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Abstract

In this paper, we consider the independent dominating set polytope. We give a complete linear
description of that polytope when the graph is reduced to a cycle. This description uses a general
class of valid inequalities introduced in [T.M. Contenza, Some results on the dominating set polytope,
Ph.D. Dissertation, University of Kentucky, 2000]. We devise a polynomial time separation algorithm
for these inequalities. Asa consequence, we obtain a polynomial time cutting plane algorithm for the
minimum (maximum) independent dominating set problem on a cycle. We also introduce a lifting
operation called twin operation, and discuss some polyhedral consequences. In particular, we show
that the above results can be extended to a more general class of graphs.
© 2005 Elsevier Ltd. All rights reserved.

1. Introduction

Given a graphG = (V, E), a node subsetD ⊆ V of G is called adominating setif
every node ofV \ D is adjacent to at least one node ofD. An independent setof G is a
node setT ⊆ V such that there is no edge with both endnodes inT . Givena weight system
w( j ), j ∈ V , associated with the nodes ofG, theminimum weight independent dominating
set problem(MWIDSP for short) is to find an independent dominating setS⊆ V of G such
that

∑
i∈S w(i ) is minimum.

E-mail addresses:Ridha.Mahjoub@math.univ-bpclermont.fr(A.R. Mahjoub),mailfert@isima.fr
(J. Mailfert).

0195-6698/$ - see front matter © 2005 Elsevier Ltd. All rights reserved.
doi:10.1016/j.ejc.2004.07.015

http://www.elsevier.com/locate/ejc
mailto:Ridha.Mahjoub@math.univ-bpclermont.fr
mailto:mailfert@isima.fr
http://dx.doi.org/10.1016/j.ejc.2004.07.015


602 A.R.Mahjoub, J. Mailfert / European Journal of Combinatorics 27 (2006) 601–616

The MWIDSP has applications in social network theory [7] andgame theory [1,17]. It
is NP-complete in general [15]. It has been shown to be polynomially solvable in some
special classes of graphs such as strongly chordal graphs [11], permutation graphs [12,6],
intervalgraphs [21] andcocomparability graphs [18]. Most algorithms developed for these
classes of graphs are linear time algorithms.

The complexity aspect of the cardinality version of the problem has been intensively
studied as well. Corneil and Perl [9] show that the minimum cardinality independent
dominating set problem is NP-complete in the bipartite graphs and the comparability
graphs. Farber [13] shows that this problem is polynomially solvable in chordal graphs.
In [13], it is surprisingly shown that the MWIDSP is however NP-complete for this class of
graphs. It has also been shown that it is polynomial in cographs [12] and split graphs [13].
Further complexity and combinatorial results on the MWIDSP can be found in [2,3,14,23].

In this paper, we study the MWIDSP from a polyhedral point of view. We give a
complete linear description of the associated polytope when the graph is reduced to a cycle.
This description uses a general class ofvalid inequalities introduced by Contenza [8].
We also show that this class of inequalities can be separated in polynomial time. In
consequence, we obtain a polynomial time cutting plane algorithm for the MWIDSP on
a cycle. To the best of our knowledge, this is the first polynomial time algorithm for the
MWIDSP on these graphs. We also introduce a lifting operation called twin operation and
discuss some polyhedral consequences. In particular we show that the above results can be
extended to a more general class of graphs.

The closely related dominating set problem has been the subject of extensive research
in the past three decades. A complete surveyof the algorithmic complexity of this problem
and the MWIDSP can be found in [7,17].

If G = (V, E) is a graph andS ⊆ V a node set ofG, then the 0–1 vectorxS ∈ R
V

with xS(u) = 1 if u ∈ S andxS(u) = 0 otherwiseis called the incidence vector ofS. The
convex hull of the incidence vectors of all independent dominating sets ofG, denoted by
PID(G), is called the independent dominating set polytope ofG, i.e.,

PID(G) = conv{xS ∈ R
V | S⊆ V is an independent dominating set ofG}.

Hence, the MWIDSP is equivalent to the linear programming problem

min{wx | x ∈ PID(G)}.
Since the MWIDSP is NP-complete, we cannot expect to find a complete

characterization ofPID(G) for all graphs. It may however be that for certain classes
of graphsG, the polytope PID(G) can be described by means of a few classes of
linear inequalities and that for these classes of inequalities, polynomial time separation
algorithms can be designed so that the MWIDSP on these graphs can be solved in
polynomial time.

Let G = (V, E) be a graph. Ifu ∈ V is a node ofG, the neighborhood ofu in G,
denoted byNG(u), is the node set consisting ofu together with the nodes which are
adjacent tou. If u ∈ V , let NG

∗(u) denote the setNG(u) \ {u}. If the context prevents
any ambiguity, we will omit the subscript and simply writeN(u) andN∗(u). If S⊆ V and
b : V −→ R, b(S) will denote

∑
u∈Sb(u).
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If S⊆ V is an independent dominating set, thenxS, the incidence vector ofS, satisfies
the following inequalities:

x(u)+ x(v) ≤ 1 for all (u, v) ∈ E (1)

x(N(u)) ≥ 1 for all u ∈ V (2)

x(u) ≥ 0 for all u ∈ V. (3)

Inequalities (1), called edge inequalities, imply that S is an independent set. And
inequalities (2), called neighborhood inequalities, imply that S is a dominating set.
Inequalities (3) are called trivial inequalities.

