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Abstract

In this paper we consider the structural analysis problem for differential-algebraic
systems with conditional equations. This consists, given a conditional differential
algebraic system, in verifying if the system is well-constrained for every state and if
not in finding a state for which the system is bad-constrained. We first show that
the problem reduces to the perfect matching free subgraph problem in a bipartite
graph. We then show the NP-completeness of this problem and give a formulation
as an integer linear program. We also discuss the polytope of the solutions of this
problem and propose a Branch-and-Cut algorithm.
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1 Introduction

Differential-algebraic systems (DAS) are used for modeling complex physical
systems such as electrical networks or dynamic movements. Such a system
can be given as F (z, ż, t) = 0, where z is the variable vector, t is time and
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ż is the partial derivative of z with respect to time. A DAS is structurally
solvable if it admits a unique solution [2]. A necessary (but not sufficient)
condition for a DAS to be structurally solvable is that there are as many
equations as variables, and there exists a mapping between the equations and
the variables in such a way that each equation is related to only one variable
and each variable is related to only one equation. If this is satisfied, then we say
that the system is well-constrained. Otherwise, the system is said to be bad-
constrained. A bad-constrained system is also refered as structurally singular
system. Object-oriented modeling langages like Modelica [1] enforce this as
simulation is not possible if the system is bad constrained. The structural
analysis problem (SAP) of a DAS consists in checking whether or not the
system is bad-constrained.

The structural analysis problem for DASs has been proved to be polynomial-
time solvable by Murota [2]. Given a DAS, one can associate a bipartite graph
G = (U ∪V,E), called incidence graph, where U corresponds to the equations,
V to the variables, and there is an edge uv ∈ E between a node u ∈ U and
a node v ∈ V if the variable corresponding to v appears in the equation cor-
responding to u. Murota [2] proved that the DAS is bad constrained if and
only if its incidence graph does not contain a perfect matching.

In many practical situations, the form of an equation of a DAS, espe-
cially the variables that appear in it, may depend of some conditions such
as temperature changements in hydraulic systems. Such equation is called
conditional. Therefore, from a conditional equation, we can obtain different
(non-conditional) equations with respect to the values of the conditions asso-
ciated with it. A DAS containing conditional equations is called conditional
DAS. An assignment of the values true and false to the conditions of a DAS
will be called a state of the system. Hence each state yields a non-conditional
DAS and, therefore, verifying if a conditional DAS is well constrained reduces
to verifying whether for any state, the incidence graph of the corresponding
DAS contained a perfect matching.

A first and preliminary study of SAP with conditional equations is given
in [3]. In this paper we show the NP-completeness of the problem, introduce
a new and stronger model and discuss the associated polytope.

We consider conditional DASs such that every conditional equation has
exactly two different forms, depending on the true/false value of one condition
associated with this equation. Morevoer, we suppose that all the conditions
are independant.

The paper is organized as follows. In the following section we give a for-
mulation of the SAP for conditional DAS in terms of matching in bipartite
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graphs. In section 3 we show the NP-completeness of the problem. In section
4, we give a model for the problem as an integer linear program and discuss
the associated polytope. Some concluding remarks are given in section 5.

2 Graph representation and matchings

In this section, we shall discuss a graph based model for the problem. Con-
sider a conditional DAS with n conditional equations, say eq1, . . . , eqn, n′ non-
conditional equations eqn+1, . . . , eqn+n′ and n + n′ variables, say z1, . . . , zn+n′ .
With this system, we associate a bipartite graph G = (U ∪ V,E) where
U = {u1, ..., un+n′} (resp. V = {v1, ..., vn+n′}) is associated with the equa-
tions (resp. variables). For i = 1, . . . , n, we consider an edge {ui, vj} between
a vertex ui ∈ U and a vertex vj ∈ V , called true edge (resp. false edge,
true/false edge), if the variable zj appears in equation eqi, when the condi-
tion of equation eqi is supposed true (resp. false, both true and false). For
i = 1, . . . , n′, we associate an edge {un+i, vj} between a vertex un+i ∈ U
and a vertex vj ∈ V if the variable zj appears in the non-conditional equa-
tion eqn+i. These edges are called non-conditional edges. Let Etf be the set
of the true/false and non-conditional edges in G. For i = 1, . . . , n, let Et

i

(resp. Ef
i ) be the set of true (resp. false) edges incident to ui which are not

true/false. Hence, the sets Et
i , Ef

i , i = 1, . . . , n and Etf are disjoint, and we
have E =

⋃
i=1,...,n(Et

i ∪ Ef
i ) ∪ Etf . We set E = {Et

i , E
f
i : i = 1, . . . , n}.

