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Lattre de Tassigny, 75116 Paris Cedex 16, France.
{mahjoub,martin}@lamsade.dauphine.fr,

Abstract. In this paper we consider the structural analysis problem for
differential-algebraic systems with conditional equations. This consists,
given a conditional differential-algebraic system, in verifying if the sys-
tem is structurally solvable for every state, and if not in finding a state
in which the system is structurally singular. We give an integer linear
programming formulation for the problem. We also identify some classes
of valid inequalities and characterize when these inequalities define facets
for the associated polytope. Moreover, we devise separation routines for
these inequalities. Based on this, we develop a Branch-and-Cut algorithm
along with experimental results are presented.

Keywords: Differential-algebraic system, structural analysis, bipartite
graph, matching, polytope, facet, Branch-and-Cut.

1 Introduction

Differential-algebraic systems (DAS) are used for modeling complex physical
systems such as electrical networks or dynamic movements. Such a system can
be given as F (z, ż, t) = 0, where z is the variable vector, t is time and ż is the
partial derivative of z with respect to time. A DAS is said to be solvable if it can
be solved with numerical methods [9]. A necessary (but not sufficient) condition
for a DAS to be structurally solvable is that there are as many equations as
variables, and there exists a mapping between the equations and the variables in
such a way that each equation is related to only one variable and each variable
is related to only one equation. If this is satisfied, then we say that the system
is structurally solvable. Otherwise, the system is said to be structurally singular.
The structural analysis problem (SAP) of a DAS consists in checking whether or
not the system is structurally singular.

In this paper we consider this problem from a polyhedral point of view. We
give a linear integer programming formulation for the problem. We discuss the
associated polytope and characterize some classes of facet defining inequalities.



Using this, we propose a Branch-and-Cut algorithm and present experiment
results.

The structural analysis problem for DASs has been proved to be polynomial-
time solvable by Murota [8]. Given a DAS, one can associate a bipartite graph
G = (U ∪V,E), called incidence graph, where U corresponds to the equations, V
to the variables, and there is an edge uv ∈ E between a node u ∈ U and a node
v ∈ V if the variable corresponding to v appears in the equation corresponding
to u. Murota [8] proved that a DAS is structurally singular if and only if its
incidence graph does not contain a perfect matching.

In many practical situations, the form of an equation of a DAS, especially
the variables that appear in it, may depend of a condition such as temperature
changements in hydraulic systems. Such equation is called conditional. There-
fore, from a conditional equation, we can obtain two different (non-conditional)
equations with respect to the values of the conditions associated with it. We
will suppose that all conditions are independent. A DAS containing conditional
equations is called conditional DAS (CDAS). An assignment of the values true
and false to the conditions of a DAS will be called a state of the system. Hence
each state yields a non-conditional DAS and, therefore, verifying if a conditional
DAS is structurally singular reduces to verify whether there exists a
state for which the incidence graph is free perfect matching. A first
and preliminary study of SAP with conditional equations is given in [3, 4, 7]. In
[5] we have shown the NP-completeness of this problem.

The paper is organized as follows. In the following section we give a graph
model for the SAP for CDAS and a linear integer programming formulation. Sec-
tion 3 describe some classes of valid inequalities and discuss their facial structure.
In section 4 we present separation routines for these inequalities. In section 5,
we devise a Branch-and-Cut algorithm based on these results and present some
experimental results. Some concluding remarks are given in section 6.

