at least min{r(s), r(t)} node-disjoint (respectively
edge-disjoint) st-paths.

An important result in graph theory, relating disjoint paths
between two given nodes of a graph and the cuts separating
these two nodes, is the following, which is known as Menger’s
Theorem [101].

Theorem 2 [101]. Let G = (V , E) be a graph with s, t two
distinct nodes of V. Then

i) the maximum number of edge-disjoint st-paths is equal
to the minimum size of an st-cut, and

ii) if s and t are nonadjacent, the maximum number of node-
disjoint st-paths is equal to the minimum size of a node
cutset disconnecting s and t.

From Theorem 2, it follows that the link-survivable network
design problem is equivalent to the following integer linear
program

minimize
∑
e∈E

c(e)x(e)

subject to

x(e) ≥ 0 for all e ∈ E, (2)

x(e) ≤ 1 for all e ∈ E, (3)

x(δ(W)) ≥ con(W) for all W ⊆ V , ∅ �= W �= V , (4)

x(e) ∈ {0, 1} for all e ∈ E. (5)

Here, for all W ⊆ V , ∅ �= W �= V , con(W) = min{r(W),
r(V \ W)} where r(W) = max{r(u) | u ∈ W}. Inequali-
ties (2) and (3) are called trivial inequalities and inequalities
(4) are called cut inequalities.

It is not hard to see that the following inequalities are
also satisfied by any solution to the node-survivable network
design problem

x(δG\U(W)) ≥ r(s, t) − |U|
for all s, t ∈ V , s �= t, and

for all ∅ �= U ⊆ V \ {s, t} with |U| < r(s, t),

for all W ⊆ V \ U with s ∈ W , t ∈ V \ W . (6)

Inequalities (6) are called node cutset inequalities. By adding
these inequalities to the above integer linear program and
using again Menger’s theorem, we obtain an integer linear
programming formulation for the NSNDP.

We remark that an equivalent form of inequalities (6) was
considered in Grötschel et al. [76]. In fact, their node cut-
set inequalities only differ from (6) by their right-hand side,
which is

conG\U(W) − |U|,
for U ⊆ V , ∅ �= U �= V and |U| < conG\U(W). Since

con(W) = min{r(W), r(V \ W)}
= min{max{r(s) | s ∈ W}, max{r(t) | t ∈ V \ W}}
= max{min{r(s, t) | s ∈ W , t ∈ V \ W}},

the equivalence is obvious. We decided to write the node
cutset inequalities as in (6) to make the relation between
Menger’s theorem and the integer linear programming for-
mulation for the NSNDP more straightforward.

The so-called polyhedral approach [110] has been suc-
cessfully applied for many well-known NP-hard problems
such as the traveling salesman problem and the max-cut prob-
lem. This approach, based on the description of the convex
hull of the solutions of the problem, consists of reducing
the problem to a sequence of linear programming problems
by successively adding valid inequalities. More precisely, we
start by considering a “selected” linear relaxation of the prob-
lem given by few inequalities. If the optimal solution of this
relaxation, say x1, is feasible, then it is optimal for the prob-
lem. Otherwise, we generate one or more valid inequalities
that are violated by x1, and add them to the linear relaxation.
If the optimal solution of the new linear program is feasi-
ble, then we are done. Otherwise, we generate new violated
inequalities, and so on. Unfortunately, this process does not
guarantee any feasible optimal solution. If the last solution
we thus obtained is not feasible, we use some branch-and-
bound techniques combined with the inequality generation
process until an integer optimal solution is obtained. Such
an approach clearly depends on the search for an inequality
system determining (or approximating) the polytopes associ-
ated with the solutions of the node-survivable network design
problem and the link-survivable network design problem.
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Let us denote by NSNDP(G, r) [respectively, LSNDP(G,r)]
the convex hull of the solutions of (2)–(5) [respectively
(2)–(6)]. The polytopes NSNDP(G,r) and LSNDP(G,r) are
respectively called the node-survivable network polytope
and the link-survivable network polytope of G. The node-
survivable network design problem is then equivalent to the
linear program

minimize

{∑
e∈E

c(e)x(e) | x ∈ NSNDP(G, r)

}
,

while the link-survivable network design problem is the same
as solving

minimize

{∑
e∈E

c(e)x(e) | x ∈ LSNDP(G, r)

}
.

The polytopes LSNDP(G, r) and NSNDP(G, r) have been
extensively investigated in the past years. In [75], Grötschel
and Monma thus established the dimension of both polytopes,
and they also characterized which of the trivial inequalities
(2) and (3) are facet-defining. In [76], Grötschel et al. consid-
ered the low connectivity case, that is, where r ∈ {0, 1, 2}V ,
and they described when the cut inequalities (4) define facets
for NSNDP(G, r) and LSNDP(G, r). Furthermore, they gave
necessary conditions and sufficient conditions for the node
cutset inequalities (6) to be facet-defining.

For a class of inequalities, the separation problem consists,
given a vector x, in finding a violated inequality in the class or
proving that there is none. This problem is obviously one of
the key ingredients in a polyhedral approach as we previously
described. In fact, a fundamental result, based on the ellipsoid
method and due to Grötschel et al. [74], states a polynomial
equivalence between separation and optimization. More pre-
cisely, we can solve one of the two problems in polynomial
time if and only if we can also solve the other problem in poly-
nomial time. To solve with linear programming techniques
the linear relaxations of both problems NSNDP and LSNDP,
that is, when the constraints (5) are dropped, we cannot just
list all inequalities (4) and (6) for the NSNDP, (4) for the
LSNDP, because of their exponential number. However, the
separation problems for both classes of inequalities (4) and
(6) are polynomially solvable using polynomial-time max-
imum flow algorithms (e.g., the preflow-push algorithm of
Goldberg and Tarjan [64] running in O(n3) time). Therefore,
from the Grötschel, et al. result, the linear relaxations of both
problems NSNDP and LSNDP can be solved in polynomial
time.

Because the problems NSNDP and LSNDP are NP-hard, it
is unlikely to obtain complete linear descriptions of the poly-
topes NSNDP(G, r) and LSNDP(G, r) on general graphs. The
basic trivial, cut and node cutset inequalities, the latter only
for NSNDP(G, r), suffice to completely describe these two
polytopes only in some special classes of graphs (see Section
6 for some examples). However, as it will turn out, partial
descriptions of those polytopes may be sufficient to solve
the problems to optimality. To this aim, further classes of

valid inequalities are needed to get tighter linear relaxations.
The following section presents some of these classes of
inequalities and addresses their associated separation prob-
lem. We mention that those inequalities will be given for
LSNDP(G, r), because their validity for NSNDP(G, r) comes
directly from NSNDP(G, r) ⊆ LSNDP(G, r). Moreover, we
will restrict ourselves to the low connectivity case (i.e.,
r ∈ {0, 1, 2}V ); similar constraints can be easily extended
to the general case (i.e., r ∈ ZV+).

5. VALID INEQUALITIES AND THEIR
SEPARATION PROBLEM

Throughout this section, we consider a graph G = (V , E)

and a connectivity type vector r ∈ {0, 1, 2}V . The inequalities
presented in this section have partitions of V as underly-
ing structures. However, some other classes of inequalities,
based on more complicated structures, were introduced as
well [112]. For instance, the widely studied traveling sales-
man problem is closely related to the 2-connected subgraph
problem as mentioned in Section 2. Thus, Grötschel et al. [76]
(see also Stoer [112]) extended to the polytopes NSNDP(G, r)
and LNSDP(G, r) the comb inequalities, which are valid
for the polytope associated with the solutions of the TSP.
Boyd and Hao [20] introduced the same class of inequalities
for the 2-edge connected network polytope, and gave nec-
essary and sufficient conditions for these inequalities to be
facet-defining.

5.1. Multicut Inequalities

Let {V1, . . . , Vp} be a partition of V . If con(Vi) = 1 for
i = 1, . . . , p, the graph obtained from any solution to the
LSNDP by contracting every subgraph G(Vi), i = 1, . . . , p,
must then be connected. Therefore, the following inequality
is valid for the polytope LSNDP(G, r).

x(δ(V1, . . . , Vp)) ≥ p − 1

for all partition {V1, . . . , Vp} such that

con(Vi) = 1, for i = 1, . . . , p. (7)

Inequalities of type (7) are called multicut inequalities. In
[75], Grötschel and Monma (see also [76]) showed that
inequalities (7), together with trivial inequalities (2) and (3),
suffice to describe the polytope LSNDP(G, r) when r(i) = 1
for all i ∈ V .