In contrast to many NP-hard combinatorial optimization problems, such as the
independent set problem [22], the polyhedral aspect of the MWIDSP has not received
much attention. To the best of our knowledge, the polytopePID(G) has been characterized
only in the class of strongly chordal graphs [11] within the framework of totally balanced
matrices. Actually, Farber [11] showed that inequalities (2) and (3) together with the so-
calledclique inequalities(which are valid inequalities and generalize inequalities (1) for
the independent set polytope) suffice to describePID(G) whenG is strongly chordal.

If Cn is a chordless cycle onn nodes, then the following inequalities are also valid for
PID(Cn):

x(Cn) ≤
⌊n

2

⌋
(4)

x(Cn) ≥
⌈n

3

⌉
. (5)

Inequality (4) must be satisfied by every independent set and inequality (5) must be
satisfied by every dominating set ofCn. Inequalities (4) and (5) will be called cycle
inequalities.

In [8], Contenza shows thatPID(Cn) is full dimensional if n ≥ 8. It is also
characterized when inequalities (1), (2), (4) and (5) define facets forPID(Cn). Observe
that inequalities (3) are redundant with respect to inequalities (1) and (2) when G is a
cycle.

Contenza [8] also introduces a class of valid inequalities forPID(Cn) if n ≥ 8. In
this paper, we show that these inequalities together with inequalities (1), (2), (4) and (5)
completely describe the polytopePID(Cn).

Related work can also be found in [19,4,5]. In [19], Mahjoub gives a description of the
dominating set polytope,PD(G), in the class of threshold graphs. In [4], Bouchakour and
Mahjoub studyPD(G) in the graphs that decompose by one-node cutsets. It is shown that
if G decomposes intoG1 andG2, then the dominating set polytope ofG can be described
from two linear systems related toG1 and G2. In [5], Bouchakour et al. discuss the
dominating set polytope in cactus graphs. As a consequence, they obtain a characterization
of the polytope when the graph is a cycle.

The paper is organized as follows. In the next section, we give a description of the
polytopePID(Cn) and present some structural properties of its facets. InSection 3we prove
our main result. In Section 4we study the separation problem for the system describing
PID(Cn). In Section 5, we study a lifting operation and discuss some consequences.
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In the rest of this section we give some definitions and notation. We consider finite,
undirected and loopless graphs. We denote a graph byG = (V, E) whereV is thenode
setand E theedge set. If G = (V, E) is a graph ande ∈ E is an edge whose endnodes
areu andv, then we write e = (u, v). A path P of G = (V, E) is a sequence of nodes
v0, v1, . . . , vk, such that (vi , vi+1) is an edge fori = 0, . . . , k − 1 and no node appears
more than once inP. The nodesv0 andvk are the endnodes ofP and we say thatP links
v0 andvk. If (v0, vk) ∈ E andk ≥ 2, then the sequencev0, v1, . . . , vk is also called acycle.
Throughout the paper, we will denote byCn a cycle onn nodes and by 1, . . . , n its nodes.
If i , j ∈ Cn, we will denote byCn(i , j ) the pathi , i + 1, . . . , i + t = j of Cn betweeni
and j , where the integers are modulon.

2. The polytope PID(Cn)

2.1. Description

In [8], Contenza introduces a general class of valid inequalities forPD(Cn) as follows.
Let Cn = {1, . . . , n}. Let s ∈ {1, . . . , n− 2}, i1 < · · · < i s, benodes ofCn and I1, . . . , Is

disjoint node subsets ofCn suchthat Il = {i l , . . . , i l + 3kl + 1} for some integerkl ≥ 0,
andi l+1 ≥ i l + 3(kl + 1)+ 1 for l = 1, . . . , s (the indices are taken modulos). Let Jl be
the set of nodes ofCn betweenIl andIl+1 different fromi l + 3kl + 2 andi l+1− 1, and let
rl = |Jl | for l = 1, . . . , s. Consider the inequality

s∑
l=1

∑
j∈Il

x( j )−
s∑

l=1

∑
j∈Jl

x( j ) ≥
s∑

l=1

(kl + 1)−


s∑

l=1
(rl + 1)

2

 . (6)

For example, for n = 12, if s = 2, I1 = {1, 2, 3, 4, 5} and I2 = {8, 9}, we have the
following valid inequality forPID(C12):

x(1)+ x(2)+ x(3)+ x(4)+ x(5)+ x(8)+ x(9)− x(11)

≥ 2+ 1−
⌊

(1+ 2)

2

⌋
= 2.

Theorem 2.1 ([8] ). Inequality (6) is valid for PID(Cn).

Proof. The following inequalities are valid forPID(Cn).

x(N(i )) ≥ 1 for i = i l + 3q, i l + 3q+ 1,

q = 0, . . . , kl ; l = 1, . . . , s,

−x(i )− x(i + 1) ≥ −1 for i = i l + 3kl + 2, . . . , i l+1 − 2,

l = 1, . . . , s.

By summing these inequalities we obtain

2
s∑

l=1

∑
j∈Il

x( j )− 2
s∑

l=1

∑
j∈Jl

x( j ) ≥ 2
s∑

l=1

(kl + 1)−
s∑

l=1

(rl + 1).
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By dividing by 2 and rounding up the right hand side to the next highest integer we
obtain inequality (6). �

We can now state our main result.