2 Formulations

First we give formulation in terms of graphs for the SAP for CDAS. Given a
CDAS (with conditional and non conditional equations) with each equation we
associate a node we will denote this set of nodes by U . Let Uc be the subset of
nodes of U associated with the conditional equations. With each variable we as-
sociate a node and we will denote this set by V . We consider an edge uv between
a vertex u ∈ Uc and a vertex v ∈ V , called true edge (resp. false edge, true/false
edge), if the variable associated with v appears in the equation associated with u,
when the condition of this equation is supposed true (resp. false, both true and
false). We consider an edge uv between a vertex u ∈ U \Uc and a vertex v ∈ V if
the variable associated with v appears in the non-conditional equation associated
with u. These edges are also called true/false edges. We denote by G = (U∪V,E)
the bipartite graph thus obtained, where E is the set of these edges. For a node
u ∈ U , we denote by Et

u (resp. Ef
u , E

tf
u ) the set of true (resp. false, true/false)

edges incident to u. Note that these sets are disjoints. Also note that the sets



Et
u and Ef

u are empty for all nodes u ∈ U \ Uc. Let π = {Et
u, E

f
u , E

tf
u : u ∈ U}

be the partition of E induced by the true, false and true/false edges subsets. Let
Etf = ∪u∈UE

tf
u and E = {Et

u, E
f
u : u ∈ Uc}. If F ⊆ E , we let HF = (U ∪ V,EF )

be the subgraph of G induced by EF = Etf ∪ (∪F∈FF ). Figure 1 shows the
graph associated with the CDAS
eq1 : if a > 0, then 0 = 4x2

2 + 2
.
x3 +4x2 + 2, else 0 =

.
x2 +4x1,

eq2 : if b > 0, then 0 = 2
.
x1 +2x2, else 0 = x1+

.
x3 +1 (1)

eq3 : 0 = 6
.
x3 +2x1.

Here nodes u1, u2, u3 are associated with equations eq1, eq2, eq3 and nodes v1, v2, v3
are associated with variables x1, x2, x3 respectively.

Fig. 1. Graph G associated with the CDAS (1).

Thus the SAP reduces to find F ⊆ E, such that
i) for all u ∈ Uc, either E

t
u /∈ F or Ef

u /∈ F or both,
ii) the number of edge sets in F is maximum,
iii) the graph HF does not contain a perfect matching.
If the number of edge sets |F| is equal to |Uc| then this means that we have found
a state which yields a structurally singular system. Otherwise, there exists a
perfect matching in the incidence graph associated with any state of the system
and, thus, the CDAS is structurally solvable [4]. We will refer to this problem
as the free perfect matching subgraph problem (FPMSP).
In what follows we shall give a formulation of the FPMSP as an integer linear
program. With every edge set F of E , we associate a binary variable xF which
takes 1 if F is contained in F , and 0 otherwise. Given a perfect matching
M of G, we denote by FM = {F ∈ E : F ∩M ̸= ∅} the family of edge sets of E
that intersect M . The FPMSP is then equivalent to the following integer linear
program (P ).

max
∑
F∈E

xF

xEt
u
+ xEf

u
≤ 1 ∀ u ∈ Uc, (1)∑

F∈FM

xF ≤ |FM | − 1 ∀ M ∈ M, (2)

xF ≥ 0 ∀ F ∈ E , (3)

xF ≤ 1 ∀ F ∈ E , (4)

xF ∈ {0, 1} ∀ F ∈ E , (5)



where M is the set of perfect matchings of G. Inequalities (1) express the fact
that at must one edge set among Et

u and Ef
u may be take in F . And inequalities

(2) ensure that give a perfect matching M of G, all the edge sets intersecting M
cannot be contained in F .

3 Associated Polytope and valid inequalities

In this section, we give some valid inequalities for FPMSP and study their facial
structure. Given a F ⊆ E , let xF ∈ {0, 1}E be the vector given by xF

F = 1
if F ∈ F , and xF

F = 0 if not. xF is called the incidence vector of F . Let
PFPMSP (G,Uc, π) be the convex hull of the solutions of program (P ), that is,
PFPMSP (G,Uc, π) = conv({x ∈ {0, 1}E |x satisfies (1), (2)}).

W.l.o.g., we may suppose that any graph H{F}, F ∈ E , does not contain a
perfect matching. Indeed, suppose that there exists u ∈ Uc such that, say, the
graph H{Et

u} contains a perfect matching. Then one can transform the instance

of FPMSP into another one by removing Et
u and adding Ef

u to Etf . This corre-
sponds to considering that the equation associated with u is no more conditional.
A similar transformation can be done if F belongs to {Ef

u : u ∈ Uc}.
In [4], we have shown that PFPMSP (G,Uc, π) is full dimensional. We have

also given necessary and sufficient conditions for the inequalities of (P ) to define
facets.

