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Abstract We consider the “flow on paths” versions of Max Flow and Min Cut when
we restrict to paths having at most B arcs, and for versions where we allow fractional
solutions or require integral solutions. We show that the continuous versions are poly-
nomial even if B is part of the input, but that the integral versions are polynomial
only when B ≤ 3. However, when B ≤ 3 we show how to solve the problems
using ordinary Max Flow/Min Cut. We also give tight bounds on the integrality gaps
between the integral and continuous objective values for both problems, and between
the continuous objective values for the bounded-length paths version and the version
allowing all paths. We give a primal–dual approximation algorithm for both problems
whose approximation ratio attains the integrality gap, thereby showing that it is the
best possible primal–dual approximation algorithm.
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272 A. R. Mahjoub, S. T. McCormick

1 Introduction

It has been well-known for a long time that there are two equivalent formulations of
Max Flow and Min Cut problems: The usual formulation has flow variables on arcs,
uses the node-arc incidence matrix to express conservation, and has simple upper
bounds on flows to express arc capacities. The alternate formulation has flow vari-
ables on paths, uses the path-arc incidence matrix to collect path flows into net flows
on arcs in order to express arc capacities, and uses non-negativity of the path flows
to get conservation. The second formulation is somewhat more natural for seeing that
Min Cut is the dual of Max Flow.

Although most people regard the arc flow formulation as being more natural, histor-
ically the path flow formulation was developed first, in Ford and Fulkerson’s seminal
paper proving the Max Flow/Min Cut Theorem [14]. There are many applications
where we would like to ensure that no individual unit of flow takes too long to reach
its destination. For such applications the path flow formulation is more useful, as we
can restrict flows to occur only on paths of bounded length.

A major motivation for this paper is to consider to what extent usual Max Flow/Min
Cut results extend from the case where all paths are available to the case where
only bounded length paths are available. A second motivation is that Hoffman [21]
developed an abstraction of Ford and Fulkerson’s path flow model in which a gen-
eralized Max Flow/Min Cut Theorem is still true. Unfortunately, Hoffman’s proof
is non-algorithmic, but Martens and McCormick [28] later developed an algorithm
for Hoffman’s model based on [30]. Hoffman’s model depends on a crossing axiom
that says, roughly, that when two paths share an arc (“cross”), then there is a third
path using the first part of one path and the second part of the other path. Our
results show that on both the theory side and the algorithmic side, the crossing axiom
is crucial for guaranteeing that there exists an integer-valued Max Flow and Min
Cut.

In this paper we show that even with integral data, it is possible to have fractional
optimal solutions with arbitrarily large denominators. We completely characterize the
integrality gaps between the integral and continuous versions, and give a primal–dual
approximation algorithm whose approximation ratio attains these gaps (which is there-
fore best possible among primal–dual algorithms). Secondly, we note that continuous
versions of the problem are polynomial for any bound, but that finding an integer-
valued Max Flow or Min Cut in such networks is polynomial only for a bound of
at most three. However, in this case we show how to solve the problems using ordi-
nary Max Flow/Min Cut. All of our results apply to both directed and undirected
graphs.

Our bounded length Max Flow model is inspired by a real application of Maurras
and Vaxès [29] to some routing problem in telecommunications networks, which we
will present in the next section. A cut version of the same model arises in work of
Pesneau et al. [15] (see also [22–24,32]).
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Max Flow and Min Cut with bounded-length paths 273

2 Bounded-length path models

2.1 The formal models

In some applications where physical commodities flow through a network, it is nec-
essary that the commodity does not flow through too many arcs on its way to its
destination. We can imagine that each arc traversal further degrades the commodity,
and then a bound on the number of arcs passed through is a way of specifying a quality
level in the delivered product.

This is particularly important in telecommunications networks, where path length
is called the number of hops. One such application occurs in work of Maurras and
Vaxès [29]: For a given source and sink we are interested in how many messages we
can route through a network, given that we are only allowed to use paths with at most B
hops. A similar scenario arises in distributed authentication systems, where we would
like a chain of authentication that is not too long, see e.g., Reiter and Stubblebine
[34].