Theorem 2.2. PID(Cn) is completely described by inequalities(1), (2), (4)–(6).

The proof ofTheorem 2.2will be given inSection 3. In what follows, we are going to
discuss some structural properties of the facets ofPID(Cn) which will be useful for that
proof.

2.2. Structural properties

Consider a cycleCn with n ≥ 8. Hence,PID(Cn) is full dimensional. Letax ≥ a0 be a
constraint that defines a facet ofPID(Cn) different from constraints (1) and (2). LetΩ(Cn)

be the set of independent dominating sets ofCn, and let

Sa = {S∈ Ω(Cn) | axS= a0}.
In what follows we will also considera(i ) as a weight oni . Hence, any 0–1 solutionS

of Sa will havea weighta(S) equal toa0, and any 0–1solution ofΩ(Cn) a weight greater
than or equal toa0. We have the following lemmas; the first oneis a direct consequence of
the fact thatax ≥ a0 is different from inequalities (1) and (2).

Lemma 2.3. (i) For every node i∈ Cn, there is a node set S∈ Sa suchthat |S∩ N(i )| ≥
2.

(ii) For every i ∈ Cn, there is a node set S′ ∈ Sa such that S′ ∩ {i , i + 1} = ∅.
A consequence ofLemma 2.3is that for everyi ∈ Cn, there is a setS ∈ Sa suchthat

S∩ N(i ) = {i − 1, i + 1}.
Lemma 2.4. For all i ∈ Cn, wehave

(i) a(i ) ≥ min(a(i + 1), a(i + 1)− a(i + 2)),
(ii) a(i ) ≤ max(a(i + 1), a(i + 1)− a(i + 2), a(i + 1)− a(i + 2)+ a(i + 3)),

(iii) a(i ) ≥ min(a(i − 1), a(i − 1)− a(i − 2)),

(iv) a(i ) ≤ max(a(i − 1), a(i − 1)− a(i − 2), a(i − 1)− a(i − 2)+ a(i − 3)).

Proof. We shall show (i) and (ii), (iii) and (iv) follow by symmetry.
(i) By Lemma 2.3(ii), there is a solutionS1 ∈ Sa such that i − 1, i 
∈ S1. By

inequality (2), it follows thati+1 ∈ S1. If i+3 ∈ S1, as the node setS′1 = (S1\{i+1})∪{i }
is a solution ofΩ(Cn), we have thata(S′1) ≥ a0, and thereforea(i ) ≥ a(i +1). If not, then
i + 4 ∈ S1 and, hence,(S1 \ {i + 1}) ∪ {i , i + 2} is a solution ofΩ(Cn). This implies that
a(i )+ a(i + 2) ≥ a(i + 1), and in consequence (i) holds.

(ii) By Lemma 2.3(i), there is a setS2 ∈ Sa that containsi − 2, i . If i + 3 ∈ S2, then
(S2 \ {i }) ∪ {i + 1} is a solution ofΩ(Cn) and hence

a(i ) ≤ a(i + 1). (7)

If this is not the case, theni + 2 ∈ S2.
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– If i + 4 
∈ S2, theni + 5 ∈ S2. Consequently,(S2 \ {i , i + 2})∪ {i + 1, i + 3} ∈ Ω(Cn),
implying that

a(i )+ a(i + 2) ≤ a(i + 1)+ a(i + 3). (8)

– If i + 4 ∈ S2, then(S2 \ {i , i + 2}) ∪ {i + 1} ∈ Ω(Cn) and we obtain that

a(i )+ a(i + 2) ≤ a(i + 1). (9)

Combining (7)–(9) yields (ii). �

The following lemmas are given without proof; for the proof see [20].

Lemma 2.5. Let i ∈ Cn. Suppose that a( j ) = δ > 0 for j = i , . . . , i + p − 1 for
some integer p≥ 1 and δ ∈ R. Suppose also that a(i − 1), a(i + p) < δ. Then
|Cn(i + p, i − 1)| ≥ 3.

Lemma 2.6. Let i ∈ Cn. Suppose that a( j ) = δ > 0 for j = i , . . . , i + p− 1 for some
integer p≥ 1 andδ ∈ R. Suppose also that a(i − 1), a(i + p) < δ. Then p= 3k + 2 for
some k≥ 0.

Lemma 2.7. (i) Let i ∈ Cn. Suppose that a( j ) = δ > 0 for j = i , . . . , i + 3k + 1 for
some integer k≥ 0 andδ ∈ R. Suppose also that a(i − 1), a(i + 3k + 2) < δ. Then
there exists an independent dominating set of Sa such that i − 1, i + 1, i + 3 ∈ S.

(ii) Let i ∈ Cn. Suppose that a( j ) = δ > 0 for j = i − (3k + 1), . . . , i for someinteger
k ≥ 0 andδ ∈ R. Suppose also that a(i − 3k− 2), a(i + 1) < δ. Then there exists an
independent dominating set of Sa such that i − 3, i − 1, i + 1 ∈ S.

Lemma 2.8. (i) If for some i ∈ Vn, a(i ) = a(i + 1) < 0 and a(i ) < a(i − 1), then
a(i − 2) > 0, and a(i − 2) > a(i − 1).