We will say that a perfect matching M of G dominates a perfect matching
M ′ of G and we will write M < M ′ if FM ⊆ FM ′ . Observe that if M dominates
M ′, then inequalities (2) associated with M ′ dominates that corresponding to
M ′. In consequence, perfect matchings of G = (U ∪ V,E) that may induce facet
defining inequalities of type (2) must be minimal with respect to the < relation
that is matchings which do no dominate any other perfect matching. Such a
matching will be called minimal matching. The inequalities of type (2), induced
by minimal matchings, will be called minimal matching inequalities.

In the following we are going to describe two further classes of valid inequal-
ities, both are induced by matchings.

3.1 Close matchings inequalities

Given a true (resp. false) edge set F ∈ E incident to node u ∈ Uc, we
denote by F̄ the false (resp. true) edge set incident to u. That is, if
F = Et

u (resp. F = Ef
u), then F̄ = Ef

u (resp. F̄ = Et
u). Let M be a minimal

matching and F ′ ∈ FM . A perfect matching M̂ is called close to M w.r.t. F ′ if
FM̂ ⊆ (FM \ {F ′}) ∪ {F̄ ′}.

Proposition 1. Let M be a minimal matching and F ′ ∈ FM . If there exists a
matching M̂ close to M w.r.t. F ′, then the following inequality∑

F∈FM

xF + xF̄ ′ ≤ |FM | − 1, (6)

is valid.



Proof. By summing inequalities (2) associated with M and M̂ , inequality xF ′ +
xF̄ ′ ≤ 1 and inequalities xF ≤ 1 for all F ∈ FM \ (FM̂ ∪ {F ′}), we obtain the
inequality 2

∑
F∈FM

xF +2xF̄ ′ ≤ 2|FM |−1. By dividing by 2 and rounding down
the right-hand side we obtain (6). �

These inequalities will be called close matching inequalities. In the following,
we give necessary and sufficient conditions for these inequalities to be facet
defining.

Theorem 1. Inequality (6) defines a facet of PFPMSP (G,Uc, π) if and only if
1) there exists F ⋆ ∈ FM \{F ′} such that the graph H(FM∪{F̄ ′})\{F ′,F⋆} is perfect
matching free,
2) for all F ∈ FM \ {F ′}, at least one of the graphs H(FM∪{F̄})\{F} and
H(FM∪{F̄ ′,F̄})\{F ′,F} is perfect matching free,

3) for all F ∈ E \FM such that F̄ /∈ FM and the graph H(FM∪{F})\{F ′} contains
a perfect matching, there exists F ∗ ∈ FM \ {F ′} such that at least one graph
among H(FM∪{F})\{F∗} and H(FM∪{F̄ ′,F})\{F∗,F ′} is perfect matching free.

Proof. (⇒) 1) Suppose that for all F ⋆ ∈ FM\{F ′}, the graphHSF⋆ , where SF⋆ =
(FM∪{F̄ ′})\{F ′, F ⋆}, contains a perfect matching, say,MF⋆ . Summing inequal-
ity (2) associated with MF⋆ and inequalities xF ≤ 1 for all F ∈ SF∗ \ FMF⋆

yields the inequality ∑
F∈SF⋆

xF ≤ |SF⋆ | − 1. (7)

Now by summing inequalities (7) for all F ⋆ ∈ FM \ {F ′}, the close match-
ing inequality (6) associated with M and F ′, |FM | − 2 times the inequality
xF ′ + xF̄ ′ ≤ 1, dividing the resulting inequality by |FM | − 1, and rounding
down the right-hand side, we get the inequality∑

F∈FM

xF + 2xF̄ ′ ≤ |FM | − 1. (8)

