ON THE STABLE SET POLYTOPE OF A SERIES-PARALLEL GRAPH

A.R. MAHJOUB
Department of Combinatorics \& Optimization, University of Waterloo, Canada*

Received 17 December 1985
Revised manuscript received 22 May 1987

Abstract

We give a short proof of Chvátal's conjecture that the nontrivial facets of the stable set polytope of a series-parallel graph all come from edges and odd holes.

Key words: Series-parallel graphs, facets of polyhedra, stable set polytope.

1. Introduction

The graphs we consider are finite, undirected, loopless and without multiple edges. We denote a graph by $G=(V, E)$, where V is the node set and E the edge set of G. If $e \in E$ is an edge with endnodes u and v we also write $u v$ to denote the edge e.

A homeomorph of K_{4} is a graph obtained from K_{4} when its edges are subdivided into paths by inserting new nodes of degree two. Graphs which contain no homeomorph of K_{4} as a subgraph are called series-parallel graphs [4].

If $G=(V, E)$ is a graph, a stable (independent) set in G is a set of nodes, no two of which are adjacent. A path P in G is a sequence of edges $e_{1}, e_{2}, \ldots, e_{k}$ such that $e_{1}=v_{0} v_{1}, e_{2}=v_{1} v_{2}, \ldots, e_{k}=v_{k-1} v_{k}$ and such that $v_{i} \neq v_{j}$ for $i \neq j$. The nodes v_{0} and v_{k} are the endnodes of P and we say that P joins v_{0} and v_{k}. (The number k of edges of P is called the length of P.) If $P=e_{1}, e_{2}, \ldots, e_{k}$ is a path joining v_{0} and v_{k} and $e_{k+1}=v_{0} v_{k+1} \in E$, then the sequence $e_{1}, e_{2}, \ldots, e_{k+1}$ is called a cycle of length $k+1$. A cycle is called odd if its length is odd, otherwise it is called even. An induced cycle of G is called a hole.

Given $S \subseteq V$, the incidence vector of S, x^{S} is defined by

$$
x_{u}^{S}= \begin{cases}1 & \text { if } u \in S, \\ 0 & \text { if } u \in V \backslash S .\end{cases}
$$

The stable set polytope of a graph $G=(V, E)$, denoted by $P(G)$, is the convex hull of the incidence vectors of all stable sets of G.

[^0]If $G=(V, E)$ is a graph, it is clear that each incidence vector of a stable set of G satisfies the following system of inequalities.

$$
\begin{cases}0 \leqslant x_{u} \leqslant 1 & \text { for all } u \in V \tag{1}\\ x_{u}+x_{v} \leqslant 1 & \text { for all } u v \in E \\ \sum_{u \in C} x_{u} \leqslant \frac{|C|-1}{2} & \text { for all odd holes } C \text { in } G\end{cases}
$$

Chvátal [2] was the first who conjectured that (1) defines the polytope $P(G)$ when G is series-parallel. (A graph G for which $P(G)$ is given by (1) is generally called h-perfect.) In [1] Boulala and Uhry described a polynomial algorithm for finding a maximum weight stable set in a series-parallel graph, and using LP-duality they gave a proof for Chvátal's Conjecture. Their proof also implies that, when the graph $G=(V, E)$ is series-parallel, the system (1) is totally dual integral (i.e. given an integer vector $w \in \mathbb{R}^{|V|}$ such that $\max \left\{w^{\mathrm{T}} x: x \in(1)\right\}$ exists, the corresponding dual linear program has an integer optimum solution). Chvátal's Conjecture has also been proved independently by Clamcy [3]. Recently further results on h-perfect graphs, related to series-parallel graphs, have been obtained by Sbihi and Uhry [6] and Gerards and Schrijver [5].

The purpose of this note is to give a short proof of Chvátal's Conjecture. We shall prove that if G is a series-parallel graph then every subgraph of G, induced by a nontrivial facet of $P(G)$, is an edge or an odd hole.