(ii) If for some i∈ Vn, a(i ) = a(i + 1) < 0 and a(i + 1) < a(i + 2), then a(i + 3) > 0,
and a(i + 3) > a(i + 2).

(iii) If for some i ∈ Vn, a(i ) = a(i + 1) and a(i ) > a(i − 1), then a(i − 1) ≥ 0 and
a(i − 2) ≤ a(i − 1). Moreover, there exists an integer k≥ 0 such that a( j ) = a(i ) for
j = i , . . . , i + 3k+ 1 and a(i ) > a(i + 3k+ 2).

(iv) If for some i ∈ Vn, a(i − 1) = a(i ) and a(i ) > a(i + 1), then a(i + 1) ≥ 0 and
a(i + 2) ≤ a(i + 1). Moreover, there exists an integer k≥ 0 such that a( j ) = a(i ) for
j = i − (3k+ 1), . . . , i and a(i ) > a(i − 3k− 2).

(v) If for some i∈ Vn, a(i ) = a(i + 1) ≥ 0 and a(i ) < a(i − 1)(a(i + 1) < a(i + 2)),
then a(i − 2) = a(i − 1) = a(i + 2) = a(i + 3).

Lemma 2.9. (i) If for some i∈ Vn, a(i ) = a(i+1) and a(i ) > a(i−1), then a(i−1) = 0.
(ii) If for some i∈ Vn, a(i − 1) = a(i ) and a(i ) > a(i + 1), then a(i + 1) = 0.

Lemma 2.10. (i) If a(i − 1) < a(i ) (resp. a(i − 1) > a(i )) for some i ∈ Vn, then
a(i ) ≤ a(i + 1) (resp. a(i − 2) ≥ a(i − 1)).

(ii) If a(i − 1) < a(i ) < a(i + 1) (resp. a(i − 1) > a(i ) > a(i + 1)) for some i∈ Vn,
then
(1) a(i ) = 0,
(2) a(i − 1) = −a(i + 1).
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3. Proof of Theorem 2.2

Let ax ≥ a0 bea facet defining inequality ofPID(Cn) different from (1), (2), (4) and
(5). We will show that ax ≥ a0 is necessarily of type (6). To this end, letM denote
max{a( j ), j ∈ Vn}.
Lemma 3.1. There exists i∈ Vn such that a(i − 1) < a(i ).

Proof. Suppose thata( j ) = M for all j ∈ Vn. If M > 0 (resp.M < 0), thenax ≥ a0 is
of type (5) (resp. (4)) which contradicts the hypothesis. �

Now, let us denote byIa the set of nodesi ∈ Cn suchthata(i ) = M anda(i −1) < M.
Note that byLemma 3.1, Ia 
= ∅. Let s = |Ia|, and Ia = {i1, . . . , i s} such that
1 ≤ i1 < · · · < i s ≤ n. Furthermore, as

a(i l − 1) < a(i l ), (10)

we have, byLemma 2.10(i), that

a(i l ) = a(i l + 1), for l = 1, . . . , s. (11)
Lemma 3.2. (i) For each l= 1, . . . , s, there exists an integer kl ≥ 0 such that a( j ) = M,

for j = i l , . . . , i l + 3kl + 1, and M > a(i l + 3kl + 2).
(ii) M > 0.

Proof. (i) is a direct consequence of (10) and (11) togetherwith Lemma 2.8(iii).
(ii) By (10) and (11) with respect to nodei1, Lemma 2.8(iii) yields a(i1 − 1) ≥ 0. As

M = a(i1), by (10) it follows thatM > 0. �

Denote the setCn(i l , i l + 3kl + 1) by Il for l = 1, . . . , s.

Lemma 3.3. |Cn(i l + 3kl + 2, i l+1− 1)| ≥ 2, for l = 1, . . . , s.

Proof. If s = 1, then the result is a direct consequence ofLemma 2.5. If not, by (10)
and (11) with respect to nodei l+1, Lemma 2.8(iii) yields a(i l+1 − 2) ≤ a(i l+1 − 1), for
l = 1, . . . , s (here the indices are modulos). Hence,i l+1 − 2 
∈ Cn(i l , i l + 3kl + 1) and
the lemma follows. �

Lemma 3.4. a(i l − 1) = a(i l + 3kl + 2) = 0 for l = 1, . . . , s.

Proof. Let l ∈ {1, . . . , s}. By (10) and (11) togetherwith Lemma 2.9(i), we have that
a(i l − 1) = 0. As a(i l + 3kl ) = a(i l + 3kl + 1) anda(i l + 3kl + 2) < a(i l + 3kl + 1),
by Lemma 2.9(ii) we obtaina(i l + 3kl + 2) = 0. �

Let Jl = Cn(i l + 3kl + 3, i l+1 − 2), l = 1, . . . , s, that is Jl is the set of nodes ofCn

betweenIl and Il+1, different fromi l + 3kl + 2 andi l+1− 1. Letrl = |Jl |.
Lemma 3.5. a( j ) = −M for j ∈ Jl , l = 1, . . . , s.

Proof. Let l ∈ {1, . . . , s}. If Jl = ∅, then there is nothing to prove. Suppose now that
rl ≥ 1. Let jl = i l + 3kl + 2.