Clearly inequality (8) dominates (6) and thus the latter cannot define a facet.
2) Suppose there exists F1 ∈ FM \ {F ′} such that both the graphs HS1

and HS2 where S1 = (FM ∪ {F̄1}) \ {F1} and S2 = (FM ∪ {F̄ ′, F̄1}) \ {F ′, F1}
contain perfect matchings M1 and M2 respectively. By summing inequalities (2)
associated with matchings M1 and M2, inequalities xF ≤ 1 for all F ∈ (S1 \
FM1)∪(S2\FM2), inequality xF ′+xF̄ ′ ≤ 1, dividing by 2 the resulting inequality
and rounding down the right-hand side, we get the inequality∑

F∈FM\{F1}

xF + xF̄1
+ xF̄ ′ ≤ |FM | − 1. (9)

Now summing inequality (9), the close matching inequality (6) associated with
M and F ′, inequality xF1 + xF̄1

≤ 1, dividing by 2 the resulting inequality and
rounding down the right-hand side, we get the inequality∑

F∈FM

xF + xF̄1
+ xF̄ ′ ≤ |FM | − 1. (10)



Clearly inequality (10) dominates (6), and thus the latter cannot define a facet.
3) Suppose there exists F2 ∈ E \ FM such that F̄2 /∈ FM , the graph HS

where S = FM ∪ {F2} \ {F ′} contains a perfect matching, say MS , and for all
F ∗ ∈ FM \ {F ′}, the graphs HS∗

1
, HS∗

2
contain perfect matchings M∗

1 and M∗
2 ,

where S∗
1 = FM ∪ {F2} \ {F ∗} and S∗

2 = FM ∪ {F̄ ′, F2} \ {F ∗, F ′}. By summing
inequality (2) associated with the matching M∗

1 and M∗
2 , inequalities xF ≤ 1

for all F ∈ (S∗
1 \ FM∗

1
)∪ (S∗

2 \ FM∗
2
), inequality xF ′ + xF̄ ′ ≤ 1, dividing by 2 the

resulting inequality and rounding down the right-hand side we get the inequality∑
F∈FM\{F∗}

xF + xF2 + xF̄ ′ ≤ |FM | − 1. (11)

Now by summing inequality (2) associated with matching MS , inequalities xF ≤
1 for all F ∈ S \ FMS

, inequalities (11) for all F ⋆ ∈ FM \ {F ′}, the close
matching inequality (6) associated withM and F ′, dividing by |FM | the resulting
inequality and rounding down the right-hand side we get the inequality∑

F∈FM

xF + xF2 + xF̄ ′ ≤ |FM | − 1. (12)

Clearly inequality (12) dominates (6), and hence the latter cannot define a facet.
(⇐) Now we suppose that conditions 1), 2), 3) are satisfied. Let us denote by

ax ≤ α inequality (6) associated with M and F ′. Let bx ≤ β be a facet defining
inequality of PFPMSP (G,Uc, π) such that {x ∈ PFPMSP (G,Uc, π) : ax = α} ⊆
{x ∈ PFPMSP (G,Uc, π) : bx = β}. We will show that b = ρa for some ρ ∈ R.

By condition 1), there exists F ⋆ ∈ FM \ {F ′} such that the graph HS⋆ is
perfect matching free where S⋆ = (FM∪{F̄ ′})\{F ′, F ⋆}. Hence S⋆ is a solution of
FPMSP. Since the matching is minimal, the set S′⋆ = FM \{F ′} is also a solution
of FPMSP. Moreover we have that axS⋆

= axS′⋆
= α. Hence bxS⋆

= bxS′⋆
. This

implies that b(F ′) = b(F̄ ′).
Let F1 ∈ FM \ {F ′}. Clearly, S1 = FM \ {F1} is a solution. Furthermore, we

have axS1 = α. Thus bxS1 = bxS′⋆
, and hence b(F1) = b(F ′). Consequently, we

have b(F ) = ρ for all F ∈ FM ∪ {F̄ ′} for some ρ ∈ R.
Let F2 ∈ E \ FM such that F̄2 /∈ FM . Clearly, F2 is different from F̄ ′. Let