A second application occurs in work of Pesneau et al. [15,22,24,32]: They consider
a model for designing a 2-edge-connected network where each edge belongs to a cycle
of length at most k. This is to ensure that if any single edge breaks, we can still route
traffic between the two ends of the broken edge in at most k−1 hops. They give some
constraints that model this problem as an integer program. To use these constraints
in a Branch and Cut framework, it is necessary to have a separation routine for these
constraints. In this case this reduces to asking for a minimum capacity cut hitting all
paths with at most k − 1 hops.

To model this, suppose that we have an ordinary Max Flow network N = (N , E)

with source s, sink t , and capacity ue on arc e. As usual, let n be the number of nodes
of N . Let B be the upper bound on the number of arcs that any unit of flow is allowed
to pass through. Define P to be the set of all s–t directed paths, and P(B) to be the
set of P ∈ P with at most B arcs. For each P ∈ P(B) let xP be the flow on path P .
Then the problem of Maximum B-Path Flow is

(Max BPF) max
∑

P∈P(B)

xP

s.t.
∑

P�e

xP ≤ ue for all e ∈ E

xP ≥ 0 for all P ∈ P(B).

If we further require that all xP be integral, we get the problem Integral Max BPF, or
Int Max BPF.

Dually, if S is an arc subset such that every P ∈ P(B) contains at least one arc of
S, then we call S a B-Path Cut (BPC). Given capacities u on the arcs, the problem
Integral Min BPC, or Int Min BPC is to find a BPC S minimizing u(S). The linear
relaxation of this is the dual of the Max BPF LP above. The dual LP has a variable ye

on each arc, and is
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274 A. R. Mahjoub, S. T. McCormick

(Min BPC) min
∑

e

ue ye

s.t.
∑

e∈P

ye ≥ 1 for all P ∈ P(B)

ye ≥ 0 for all e ∈ E .

Thus Maurras and Vaxès’ problem is a case of Max BPF, and Pesneau et al.’s sep-
aration problem is a case of Min BPC. In both cases, the value of B that arises in
practice tends to be small, somewhere around 3–5. Thus we are particularly interested
in cases where B is fixed at a small value.

Note that both these LPs apply equally well to the case where the graph is undi-
rected, just by re-defining P(B) to include all undirected paths of length at most B.
Both applications mentioned above concern undirected graphs.

Notice that as B gets larger, the constraint that flow can occur only on paths of P(B)

gets weaker as P(B) converges to P . Thus we use Max∞PF to denote ordinary Max
Flow with flow allowed on all paths, and Min∞PC to denote ordinary Min Cut where
all paths of P must be cut. The Max Flow/Min Cut Theorem says that (for integral
data) the objective values of Max∞PF, Int Max∞PF, Min∞PC, and Int Min∞PC
are equal. LP Duality says that the values of Max BPF and Min BPC are equal, and
the objective values of the Int versions are (if anything) worse. Since Int Min BPC
is less constrained than Int Min∞PC its objective value may be lower. Thus we get
the following relations between the objective values of our problems (where we also
mark the pairs of problems where we later analyze integrality gaps):

Min∞PC = Max∞P F = Int Min∞PC = Int Max∞P F

≥ Int Min BPC ≥ Min BPC︸ ︷︷ ︸
int. gap Min BPC

= Max BPF ≥ Int Max BPF︸ ︷︷ ︸
int. gap Max BPF

.

2.2 Review of related work

Similar models have been studied by other authors. Many applications arise in tele-
communications, where it can be important to limit the number of hops traversed by a
message. Thus many papers refer to “hop-constrained” flow instead of length-bounded
flow.