As a( jl − 2) = a( jl − 1) and a( jl − 1) > a( jl ), by Lemma 2.8(iv) with respect
to node jl − 1, we have thata( jl + 1) ≤ a( jl ). Moreover, byLemma 3.4, a( jl ) = 0.
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Hence, ifa( jl + 1) = a( jl ), then byLemma 2.8(v) with respect to nodejl , we obtain
that a( jl + 2) = a( jl − 1) = M. This implies that jl + 2 = i l+1. So we obtain
|Cn( jl , i l+1 − 1)| = 2, that is rl = 0, a contradiction. Thus,a( jl + 1) < a( jl). Now,
by Lemma 2.10(ii), a( jl + 1) = −a( jl − 1) = −M.

So, the statement holds ifrl = 1. Now, suppose thatrl ≥ 2.

Claim 1. If a( j ) = −M, j = jl + 1, . . . , jl + t , for some1 ≤ t ≤ rl − 1, then
a( jl + t + 1) = −M.

Proof. Assume thata( j ) = −M, for j = jl + 1, . . . , jl + t for some integer 1≤ t < rl .
By Lemma 2.4(iii), it follows that

a( jl + t + 1) ≥ min(a( jl + t), a( jl + t)− a( jl + t − 1))

= min(−M,−M − a( jl + t − 1)).

Furthermore, asa( jl ) = 0 anda( jl + 1) = · · · = a( jl + t) = −M, we have that
a( jl + t − 1) ≤ 0. It then follows thata( jl + t + 1) ≥ −M.

Suppose thata( jl + t+1) > −M = a( jl + t). Thus, byLemma 2.10(i), a( jl + t+2) ≥
a( jl + t +1). If a( jl + t +2) = a( jl + t +1), then byLemma 2.8(iii) with respect to node
jl+t+1, we obtain thata( jl+t) = −M ≥ 0, a contradiction. Ifa( jl+t+2) > a( jl+t+1),
thenLemma 2.10(ii) yieldsa( jl+t+1) = 0 anda( jl+t+2) = −a( jl+t) = M. Therefore,
jl + t + 2= i l+1. But, sincet < rl , this contradicts the fact thatjl + t + 2 ≤ jl + rl + 1=
i l+1 − 1. Consequently,a( jl + t + 1) = −M, and the claim is proved. �

As a( jl + 1) = −M, the lemma follows. �

As M > 0, we can suppose without loss of generality thatM = 1. Thus, the facet
defining inequalityax ≥ a0 can be written as

s∑
l=1

∑
j∈Il

x( j )−
s∑

l=1

∑
j∈Jl

x( j ) ≥ a0 (12)

with a0 ∈ Z. Let α0 denote the right hand side of inequality (6). Now to complete the
proof, it suffices to show the following.

Lemma 3.6. a0 = α0.

Proof. First,note that, as byTheorem 2.1inequality (6) is valid for PID(Cn), we have that
a0 ≥ α0. In what follows, we are going to exhibit an independent dominating setS ∈ Cn

suchthataxS= α0.
Without loss of generality, we may suppose thatIa = {i1 = 1, i2, . . . , i s}. Let Cp =

{v1, v2, . . . , vp} be the cycle deduced fromCn by contracting the edges(i l+3q, i l+1+3q),
for q = 0, . . . , kl , l = 1, . . . , s. Remark that a nodev j ∈ Cp corresponds either to an edge
(i , i +1) or to a nodei of Cn. As i1 = 1, v1 corresponds to edge(1, 2), vp−1 to noden−1
andvp to noden. Alsonote also thatp = n−∑s

l=1(kl +1) andS̃= {v1, v3, . . . , v2� p
2 −1}

is an independent dominating set ofCp. Let A1 be the set of nodesi ∈ Cn suchthat
there existsv j ∈ S̃ where i = v j . And let A2 be the set of nodes ofCn of the form
i l + 1 + 3q, 0 ≤ q ≤ kl and 1 < l ≤ s such that there exists a nodev j ∈ S̃ which
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corresponds to edge(i l + 3q, i l + 1+ 3q). Let S = A1 ∪ A2 ∪ {1+ 3t, t = 0, . . . , k1}.
We claim thatS is an independent dominating set ofCn. In fact, first, note that as̃S is
an independent set,S is so. Now, we shall show thatS is a dominating set ofCn, that is
xS(N(i )) ≥ 1, for all i ∈ Cn \ S. As node 1 belongs toS, xS(N(n)) ≥ 1. Moreover, as
i1 = 1, we have thatn−1, n 
∈ Cn(i s, i s+3ks+1). Thus, If p is even, thenv2� p

2 −1 = n−1,

and hencexS(N(n − 1)) = 1. If p is odd, thenn − 1 
∈ S. So, if vp−2 = n − 2, since
n − 2 belongs toA1 and hence toS, it follows thatxS(N(n − 1)) = xS(n − 2) = 1.
If this is not the case, thenvp−2 corresponds to(n − 3, n − 2). As by Lemma 2.5,
n − 3, n − 2 
∈ Cn(i1, i1 + 3k1 + 1), we have thatn − 2 belongs toA2 and hence to
S. This implies thatxS(N(n− 1)) = xS(n− 2) = 1.