Now, the SAP reduces to finding a perfect matching free subgraph G′ =
(U ∪ V,E ′) of G. Such that :
- Etf ⊆ E ′

- at most one edge set among Et
i , E

f
i is contained in E ′, and

- the number of edge sets of E in E′ is maximum.
Clearly the number of edge sets of E in G′ is at most n. If this number is equal
to n, this means that we have found a state which yields a bad-constrained
system, and hence our conditional DAS is also bad-constrained. Otherwise
there exists a perfect matching in the incidence graph for any state of the
system and, thus, the system is well-constrained. We will refer to the problem
of determining the graph G′ as the free perfect matching subgraph problem
(FPMSP).

3 NP-completeness of the FPMSP

In order to show that the FPMSP is NP-complete, we are going to show first
that a related problem is NP-complete.
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Let G = (V 1 ∪ V 2 ∪ V 3, E) be a tripartite graph, where |V 1| = |V 2| =
|V 3| = k, V z = {vz

1, ..., v
z
k }, z = 1, 2, 3 , and such that the sets V 1 and V 2 are

connected by a perfect matching. Consider the following problem : Does there
exist a stable set in G of size k + 1? We will call this problem the tripartite
stable set problem with perfect matching (TSSPPM). In what that follows, we
will show that this problem is NP-complete. Afterwards, we will prove that
FPMSP equivalent to TSSPPM.

Theorem 3.1 The TSSPPM is NP-complete.

Proof. It is easy to see that TSSPPM ∈ NP . In what follows, we will
show that the one-in-three 3SAT reduces to TSSPPM. Let L = {l1, l2, ..., ln}
be a set of variables and C = {c1, c2, ..., cm} a set of clauses, where |cj| = 3
for j = 1, ..., m. The one-in-three 3SAT problem consists in finding a truth
assignment for L such that each clause in C has exactly one true literal. We
shall construct a tripartite graph G = (V 1 ∪V 2 ∪V 3, E), where |V 1| = |V 2| =
|V 3| = k, with a perfect matching between V 1 and V 2. We will show that
G has a stable set of size k + 1 if and only if the one-in-three 3SAT problem
admits a truth assignment. Let xi be a variable which represents either the
literal li or the literal li. If xi = li (resp. xi = li), then xi = li (resp. xi = li).

For each variable li ∈ L, we associate the nodes v1
i , v1

i ∈ V 1, v2
i , v2

i ∈
V 2and v3

i , v3
i ∈ V 3. These are called variable nodes. For each clause cj =

{xr, xs, xt}, we associate the nodes w1
j,r ∈ V 1, w2

j,s ∈ V 2, w3
j,t ∈ V 3. These

are called clause nodes. Finally, we add the nodes f 1
q ∈ V 1, f 2

q ∈ V 2, f 3
q ∈ V 3,

for q = 1, ..., n − 1. These are called fictitious nodes.

For each variable li ∈ L, we consider the edges (v1
i , v2

i ), (v2
i , v3

i ), (v3
i , v1

i ),
(v1

i , v2
i ), (v2

i , v3
i ), (v3

i , v1
i ) in E. These are called variable edges. Note that

these edges form a cycle, which we will denote by Γi, for i = 1, ..., n. For
each clause cj = {xr, xs, xt}, we add in E the edges (w1

j,r, w2
j,s), (w2

j,s, w3
j,t),

(w3
j,t, w1

j,r). These are called clause edges. Note that these edges form a trian-
gle, which we will denote by Tj, for j = 1, ...,m. For q = 1, ..., n − 1, we add
in E the edge (f 1