Moreover, Nash-Williams [104] (see also Tutte [117])
proved that those inequalities (7), together with nonnega-
tivity ones (2), characterize the dominant of the polytope
LSNDP(G, r) in this case of unit connectivity type vectors.

Cunningham [34] showed that, if r(v) = 1 for all
v ∈ V , the separation problem associated with inequali-
ties (7) can be reduced to |E| minimum cut problems, and
can then be solved in polynomial time. In [12], Barahona
reduced the separation problem for those inequalities to a
sequence of |V | minimum cut problems, and then derived
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an O(n4) algorithm. Moreover, both algorithms provide the
most violated inequality if there is any.

For the general case where r ∈ ZV and there exists at
least a node u ∈ V such that r(u) = 0, Grötschel et al. [77]
showed that the separation problem for inequalities (7) is NP-
hard. Furthermore, if r(u) ≥ 1 for all u ∈ V , as mentioned
by Kerivin and Mahjoub [85], inequalities (7) can then be
separated in polynomial time by applying the Cunningham
or Barahona algorithms on the graph obtained from G by
contracting the set of nodes {u ∈ V | r(u) > 1}.

5.2. Partition Inequalities

In [76], Grötschel et al. introduced a class of valid
inequalities for LSNDP(G, r), called partition inequalities,
that generalizes the cut inequalities (4). These inequalities
are as follows. Let {V1, . . . , Vp}, p ≥ 3, be a partition of
V such that 1 ≤ con(Vi) ≤ 2 for i = 1, . . . , p. Denote
I2 = {i | con(Vi) = 2, i = 1, . . . , p}. The partition inequality
induced by {V1, . . . , Vp} is given by

x(δ(V1, . . . , Vp)) ≥
{

p − 1 if I2 = ∅,

p otherwise.
(8)

Obviously, if all connectivity types are equal to 2, a parti-
tion inequality (8) is implied by sum of the cut constraints
x(δ(Vi)) ≥ 2. [We remark that considering the case where
p = 2 gives a cut inequality (4).]

The separation problem for the partition inequalities (8)
is NP-hard in general [77]. Grötschel et al. [77] showed that,
even in the restricted case where r ∈ {0, 1}V , the separa-
tion problem remains NP-hard. If r ∈ {1, 2}V , Kerivin and
Mahjoub [85] proved that the separation problem associated
with

x(δ(V1, . . . , Vp)) ≥ p if I2 �= ∅, (9)

where {V1, . . . , Vp} is a partition of V , reduces to minimiz-
ing a submodular function, and therefore, it can be solved in
polynomial time (see Schrijver [110] for details on submodu-
lar functions). Recently, Barahona and Kerivin [13] devised a
pure combinatorial algorithm, based on the submodular inter-
section problem, for separating inequalities (9). They showed
that this problem reduces to a sequence of submodular flow
problems, each of them having its complexity dominated by
the one of solving O(n3) minimum cut problems. Combined
with the algorithm of Section 5.1 for separating inequali-
ties (8) with a right-hand side equal to p − 1, Barahona
and Kerivin obtained an O(n7) algorithm for the separation
problem associated with the partition inequalities (8).

5.3. F-Partition Inequalities

Suppose the connectivity type vector r is such that r(u) =
2 for all u ∈ V . A class of valid inequalities for the polytope
LSNDP(G, r) in this case was introduced by Mahjoub [96]

as follows. Consider a partition {V1, . . . , Vp} of V and let
F ⊆ δ(V1) with |F| odd. By adding the inequalities

x(δ(Vi)) ≥ 2 for i = 2, . . . , p,

− x(e) ≥ −1 for e ∈ F,

x(e) ≥ 0 for e ∈ δ(V1) \ F,

we obtain

2x(�) ≥ 2(p − 1) − |F|,
where � = δ(V1, . . . , Vp) \ F. Dividing by 2 and rounding
up the right-hand side lead to

x(�) ≥ p −
⌈ |F|

2

⌉
. (10)

Inequalities (10) are called F-partition inequalities. Note
that if |F| is even, the corresponding inequality (11) is then
implied by inequalities (2), (3), and (4). It is straightforward
to see that inequalities (10) remain valid for LSNDP(G, r)
when r ∈ {0, 1, 2}V and con(Vi) = 2 for i = 1, . . . , p.

The partition and F-partition inequalities are special cases
of more general classes of inequalities given by Grötschel
et al. [76] for LSNDP(G, r). In [76], the authors also gave nec-
essary conditions and sufficient conditions for these inequal-
ities to be facet-defining. Furthermore, Kerivin et al. [87]
considered a subclass of F-partition inequalities, called gen-
eralized odd-wheel inequalities, to give sufficient conditions
for inequalities (10) to be facet-defining. They also intro-
duced an extension of inequalities (10) to the case where the
inducing partition {V1, . . . , Vp} is such that con(Vi) ∈ {1, 2}
for i = 1, . . . , p (see Section 7).

The separation problem for the F-partition inequalities is
still an open question. However, if the sets Vi of partitions
are singletons, the corresponding F-partition inequalities are
then blossom inequalities for b-matching, which can be sep-
arated in polynomial time with the algorithm of Padberg and
Rao [106]. Moreover, when the edge subset F is fixed, as
pointed out by Baïou et al. [7], the separation problem for
inequalities (10) can be solved in polynomial time. In fact,
one can delete the set of edges F from G and consider the
resulting graph G′ = (V ′, E′), say. An F-partition in G can
be written in G′ as

x(δG′(V1, . . . , Vp)) ≥ p −
⌈ |F|

2

⌉
, (11)

where V1 contains exactly one node of each edge of F. There
are 2|F| possibilities to assign nodes of F to V1. For each one
we can contract the nodes of F in V1 and solve the separation
problem for inequalities (11). As Cunningham’s algorithm
and Barahona’s algorithm provide a most violated multicut
inequality, if there is any, this can then be done in polynomial
time. As it will be shown in the sequel, F-partition inequalities
play a central role for solving LSNDP and NSNDP, in the low
connectivity case, within the framework of a cutting plane
algorithm.
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5.4. General Partition Inequalities

In [7], Baïou et al. studied a class of inequalities gen-
eralizing the multicut inequalities (7). Given a partition
{V1, . . . , Vp} of V and two fixed scalars a and b, they are
of the form

x(δ(V1, . . . , Vp)) ≥ ap + b. (12)

Inequalities (12) arise as valid inequalities for many vari-
ants of the survivable network design problem. For instance,
we remark that the multicut inequalities (7) correspond to
inequalities (12) where a = 1 and b = −1. Baïou et al. called
these inequalities partition inequalities, however, to avoid
confusion, we will here refer to inequalities (12) as gener-
alized partition inequalities. Baïou et al. [7] showed that the
separation problem for inequalities (12) can be reduced to
minimizing a submodular function, and can then be solved
in polynomial time.

Consider now the k-edge connected network problem, that
is, the LSNDP where r(u) = k for all u ∈ V . Grötschel
et al. [76] introduced the following inequalities

x(δ(V1, . . . , Vp)) ≥
⌈kp

2

⌉
, (13)

where {V1, . . . , Vp} is a partition of V . Inequalities (13) are
clearly redundant with respect to the cut inequalities (4) if kp
is even. To have an approximate separation routine, instead of
separating inequalities (13), one can separate the inequalities

x(δ(V1, . . . , Vp)) ≥ kp

2
,

which are nothing but inequalities (12) where a = k
2 and

b = 0.
Let Z ⊂ V be a node set with |Z| = t ≤ k − 1 and

{V1, . . . , Vp} a partition of V \ Z . For the k-node connected
network problem (i.e., NSNDP where r(u) = k for all u ∈ V ),
Grötschel and Monma [75] introduced the node partition
inequalities, which are as follows

x(δG\Z(V1, . . . , Vp)) ≥
{

p − 1 if k − t = 1,⌈
p(k−t)

2

⌉
if k − t ≥ 2.

