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Abstract 

This paper studies the problem of finding a two-edge connected spanning subgraph of minimum 
weight. This problem is closely related to the widely studied traveling salesman problem and has 
applications to the design of reliable communication and transportation networks. We discuss the 
polytope associated with the solutions to this problem. We show that when the graph is series-parallel, 
the polytope is completely described by the trivial constraints and the so-called cut constraints. We 
also give some classes of facet defining inequalities of this polytope when the graph is general. 
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1. Introduction and notation 

The graphs we consider are finite, undirected, loopless and may have multiple edges. W e  

denote a graph by G = (V, E) where V is the node set and E the edge set of G. Given S c V, 

we denote by 6(S) the set of  edges having exactly one end in S. The edge set 8(S) is called 

a cut. 

A graph G is called k-edge connected if  G contains no cut having less than k edges. Given 

a graph G = ( V, E) and a function w: E ~ ~ which associates the weight w (e)  to each edge 

e ~ E, the two-edge connected spanning subgraph problem (TECSP for short) is to find a 

two-edge connected subgraph H = ( V, F )  of G spanning all nodes in V, such that Ee ~ FW (e) 
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is minimum. This problem has applications to the design of reliable communication and 
transportation networks [ 4,24]. 

In this paper we study the polytope associated with the solutions to this problem. Our 
aim is, in fact, to propose a polyhedral approach to the study of the TECSP. We show that 
when the graph is series-parallel, this polytope is completely described by the trivial con- 
straints and the so-called cut constraints. We also discuss various classes of facets of this 
polytope. 

The widely-studied traveling salesman problem [ 3,20,23 ] is closely related to the TECSP 
in that the objective is to find a minimum-weight (Hamiltonian) cycle spanning all vertices 
in V. In fact, as it is pointed out in [ 11 ], the problem of determining if a graph G = (V, E) 
contains a Hamiltonian cycle can be reduced to the TECSP. Thus the TECSP is NP-hard. 
This relationship between the traveling salesman problem and the TECSP has been widely 
investigated in the past few years [7,14,22]. Recently, Monma, Munson and Pulleyblank 
[22] have studied the TECSP in the metric case, that is when the underlying graph is 
complete and the weight function w(.  ) is nonnegative and satisfies the triangle inequality 
(i.e. w(el) ~ w(e2) + w(e3) for every three edges el, e2, e3 defining a triangle in G). Even 
in this case the traveling salesman problem and, thus the TECSP are NP-hard. In particular, 
they showed that the weight of an optimal traveling salesman tour in this case is no greater 
than 4_Q, where Q is the weight of an optimal two-edge connected spanning subgraph of G. 3 
This has been conjectured and largely proved by Frederickson and Ja'Ja' [ 14]. From this, 
it follows that the value of an optimal solution of the linear relaxation of the traveling 
salesman problem is no greater than 4 ~Q. Recently Cunningham [7] strengthened this by 

showing that this is never greater than Q. 
If G = ( V, E) is a graph and F_c E an edge set, then the 0-1 vector x F ~ ~ with xF(e) = 1 

if e ~ F and x F(e) = 0 if e ~ F is called the incidence vector of F. The convex hull TECP(G) 
of the incidence vectors of all edge sets of two-edge connected spanning subgraphs of G is 
called the two-edge connected spanning subgraph polytope of G, i.e., 

TECP(G)  := conv{x F ~ RE[ (V,F) 

is a two-edge connected spanning subgraph of G}. 

Thus the TECSP is equivalent to the following linear program: 

Min{wxIx~TECP(G) }. (1.1) 

Hence whenever the problem (1.1) can be solved in polynomial time, the problem TECSP 
can also be solved in polynomial time. 

Since the TECSP is NP-hard, we cannot expect to find a complete explicit characterization 
in terms of linear inequalities of TECP(G) for all graphs G. It may however be that for 
certain classes of graphs G, the polytope TECP(G) can be described by means of a few 
classes of linear inequalities and that for these classes of inequalities polynomial time 
algorithms can be designed, so that the TECSP for these graphs can be solved in polynomial 
time. 
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Recent work in the TECP(G) can be found in Gr6tschel and Monma [ 17], Grttschel et 
al. [ 18,19] and Barahona and Mahjoub [2]. In [17] Grttschel and Monma consider a 
more general polytope, that is, the polytope associated with the k-edge connected spanning 
subgraphs of a graph G, where k is a fixed positive integer. They discuss basic facets of this 
polytope. In [ 18,19] the authors describe further classes of facets of this polytope and 
devise a cutting plane algorithm for the associated optimization problem. In [2] Barahona 
and Mahjoub give a complete characterization of the TECP(G) for the class of Halin 
graphs. 