q , f 2
q ). We remark that we have a perfect matching between

V 1 and V 2 given by the edges (v1
i , v2

i ), (v1
i , v2

i ), i = 1, ..., n, (w1
j,r, w2

j,s),
j = 1, ..., m, and (f 1

q , f 2
q ), q = 1, ..., n − 1. Now according to the values of the

literals, we add edges in E as follows. For every clause {xr, xs, xt}
• if xr = lr, add the edges (w1

j,r, v
3
r), (w2

j,s, v
3
r), (w3

j,t, v
1
r), (w3

j,t, v
2
r),

• if xr = lr, add the edges (w1
j,r, v

3
r), (w2

j,s, v
3
r), (w3

j,t, v
1
r), (w3

j,t, v
2
r),

• if xs = ls, add the edges (w1
j,r, v

3
s), (w2

j,s, v
3
s), (w3

j,t, v
1
s), (w3

j,t, v
2
s),

• if xs = ls, add the edges (w1
j,r, v

3
s), (w2

j,s, v
3
s), (w3

j,t, v
1
s), (w3

j,t, v
2
s),
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• if xt = lt, add the edges (w1
j,r, v

3
t ), (w2

j,s, v
3
t ), (w3

j,t, v
1
t ), (w3

j,t, v
2
t ),

• if xt = lt, add the edges (w1
j,r, v

3
t ), (w2

j,s, v
3
t ), (w3

j,t, v
1
t ), (w3

j,t, v
2
t ),

These are called satisfiability edges. For each fictitious node in V 1 ∪ V 2, we
add edges to connect all nodes in V 3 and for each fictitious node in V 3, we add
edges to connect all non fictitious nodes in V 1 ∪V 2. Thus from an instance of
the one-in-three 3SAT with n variables and m clauses, we obtain a tripartite
graph with 9n + 3m − 1 nodes and 33n + 19m − 3 edges.

First observe that a stable set in G cannot contain more than 3n+m nodes
(three nodes from each cycle Γi corresponding to a variable li ∈ L and one node
from each triangle Tj corresponding to a clause Cj). Suppose that we have a
stable set S of G that is of size exactly 3n + m. From S, we will construct a
solution I of the one-in-three 3SAT such that each clause has exactly one true
literal. We first remark that S does not contain any fictitious node since, by
construction, the cardinality of any stable set with at least one fictitious node
cannot exceed 3n + m − 1. As |S| = 3n + m then from each cycle Γi exactly
three nodes are in S, and these nodes are either v1

i , v2
i , v3

i or v1
i , v2

i , v3
i . Also

from each triangle Tj, exactly one node is in S. Now we construct a solution
I of the one-in-three 3SAT as follows : if vz

i ∈ S, z = 1, 2, 3 (resp. vz
i ∈ S,

z = 1, 2, 3) then we associate the value true (resp. false) to the variable li.
In what follows we will show that for each clause cj = {xr, xs, xt} we have
exactly one literal with value true. For this it suffises to show that a clause
node of Tj is taken in S if and only if the corresponding literal is of value
true. Indeed suppose that w1

j,r ∈ S. We may suppose that xr = lr, the case

where xr = lr is similar. By construction of G, if w1
j,r is in S then, as v3

r is
adjacent to w1

j,r, v3
r /∈ S. By the remark above, it follows that v3

r and hence
v1

r ,v
2
r belong to S. This implies that lr has been assigned the value true. Thus

xr is of value true. Conversely, if xr = true (= lr), then by definition of I, v1
r ,

v2
r , v3

r must belong to S. As in this case, by construction of G, w2
j,s and w3

j,t

are adjacent to v3
r and v2

r , respectively, S must contain w1
j,r. Consequently, a

literal of clause cj is true with respect to I if and only if the corresponding
node of Tj is in S. As S contains exactly one node from each Ti, it then follows
that each clause has exactly one true literal.

Using similar argument, we can prove that if I admits a truth assignment,
then G contains a stable set of cardinality 3n + m, which ends the proof. �

Theorem 3.2 FPMSP is equivalent to TSSPPM.