S2 = (FM ∪ {F2}) \ {F ′}. If HS2 is perfect matching free, then S2 is a solution
of FPMSP. As axS2 = α, and thus bxS2 = bxS′⋆

, this implies that b(F2) = 0. If
HS2 contains a perfect matching, by condition 3), there exists F3 ∈ FM \ {F ′}
such that one of the graphs HS3 and HS′

3
is perfect matching free, where S3 =

(FM ∪{F2})\{F3} and S′
3 = (FM ∪{F2, F̄

′})\{F3, F
′}. Hence at least one of the

sets S3 and S′
3 is a solution of FPMSP. If S3 (resp. S′

3) is a solution of FPMSP,
as axS3 = α (resp. axS′

3 = α) and hence bxS3 = bxS′⋆
(resp. bxS′

3 = bxS′⋆
), we

obtain that b(F2) = 0. Thus we have b(F ) = 0 for all F ∈ E \ FM such that
F̄ /∈ FM .

Finally, consider F4 ∈ E \FM such that F̄ ′ ̸= F4 and F̄4 ∈ FM . By condition
2), at least one of the graphs HS4 and HS′

4
is perfect matching free, where

S4 = (FM ∪ {F4}) \ {F̄4} and S′
4 = (FM ∪ {F4, F̄

′}) \ {F̄4, F
′}. Thus either S4



or S′
4 or both are solutions for FPMSP. If S4 (resp. S′

4) is a solution of FPMSP,
as axS4 = α (resp. axS′

4 = α) and hence bxS4 = bxS′⋆
(resp. bxS′

4 = bxS′⋆
), we

obtain that b(F4) = 0. Therefore b(F ) = 0 for all F ∈ E \FM such that F̄ ∈ FM

and F ̸= F̄ ′.
Overall, we have that b = ρa, which ends the proof. �

3.2 k-Multiple matching inequalities

We denote by Θ the set of non-empty subsets of E verifying condition i).
That is, a set θ ⊆ E is in Θ if there does not exist a node u ∈ Uc such that
{Et

u, E
f
u} ⊆ θ. Let θ ∈ Θ, θ′ ⊆ θ and k be an integer in {1, ..., |θ′|+ 1}. We say

that graph Hθ is k−multiple matching w.r.t. θ′ if after removal of any k−1 edge
sets of θ′ in Hθ, the new graph still contains a perfect matching.

Proposition 2. Let θ ∈ Θ, θ′ ⊆ θ and k ∈ {1, ..., |θ′| + 1}. If the graph Hθ is
k−multiple matching w.r.t. θ′, then the following inequality∑

F∈θ′

xF + k
∑

F∈θ\θ′

xF ≤ |θ′|+ k(|θ \ θ′| − 1), (13)

is valid for PFPMSP (G,Uc, π).

Proof. Suppose there exists a solution S of FPMSP such that the incidence
vector xS verifies ∑

F∈θ′

xS
F + k

∑
F∈θ\θ′

xS
F > |θ′|+ k(|θ \ θ′| − 1). (14)

As
∑

F∈θ′ xS
F ≤ |θ′| we then have k

∑
F∈θ\θ′ xS

F ≥ k(|θ \ θ′| − 1) + 1. Thus,∑
F∈θ\θ′ xS

F = |θ \ θ′| and, in consequence,
∑

F∈θ′ xS
F ≥ |θ′|−k+1. This implies

|θ∗| ≤ k − 1, where θ∗ = θ′ \ S. By an assumption, it follows that graph Hθ\θ∗

contains a perfect matching. As θ \ θ∗ ⊆ S, the graph HS contains a perfect
matching contradicting the fact that S is a solution of FPMSP. �

Proposition 3. Inequality (13) does not define a facet of PFPMSP (G,Uc, π) if
one of the following conditions is satisfied
1) Hθ is k′−multiple matching w.r.t. θ′, for k′ > k,
2) there exists F ∈ θ \ θ′ such that Hθ is k−multiple matching w.r.t. θ′ ∪ {F},
3) there exists θ̃ ⊂ θ and θ̃′ ⊆ θ̃ such that θ̃ \ θ̃′ ⊆ θ \ θ′, θ̃′ ⊆ θ′ and Hθ̃ is

k−multiple matching w.r.t. θ̃′.