Given b : E --* g~ and F___ E, b (f) will denote •e ~ vb (e ) .  If ( V, F) is a two-edge connected 
spanning subgraph of G = (V, E), then x F must satisfy the following inequalities: 

x(e)>~O for all e ~ E ,  (1.2) 

x(e) ~< 1 for all e ~E,  (1.3) 

x ( 6 ( S )  >/2 for all Sc_V, ~ S ~ V .  (1.4) 

We will call the inequalities ( 1.2)-(1.3) trivial constraints and the inequalities ( 1.4) cut 

constraints. 

Using the famous maximum flow-minimum cut theorem (see Ford and Fulkerson [ 13 ] ), 
one can determine a minimum cutset in a weighted undirected graph by solving I Vl-1 
maximum flows. In fact, this can be obtained by calculating the maximum flows between 
the I V I - 1 pairs of nodes (s, t), t ~ V'x { s }, where s is a fixed node in V. Because the maximum 
flow calculation can be carried out in polynomial time (see Dinits [8] and Edmonds and 
Karp [ 10] ), it follows that the minimum cutset problem and hence the separation problem 
for constraints (1.4) (i.e. the problem that consists to decide whether a given vectory ~ R IEI 
satisfies (1.4) and if not to find a violated inequality) can be solved in polynomial time. 
From [ 15 ], this implies that there is a polynomial time algorithm for the solution of (1.1) 
whenever TECP(G) is completely described by the inequalities ( 1.2)-( 1.4). 

In the next section we study series-parallel graphs and we show that, for this class of 
graphs, the polytope TECP(G) is defined by inequalities (1.2)-(1.4).  In Section 3 we 
study the conditions under which inequalities ( 1.2)-(1.4) define facets for TECP(G).  We 
also introduce a large class of facet defining inequalities for TECP(G)called odd-wheel 
inequalities. 

The remainder of this section is devoted to more definitions and notations. 
If G = (V, E) is a graph and e ~ V is an edge with endnodes i and j, we also write/j  to 

denote the edge e. If S__C_ V, then G(S)  denotes the induced subgraph of G on S. 
For e ~ E, G-e denotes the subgraph of G obtained from G by deleting the edge e. For 

S _  V, the set of edges having their endnodes in S is denoted by 3'(S). If $1, $2 are disjoint 
subsets of V, then [$1, $2] denotes the set of edges of G which have one endnode in $1 and 
the other in $2. An edge cutset Fc_ V of G is a set of edges such that F =  6(S) = 6(V-S)  for 
some nonempty S__c_ V. The sets S and V-S are called the shores of the edge cutset F. We 
write k-edge cutset for an edge cutset having k edges. A cutset having one edge is called a 
bridge. 
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A polyhedron P c_ ~m, is the intersection of finitely many halfspaces in R m. A polytope 

is a bounded polyhedron or, equivalently, the convex hull of finitely many points. The 
dimension of a polyhedron P, denoted by dim(P),  is the maximum number of affinely 
independent points in P minus one. 

If a ~  W~-{0}, ao~  ~, then the inequality aTx<.ao is said to be valid with respect to a 
polyhedron P___ ~m if P___ {x ~ R '~ I aTx ~< ao }. We say that a valid inequality a TX <~ ao sup- 

ports P or defines a face  of P if Ov~Pn {x laTx=ao}  ~ P .  In this case the polyhedron 
P N {x[aTx = a o } is called the face associated with aTx ~< a o. A valid inequality aTx <~ a o 

defines a face t  of P if it defines a face of P and if there exist dim(P) affinely independent 
points in P n {x [ aTx = ao }. Two face defining inequalities aTx ~< ao and bTx ~< bo are called 
equivalent i f P n  { x l a T x = ao } = P N  { x l b T x = bo } . 

2. The polytope TECP(G) of a series-parallel graph 

A homeomorph of K4 is a graph obtained from K4 when its edges are subdivided into 
paths by inserting new nodes of degree two. A graph is called series-parallel  if it contain 

no homeomorph of K4 as a subgraph. 
Given a graph G = (V, E), we let P ( G )  (resp. P '  (G))  denote the polyhedron defined 

by the inequalities (1.2)-(1.4)  (resp. (1.2) and (1.4)).  Clearly, TECP ( G ) c _ P ( G )  

c P '  (G). In general, both P (G)  and P '  (G) may have fractional extreme points Cornu6jols, 
Fonlupt and Naddef [5] showed that for a series-parallel graph G, P ' ( G )  is integral. In 
[ 12 ] Fonlupt and Naddef characterized the class of graphs G for which P ' ( G )  defines the 
convex hull of the tours of G (a tour is a cycle going at least once through each node of G). 
This yields a polynomial time algorithm for the graphical salesman problem [5] in that 
class of graphs. 