(14)

Grötschel and Monma [75] also gave necessary and sufficient
conditions for inequalities (14) to be facet-defining. If k −
t = 1, inequalities (14) are then multicut inequalities, and
therefore they can be separated in polynomial time. If k − t
is positive and even, they are nothing but inequalities (12)
and their separation is also polynomially solvable. As we
mentioned for inequalities (13), one can use Baïou et al.’s
algorithm for separating inequalities (12) to approximate the
separation problem for inequalities (14) where k−t is positive
and odd.

6. THE POLYTOPES LSNDP(G, rG, rG, r ) AND
NSNDP(G, rG, rG, r ) ON SPECIAL GRAPHS

In this section, we discuss the polytopes NSNDP(G,r) and
LSNDP(G,r) in some special classes of graphs. (See Subsec-
tion 3.1 for the definitions of the considered graphs.) In fact,

these polytopes are known in many classes of graphs, and
the inequality systems describing them are separable in poly-
nomial time. Therefore, by the ellipsoid method [74], one
gets polynomial-time cutting plane algorithms for solving
the underlying optimization problems.

In [96], Mahjoub showed that when G is series-parallel and
r(u) = 2 for all u ∈ V , the polytope LSNDP(G, r) is given by
the trivial inequalities (2) and (3), and the cut inequalities (4).
This linear description was generalized to the case where
r ∈ {0, 2}V by Baïou and Mahjoub [8] as well as to the case
where r ∈ {0, k}V and k is even by Didi Biha and Mahjoub
[47]. Recently, Kerivin and Mahjoub [86] extended those
results to the more general case where the connectivity types
are all even.

Theorem 3 [86]. If G = (V , E) is series-parallel and r(u)

is even for all u ∈ V, the polytope LSNDP(G,r) is then
completely described by the trivial inequalities (2) and (3)
together with the cut inequalities (4).

To our knowledge, the only linear description of LSNDP
(G,r) where even and odd connectivity types are mixed is
due to Didi Biha et al. [45]. For r ∈ {1, 2}V and in a sub-
class of series-parallel graphs containing all the outerplanar
graphs, they showed that the link-survivable network poly-
tope is completely described by the trivial inequalities (2) and
(3), the cut inequalities (4) and the partition inequalities (8).

For connectivity type vectors r such that r(u) = 2 for
all u ∈ V , Barahona and Mahjoub [14] studied the poly-
topes NSNDP(G, r) and LSNDP(G, r) in the graphs that can
be decomposed by 3-edge cutsets. (A 3-edge cutset is a cut
that consists of exactly three edges.) They showed that if a
graph G decomposes into G1 and G2 by a 3-edge cutset, the
system describing LSNDP(G, r) is then the union of both
systems describing LSNDP(G1, r) and LSNDP(G2, r). As a
consequence, they obtained that inequalities (10) together
with the trivial and cut inequalities completely describe the
link-survivable network polytope on Halin graphs for this
case of connectivity type vectors. They also presented simi-
lar results for the polytope NSNDP(G, r). Some extensions of
this work to the case where r ∈ {0, 2}V were studied in [98].

In some practical situations, one may need to use more
than one link between two given nodes of a link-survivable
network. This case can be seen as a relaxation of the
link-survivable network problem, and is usually easier to
handle. Let P(G, r) be the dominant of LSNDP(G, r), that
is, P(G, r) = LSNDP(G, r) +RE+. The polyhedron P(G, r)
is nothing but the convex hull of the solutions of the relaxed
LSNDP when multiple copies of edges are allowed. In [22],
Chopra studied P(G, r) when r(u) = k for all u ∈ V and G is
an outerplanar graph. For this case with k odd, he showed that
the following inequalities are valid for the polyhedron P(G, r)

x(δ(V1, . . . , Vp)) ≥
⌈k

2

⌉
p − 1

for all partitions {V1, . . . , Vp} of V . (15)

Moreover, he proved the following.
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Theorem 4 [22]. If G = (V , E) is outerplanar, r(u) = k
for all u ∈ V with k odd, the polyhedron P(G, r) is then given
by the nonnegativity inequalities (2) and inequalities (15).

The polyhedron P(G, r) was previously studied by Cor-
nuéjols et al. [30]. They showed that on series-parallel graphs
and for r(u) = k for all u ∈ V with k even, the polyhe-
dron P(G, r) is completely described by the nonnegativity
inequalities (2) and the cut inequalities (4). In [6], Baïou
showed that this result also holds if r ∈ {0, 2}V . For this
class of graphs, Didi Biha and Mahjoub [46] (see also Didi
Biha [43]) proved that inequalities (15) remain valid for
the link-survivable network problem where r(u) = k for
all u ∈ V with k odd. They also showed that inequalities
(15) together with the nonnegativity inequalities (2) com-
pletely describe the polyhedron P(G, r) in that case. As a
consequence, they obtained that Theorem 4 also holds on
series-parallel graphs, as conjectured by Chopra [22]. This
conjecture was also proved independently by Chopra and
Stoer [25]. We remark that inequalities (15) are nothing but
a particular case of generalized partition inequalities (12).
Therefore, a direct consequence of the result of Baïou et al. [7]
(see Subsection 5.4) is that inequalities (15) can be separated
in polynomial time. (Recall that those inequalities are valid
for the LSNDP only if the graph induced by the partition is
series-parallel.)

As we mentioned in Section 2, the polytope LSNDP(G, r)
where r ∈ {0, 1}V is closely related to the Steiner tree poly-
tope STP(G, r), the extreme points of which are the incidence
vectors of the Steiner trees of G. Over the last 2 decades,
extensive research has been conducted on STP(G, r) [23, 24,
44, 59, 99]. In [23, 24], Chopra and Rao described several
classes of facet-defining inequalities for the dominant of the
Steiner tree polytope in both directed and undirected cases.
Didi Biha et al. [44] studied further facet-defining inequal-
ities that generalize those introduced in [23, 24]. They also
gave some linear descriptions of STP(G, r) in some nontrivial
subclasses of series-parallel graphs. In [99], Margot et al. con-
sidered an extended formulation of the Steiner tree problem,
and they showed that it leads to a complete linear description
of the associated polytope on 2-trees (i.e., maximal series-
parallel graphs). Goemans [59] discussed another extended
formulation of the Steiner tree problem and he character-
ized the associated polytope when the underlying graph is
series-parallel. Moreover, he also described some classes of
facet-defining inequalities for the Steiner tree polytope.

The node-survivable network polytope has also been
investigated in some particular classes of graphs. In [14],
Barahona and Mahjoub gave a complete description of the
polytope NSNDP(G, r) on Halin graphs when r(u) = 2 for
all u ∈ V . Coullard et al. [32, 33] studied the Steiner 2-
node connected subgraph problem, that is, the NSDNP where
r ∈ {0, 2}V . In [32], they gave a linear time algorithm for the
Steiner 2-node connected subgraph problem on Halin graphs
and on graphs noncontractible to W4, the latter being the
graphs that do not reduce to W4 (i.e., the wheel on five nodes)
by means of deletions and contractions of edges. They also

described, in [33], the dominant of the polytope LNSDP(G, r)
where G is a graph noncontractible to W4 and r ∈ {0, 2}V .

7. CRITICAL EXTREME POINTS

It is well known that the linear relaxation of a combinato-
rial optimization problem usually provides a near-optimal
solution. To improve this solution, one has to add valid
inequalities that are violated by fractional solutions. Many of
these solutions may be extreme points of the linear relaxation,
and therefore, characterizing the extreme points, among the
ones of the linear relaxation, which may be separated in poly-
nomial time, would be of great interest for solving the whole
optimization problem. This question was first studied by
Fonlupt and Mahjoub [49, 50] for the 2-edge connected net-
work polytope, that is, the polytope LSNDP where r(u) = 2
for all u ∈ V . They introduced the concept of critical extreme
points of the linear relaxation of the link-survivable network
polytope. In this section, we discuss these extreme points.

Consider a graph G = (V , E) and suppose r(u) = 2 for all
u ∈ V . We denote by P(G) the polytope given by the trivial
inequalities (2) and (3) and the inequalities

x(δ(W)) ≥ 2 for all W ⊂ V , W �= ∅. (16)

We observe that inequalities (16) correspond to the cut
inequalities (4) in the case where r(u) = 2 for all u ∈ V .
Moreover, we also point out that the polytope P(G) is the
linear relaxation of LSNDP(G, r) in this case.