Now, let i ∈ Cn \ (S∪ {n− 1, n}). Suppose first thati = v j for somev j ∈ Cp. If either
v j−1 = i−1 orv j+1 = i+1, as{i−1, i+1}∩S 
= ∅, xS(N(i )) = xS(i−1)+xS(i+1) ≥ 1.
If not, thenv j−1 would correspond to the edge(i − 2, i − 1) andv j+1 to (i + 1, i + 2).
Moreover, we havev j−1, v j+1 ∈ S̃. So, if i ∈ Cn(i1, i1+3k1+1), theni −2, i +1 belong
to S, andhencexS(N(i )) = xS(i + 1) = 1. If not, theni ∈ C(i l , i l + 3kl + 1), for some
1 < l ≤ s. Thusi − 1, i + 2 ∈ A2 and hencexS(N(i )) = xS(i − 1) = 1.

Now, suppose thatv j = (i , i + 1) andv j 
∈ S̃ (otherwise eitheri or i − 1 is in S). Then,
v j−1 = i −1, v j+1 = i +2 andv j−1, v j+1 ∈ S̃. So,i −1 andi +2 belong toA1 and hence
to S. Thus,xS(N(i )) = xS(i − 1) = 1 (xS(N(i + 1)) = xS(i + 2) = 1). This implies that
S is a dominating set ofCn.

Now, it remains to show thataxS= α0. For this, note first that, ifp is even (resp. odd),
then the incidence vector ofS, xS, satisfies as an equation the inequalities

xS(N(i )) ≥ 1, i = i l + 3q, i l + 1+ 3q,

q = 0, . . . , kl , l = 1, . . . , s,

and the inequalities

xS(i )+ xS(i + 1) ≤ 1, i = i l + 3kl + 2, . . . , i l+1 − 2,

l = 1, . . . , s.

(resp.i = i l + 3kl + 2, . . . , i l+1 − 2,

l = 1, . . . , s− 1, andi = i s + 3ks+ 2, . . . , n− 2).

By adding these inequalities, we obtain

2
s∑

l=1

∑
j∈Il

xS( j )− 2
s∑

l=1

∑
j∈Jl

xS( j ) = 2
s∑

l=1

(kl + 1)−
s∑

l=1

(rl + 1)

(
resp. 2

s∑
l=1

∑
j∈Il

xS( j )− 2
s∑

l=1

∑
j∈Jl

xS( j ) = 2
s∑

l=1

(kl + 1)−
(

s∑
l=1

(rl + 1)− 1

))
.

As n =∑s
l=1 3(kl+1)+∑s

l=1(rl+1),
∑s

l=1(rl+1) is even (resp. odd). So, by dividing
by 2 theabove equality, we obtain thataxS= α0.
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In consequence, we have thata0 = α0 which ends the proof of the claim. �

By (12) togetherwith Lemma 3.6, it follows that the inequalityax ≥ a0 is of type (6),
and the proof of our theorem is complete.

4. Separation and algorithmic consequences

The separation problem for a class of inequalities consists in deciding whether a given
vector x̄ ∈ R

n satisfies the inequalities, and if not, in finding an inequality that is
violated by x̄. An algorithm that solves this problem is called aseparation algorithm.
A fundamental result in combinatorial optimization is the well known equivalence
between optimization and separation. That is, there exists a polynomial time algorithm
for optimizing over a class of inequalities if and only if the separation problem for
this class can be solved in polynomial time. Thus, if for a class of inequalities there
exists a polynomial time separation algorithm, then it can be used efficiently in the
framework of a cutting plane algorithm forsolving the corresponding optimization
problem.

Clearly, the separation problem for inequalities (1), (2), (4) and (5) can be solved in
polynomial time. In what follows we shall show that inequalities (6) can also be separated
in polynomial time. As it will turn out, the separation problem for these inequalities reduces
to a shortestpath problem in an appropriate directed graph.

Theorem 4.1. Inequalities (6) can be separated in polynomial time on Cn.

Proof. Let x̄ ∈ R
n. We may suppose that̄x satisfies inequalities (1), (2), (4) and (5).

Hence for the proof we can only consider inequalities (6) where
∑s

l=1(rl + 1) is odd. The
inequalities with

∑s
l=1(rl + 1) even are redundant with respect to inequalities (1) and (2).

An inequality of type (6) with
∑s

l=1(rl + 1) oddcan then be written as

s∑
l=1

il+3kl+1∑
j=il

x( j )−
il+1−2∑

j=il+3(kl+1)

x( j ) ≥
s∑

l=1

(kl + 1)−

s∑
l=1

(rl + 1)− 1

2
. (13)

As

2
il+3kl+1∑

j=il

x( j ) =
kl∑

q=0

(x(N(i l + 3q))+ x(N(i l + 3q + 1)))

− x(i l − 1)− x(i l + 3kl + 2),

and

−2
il+1−2∑

j=il+3(kl+1)

x( j ) = −
il+1−2∑

j=il+3kl+2

(x( j )+ x( j + 1))

+ x(i l + 3kl + 2)+ x(i l+1− 1)

for l = 1, . . . , s, inequality (13) can be written as
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s∑
l=1

(
kl∑

q=0

(x(N(i l + 3q))+ x(N(i l + 3q + 1))− 2)

−
il+1−2∑

j=il+3kl+2

(x( j )+ x( j + 1)− 1)

)
≥ 1. (14)

Now, consider the directed graphG = (U ∪ V, E) suchthat

U = {u1, . . . , un} ,
V = {v1, . . . , vn} ,
E = E1 ∪ E2,

where

E1 =
{
(u j , u j+3), (v j , v j+3); j = 1, . . . , n

}
,

E2 =
{
(u j , v j+1); j = 1, . . . , n

} ∪ {(v j , u j+1); j = 2, . . . , n− 1
}
.