A natural question that may arise is whether or not P ( G )  is integral whenever P '  (G) so 
is. The answer to this question is in the negative as shown by the following example: 

Consider the graph K4 given in Fig. 1. It has been shown in [ 12] that P '(K4) is integral. 

Letx  be the vector given by x ( e i )  = 1 for i=  1, 2, 3 and x(ei) = 1 for i=4 ,  5, 6. Clearly, x 

e 

Fig. 1. 
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satisfies all the constraints ( 1 .2)- (1 .4) .  However, it is not hard to see that x is an extreme 
point of  P(K4),  showing that P(K4) is not integral. 

Thus it seems to be interesting to characterize the class of graphs G for which P(G) is 

integral, i.e., P(G) = TECP(G) ,  since an efficient cutting plane algorithm can be used to 

solve the TECSP for this class of graphs. We do not have a complete characterization of  

these graphs, but, in what follows, we shall show that series-parallel graphs belong to this 

class. 

Duffin [9] showed that every connected series-parallel graph can be obtained by a 
recursive application of  the following operations starting from the graph consisting of  two 

nodes joined by an edge: 

(a) duplicate an edge (i.e. add an edge joining the same endnodes) ; 
(b) subdivide an edge (i.e. replace an edge uv by two edges uw and wv where w is a new 

node). 

We then have the following property for connected series-parallel graphs. 

R e m a r k  2.1. A connected series-parallel graph G = (V, E),  with I EI ~ 2, which does not 

contains multiple edges, has at least one node of degree 2. 

Throughout we consider a 2-edge connected graph G = (V, E) and we let m = I EI. 
Let x be a feasible solution of  P (G).  A cut 6(W) is said to be tight for x if x( 6(W) ) = 2. 

I f x  is an extreme point of P ( G ) ,  then there is a set { 6(W~): i = 1 . . . . .  r} of  tight cuts and 

two edge sets El, E2 c E such that x is the unique solution of the linear system 

I 
x(e) = 1 for all e~E1,  
x(e) = 0  for all e~E2,  (2.1) 

x(6(W,.)) = 2  for i =  1 . . . . .  r. 

Theorem 2.1. I fG is series-parallel, then TECP(G)  = P ( G ) .  

Proof. Since G is 2-edge connected (otherwise TECP (G) = P ( G )  = 0) we have that m >/2. 

Let us assume the contrary, that there is a (2-edge connected) series-parallel graph G = (V, 

E) such that TECP(G)  4:P(G). Assume that 1El is minimum i.e., that for any series- 

parallel graph G'  = (V', E ' )  for which IE'[  < IEI we have TECP(G)  = P ( G ) .  Let x be a 
fractional extreme point of  P ( G ) .  

Claim 1. x(e) > 0 for every edge e ~E .  

Proof of Claim 1. Suppose there is an edge eo ~ E such that x(eo) = 0. Then let x' ~ R "~ - 1 

be defined by x ' (e)  = x ( e )  for e ~E-{eo}. Obviously, x' is an extreme point of  P(G-eo). 
Since x' is fractional and P(G-eo) = TECP(G-eo) we have a contradiction. 

Claim 2. G is 3-edge connected. 

Proof of Claim 2. Assume G is not 3-edge connected. Since G is 2-edge connected, then 

G contains a 2-edge cutset, say {el, e2}. Hence x(e l )  =x(e2)  = 1. Let G * =  (V*,  E* )  be 
the graph obtained from G by contracting el. Let x* ~ ~m-1 be the restriction of x on E*.  
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It is clear that x*  is feasible for P (G *). Moreover x * is an extreme point of  P (G *). Indeed, 

if this is not the case, then there must exist two solutions y '  and y" of P(G*) such that 
x*=½(y'+y"). Thus y'(e2)=y"(ez)=1. Now consider the solutions y*', y * " E ~  m 

defined by 

~y ' ( e )  for e~E*, 
y*'(e) = for e = e l ,  

and 

~y "(e) for e~E*,  
y*"(e )  = for e = e,. 

Clearly, y *' ,  y *" are feasible for P ( G ) .  Also we have x = ~ (y *'  + y *"), a contradiction. 

Consequently, x*  is an extreme point of P(G*). Since G* is series-parallel and x* is 

fractional, by our minimality assumption, we then have a contradiction. 