Let x be a noninteger extreme point of P(G). Let x′ be
a solution obtained by replacing some (but at least one)
noninteger components of x by 0 or 1 (and keeping all the
other components of x unchanged). If x′ is a point of P(G),
then x′ can be written as a strict convex combination of
extreme points of P(G). If y is such an extreme point, then
y is said to be dominated by x, and we write x � y. Note
that an extreme point of P(G) may dominate more than one
extreme point of P(G). Notice also that, if x dominates y, that
is, x � y, we then have

{e ∈ E | 0 < y(e) < 1} ⊂ {e ∈ E | 0 < x(e) < 1}
{e ∈ E | x(e) = 0} ⊆ {e ∈ E | y(e) = 0}, and

{e ∈ E | x(e) = 1} ⊆ {e ∈ E | y(e) = 1}.
The relation � defines a partial ordering on the extreme points
of P(G). The minimal elements of this ordering (i.e., the
extreme points x for which there is no extreme point y such
that x � y) correspond to the integer extreme points of P(G).
The minimal extreme points of P(G) are called extreme points
of rank 0. An extreme point x of P(G) is said to be of rank k,
for a fixed k, if x only dominates extreme points of rank less
than or equal to k −1 and if it dominates at least one extreme
point of rank k − 1. We notice that if x is an extreme point
of P(G) of rank 1 and if we replace one fractional compo-
nent of x by 1, keeping unchanged the other components, we
obtain a feasible point x′ of P(G), which can be written as a
convex combination of integer extreme points of P(G). We
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also observe that the extreme points of P(G) may have rank
at most |E|.

Fonlupt and Mahjoub [49, 50] introduced the following
reduction operations with respect to a solution x of P(G).

θ1: Delete an edge e with x(e) = 0.
θ2: Contract an edge e having one of its endnodes of degree 2.
θ3: Contract a node subset W such that G(W) is 2-edge

connected and x(e) = 1 for all e ∈ E(W).

Starting from a graph G and a point x of P(G), let G′ be a
reduced graph and x′ be a point of P(G′), both obtained by
applying operations θ1, θ2, θ3. It is not hard to see that x is an
extreme point of P(G) if and only if x′ is an extreme point of
P(G′). Moreover, we have

Lemma 5 [49, 50]. x is an extreme point of P(G) of rank 1
if and only if x′ is an extreme point of P(G′) of rank 1.

An extreme point of P(G) is said to be critical [49, 50] if
it is of rank 1 and if none of the operations θ1, θ2, θ3 can be
applied to it. By Lemma 5, the characterization of the extreme
points of rank 1 reduces to those of the critical extreme points
of P(G). In [49, 50], Mahjoub and Fonlupt gave the following
necessary conditions for a fractional extreme point of P(G)

to be critical.

Theorem 6 [49, 50]. Let G = (V , E) be a 2-edge connected
graph and x a fractional extreme point of P(G). If x is a
critical extreme point of P(G), then the following hold.

(i) V = V1 ∪ V2 with V1 ∩ V2 = ∅,
E = E1 ∪ E2 with E1 ∩ E2 = ∅,
(V1, E1) is an odd cycle,
(V1 ∪ V2, E2) is a forest whose set of leaves is V1 and
such that all the nodes in V1 have degree 3,

(ii) x(e) = 1
2 for e ∈ E1,

x(e) = 1 for all e ∈ E2, and
(iii) x(δ(W)) > 2 for all cuts δ(W) such that |W | ≥ 2 and

|W | ≥ 2.

Remark 2.1. By (ii) and (iii) of Theorem 6, if G supports
a critical extreme point, then G is 3-edge connected, and
|δ(S)| ≥ 4 for every cut δ(S) such that |S| ≥ 2 and |S| ≥ 2.

Theorem 6 has some interesting algorithmic and polyhe-
dral consequences. We first note that operations θ1, θ2, θ3 can
be performed in polynomial time and in any order. Consider
now a graph G = (V , E) and a critical extreme point x. From
Theorem 6, it follows that there exists an odd cycle C of G
such that x(e) = 1

2 for e ∈ C and x(e) = 1 for e ∈ E \ C.
Moreover, E \ C induces a forest whose leaves are precisely
the nodes of V(C). So the inequality

∑
e∈C

x(e) ≥ |C| + 1

2
, (17)

which is valid for the 2-edge connected network problem,
is violated by x. Actually, constraint (17) is an F-partition

inequality (10) where F is the set of leaves of the forest.
Thus, by the remark above we have the following.

Theorem 7 [49, 50]. Critical extreme points can be sep-
arated from the 2-edge connected network polytope in
polynomial time.

Kerivin et al. [87] showed that inequality (17) is nothing
but a special case of a more general class of facet-defining
inequalities for the 2-edge connected network polytope. Con-
sequently, by Theorem 7, critical extreme points may be
separated by F-partition facets.

The concept of critical extreme points has also been stud-
ied by Mahjoub and Nocq [97] for the 2-node connected
network polytope (i.e, NSNDP(G, r) where r(u) = 2 for
all u ∈ V ) as well as by Kerivin et al. [87] for the (1,2)-
link-survivable network polytope (i.e., LSNDP(G, r) where
r ∈ {1, 2}V ). The following inequalities

x(δG\v(W)) ≥ 1 for all v ∈ V , W ⊂ V \ {v}, W �= ∅.
(18)

are valid for the 2-node connected network polytope. We
observe that these inequalities are a special case of the node
partition inequalities (14). In [97], Mahjoub and Nocq studied
the polytope Q(G) given by inequalities (2), (3), (16), and
(18). This polytope is nothing but the linear relaxation of
the 2-node connected network polytope. They extended the
concept of extreme points of rank 1 and critical extreme points
to the polytope Q(G). They also gave necessary and sufficient
conditions for an extreme point of Q(G) to be critical. In
particular, they introduced the following operations defined
with respect to a point x of Q(G).

θ ′
1: Replace a set of parallel edges by only one edge.

θ ′
2: Contract W ⊂ V such that x(e) = 1 for all e ∈ E(W)

and |δ(W)| ≤ 3.

Moreover they proved the following.

Lemma 8 [97]. Let x be an extreme point of Q(G) with x′
and G′ being the solution and the graph obtained from x and
G by repeated applications of the operations θ1, θ2, θ3, θ ′

1
and θ ′

2. Then x is an extreme point of Q(G) of rank 1 if and
only if x′ is an extreme point of Q(G′) of rank 1.

We now look at the case where r ∈ {1, 2}V . The F-partition
inequalities (10) can straightforwardly be extended to the case
r ∈ {1, 2}V as follows

x(�) ≥ p − 1 −
⌊p1 + |F|

2

⌋
, (19)

where p1 = |{i | con(Vi) = 1, i = 2, . . . , p}|. We remark
here that |F| is not necessarily odd. In fact, inequalities (19)
are dominated by the cut and trivial inequalities if and only
if p1 and |F| have the same parity.

Let R(G, r) be the polytope described by the trivial
inequalities (2) and (3), the cut inequalities (4) and the parti-
tion inequalities (8). The interest in considering the partition
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inequalities (8) for R(G, r) is because they can be separated
in polynomial time as proved in [85] (see also Section 8).
Given a solution x of R(G, r), the following operations,
described in [87] and given with respect to x, extend in a
straightforward way the operation θ2, introduced above, to the
case where r ∈ {1, 2}V .

θ ′′
1 : Contract an edge uv such that x(uv) = 1, r(u) = 1 and

x(δ(u)) ≤ 2.
θ ′′

2 : Contract an edge uv such that r(u) = 2, |δ(u)| =
{uv, uw} and r(w) = 2.

Note that these reduction operations, as well as θ ′
1, θ ′

2, can also
be realized in polynomial time. We also notice that operation
θ3, previously given for the case where r(u) = 2 for all u ∈ v,
can be extended to the (1,2)-link-survivable network problem
by considering node sets W ⊂ V with r(u) = 2 for all u ∈ W .

With a graph obtained from G by contracting an edge
e = uv ∈ E, we associate the connectivity type vector re ∈
{1, 2}|V |−1 such that re(w) = con({u, v}) and re(u) = r(u)

if u ∈ V \ {u, v}, where w is the node that arises from the
contraction of e. Let G′ = (V ′, E′) be a graph obtained by
repeated applications of operations θ1, θ2, θ3, θ ′′

1 , θ ′′
2 . Denote

by r′ ∈ {1, 2}V ′
the connectivity type vector corresponding

to the graph G′ and by x′ the restriction of x on E′. If x is an
extreme point of R(G, r), then x′ is also an extreme point of
R(G′, r′). Moreover, we have the following.