Here the indices are taken modulon.
GraphG is constructed so that an arc of type either(u j , u j+3) or (v j , v j+3) corresponds

to the valid inequalityx(N( j + 1))+ x(N( j + 2))− 2 ≥ 0, and an arc of type(u j , v j+1)

or (v j , u j+1) to the inequality−x( j )− x( j + 1)+ 1≥ 0.
With an arce ∈ E1 of typee = (u j , u j+3) or e = (v j , v j+3) we associate the weight

w(e) = x̄(N( j + 1)) + x̄(N( j + 2)) − 2. And with an edgee ∈ E2 of type either
e = (u j , v j+1) or e = (v j , u j+1) we associate the weightw(e) = 1− x̄( j ) − x̄( j + 1).
Note that as̄x satisfies inequalities (1) and (2), w(e) ≥ 0 for all e∈ E.

As it will turn out, the separation problem for inequalities (6) reduces to a shortest
path problem inG. We aregoing to show that̄x satisfies all inequalities (6) if and only if
there does not exist a path between two nodesu j andv j of length<1. Indeed consider an
inequality of type (6) induced bys pairwise disjoint subsetsI1, . . . , Is of Cn.

For l = 1, . . . , s, let Pl be the (unique) path ofG given by

(uil−1, uil+2, . . . , uil+3kl+2, vil+3kl+3, uil+3kl+4, . . . , vil+3kl+3+rl−1, uil+3kl+3+rl )

(resp.(uil−1, uil+2, . . . , uil+3kl+2, vil+3kl+3, uil+3kl+4, . . . , uil+3kl+3+rl−1,

vil+3kl+3+rl )),

if rl is odd (resp. even). And denote byQl the pathobtained fromPl by replacingu by v.
Note that pathPl (resp.Ql ) is theunion of a path inU (V) of lengthkl+1 and analternative
path betweenU andV of lengthrl + 1. Also note thati l + 3kl + 3+ rl = i l+1 − 1. Now
let L1, . . . , Ls be the paths defined in a recursive way as follows:

L1← P1,
for l = 1, . . . , s− 1 do

if T(Ll ) ∈ U then
Ll+1 = Pl+1

else
Ll+1 = Ql+1
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whereT(Ll ) is the end node (tail) ofLl . Let

L =
s⋃

i=1

Li .

As each pathPl (Ql ) contains exactlyrl +1 arcs betweenU andV , L contains
∑s

l=1 rl +s
arcs betweenU andV . Hence, L is a path from ui1−1 to vi1−1. Moreover, its weight is
equal to

w(L) =
s∑

l=1

(
kl∑

q=0

x̄(N(i l + 3q))+ x̄(N(i l + 3q+ 1))− 2

)

+
s∑

l=1

(
il+1−2∑

j=il+3kl+2

(1− x̄( j )− x̄( j + 1))

)
.

So if inequality (13) is violated, by (14), one should havew(L) < 1.
Conversely, given a path L in G from a nodeu j to v j for j = 1, . . . , n, one can

associate an inequality of type (6) in such a way that the left hand side of the corresponding
inequality (14) is equal to the weight ofL. In fact, letL ′1, . . . , L ′s be the subpaths ofL that
are either contained inU or in V . Let til−1 be the initial node ofL ′l , for l = 1, . . . , s. Here
t stands for eitheru or v. Note that each pathL ′l is of lengthkl + 1 for somekl ≥ 0. Now,
let

Il = {i l , i l + 1, . . . , i l + 3kl + 1} , for l = 1, . . . , s.

It is not hard to see that constraint (13) associated with{Il , l = 1, . . . , s} has a left hand
side equal tow(L).

In consequence, to separate inequalities (6), one can compute the shortest path inG
betweenu j andv j , for j = 1, . . . , n with respect to the weights{w(e), e ∈ E}. And then
consider the shortest path among these paths. If the length of such a path is≥1, then no
constraint is violated. If not, then that path yields a violated inequality of type (6).

As the shortest path problem with non-negative weights can be solved in polynomial
time [10], the theorem follows. �

From [16], we then havethe following:

Corollary 4.2. The MWIDSP is polynomially solvable on a cycle.

5. Twin operation

In this section, we introduce a lifting operation called twin operation and discuss some
polyhedral consequences. In particular, we shall show that ifG′ is a graphobtained from
a graphG by the twin operation, then an inequality defines a nontrivial facet ofPID(G) if
and only if the lifted one defines a nontrivial facet ofPID(G′).

Let G = (V, E) be a graph (not necessarily a cycle) andv a node ofV . We saythat a
graphG′ = (V ′, E′) is obtained fromG by thetwin operationwith respect tov if there is
a nodev′ ∈ V ′ suchthat
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(i) V ′ = V ∪ {v′},
(ii) E′ = E ∪ {(v′, v)} ∪ {(v′, w); (v,w) ∈ E}.