Proof. Suppose that condition 1) is satisfied. In this case, the k−multiple match-
ing inequality (13) associated with θ′, θ and k′ is valid for the PFPMSP (G,Uc, π).
This implies that the incidence vectors of the solutions of the face Fk, induced
by inequality (13) associated with θ′, θ and k, verify

∑
F∈θ′ xF = |θ′| and∑

F∈θ\θ′ xF = |θ \θ′|−1. As consequence, there solutions also verify with equal-

ity inequality (13) associated with θ′, θ and k′. This implies that these solutions



belong to the face Fk′ defined by this inequality. As Fk ⊆ Fk′ and the two in-
equalities (13) associated with θ′, θ and k′ and θ′, θ and k are not equivalent,
this implies that Fk is not a facet.

Now suppose that condition 2) is satisfied, that is there exists F ∈ θ \ θ′

such that Hθ is k−multiple matching w.r.t. θ′ ∪ {F}. Observe that inequality
(13) associated with θ′, θ and k is the sum of inequality (13), associated with
θ′∪{F}, θ and k, and k−1 times inequality xF ≤ 1. Thus the former one cannot
define a facet.

Finally, suppose that condition 3) is satisfied. Then there exists θ̃ ⊂ θ and
θ̃′ ⊆ θ̃ such that θ̃ \ θ̃′ ⊆ θ \ θ′, θ̃′ ⊆ θ′ and Hθ̃ is k−multiple matching w.r.t.

θ̃′. It is easy to see that inequality (13) associated with θ′, θ and k is the sum
of inequality (13) associated with θ̃′, θ̃ and k, inequalities xF ≤ 1 for F ∈ θ′ \ θ̃′
and k times inequalities xF ≤ 1 for F ∈ (θ \θ′)\ (θ̃ \ θ̃′). Thus former one cannot
define a facet. �

4 Separation

The separation problem for a classe of inequalities ax ≤ b consists, given a
solution x̄ ∈ RE , in determining whether x̄ satisfies ax ≤ b, and if not in finding
an inequality violated by x̄. In this section we discuss the separation problem
for the classes of inequalities presented in section 3.

First we consider the minimal matching inequalities. We show that the sep-
aration problem for these inequalities can be solved in polynomial time. The
separation is performed in two steps. In the first one, we look for a matching
inequality (2), if there exists any, violated by x̄. This can be done in polyno-
mial time [3]. So suppose that there exists a perfect matching, say M , such that
inequality (2) associated with M , is violated by x̄. If there does not exist such
an inequality then, clearly, there is no a minimal matching inequality violated
by x̄. In a second step, we will try to strengthen M by determining a minimal
matching M ′ with FM ′ ⊆ FM . Remark that x̄ also violates the inequality (2)
associated with M ′. This second step reduces to computing a perfect matching
in HFM , containing a maximum number of true/false edges. This also can be
done in polynomial time [2].

4.1 Separation of close matching inequalities

The heuristic separation problem for close matching inequalities (6) begins with
a minimal matching M where the associated inequality is violated. The separa-
tion algorithm consists in finding for all F ∈ FM if there exists a close perfect
matching to FM and F , i.e. we verify if the graph H(FM\{F})∪{F̄}. For this we
use M -augmenting path [2], this algorithm compute in O(m). If for a F ∈ FM

there exists a close perfect matching to FM and F then the associated inequal-
ity is violated. This separation problem reduces to compute |FM | M -augmenting
paths in bipartite graphs and can be solved in polynomial time.