Lemma 9 [87]. (i) If a′x ≥ α′ is a valid inequality of the
(1,2)-link survivable network polytope on G′ of type either
(4), (8) or (19), then the inequality ax ≥ α where a(e) = a′(e)
if e ∈ E′, a(e) = 1 if e has its endnodes in different classes of
the partition and α = α′, is valid for the (1,2)-link-survivable
network polytope on G. Moreover, if a′x ≥ α′ is violated by
x′, then ax ≥ α is also violated by x.

(ii) If ax ≥ α is a valid inequality of the (1,2)-link-
survivable network polytope on G of type (4) [respec-
tively (8)] [respectively (19)], which is violated by x, then
there is an inequality, valid for the (1,2)-link-survivable
network polytope on G′ of type (4) [respectively (8)] [respec-
tively (19)], which is violated by x′.

Lemma 9 shows that looking for inequalities of type (4),
(8), or (19), which are violated by x, reduces to looking for
such inequalities which are violated by x′ on G′. We observe
that this procedure can be applied for any solution of R(G, r),
and in consequence, it may permit us to separate fractional
solutions, which are even not extreme points of R(G, r).
Moreover, if r(u) = 2 for all u ∈ V and x is an extreme
point of P(G) of rank 1, then, as mentioned above, there is a
F-partition that cuts off this solution and that can be found in
polynomial time. In addition, this F-partition inequality may
be facet-defining.

Lemma 9 also holds for the 2-node connected network
polytope when we consider the operations θ1, θ2, θ ′

1, θ ′
2 and

the inequalities (16), (14), (10). Actually, in this case, the
graph G′ is obtained by applications of the operations θ1, θ2,
θ ′

1, θ ′
2. And if there is one of those inequalities that is violated

by x′ in G′, then there is also one that is violated by x in G.
Thus, as for the (1,2)-link-survivable network polytope, the
separation of x by inequalities of type (16), (14), (10) in G
reduces to the separation of x′ by these inequalities in G′.

Operations θ1, θ2, θ3, θ ′′
1 , θ ′′

2 (respectively θ1, θ2, θ3, θ ′
1, θ ′

2)
have been used by Kerivin et al. [87] in a preprocessing phase
of a cutting plane algorithm for the (1,2)-link-survivable net-
work design problem (respectively, the 2-node connected
network problem). As will be seen in Section 8, these
operations are very effective for solving these problems.

8. A BRANCH-AND-CUT ALGORITHM

Branch-and-cut is the most successful paradigm for solv-
ing NP-hard combinatorial optimization problems to opti-
mality. This approach has been used for devising efficient
algorithms for the survivable network design problem, start-
ing from the work of Grötschel et al. [78]. In fact, Grötschel
et al. developed a branch-and-cut algorithm for solving the
low-survivability case on real-world instances that have up to
108 nodes and sparse graphs induced by all the possible links.
The theoretical results presented in the previous sections have
some interesting algorithmic applications as shown hereafter
by the description of a branch-and-cut algorithm devised by
Kerivin et al. [87] for the (1,2)-link survivable network design
problem and the 2-node connected network problem, denoted
later by (1,2)LSNDP and 2NSNDP, respectively.

8.1. The Overall Algorithm

To this aim, we consider a graph G = (V , E), a connec-
tivity type vector r ∈ {1, 2}V and a cost vector c ∈ RE+ on the
edges of G. We first describe the framework of the algorithm
where we use the survivable network design problem to refer
to either the (1,2)-link survivable network design problem
or the 2-node connected network problem. The initial linear
program is given by the so-called degree inequalities [i.e.,
cut inequalities (4) induced by single nodes] and the trivial
inequalities (2) and (3) as follows

minimize
∑
e∈E

c(e)x(e)

subject to

x(δ(u)) ≥ r(u) for all u ∈ V ,

0 ≤ x(e) ≤ 1 for all e ∈ E.

The optimal solution x ∈ RE of a relaxation of the surviv-
able network design problem is feasible if x is an integer
vector that satisfies all the cut inequalities (4), as well as
the node cutset inequalities (6) for the 2NSNDP. Usually,
the solution x is not feasible for the SNDP, and thus, at
each iteration of the branch-and-cut algorithm, it is necessary
to generate valid inequalities for the SNDP, which are vio-
lated by x. These inequalities are picked from a pool formed
by the cut inequalities (4), the partition inequalities (8) and
the F-partition inequalities (19) for the (1,2)-link survivable
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network design problem. For the 2-node connected network
problem, the node cutset inequalities (6), the node partition
inequalities (14) and the F-partition inequalities (10) make
up the pools. We remark that all these inequalities are global
(i.e., valid throughout the branch-and-cut tree) and several
inequalities may be added at each iteration. Moreover, the
separation of those inequalities is performed according to the
orders specified above, to apply the right separation routine
to a class of inequalities.

The separation routines used in the branch-and-cut algo-
rithm are either exact algorithms or heuristics depending on
the associated class of inequalities. Frequently, these separa-
tion routines are based on maximum flow computations that
can be done in polynomial time using the efficient preflow-
push algorithm of Goldberg and Tarjan [64], which runs in
O(n3) time. Let G′ = (V ′, E′) be the graph obtained from G
and x by repeated applications of the operations θ1, θ2, θ3, θ ′′

1
and θ ′′

2 (respectively, θ1, θ2, θ ′
1 and θ ′

2) for the (1,2)LSNDP
(respectively, 2NSNDP) as described in Section 7. We denote
by r′ ∈ {1, 2}V ′

the connectivity type vector corresponding to
G′, and by x′ the restriction of x on E′. To speed up the sepa-
ration routines, the latter are applied to the graph G′ with an
edge weight vector given by x′. In fact, from Lemma 9, look-
ing for valid inequalities for the survivable network design
problem on G violated by x reduces to looking for such
inequalities in G′ violated by x′.

The separation of both cut inequalities (4) and node cutset
inequalities (6) can be performed by computing Gomory-Hu
trees on G′ [65]. (A Gomory-Hu tree T on G′ has the property
that for any pair of nodes s, t ∈ V ′, the minimum st-cut
in T is also a minimum st-cut in G′, and using Gusfield’s
algorithm [79], finding T requires |V ′| − 1 maximum flow
computations.) To deal with the two possible right-hand sides
of the inequalities (4), only the nodes u ∈ V ′ with r′(u) = 2
are first considered in a Gomory-Hu tree and then these nodes
are shrunk in G′ to provide a graph on which another Gomory-
Hu tree is computed. For the node cutset inequalities (6),
their separation reduces to a sequence of |V ′| Gomory-Hu
tree computations. In consequence, an exact algorithm that
permits us to separate the cut inequalities (4) [respectively,
node cutset inequalities (6)] can be implemented to run in
O(n4) time [respectively, O(n5) time].

We now turn our attention to the separation of the parti-
tion inequalities (8), which are exclusively considered when
r ∈ {1, 2}V . An exact algorithm to separate those inequal-
ities was given by Barahona and Kerivin [13] and its time
complexity is O(n7). However, in the context of a branch-
and-cut algorithm, this time complexity may seem a little too
high, and some heuristics were devised for separating those
inequalities [78, 87, 112]. Kerivin et al. [87] thus devised
a heuristic where they consider two cases depending on the
value of the right-hand side. In fact, using Barahona’s algo-
rithm [12], one can solve exactly the separation problem of
the multicut inequalities (7) and the partition inequalities
(9) violated by more than 1. Kerivin et al. then developed
a heuristic to separate the partition inequalities (9) violated
by less than 1. The latter is based on the transformation of cuts

given by a Gomory-Hu tree on G′ into partitions by applying
Barahona’s algorithm to both shores of the cuts. Their whole
approach leads to a heuristic for separating the inequalities
(8), which can be implemented to run in O(n5) time. The sepa-
ration of the node partition inequalities (14) can be reduced to
a sequence of |V ′| separation problem of multicut inequalities
(7) in the graph G′ with one less node. (We recall that these
inequalities are only considered for the 2NSNDP.) Therefore,
using Barahona’s algorithm, separating the inequalities (14)
can be done in O(n5) time.