In [9] Dahl and Gouveia consider the routing hop-constrained st-path problem.
This consists of finding between two distinguished nodes s and t a minimum cost path
with no more than B edges when B is fixed. This problem can be solved efficiently
using dynamic programming. Dahl and Gouveia describe valid inequalities for the
problem and characterize the convex hull of its solutions when B ≤ 3. Dahl et al.
[10] investigate the polytope of the directed st-walks having no more than B arcs,
where a directed walk is a directed path that may go through the same node more than
once. They present an extended formulation for the underlying B-walk problem when
B = 4, and use projection to obtain a complete linear description of this polytope.
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Max Flow and Min Cut with bounded-length paths 275

Coullard et al. [8] study the problem of finding a minimum directed st-walk hav-
ing exactly B arcs. They present an extended formulation of the problem and, using
projection, they give a linear description of the associated polyhedron. Gouveia and
Magnanti [17] consider the related problem that consists of finding a minimum span-
ning tree such that the number of edges between any pair of nodes in the tree is limited
to a given bound D (i.e., the diameter). This problem is polynomially solvable if D ≤ 3
and NP-hard if D ≥ 4. Gouveia and Magnanti [17] derived single source formulations
for the problem based on the concept of tree centers along with some computational
experiments. In [18] Gouveia et al. introduce a new modeling approach for the case
when D is odd and show that this approach performs better than the one in Gouveia
and Magnanti [17].

Kabadi et al. [26] consider the hop-constrained maximum flow and minimum cost
flow problems. In particular, they give a strongly polynomial linear programming based
algorithm for the continuous versions of the minimum hop-constrained maximum flow
problem with arbitrary bound value B. For B = 3, they give a strongly polynomial
combinatorial algorithm for the integer version of the maximum flow problem.

A very closely related problem, which has received much attention, is the maxi-
mum hop-constrained node- (edge-)disjoint paths problem. This consists in finding
a maximum number of edge- (resp. node-) s–t paths in P(B) (Max BEDP) (resp.
Max BNDP). This is a special case of our problem with all capacities equal to one.
In particular, when all capacities are one, then Int Max BPF models Max BEDP;
conversely, if we split an edge of capacity ue into ue parallel edges, then Max BEDP
models Int Max BPF. Hence Int Max BPF can be no easier than Max BEDF, and it
could be harder, since splitting edges into parallel edges could lead to a super-poly-
nomial blowup in size. Lovász et al. [27] were the first to consider this problem. For
the Max BNDP, they established a relation analogous to Menger’s theorem when
B ≤ 4. For B ≥ 5, they gave upper and lower bounds for the gap between the max-
imum number of length-bounded node-disjoint st–paths and the minimum number
of edges in a cut. Exoo [12] studies some generalizations of these results to Max
BEDP.

Itai et al. [25] study the complexity of several variants of Max BEDP. They show
that the problem is NP-complete for B ≥ 5, which shows that Int Max BPF is also
NP Hard for B = 5. Itai et al. also show that the problem is polynomially solvable for
some of the variants for B ≤ 4. In particular, they devise a polynomial-time algorithm
for Max BNDP (resp. Max BEDP) when B ≤ 4 (resp. B ≤ 3) (see [16, Problem
ND41]). More complexity results on Max BEDP are in Guruswami et al. [20]. In [20]
it is shown that Max BEDP is Max SNP-hard, and that (unless P=NP) it is NP Hard
to approximate Max BEDP in the directed case to within a factor of m1/2−ε, and that
(unless NP=ZPP) it is NP Hard to approximate Max BEDP in the undirected case to
within a factor of m1/2−ε, for any ε > 0. The proofs use very large values of B, which
do not correspond well to the values of interest in practice.

In [5,6], Bley addresses approximation and computational issues for the node-dis-
joint and edge-disjoint hop-constrained path problems. In particular, he shows that
the problem of computing the maximum number of edge-disjoint paths between two
given nodes of length equal to 3 is polynomial. This result answers an open question
in [25]. He also shows that the problem is APX-complete when B ≥ 5.
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In [4], Ben-Ameur defines some classes of 2-connected graphs satisfying path (and
cycle)-length constraints. He introduces some parameters and establishes properties
and relationships between these graphs. Moreover, he investigates the hop-constrained
flow problem and gave lower bounds on the number of edges of these graphs. As a
consequence, he obtains some valid inequalities for the underlying survivable network
design problem.