Claim 3. Each variable x(e) has a nonzero coefficient in at least two of the equations of 

(2.1). 

Proof of Claim 3. Clearly, each variable x(e) has a nonzero coefficient in at least one of  
the equations of  (2.1). Let us assume that there is an edge eo such that x(eo) has a nonzero 

coefficient in exactly one of  those equations. Without loss of  generality, we may assume 

that between the nodes of  eo, there is only one edge (eo). Let (2 .1) '  be the system obtained 
from (2.1) by deleting the equation containing x(eo). Let x ° ~ ~m - -  1 be the solution given 

by x°(e) = x ( e )  for e ~ E \  { eo}. Then x ° is fractional. In fact, this is clear ifx(eo) is integer. 

I f  not, as x satisfies (2.1), then x must have at least two fractional components and thus x ° 

is fractional. Moreover we have that x ° is the unique solution of  the system (2.1) '  and, 

consequently, x ° is an extreme point of  P (G*) ,  where G * is the graph obtained from G by 

contracting eo. Since G-eo is series-parallel, by our assumption, we have that P(G-eo) is 

integral, a contradiction. 

Since G is series-parallel and m i> 2, by Remark 2.1 and Claim 2 it follows that G contains 
two multiple edges, say f, g. Since any cut contains either both edges f, g or neither of  them, 

at most one of  the variables x(f) and x(g) must take a fractional value. Let us assume, for 

instance, that x(f) -- 1. By Claim 3, there is a cut 8(Wi. ), i* ~ { 1 . . . . .  r} which contains f 
and hence also g. Moreover we have that x(g) is fractional. In fact, i fx (g )  = 1, then, from 

Claims 1 and 2 it follows that 2=x(6(Wi.)>x(f)+x(g)=2,  a contradiction. Conse- 

quently, by Claim 3, there must exist a cut 8(Wj.  ) , j *  ~ { 1 . . . . .  r } \ { i * }  containingfand 

g. Thus we have ( A means the "symmetric difference" which, for two arbitrary sets I and 

J, is defined by IAJ = ( / \ J )  t5 (J'x,I), the symmetric difference of  two cuts is a cut). 

2 ..< x ( 6 ( w ; . ) / \  6 (w j . )  ) 

=x(6(W~.)  ) + x ( 6 ( W j . )  ) - 2(x(6(W~.)  (3 6 (Wj. ) )  ) 

~<4-  2(x(f)  +x(g)) 

<2,  
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3. Facets of TECP(G) 
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The successful applications of the polyhedral approach to some NP-hard combinatorial 
optimization problems, as the Traveling Salesman Problem [6], the Linear Ordering Prob- 
lem [ 16] and the Max-Cut Problem [ 1 ], demonstrated that even a partial characterization 
of the polyhedron associated with an NP-hard problem could be sufficient to prove opti- 
mality of a solution to the problem. In this section we shall present a partial nonredundant 
system of inequalities for the polytope TECP(G). 

3.1. Basic facets of TECP(G) 

For a graph G =  (V, E), let us denote by E* _ E  the set of edges that belong to 2-edge 
cutsets of G. The two following theorems provide some basic properties of TECP(G) which 
are easily seen to be true. 

Theorem 3.1. (i) dim(TECP(G) ) = I EI- I E* 1. Consequently, TECP(G) is full dimen- 
sional (i.e., dim(P) = m) if and only if G is 3-edge connected. 

(ii) The inequality x (e) >10 defines a facet of  TECP (G) if and only if e is not in a 2- 
edge cutset, and e is not in a 3-edge cutset U with ( U- { e } ) (~ (E-E*) :~ O. 

(iii) The inequality x(e) <~ 1 defines a facet of TECP(G) if and only if e is not in a 2- 
edge cutset. [] 

Theorem 3.2. Let S cc_ V be a nonempty node subset of V. The valid inequality x (8(S) ) >12 
defines a facet of TECP ( G ), i f  and only if the following are satisfied: 

(a) 18(5) 1/>3; 
(b) G( S) and G(V-S) are both connected; 
(c) if G( S) ( G(V-S) ) is not 2-edge connected, then 

(c. 1 ) every bridge of G( S) ( G( V-S) ) is contained in a 2-edge cutset; 
(c.2) 1<~ 18(S) NE*[  ~<2; 
(c.3) for every partition S1, $2 of G( V-S) with I [S1, $2] I = 1 we have 