We finally discuss the separation routines for the F-
partition inequalities (10) and (19), the separation problem
of which has not been established yet. Therefore, two heuris-
tics were devised by Kerivin et al. [87] for separating both
inequalities (10) and (19). The idea of the first one comes
directly from the study of the critical extreme points (see
Section 7), and especially from Theorems 6 and 7. This
heuristic consists of looking for cycles in G′ formed by frac-
tional valued edges and for any of these cycles (v1, . . . , vp),
trying to generate a violated F-partition inequality induced
by the partition {V ′ \ {v1, . . . , vp}, {v1}, . . . , {vp}} and an edge
subset among the edges having exactly one extremity in the
cycle. This first heuristic can then be implemented using a
recursive algorithm that determines the 2-connected com-
ponents in a graph, leading to an O(n2) time complexity.
Another heuristic was devised in [87], which transforms
cuts containing as many edges e ∈ E′ with x′(e) = 1 as
possible into F-partitions. To determine such cuts, one can
compute a Gomory-Hu tree on G′ with the edge weight vec-
tor (1 − x′(e), e ∈ E′). Given a cut δ(W) obtained from the
Gomory-Hu tree, a F-partition inequality is then generated
by considering the partition induced by W and the nodes in
W and by picking an edge subset F ∈ δ(W). (The same pro-
cess can be applied for the partition induced by W and the
nodes in W .) This second heuristic requires the solution of
O(n) minimum cut problems and runs in O(n4) time. Another
way to generate a F-partition from a cut would be to apply
Barahona’s algorithm [12] to each shore of the cut; the com-
plexity of the second heuristic would then increase to O(n5)

time.

8.2. Computational Experiments

We now briefly discuss some of the computational results
obtained by Kerivin et al. [87] for both (1,2)LSNDP and
2NSNDP using the branch-and-cut algorithm previously
described. The test problems, which consist of complete
graphs, came from the TSPLIB library [109]. The number
of nodes ranged up to 574 when node types are all equal to 2,
and up to 101 when r ∈ {1, 2}V . Moreover, if the (1,2)-
link survivable network design problem was considered, the
connectivity type vector was randomly generated.

Their first series of experiments concerns the SNDP with
r(u) = 2 for all u ∈ V , that is, the 2-link connected net-
work problem and the 2-node connected network problem. It
appeared that the linear relaxations given by the trivial and
cut inequalities (together with the node-partition inequalities
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for the 2NSNDP) provided good lower bounds. The average
relative error between these lower bounds and the optimal
values was actually less than 1%. Furthermore, for both prob-
lems, the F-partition inequalities (10) appeared to be very
efficient to solve those problems without any need of branch-
ing, or at least, to considerably improve the lower bound
given at the root node of the branch-and-cut tree. This remark
confirms the one from Baïou [5] for the 2LSNDP where the
F-partition inequalities (10) are separated in polynomial time
by first fixing the edge subset F. Moreover, their experiments
also showed that the two separation heuristics for the F-
partition inequalities (10) detected a large enough number
of such violated inequalities, and therefore were very useful.
Furthermore, they noticed that the solution obtained for the
2LSNDP and the 2NSNDP are also optimal for the travel-
ing salesman problem in the majority of the cases, showing
thus that considering those inequalities in a branch-and-cut
algorithm may be useful for solving the TSP.

Kerivin et al. then considered the (1,2)-link survivable
network design problem to estimate the importance of the
partition inequalities (8) and the F-partition inequalities (19)
in the solution of that problem. They first noticed that the
partition inequalities (8) played a central role for solving
the (1,2)LSNDP to optimality. In fact, by considering them
together with the F-partition inequalities (19), the relative
error between the optimal value and the lower bound achieved
at the root node considerably decreased, and several problems
could be solved without any branching. A direct outcome of
that remark is the efficiency of the separation routines, pre-
sented in Section 8.1, to detect violated partition inequalities
(8). Actually, almost three-quarters of the violated partition
inequalities were detected by the heuristic transforming cuts
into partitions, even though violated multicut inequalities (7)
and partition inequalities (9) violated by more than 1 were
first sought. The F-partition inequalities (19) appeared in a
smaller proportion than the F-partition (10) for the SNDP
with r(u) = 2 for all u ∈ V . Nevertheless, combined with
the cut and partition inequalities, they speeded up the solu-
tion of the (1,2)LSNDP in some cases, and eventually solved
it to optimality at the root node of the branch-and-cut tree.
This implies that the heuristics for separating the F-partition
inequalities may be less efficient for the (1,2)LSNDP, yet
these inequalities seemed to be useful.

Finally, the interest of the reduction operations introduced
in Section 7 was also evaluated in [87] (see also Kerivin [84])
by making the same experiments with and without them.
Kerivin et al. [87] then reported that for both cases [i.e.,
r(u) = 2 for all u ∈ V and r ∈ {1, 2}V ] the solutions
of the problems consumed much more CPU time when the
reduction operations were not considered. In fact, getting an
optimal solution might need a few seconds with those oper-
ations, and several hours without them. Moreover, using the
reduction operations seemed to make the separation routines
more efficient, the number of detected violated inequalities
being higher in that case. It was also mentioned in [87] that
many of the F-partitions (10) that cut off fractional solu-
tions of the 2LSNDP and the 2NSNDP in the experiments

were facet-defining in G, because of the application of the
reduction operations.

9. SURVIVABILITY WITH LENGTH CONSTRAINTS

In general, the survivability requirement is not sufficient
to guarantee a cost effective routing. Indeed, the alternative
routing paths may be too long and then too costly to be suit-
able. For instance, an optimal 2-connected network may be a
Hamiltonian cycle (i.e., a cycle going through all the nodes of
the network exactly once). In consequence, further technical
constraints have to be added; in particular, one can impose
a limit on the length of the rerouting paths. Actually, there
are two types of rerouting strategies in telecommunications.
The first one, called local rerouting, consists of rerouting the
traffic between the extremities of the failed link. This link,
together with the rerouting path, thus form a cycle. A network
suitable for this strategy would then be one where each link
belongs to a cycle (also called ring) not exceeding a certain
length. Such a network is called a self-healing ring net-
work [123]. This is, for instance, the case of the SDH/SONET
networks. The second strategy is the end-to-end rerouting. In
that case, if a link fails, the traffic must be rerouted between its
origin-destination nodes. To limit the rerouting, one thus must
have at least two edge (node)-disjoint paths with bounded
length between each origin-destination pair, so that if one of
the paths fails, the traffic may be rerouted (in minimum time)
on the second one. This corresponds, for instance, to the ATM
networks and the Internet. In many practical situations, the
length of the routing path is considered as the number of links
(also called hops) in the path, and then we talk about a hop-
constrained path. In this section, we discuss some variants
of these two length constrained survivable network design
problems.

9.1. Survivability with Bounded Rings

In [53], Fortz et al. considered the problem of designing
a minimum cost 2-node connected network such that each
edge belongs to a cycle of a bounded length. This problem
can be presented as follows: given a graph G = (V , E) such
that each edge e ∈ E has a cost c(e) and a length d(e), and
a positive integer K , the problem consists of finding a mini-
mum cost 2-node connected subgraph (W , F) such that each
edge of F belongs to a cycle of length less than or equal to K .
Fortz et al. called this problem the 2-connected subgraph
with bounded rings problem. This problem is a generaliza-
tion of the 2-node connected subgraph problem, that is the
NSNDP with r(v) = 2 for all v ∈ V . In fact, the latter is
nothing but the 2-connected subgraph with bounded rings
problem when K = ∞. Fortz et al. [53] derived valid and
facet-defining inequalities for the associated polytope, and
devised separation procedures. They also presented a cutting
plane algorithm and discussed experimental results. In [52],
Fortz and Labbé gave a formulation for the problem based
on a set covering approach. They provided further classes
of facets and discussed the associated separation problems.
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They also reported computational results obtained with a cut-
ting plane algorithm. For a complete survey of this problem,
see Fortz [51].

In [54], Fortz et al. studied the edge version of the above
problem, the 2-edge connected subgraph with bounded rings
problem (2ECSBR). They considered the case where the
length of each edge is 1. So the problem here is to find a min-
imum cost 2-edge connected subgraph such that each edge
belongs to a cycle with no more than K edges. Fortz et al. [54]
introduced a class of valid inequalities, and, using this, they
gave an integer programming formulation for the problem in
the space of the design variables. In what follows we describe
these inequalities.