2. On the structure of facet inducing graphs for $\boldsymbol{P}(\boldsymbol{G})$

Given a graph $G=(V, E)$, a linear inequality defines a facet of $P(G)$, if and only if (i) it is satisfied by the incident vector x^{S} of every stable set S of G; and (ii) there are $|V|$ stable sets of G whose incidence vectors are affinely independent and satisfy it with equality.

It is trivial to see that $P(G)$ is full dimensional $(\operatorname{dim}(P(G))=|V|)$, which implies that $P(G)$ has a unique (up to multiplication by a positive constant) system of facet inducing inequalities. Further, since $x \in P(G)$ and $0 \leqslant x^{\prime} \leqslant x$ imply $x^{\prime} \in P(G)$ it follows that if $a x \leqslant \alpha$ is facet inducing with $\alpha>0$, then $a \geqslant 0$.

Let $G=(V, E)$ be an arbitrary graph and $a x \leqslant \alpha$ be a facet inducing inequality for $P(G)$ such that $\alpha>0$ and hence $a \geqslant 0$. Suppose $a x \leqslant \alpha$ is not of the forms described in (1) and denote by G_{a} the subgraph of G induced by it (i.e. induced by the node set $\left\{u \in V \mid a_{u} \neq 0\right\}$). (Then G_{a} is not an edge or odd hole.) Let S be the set of all stable sets S for which $a x^{s}=\alpha$. Then the only equations satisfied by all members of S are positive multiples of $a x=\alpha$. We then have the following lemmas.

Lemma 1. If G_{a} contains a path ($p u, u v, v q$) such that u and v are of degree two (see Fig. 1), then $a_{u}=a_{v}$.

Proof. Under the hypothesis, we claim that there exists a stable set $S_{0} \in \boldsymbol{S}$ such that

Fig. 1.
$v \in S_{0}, p \notin S_{0}$. In fact, if this is not the case then for every stable set $S \in \boldsymbol{S}$ the following holds:

$$
\begin{aligned}
& v \in S \Rightarrow p \in S \\
& v \notin S \Rightarrow|S \cap\{p, u\}|=1 .
\end{aligned}
$$

Thus $x_{P}^{S}+x_{u}^{S}=\mathbf{1}$ for all $S \in S$, a contradiction.
Let $S_{0}^{\prime}=\left(S_{0} \backslash v\right) \cup\{u\}$. Since S_{0}^{\prime} is also a stable set of G, we have $a_{u} \leqslant a_{v}$. Now by considering u and q we can deduce $a_{v} \leqslant a_{u}$ and hence $a_{u}=a_{v}$.

Lemma 2. Let p, q be nodes of G_{a}. Then at most one path in G_{a} which joins p and q can have all internal nodes of degree two.

Proof. Assume the contrary. Let C be the hole defined by two paths between p and q (see Fig. 2) and let L_{1} and L_{2} be the sets of nodes of these paths, different from p and q. From Lemma 1, we have

$$
\begin{equation*}
a_{u}=a_{v} \quad \forall u, v \in L_{i}, \quad i=1,2 . \tag{2}
\end{equation*}
$$

Fig. 2.

Consider a stable set $S \in S$. Then S must induce a maximum stable set in each of the paths depending on which of p, q belongs to S. Thus from (2) it is easy to verify for $L_{i}, i=1,2$ that, if $\left|L_{i}\right|$ is even (odd), then

$$
\begin{align*}
& \text { if }\{p, q\} \subset S \quad \text { then }\left|S \cap L_{i}\right|=\frac{\left|L_{i}\right|-2}{2}\left(\frac{\left|L_{i}\right|-1}{2}\right), \\
& \text { if }|\{p, q\} \cap S|=1 \quad \text { then }\left|S \cap L_{i}\right|=\frac{\left|L_{i}\right|}{2}\left(\frac{\left|L_{i}\right|-1}{2}\right), \tag{3}\\
& \text { if }\{p, q\} \cap S=\emptyset \quad \text { then }\left|S \cap L_{i}\right|=\frac{\left|L_{i}\right|}{2}\left(\frac{\left|L_{i}\right|+1}{2}\right) .
\end{align*}
$$