(c.3.1) /f 18(S) (~E*I = 1 then either 8($1) c E* or 6($2) C E* and there do not 
exist two edges ulvl, u2v2 ~ 8( S)-E* such that Vl and v2 are both of degree three, belong 
to V-S ( S) and are adjacent, with VlVz ~ 3,( V-S)-E* ( VaV2 ~ T(S)-E*);  

(c.3.2) if 18(S) A E* I = 2, then [ 8(S) I = 3 and {f} = 8(S)-E* is not contained in 
a 3-edge cutset U with ( U-{f} ) N ( E-E*) 4=O. [] 

From Theorem 3.2 it is not hard to obtain the following theorem which characterizes 
when cut constraints are equivalent. 
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T h e o r e m  3.3 Two distinct cut constraints x (6(S)  ) >>. 2 and x (6 (S ' )  ) >~ 2, defining facets 
for T E CP(G) ,  are equivalent if and only if  

(i) 16(S) 1 = 16(S') I ; and  
(ii) 6 ( S ) - E * = 6 ( S ' ) - E * .  [] 

Theorem 3.3 is, in fact, important from the point of  view of cutting planes, it characterizes 
the minimal set of cut constraints that should be included in any description of the polytope 
TECP(G)  by a linear inequality system. 

Consider the graph K4 (see Fig. 1 ). As mentioned before, the vector x such thatx(ei) = ½ 
for i =  1, 2, 3 and x(ee) = 1 for i = 4 ,  5, 6 is an extreme point of  TECP(K4).  In fact, this 
vector satisfies the equality x(el) +x(e2) q-x(e3) = 3. Therefore it is easy to see that for 

any 2-edge connected spanning subgraph of  K4 whose edge set is, say F, x F should satisfy 
x(el)  +x(e2)  +x(e3)/> 2. Furthermore, this inequality defines a facet for the polytope 
TECP(K4).  In the following we prove this as a special case of  a more general class of  facet 

defining inequalities for the polytope TECP (G) .  

3.2. Odd-wheel inequalities 

(3) the edge set [V],  

.... 2k + 1 and s = 0, 1, .. 
(4) the edge set IV s, 

q) 4= (0, p~+ 1); 

Given a 2-edge connected graph G = (V, E),  an odd-wheel configuration (see Fig. 2) is 
defined by an integer k/> 1, integers p~, for i = 1 . . . . .  2k + 1, and a partition of the node set 
Vinto V s, Vo for i =  l, 2 . . . . .  2 k +  1 and s = 0 ,  1 . . . . .  Pi such that 

(1) the graphs G(V~)  and G(Vo) are 3-edge connected for i =  1, 2 . . . . .  2k + 1 and s = 0, 

1, ..., Pi; 
(2) the edge set IV °, V°+l ] is nonempty for i =  1, 2 . . . . .  2 k +  1 (modulo 2k+  1); 

V~ +1 ] is nonempty and, i f p i >  0, I[V~, V~ +1 ] I = 1 for i =  1, 2, 

• , Pi (for convenience we let V pi+ 1 = Vo for i = 1, 2 . . . . .  2 k +  l ) ; 
V q ] is empty for 1 <~i~<2k+ 1, O<~s, q<<.p~+ 1, q ~ s +  1 and (s, 

(5) the edge set [V~, V q] is empty for 1~<i, t ~<2k+ l ,  i--/=t, l~<s~<pi+l  and 

1 <~q<<.pt+ 1. 
Let ri, for 1 ~< i ~< 2k + 1, denote the largest integer such that 0 ~< r~ <~Pi and 16(V~') I >/3. 

We denote by ei.~ a fixed edge in [ V s, V s +, ] for i = 1 . . . . .  2k + 1 and s = 0, 1 . . . . .  pi. Let 

F=EI-{e~,~; 1 ~<i~<2k+l,  r~ <~s ~pi} ,  

where E 1 is the set of  edges that are in the edge cutsets 6(V s) for l~<i~<2k+ 1 and 
O<~s<~p~+ 1, that is 

E' = U 6(vi) .  
1 <~i~<2k+ 1 
O<~s<~pi+l 

The odd-wheel inequality associated with the odd-wheel configuration is 
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; \ ', 

I - I " - -  
, 
I I I I 
I I ! I 

Fig. 2. An odd-wheel configuration. 

x( F) >~ k + l + ~ ri. 
i=  1....,2k + 1 

It is easy to see that odd-wheel inequalities are valid for TECP(G).  Moreover, we have: 

Theorem 3.4. Odd-wheel inequalities define facets of TECP(G).  

Proof. See [21]. [] 

In [2] Barahona and Mahjoub show that for a Halin graph G, TECP(G) is described by 

the trivial, cut and odd-wheel constraints. 
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