Let G = (V , E) be a graph and K ≥ 3. If π = {V0, . . . , Vp}
is a partition of V , then we let Cπ = ∪p−1

i=0 [Vi, Vi+1]∪[V0, Vp]
and Tπ = δ(V0, . . . , Vp)\Cπ . Suppose now that the partition
π is such that p ≥ K and let e ∈ [V0, Vp]. Consider the
inequality

x(Te
π ) ≥ xe (20)

where

Te
π = Tπ ∪ ([V0, Vp] \ {e}). (21)

Fortz et al. [54] showed that inequalities (20) are valid
for the polytope associated with the 2ECSBR. Inequalities
(20) are called cycle inequalities. Moreover, they proved the
following.

Theorem 10 [54]. Let G = (V , E) be a graph and K ≥ 3.
The 2ECSBR is equivalent to the following integer linear
programming problem

min
∑
e∈E

cexe

s.t. x(δ(W)) ≥ 2 W ⊂ V , ∅ �= W �= V , (22)

x(Te
π ) ≥ xe e ∈ [V0, VK ], π = (V0, . . . , VK )

is a partition of V , and Te
π

is defined by (21), (23)

0 ≤ xe ≤ 1 e ∈ E, (24)

xe ∈ {0, 1} e ∈ E. (25)

By adding to the formulation given by Theorem 10 the
constraints

x(δG−v(W)) ≥ 1, W ⊂ V \ {v}, v ∈ V ,

we obtain a formulation for the 2-node connected subgraph
with bounded rings problem (when the lengths are equal to 1).

It is not hard to see that the separation problem for inequal-
ities (20) associated with an edge e = st reduces to finding
a minimum weight edge subset that intersects all st-paths of
length ≤ K − 1. Fortz et al. [54] showed that, when K ≤ 4,
this problem reduces to a max-flow problem in an appropri-
ate directed graph, and hence, can be solved in polynomial
time. As a consequence, they obtained a polynomial-time

separation algorithm for inequalities (20) when K ≤ 4.
Unfortunately, McCormick [100] showed that the above con-
strained min-cut problem is NP-hard if K ≥ 13. A question
that is still open is whether or not this problem is polynomi-
ally solvable for K = 5. Fortz et al. [54] described further
valid inequalities. Using these inequalities as well as the cycle
inequalities they developed a branch-and-cut algorithm for
the 2ECSBR and presented computational results.

9.2. Hop-Constrained Paths

9.2.1. The Hop-Constrained Spanning Tree Problem.
Hop-constraints have been considered by Gouveia [66, 67]
for the minimum spanning tree problem. The problem is then,
given a graph G = (V , E) with weights on the links and a root
node, to find a minimum spanning tree such that the (unique)
path between the root and any other node in the graph has
no more than L links (hops), where L is a fixed positive inte-
ger. This restriction guarantees a specified level of service
with respect to certain performance measures. This problem
is NP-hard even for L = 2 (see for instance [37]). Gou-
veia [66] gave a multicommodity flow formulation for that
problem and discussed a Lagrangian relaxation to improve
the LP bound. Gouveia [67] proposed a hop-indexed refor-
mulation of a multicommodity flow formulation, which is
based on an extended description of the L-walk polyhedron.
The reported computational results show that the new for-
mulation is attractive to use when L is small. Unfortunately,
as the number of variables of the model grows up with L,
the size of the corresponding linear programming relaxation
may lead to excessive computer storage requirements or to
excessive computational time when more dense instances,
or instances with a bigger value of L or a larger number of
nodes, are considered. Gouveia and Requejo [73] proposed
a Lagrangian relaxation for the problem that dualizes the
hop-indexed flow conservation constraints. Reported results
show that this relaxation is a good alternative to directly
solving the corresponding linear programming relaxation.
In [37], Dahl studied the problem for L = 2 from a poly-
hedral point of view and gave a complete description of the
associated polytope when the graph is a wheel. Gouveia and
Janssen [68] discussed a generalization of the previous prob-
lem where two different cable technologies with different
reliabilities are available. They formulated the problem as a
directed multicommodity flow model and used Lagrangian
relaxation together with subgradient optimization to derive
lower bounds. Gouveia and Magnanti [69] considered the
problem that consists of finding a minimum spanning tree
such that the number of edges between any pair of nodes in
the tree is limited to a given bound D (i.e., the diameter).
This problem is polynomially solvable if D ≤ 3 and NP-hard
if D ≥ 4. Gouveia and Magnanti [69] derived single source
formulations for the problem based on the concept of tree cen-
ters along with some computational experiments. They also
pointed out that the case when D is odd is harder to solve
than the even one. In [70], Gouveia et al. introduced a new
modeling approach for the case when D is odd and showed
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that this approach performs better than the one in Gouveia
and Magnanti [69].

9.2.2. The Hop-Constrained Path Problem. The closely
related and basic routing hop-constrained path problem has
also seen increased attention recently. This problem con-
sists of finding between two distinguished nodes s and t a
minimum cost path with no more than L edges when L is
fixed. This problem can be solved efficiently using dynamic
programming. In fact, it was this approach that motivated
the extended description of the L-walk polyhedron described
in [67]. In what follows we briefly discuss this problem.

The L-path polytope, denoted by LPP(G) is the convex
hull of the incidence vectors of the st-paths having no more
than L edges. Clearly, the following inequalities are valid for
LPP(G).

x(δ(W)) ≥ 1, for all st-cuts δ(W), (26)

and are called st-cut inequalities. In [38], Dahl considered
the dominant of the L-path polytope, that is the polyhedron
LPP(G)+RE+. He described a class of valid inequalities for the
problem and gave a complete description of that polyhedron
when L ≤ 3. In particular, he introduced a class of valid
inequalities as follows.

Let {V0, V1, . . . , VL+1} be a partition of V such that s ∈
V0, t ∈ VL+1 and Vi �= ∅ for all i = 1, . . . , L. Let T be the set
of edges e = uv where u ∈ Vi, v ∈ Vj and |i − j| > 1. Then
the inequality

x(T) ≥ 1, (27)

is valid for the L-path polyhedron. Using the same partition,
this inequality can be generalized in a straightforward way, as
follows to the case when K edge-disjoint paths are required
between s and t

x(T) ≥ K . (28)

Inequalities (27) and (28) are called L-path cut inequalities
(or jump inequalities [40]). The separation problem for these
inequalities can be solved in polynomial time, if L ≤ 3. In
fact, it is easily seen that this problem reduces to finding a
minimum edge set that intersects all the st-paths with no more
than L edges. Because L ≤ 3, as shown by Fortz et al. [54],
this can be done in polynomial time. Dahl [38] showed
that inequalities (27), together with inequalities (26) and the
nonnegativity inequalities, completely describe the L-path
polyhedron when K ≤ 3. This implies that for nonnegative
costs c(e), e ∈ E, the hop-constrained path problem when
L ≤ 3 is equivalent to minimizing

∑
e∈E c(e)x(e) subject to

(26), (27), and x(e) ≥ 0 for all e ∈ E.
In [105], Nguyen described a general class of valid

inequalities for the L-path polyhedron, and, using LP-duality,
he showed that these inequalities together with the st-cut
inequalities (26) characterize this polyhedron for every L.
He also gave an efficient algorithm that enables separation
from this polyhedron.

In [40], Dahl and Gouveia considered the directed hop-
constrained path problem. Note that the st-cut inequalities

(26), and the L-path-cut inequalities (27), (28), can be easily
extended to that problem. Dahl and Gouveia [40] described a
class of valid inequalities obtained by lifting from the directed
L-path-cut inequalities and showed that these inequalities
together with the flow conservation constraints and the trivial
inequalities characterize the directed L-path polytope when
L ≤ 3. They also identified valid inequalities and addressed
some polyhedral issues for the case when L ≥ 4.