4.2 Separation of 2-multiple matching inequalities

The heuristic separation problem for 2-multiple matching inequalities (9) is based
on flows in a particular graph. Let ω be the subset of E given by, Et

u ∈ ω if x̄Et
u
≥

0.5 and Ef
u ∈ ω otherwise, for all u ∈ Uc. This heuristique searches, if there

exists, θ ⊆ ω and θ′ ⊆ θ such that the 2-multiple matching inequality associated
with θ and θ′ is violated. Let Eu = (Et

u ∪ Et
u) ∩ ω and n = |U |. We search n

particular matchings, these matchings corresponding to the possibility to delete
any one edge set of θ′. These matching also corresponding to the minimum cost
flow of value n2 in the directed graph D = (VD, AD) defined as follows. For each
u ∈ Uc, we add the nodes w1

u, w
2
u, w

3
u, w

4
u in VD, for each v ∈ V we add the node

wv ∈ VD, for each u ∈ U \ Uc we add the node wu ∈ VD and we add the nodes
s and t in VD. For each u ∈ Uc we add the arcs :

1. (w1
u, t), (w

3
u, w

1
u), with cost 0 and a capacity n,

2. (w2
u, w

1
u), with cost x′

Eu
and a capacity n,

3. (w4
u, w

2
u), with cost x′

Eu
and a capacity 1,

4. (w4
u, w

2
u), with cost 0 and a capacity n− 1.

For each Eu ∈ ω and for each uv ∈ Eu we add the arc (wv, w
4
u) with cost 0

and a capacity n. For all u ∈ Uc and for all uv ∈ Etf we add the arc (wv, w
3
u)

with cost 0 and a capacity n. For all u ∈ U \ Uc and for all uv ∈ Etf we add
the arc (wv, wu) with cost 0 and a capacity n. Finally, for all u ∈ U \ Uc and
for all v ∈ V we add the arcs (s, wv) and (wu, t) with cost 0 and a capacity n.
For each u ∈ Uc if the flow is non-null on (w2

u, w
1
u) add Eu in θ and if the flow

is non-null on (w2
u, w

1
u) and (w3

u, w
1
u) add Eu in θ′. If the cost of the minimum

weight flow f between s and t of value n2 is less than 1 then we have found a
violated 2-multiple-inequality (9) associated with θ and θ′.

Fig. 2. Subset of nodes corresponding to node u.

5 Branch-and-Cut algorithm

Branch-and-Cut methods consist in a combination of a cutting plane technique
and Branch-and-Bound algorithm. In this section, we present a Branch-and-
Cut algorithm for the SAP for CDAS. Our aim is to address the algorithmic



applications of the model and the theoretical results presented in the previous
sections. To start the optimization, we consider the following linear program
given by the inequalities, that is

max{
∑
F∈E

xF |x ∈ [0, 1]Esatisfies(1)}

An important task in the Branch-and-Cut algorithm is to determine whether
or not an optimal solution of the linear relaxation of the FPMSP is feasible.
An optimal solution x̄ of the linear relaxation is feasible for the FPMSP if x̄ is
integer and x̄ satisfies the matching inequalities. Thus verifying if x̄ is feasible for
FPMSP can be done in polynomial time. If an optimal solution x̄ of the linear
relaxation of the FPMSP is not feasible, the Branch-and-Cut algorithm generate
a minimal matching inequality, if there exists we search all close matching in-
equalities based on the minimal matching inequality and add these inequalities,
and we generate a 2-multiple matching inequality, valid for our problem and vio-
lated by x̄. We remark inequalities are global (i.e. valid in all the Branch-and-Cut
tree).

We remark that if the relaxation solution is less than |Uc| then the CDAS
is structurally solvable. In this case we stop the algorithm. We deduce, of this
remark, the gap is not interesting for our problem.

The Branch-and-Cut algorithm has been implemented in C++ using ABA-
CUS library [1] to manage the Branch-and-Cut tree and CPLEX 11.0 as LP-
solver. To solve the minimum weight perfect matching and the minimum cost
flow we use the LEMON Graph Library [6].