A more general model which has been considered in the literature is when each
arc or edge of the graph has a length, and then one allows only paths whose total
length is at most some bound. Our problem is the special case where all lengths are
one. This general model was addressed by e.g., Fleischer and Skutella [13], Baier [2],
and Baier et al. [3]. In [13] a fully polynomial time approximation scheme (FPTAS)
is given for the continuous length-bound multi-commodity flow problem with non-
negative edge lengths. In [2] (see also [3]) Baier considers both the continuous and
integral versions of the multi-commodity length-bounded flow problem. For the first
version, he gives some structural properties of the optimal solutions and addresses
some complexity issues. In particular, he shows that determining (in an outer-planar
graph) whether there exists a maximum length-bounded flow between two nodes s
and t of a given value is NP-hard. (A graph is outer-planar if it consists of a cycle
with non-crossing chords). He also gives an approximation algorithm for solving the
maximum length-bounded single commodity flow problem.

For the integral version of the problem, Baier considers in particular the bounded-
length single commodity flow problem. He discusses the integrality gap of the inte-
ger formulation and its linear relaxation. He also gives some complexity results. In
particular, he shows that the problem is NP-hard in simple planar graphs and multi-
outer-planars with unit weights and capacities. (Note that the problem in this case is
equivalent to find a maximum number of edge-disjoint bounded st-paths.) However
for outer-planar simple graphs, it is shown that the problem in this case can be solved by
a quasi-polynomial algorithm. Baier [2] also discusses the minimum length-bounded
st-cut problem. Some properties of the integrality gap between an integer and a frac-
tional solution are given along with some approximation and complexity results. In
particular it is shown that determining whether there exists a fractional length-bounded
st-cut of given value is NP-hard even if the graph is outer-planar.

In [3], Baier et al. show that the minimum length-bounded cut problem is NP-hard
for B ≥ 4, and devise approximation algorithms. They consider the maximum length-
bounded flow problem and discuss the integrality gap of the linear programming
formulation. They also analyze the structure of the optimal solutions.

2.3 Some non-integral examples

We now give a family of counterexamples showing that Max BPF and Min BPC can
have optimal solutions with arbitrarily large denominators (a similar result is given by
Baier [2, Theorem 2.4]).

Consider the networks Nkp in Fig. 1, which are parametrized by integers 0 < p < k.
The capacities of the k heavy arcs are all one, the capacities of all other arcs are infin-
ity. Note that all infinite-capacity arcs occur as two arcs in series to discourage paths
that skip too many heavy arcs (using a heavy arc incurs only one arc of path length,
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ts

Fig. 1 Counterexample network N4,2 has B = 6

whereas skipping incurs two arcs). We choose B = 2k − p. This choice of B implies
that P(B) includes exactly the subset of s–t paths which contain at least p heavy arcs.
(A version of the network N3,2 was given by Abel et al. [1] to show that max path flow
problems do not in general have integral optimal solutions; N3,2 was given by Itai et
al. [25, Fig. 10] to show that Menger’s theorem does not hold for bounded-length path
problems, an early version of the problems that concern us here.)

Note that Nkp has
(k

p

)
paths containing exactly p heavy arcs. A fixed heavy arc

is contained in
(k−1

p−1

)
of these paths. Using these observations, it is easy to see that

one optimal solution to Max BPF for Nkp puts flow 1/
(k−1

p−1

)
on each of the

(k
p

)
paths

containing exactly p heavy arcs, for a total flow value of k/p. One way to see this
is to note that the unique min BPC puts a value of 1/p on each heavy arc, and zero
elsewhere (for a dual objective value of k/p), and the primal and dual solutions are
complementary slack. LP theory shows that Max BPF for Nkp always has an optimal
solution with at most k positive paths, so other optimal solutions exist. However, for
Nk,k−1 the given solution to Max BPF (value 1/(k − 1) on each of the k paths with
k − 1 heavy arcs) is unique, so both Max BPF and Min BPC can have fractional
solutions with arbitrarily large denominators.