Now let us examine the hole C.
Case a. C is odd: Then sets L_{1} and L_{2} are such that if one is odd the other is even. From (3) it is clear that if $S \in S$ then

$$
\sum_{u \in C} x_{u}^{S}=\frac{|C|-1}{2}
$$

a contradiction.
Case b. C is even: Then sets L_{1} and L_{2} have the same parity. Suppose $\left|L_{1}\right| \leqslant\left|L_{2}\right|$ and let $\gamma=\left|L_{2}\right|-\left|L_{1}\right|$. Note that γ is even. From (3) every stable set $S \in \boldsymbol{S}$ satisfies the following conditions:

$$
\left|S \cap L_{2}\right|=\left|S \cap L_{1}\right|+\frac{\gamma}{2} \Leftrightarrow \sum_{u \in L_{2}} x_{u}^{S}-\sum_{u \in L_{1}} x_{u}^{S}=\frac{\gamma}{2} .
$$

Since p and q have zero coefficients in the above equation, but p, q are nodes of G_{a}, this inequality cannot be a positive multiple of $a x \leqslant \alpha$, a contradiction. This completes the proof of our Lemma.

Lemma 3. G_{a} does not contain a node of degree one.
Proof. Suppose G_{a} contains a node, say u, of degree one, and let v be the node of G_{a} adjacent with u. Then every stable set $S \in S$, contains either u or v, which implies that $x_{u}^{S}+x_{v}^{S}=1$ for all $S \in S$, a contradiction.

3. Application to series-parallel graphs

A cut vertex in a graph $G=(V, E)$ is a vertex whose removal increases the number of connected components in G. A connected graph $G=(V, E)$ is called 2-connected if $|E| \geqslant 2$ and G contains no cut vertex.

Duffin [4] showed that every 2-connected series-parallel graph (without multiple edges) can be obtained by a recursive application of the following operations starting from the graph consisting of a triangle.
(a) Subdivide an edge;
(b) if $u v$ is an edge, add the path ($u w, w v$) where w is a new node.

Theorem 4. If G is a series-parallel graph, then $P(G)$ is defined by (1).

Proof. Suppose $P(G)$ has a nontrivial facet inducing inequality $a x \leqslant \alpha$. (We have seen earlier that $a \geqslant 0$). Then G_{a} is series-parallel and we can assume G_{a} has more than one edge. We claim that G_{a} contains an induced 2 -connected subgraph. In fact, if G_{a} is 2 -connected, the claim is true. If this is not the case, then G_{a} contains a cut vertex v_{0} that separates it into two (induced) subgraphs G_{a}^{1} and G_{a}^{2} having exactly the node v_{0} in common and no edges in common. Moreover, we may assume that one of those two subgraphs, say G_{a}^{1}, has no cut vertex (because if not we can separate again G_{a}^{1}). But from Lemma $3, G_{a}^{1}$ must have more than one edge. Thus G_{a}^{1} is 2-connected and our claim is proved. Consequently, by Duffin's results, G_{a}^{1} must contain two nodes that are joined by more than one path in which all internal nodes are of degree two. But then it follows from Lemma 2 that G_{a} is an odd hole and the proof is complete.

Acknowledgment

The author wishes to thank the anonymous referees for their helpful comments.

References

[1] M. Boulala and J.P. Uhry, "Polytope des independants d'un graphe serie-parallele," Discrete Mathematics 27 (1979) 225-243.
[2] V. Chvâtal, "On certain polytopes associated with graphs," Journal of Combinatorial Theory (B) 18 (1975) 138-154.
[3] M. Clamcy, Ph.D. Thesis, Stanford University (1977).
[4] R.J. Duffin, "Topology of series-parallel networks," Journal of Mathematical Analysis and Applications 10 (1965) 303-318.
[5] A.M.H. Gerards and A. Schrijver, "Matrices with the Edmonds-Johnson property," Report No. 85363-OR, Institut für Okonometrie und Operations Research, Universität Bonn.
[6] N. Sbihi and J.P. Uhry, "A class of h-perfect graphs," Discrete Mathematics 51 (1984) 191-205.

[^0]: Research supported in part by the Natural Sciences and Engineering Research Council of Canada and by CP Rail.

 * Present address: Department of Statistics, King Saud University, Riyadh 11451, Saudi Arabia.