The algorithm was tested on a Pentium core 2 duo 2.66 GHz with 2 Gb RAM.
We fixed the CPU time limit to 1h. Results are presented here for randomly gen-
erated instances. The tests are performed for systems with up to n = 65 condi-
tional equations and 5 non-conditional equations. Recall that the corresponding
bipartite graphs have 2(n+5) nodes. The systems are considered in such a way
that each equation has between k − 1 and k + 1 variables where k is a given
parameter. Our tests were performed for k ∈ {5, 7}. Five instances were tested
for each problem and we provide the average results. We compare two variants,
the first use only the matching inequalities and the second use minimal matching
inequalities, close matching inequalities and 2−multiple matching inequalities.
The results are given in Table 1. The entries in the tables are :

n : the number of conditional equations,
k : the integer indicating that the number of variables in each

equation is between k − 1 and k + 1,
o/p : the number of problems solved to optimality over the

number of instances tested,
CPU : the total CPU time in seconds,
No : the number of generated nodes in the Branch-and-Cut tree,
Ct : the number of generated inequalities,
where the columns o/p1, CPU1, No1 and Ct1 are associated with the first

variant and the columns o/p2, CPU2, No2 and Ct2 are associated with the
second variant.



n k o/p1 CPU1 No1 Ct1 o/p2 CPU2 No2 Ct2

35 5 2/5 2452 37045 3943 5/5 0.2 18 2
35 7 0/5 >1h 59238 6182 5/5 0.8 68 13
45 5 3/5 1631 22627 2499 5/5 0.2 6 0
45 7 0/5 >1h 53468 5407 5/5 1.2 72 7
55 5 2/5 2565 29885 3202 5/5 2.6 204 8
55 7 0/5 >1h 47986 4944 5/5 1.8 68 2
60 5 2/5 2576 28345 3136 5/5 1.8 108 6
60 7 0/5 >1h 44913 4666 5/5 4.4 217 33
65 5 3/5 2529 27463 3204 5/5 0.6 39 0
65 7 0/5 >1h 42143 4384 5/5 46.6 1978 221

Table 1. Randomly generated instances

n k o/p2 CPU2 No2 Ct2

150 5 10/10 45 4 421
200 5 10/10 251 18 1158
250 5 10/10 239 8 805
300 5 10/10 264 7 657
350 5 10/10 636 11 971
400 5 10/10 175 2 203
450 5 10/10 423 4 428
900 5 10/10 2934 6 653

1000 5 10/10 3012 5 558
1100 5 9/10 9738 13 1319
1200 5 8/10 9829 8 999
1300 5 9/10 12818 4 680
Table 2. The big instances

From Table 1, we show the efficiency of inequalities (6) and (13)
for solving the SAP. Remark for instances n = 45, k = 5 and n = 65,
k = 5, all the solutions have been found at the root node. We can solve
all instances in less than 50 seconds using the inequalities (6) and (13)
and only 12 instances over 50 have been solved to optimality using the
first variant of the algorithm. We have tested our algorithm on bigger
instances. For this, we have extended the time limit to 5 hours. We
consider 10 instances for each line. The results are given in Table 2.

We have solved instances with up to 1300 conditional equations,
which correspond to graph having 2610 nodes. The biggest instances
cannot be solved because due to memory lack. We can see the number
of nodes in the tree is really small. We have on average less than 20
nodes in our Branch-and-Cut tree. This shows the efficiency of the
Branch-and-Cut algorithm we propose.

6 Concluding remarks

In this paper, we consider the SAP for conditional DAS. We introduce
new valid inequalities for the integer linear formulation given in [4].
We give necessary or necessary and sufficient conditions for these
inequalities to be facet defining. We also provide efficient heuristics
in order to separate these inequalities. All the results have been used
in order to devise an efficient Branch-and-Cut algorithm for the SAP
for conditional DAS. Instances of quite large size have been solved to
optimality using this algorithm.
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