Proof. We will outline the proof. Let G = (U ∪ V,E) and G′ = (V 1 ∪
V 2 ∪ V 3, E ′) be the graphs on which the problems FPMSP and TSSPPM are
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considered respectively. We will show how an instance of TSSPPM can be
transformed to an instance of FPMSP and vice versa. For an edge (v1

i , v
2
i )

where v1
i ∈ V 1, and v2

i ∈ V 2, we consider a node ui ∈ U . And for a node
v3

i ∈ V 3 we consider a node vi ∈ V . Moreover if the edges (v1
i , v

3
k) and

(v2
i , v

3
k) are in E ′, for some i, k, then add the edge (ui, vk) ∈ Etf . Otherwise

if edge (v1
i , v

3
k) ∈ E ′ (and (v2

i , v
3
k) /∈ E ′), then add (ui, vk) in Et

i and if edge
(v2

i , v
3
k) ∈ E ′ (and (v1

i , v
3
k) /∈ E ′), then add (ui, vk) in Ef

i , we have E =
(∪iE

t
i ) ∪ (∪iE

f
i ) ∪ Etf . In order to reduce a FPMSP instance to a TSSPPM

one, we can just use the reverse transformation. Using this, we can easily
show that FPMSP in G is equivalent to TSSPPM in G′. �

Theorem 3.2 implies that there exists a polynomial reduction from TSSPPM
into the FPMSP. As the TSSPPM has been proved NP-complete in Theorem
3.1, we then deduce the following result.

Corollary 3.3 The FPMSP is NP-complete. �

4 Integer programming formulation

In this section, we give a formulation of the FPMSP as an integer linear
program. With every edge set F of E , we associate a binary variable xF which
takes 1 if F is contained in E ′ and 0 otherwise. The FPMSP is then equivalent
to the following integer linear program.

max
∑

F∈E
xF

xEt
i
+ xEf

i
≤ 1 ∀ i = 1, . . . , n, (1)

∑

F∈E:F∩M �=∅
xF ≤ n − 1 − |M ∩ Etf | ∀ M ∈ M, (2)

xF ∈ {0, 1} ∀ F ∈ E , (3)

where M is the set of perfect matchings of G. We will call inequalities (1)
incidence inequalities and inequalities (2) matching inequalities. Inequalities
(1) express the fact that at most one edge set among Et

i and Ef
i may be taken

in E ′. And inequalities (2) ensure that, given a perfect matching M of G,
all the edge sets intersecting M cannot be contained in E ′, since the edges of
these sets, together with the edges of Etf , induce a subgraph containing M as
a perfect matching.

Let PFPMSP (G) be the convex hull of the solution of the above program,
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that is,

PFPMSP (G) = conv({x ∈ {0, 1}2n|x satisfies (1), (2)}).

Without loss of generality, we may suppose that any subgraph G̃ = (U ∪
V, Ẽ) where Ẽ = Etf ∪ F , with F ∈ E , does not contain a perfect matching.
Indeed, suppose that there exists i ∈ {1, . . . , n} such that for instance, the
graph (U ∪ V, Etf ∪Et

i ) contains a perfect matching. Then one can transform
the instance of the FPMSP into another one by removing Et

i and adding Ef
i to

Etf . This corresponds to considering that equation eqi is no more conditional.
A similar transformation can be done if F belongs to {Ef

i : i = 1, . . . , n}.
This assumption leads us to give the following.

Theorem 4.1 PFPMSP (G) is full dimensional. �

Theorem 4.2 1) Inequality xF ≥ 0 defines a facet of PFPMSP (G).
2) Inequality xF ≤ 1 defines a facet of PFPMSP (G) if and only if the graph
G̃ = (U ∪ V, Etf ∪ F ∪ F ′), is perfect matching free for all F ′ ∈ E \ {F}. �

Theorem 4.3 Inequality (1) associated with some i ∈ {1, . . . , n} defines a
facet of PFPMSP (G) if and only if for all F ∈ E \ {Et

i , E
f
i }, either the graph

G̃ = (U ∪ V, Etf ∪ Et
i ∪ F ) or G̃ = (U ∪ V, Etf ∪ Ef

i ∪ F ) does not contain a
perfect matching. �

Theorem 4.4 Let M be a perfect matching and FM = {F ∈ E : F ∩M 	= ∅}.
Inequality (2) associated with M , defines a facet of PFPMSP (G) if and only if