The nodesv andv′ are called twins.
Let G = (V, E) be a graph andG′ = (V ′, E′) a graphobtained fromG by the twin

operation with respect to a nodev ∈ V . Let v′ be the twin ofv. Suppose also thatPID(G)

is full dimensional. It isthennot hard to see thatPID(G′) is also full dimensional. We have
the following lemmas; for theproof see [20].

Lemma 5.1. If ax ≥ α is an inequality that defines a nontrivial facet of PID(G′), then
a(v) = a(v′).

Lemma 5.2. Let ax≥ α bea facet defining inequality of PID(G), different from x(v) ≥ 0.
Set

a′(u) = a(u) if u ∈ V ′ \ {v′},
a′(u) = a(v) if u = v′,

α′ = α.

Then a′x ≥ α′ defines a facet for PID(G′).

Suppose now thatPID(G) is given by a systemSof inequalities of the form

S

{
ai x ≥ αi , for i ∈ I
x(u) ≥ 0, for all u ∈ V,

where I is an index set. Hence any 0–1 solution ofS is the incidence vector of an
independent dominating set ofG′. Let S′ be the system given by

S′
{

ai x + ai (v) x(v′) ≥ αi , for i ∈ I
x(u) ≥ 0, for all u ∈ V ′,

and denote bya′i x ≥ α′i inequalityai x + ai (v)x(v′) ≥ αi for i ∈ I . Note thata′i x ≥ α′i
is the inequality obtained fromai x ≥ αi by the lifting procedure ofLemma 5.2. The
following lemmas are given without proof; for the proof see [20].

Lemma 5.3. Let bx≥ β bean inequality valid for PID(G). Then bx+ b(v)x(v′) ≥ β is
redundant in S′.

Lemma 5.4. Every 0–1 solution of S′ is the incidence vector of anindependent dominating
set of G′.

Let P be the polytope given byS′. Wecan now state the main result of this section.

Theorem 5.5. PID(G′) = P.

Proof. By Lemma 5.2we have thatPID(G′) ⊆ P. In what follows we shall show that
P ⊆ PID(G′). By Lemma 5.4, it suffices to show that the extreme points ofP are integral.

Suppose, on the contrary, thatP has a fractional extreme point, sayy′. Let y ∈ R
V be

the solution given by

y(u) =
{

y′(u) if u ∈ V \ {v},
y′(v) + y′(v′) if u = v.
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Fig. 1.G andḠ.

As y′ is a solution ofS′, it follows thaty is a solution ofS. Consequently,y can be written
as a convex combination of 0–1 extreme points, sayy1, . . . , yt , of PID(G). We distinguish
two cases.

Case 1. y′(v)+ y′(v′) > 0.

Theny(v) > 0 and therefore there ist0 ∈ {1, . . . , t} suchthatyt0(v) = 1. Let ȳ′ ∈ R
V ′

given by

ȳ′(u) =




yt0(u) if u ∈ V ′ \ {v, v′},
1 if u = v andy′(v) > 0,

1 if u = v′ andy′(v) = 0,

0 otherwise.

We claim that every inequality ofS′ which is satisfied with equality byy′ is also satisfied
with equality by ȳ′. In fact, this is clear for the non-negativity inequalities. Consider
an inequalitya′i x ≥ α′i . If a′i y′ = α′i , then ai y = αi , and henceai yt0 = αi . As
ȳ′(v) + ȳ′(v′) = 1, a′i (v) = a′i (v′) = ai (v) andα′i = αi , it follows thata′i ȳ′ = α′i .
Thereforeȳ′ satisfies the same equality system asy′. As y′ 
= ȳ′, this is impossible.

Case 2. y′(v)+ y′(v′) = 0.

Theny(v) = 0, and henceyj (v) = 0, for j = 1, . . . , t . Let ŷ′ ∈ R
V ′ be given by

ŷ′(u) =
{

y1(u) if u ∈ V ′ \ {v, v′},
0 if u ∈ {v, v′}.

It is easy to see that̂y′ satisfies the same equality system asy′. Sincey 
= ŷ′, we have
again a contradiction, which ends the proof of the theorem.�

In order to illustrate the above constructions, consider the graphG = (V, E)

of Fig. 1(a). Let Ḡ = (V̄, Ē) be the graph ofFig. 1(b) obtained from G by
recursive applications of the twin operation on the nodes 1, 2, . . . , 8, respectively. From
constraints (6) andTheorem 2.2, it follows that the constraints ofPID(G) different from (1)



A.R.Mahjoub, J. Mailfert / European Journal of Combinatorics 27 (2006) 601–616 615

and (2) that may define facets are the following:

8∑
j=1

x( j ) ≥ 3,

x(i )+ x(i + 1)−
i+6∑

j=i+3

x( j ) ≥ −1, for i = 1, . . . , 8 (modulo 8).

FromTheorem 5.5, it follows thatPID(Ḡ) is given by inequalities (2) and (3) together
with the inequalities

x(i )+ x(i + 1)+ x(i + 8)+ x(i + 9) ≤ 1, for i = 1, . . . , 8 (modulo 16),

x(i )+ x(i + 1)+ x(i + 8)+ x(i + 9)−
i+6∑

j=i+3

(x( j )+ x( j + 8)) ≥ −1,

for i = 1, . . . , 8 (modulo 16),
16∑
j=1

x( j ) ≥ 3.
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