In [31], Coullard et al. investigated the structure of the
polyhedron associated with the directed st-walks having
exactly L arcs of a directed graph, where a directed walk
is a directed path that may go through the same node more
than once. They presented an extended formulation of the
problem and, using projection, they gave a linear description
of the associated polyhedron. They also discussed classes of
facets of that polyhedron. In [39], Dahl et al. considered the
polytope of the directed st-walks having no more than L arcs.
They presented an extended formulation for the underlying
L-walk problem when L = 4, and used projection to obtain
a complete linear description of that polytope for the same
value of L. They also described generalized valid inequalities
that define facets for the dominant of that polytope, which,
quite surprisingly, shows that obtaining a complete descrip-
tion for the dominant of the st-walk polytope when L = 4 is
much harder than obtaining such a description for the poly-
tope itself. (Note that if L ≤ 3, a walk is also a path, and then
the polyhedral investigation of Dahl and Gouveia [40] also
holds for the 3-walk polytope.)

9.2.3. The Hop-Constrained Network Design Problem.
A more general network design problem with hop-constraints
that has also been investigated is the hop-constrained net-
work design problem (HCNDP). This can be presented as
follows: given a graph G = (V , E) with weights on the links,
a set of pairs of terminals and two positive integers K and
L, find a minimum weight subgraph such that between each
pair of terminals there are at least K edge-disjoint paths with
no more than L links. This problem is NP-hard even when
K = 1 and L = 2 [41]. In Balakrishnan and Altinkemer [9],
the HCNDP was studied when K = 1 within the frame-
work of a more general model for backbone networks. The
authors gave a mixed-integer programming formulation and
developed a Lagrangian-based algorithm to generate lower
bounds and feasible solutions. In a recent work, for the same
case, Pirkul and Soni [107] introduced multicommodity flow-
based formulations and developed heuristics based on the
linear relaxations. Also, extensive computational results are
reported.

The HCNDP was considered in Dahl and Johannessen [41]
for K = 1 and L = 2. The authors gave an integer program-
ming formulation and described classes of valid inequalities.
Using this, they developed a cutting plane algorithm and
presented computational results. In [81], Huygens et al. stud-
ied the HCNDP in the case when there is only one pair of
terminals, say s and t, K = 2 and L = 3. They gave an inte-
ger programming formulation for the problem in this case
in the space of the design variables. They showed that the
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st-cut inequalities (inequalities (26) with right-hand side 2)
and the L-path inequalities (28) (with K = 2) together with
the 0–1 integrality constraints represent this problem, and
they gave an extension of this formulation to the case where
K ≥ 2. They also discussed the polytope P(G, L) given by
the constraints of the linear relaxation of this formulation. In
particular, they proved the following.

Theorem 11 [81]. P(G,L) is integral, if L ≤ 3.

Theorem 11 implies that the associated polytope is equal
to P(G, L). In addition, because the separation problem for
the st-cut and L-path cut inequalities can be solved in polyno-
mial time when L ≤ 3, from Theorem 11, it follows that the
HCNDP when L ≤ 3, K = 2 and only one pair of terminals
is considered can be solved in polynomial time using a cut-
ting plane algorithm. As pointed out in [81], the formulation
given above (for the HCNDP when L ≤ 3, K = 2 and only
one pair of terminal is considered) is no longer valid for the
problem if L ≥ 4. However, for L ≤ 3, one can see that this
formulation can be easily extended to the HCNDP with an
arbitrary number of pairs of terminals.

9.2.4. Related Hop-Constrained Problems. Hop-con-
straints have also been considered for related network design
problems. In [15], Ben-Ameur defined some classes of
2-connected graphs satisfying path (and cycle)-length con-
straints. He introduced some parameters and established
properties and relationships between these graphs. More-
over, he investigated the hop-constrained flow problem and
gave lower bounds on the number of edges of these graphs.
As a consequence, he obtained some valid inequalities for
the underlying survivable network design problem. Gou-
veia et al. [71] considered an MPLS (Multi-Protocol Label
Switching) network design model with hop constraints. They
gave mixed-integer programming formulations and discussed
computational results. In [72], Gouveia et al. studied the
design of MPLS over optical networks. They also used
hop constraints to guarantee maximum delay quality of
service.

Itai et al. [82] studied the complexity of several variants
of the maximum disjoint hop-constrained path problem. This
consists of finding the maximum number of disjoint paths
between two nodes s and t of length equal to (or bounded by)
K where K is a positive integer. They showed that the prob-
lem is NP-complete for K ≥ 5 and polynomially solvable for
some of the variants for K ≤ 4. In particular, they devised a
polynomial-time algorithm for the problem when the paths
must be node-disjoint (respectively, edge-disjoint) and of
length bounded by K , with K ≤ 4 (respectively K ≤ 3).
Bley [19] addressed approximation and computational issues
for the node-disjoint and edge-disjoint hop-constrained path
problems. In particular, he showed that the problem of com-
puting the maximum number of edge-disjoint paths between
two given nodes of length equal to 3 is polynomial. This result
answered an open question in [82].

10. CONCLUDING REMARKS

In this article, we surveyed some optimization techniques
for the survivable network design problem. We focused on
the undirected network case. Nevertheless, survivability has
also been considered in directed networks. In that case, the
survivability conditions are the same as in the undirected
case, except that “path” is replaced by “directed path.” So
the formulation given for the undirected case can straightfor-
wardly be extended to this one. Although it has applications
to many practical situations, the directed survivable network
design problem has not seen as much attention as the undi-
rected case. In [36] (see also [35]) Dahl studied Steiner
problems in directed graphs. He investigated the polyhe-
dral structure and developed cutting plane algorithms. Ball
et al. [11] (see also Liu [93]) studied the two terminal Steiner
tree problem in directed graphs. (Notice that this problem
is solvable in polynomial time.) They proposed an extended
formulation for the problem and used projection to obtain
facet-inducing inequalities for the associated polyhedron in
the natural space.

Moreover, several researchers investigated directed for-
mulations for variants of the link-survivable network design
problem. In [21], Chopra introduced a directed formulation
for the 2-edge connected subgraph problem. Using projec-
tion, he also showed that some classes of valid inequalities
can be obtained from the directed cut inequalities. Mag-
nanti and Raghavan [94] introduced a multicommodity flow
formulation for the generalized Steiner problem and edge
connectivity. They showed that this formulation is stronger
than the undirected cut formulation, and they projected out
some known classes of valid inequalities.

The capacitated survivable network design problem has
also been investigated. For this problem, in addition to the
connectivity requirements, we are given a set of demands
between some pairs of node and a set of discrete capacities
associated with the edges of the graph, each with an associ-
ated building cost. The problem is to construct a survivable
network and find which capacities to install on the edges so
that each demand (or some prescribed fraction of the demand)
can be routed in the event of a failure, so that the overall cost
is mininum. Stoer and Dahl [113] were the first who consid-
ered this problem. They studied the 2-connected case where
at most one edge (node) fails at a time. In [42] (see also [113]),
they devised a branch-and-cut algorithm for the problem and
solved a large number of real-world instances. A more gen-
eral model including length and routing constraints has been
considered in [4, 16, 88]. For that model, survivability is pro-
vided using traffic rerouting strategies (e.g., local rerouting,
end-to-end rerouting).

Valid inequalities induced by cutsets usually appear as
subsystems in formulations for network design problems.
Therefore, a deep knowledge of the polyhedra yielded by
these subsystems, in particular concerning their facial struc-
ture, may be of great interest for solving these problems
by cutting plane algorithms. Bienstock and Muratore [18]
studied the subsystem induced by a cutset in the capacitated
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survivable model. Let C be a cutset of the graph and L and D
two positive integers. Bienstock and Muratore [18] consid-
ered the polyhedron PC(L, D), convex hull of the solutions
of the following inequality system

∑
e∈C\{e}

x(e) ≥ L for all e ∈ C, (29)

∑
e∈C

x(e) ≥ D (30)

x(e) ∈ Z+ for all e ∈ C.

Here the variable x(e) corresponds to the capacity to install
on edge e, inequalities (29) express the fact that in the event
of a failure at least L units of capacity are required in the sur-
viving links of C and inequality (30) is the demand inequality
with D equal to the amount of demand that must go through C.
Bienstock and Muratore [18] described valid inequalities and
structural properties of the extreme points of this polyhedron.
They also used this in a cutting plane algorithm for the capac-
itated survivable network design problem. Magnanti and
Wang [95] studied a similar poyhedron without the demand
constraint (30) and with different right-hand sides in (29).

These investigations are certainly a first step toward
the development of a complete and efficient cutting plane
approach for the general capacitated model. Such an approach
may also be combined with other tools like column generation
techniques and approximation algorithms.
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