(i) for all Et
i (resp. Ef

i ) ∈ FM , the graph induced by (Etf ∪Ef
i )∪(∪F∈FM

F \
Et

i ) (resp. (Etf ∪ Et
i ) ∪ (∪F∈FM

F \ Ef
i )) is perfect matching free,

(ii) for all Et
k (resp. Ef

k ) with ({Et
k, Ef

k}) ∩ FM = ∅, there exists F ∗ ∈
FM such that the graph induced by (Etf ∪ Et

k) ∪ (∪F∈FM
F \ F ∗) (resp.

(Etf ∪ Ef
k ) ∪ (∪F∈FM

F \ F ∗)) is perfect matching free.

Proof. Suppose there exists Et
i ∈ FM (resp. Ef

i ∈ FM) such that the graph
G̃ = (U ∪ V, ((Etf ∪ Ef

i ) ∪ (∪F∈FM
F \ Et

i ))) (resp. G̃ = (U ∪ V, ((Etf ∪
Et

i ) ∪ (∪F∈FM
F \ Ef

i )))) contains a perfect matching. Therefore, inequality∑
F∈E:F∩M �=∅ xF + xEf

i
≤ n − 1 − |M ∩ Etf | (reps.

∑
F∈E:F∩M �=∅ xF + xEt

i
≤

n − 1 − |M ∩ Etf |) is valid for PFPMSP (G). Since this inequality dominates
(2) and defines a face of PFPMSP (G) different from that defined by (2), this
implies that this later cannot define a facet.

Suppose there exists Et
k (resp. Ef

k ) with ({Et
k, Ef

k}) ∩ FM = ∅ such
that the graph G̃ = (U ∪ V, ((Etf ∪ Et

k) ∪ (∪F∈FM
F \ F ∗))) (resp. G̃ =
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(U ∪ V, ((Etf ∪ Ef
k ) ∪ (∪F∈FM

F \ F ∗))) contains a perfect matching, for all
F ∗ ∈ FM . Therefore, inequality

∑
F∈E:F∩M �=∅ xF + xEt

k
≤ n − 1 − |M ∩ Etf |

(resp.
∑

F∈E:F∩M �=∅ xF + xEf
k
≤ n − 1 − |M ∩ Etf |) is valid for PFPMSP (G).

Since this inequality dominates (2) and defines a face of PFPMSP (G) different
from that defined by (2), this implies that this later cannot define a facet.

Now suppose that (i) and (ii) are satisfied. To show that (2) defines a
facet, it suffices to exhibit 2n solutions whose incidence vectors are affinely
independent and satisfy inequality (2) with equality.

Consider the following sets : Si = (FM \{Et
i})∪{Etf , Ef

i }, S ′
i = Si \{Ef

i },
for i such that M ∩ Et

i 	= ∅, Sj = (FM \ {Ef
j }) ∪ {Etf , Et

j}, S ′
j = Sj \ {Et

j},
for j such that M ∩ Ef

j 	= ∅. By condition (i), the sets Si, Sj induce perfect
matching free graphs. Hence the sets S ′

i, S
′
j so do. Consider also the sets

Sk = (FM \ {F ∗})∪ {Etf , Et
k}, S ′

k = (FM \ {F ∗})∪ {Etf , Ef
k}, for k such that

M ∩ (Ef
k ∪ Et

k) = ∅. Note that F ∗ is the set introduced in condition (ii), of
the theorem. By condition (ii) these sets also induce perfect matching free
graphs. So we have 2n solutions of FPMSP. Moreover the incidence vectors
of these solutions satisfy (2) with equality and are affinely independent. �

5 Concluding remarks

In this paper we have given a formulation of the SAP for conditional DAS in
terms of matchings in bipartite graphs. We have shown that the problem is
NP-complete. We have also presented an integer linear programming for this
problem and discussed the associated polytope. We note that inequalities (2)
can be separated in polynomial time. In fact, this reduces to the maximum
matching problem in a bipartite graph. Using this, we have also developed a
Branch-and-Cut algorithm for the problem which we have tested on real data.
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