Note that for all Nkp , the optimal objective values of Max∞PF and Min∞PC value
are∞, for all k and p. Thus this family of examples shows that the ratio between the
Max∞PF and Min∞PC objective value and the Max BPF and Min BPC objective
value can be arbitrarily large.

It is also easy to see that the optimal value of Int Max BPF is �k/p�, and for Int
Min BPC is k − p+ 1 for all Nkp. It is natural to wonder how large the ratio between
the optimal values of Int Max BPF and Max BPF, and Int Min BPC and Min BPC
can be, the so-called integrality gap.

For this class of examples, the integrality gap for Max BPF is k/p
�k/p� . This is maxi-

mized when k is odd and p = (k+ 1)/2, since the numerator is asymptotically 2, and
the denominator equals 1, for an asymptotic ratio of 2.

For this class of examples, the integrality gap for Min BPC is k−p+1
k/p . By calculus

this is maximized again when k is odd and p = (k+1)/2. In this case the numerator is
asymptotically k/2, and the denominator is asymptotically 2, for an asymptotic ratio
of k/4, or B/6 = �(B). Boyles and Exoo [7] appear to have been first to construct
examples with integrality gaps of �(B) for Min BPC, in fact for Min BEDP. Baier
[2, Lemma 2.22] (see also [3, Theorem 13]) constructed more complicated examples
(based on a construction in [20]) that yield integrality gaps also of size �(B).

We now develop an approximation algorithm for Int Min BPC and Int Max BPF with
a ratio of O(B) by applying the primal–dual framework [35, Chapters 8–10]. The algo-
rithm works by constructing a(n integer) feasible path flow x to the LP (Max BPF) and a
BPC C which satisfies the part of complementary slackness that says that e ∈ C implies
that

∑
P�e xP = ue (while ignoring the other parts of complementary slackness):
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Primal–Dual Algorithm for Int Min BPC and Int Max BPF

Set x ← 0, C ← ∅
While C is not a BPC

Find a path P of length ≤ B not cut by C
Increase xP until some arc e ∈ P satisfies

∑
Q�e xQ = ue

Set C ← C ∪ {e}
Return C

Theorem 2.1 This algorithm is a B-approximation algorithm for Int Min BPC and
Int Max BPF. Furthermore, the integrality gap between Int Min BPC and Min BPC
is �(B), and between Int Max BPF and Max BPF is also �(B), implying that this
approximation algorithm is best possible primal–dual approximation algorithm for
this formulation.

Proof Clearly this algorithm returns a feasible Int BPC C , and it runs in polynomial
time (each trip through the loop costs O(m) time to find if a violating P exists, and
we can make at most m trips through the loop since at least one arc is added to C each
time).

To analyze the performance of the algorithm, note that, because of partial comple-
mentary slackness,

∑

e∈C

ue =
∑

e∈C

∑

P�e

xP =
∑

P∈P(B)

|P ∩ C |xP ≤ B
∑

P∈P(B)

xP ,

since each P gets counted once for each e ∈ C on P , and |P ∩ C | ≤ |P| ≤ B.
Define Z to be the joint optimal value of (Max BPF) and (Min BPC). Then since the
incidence vector of C is feasible to (Min BPC) we get

Z ≤
∑

e∈C

ue ≤ B
∑

P∈P(B)

xP ≤ B · Z ,

proving that this algorithm has an approximation ratio of B. Note that the algorithm
also produces a feasible solution xP to Int Max BPF with an approximation ratio of
B, by the same proof.

As noted above, the integrality gap between Int Min BPC and Min BPC for Nkp

with B = 2k− p with k ≥ 1 odd and p = (k+1)/2 is �(B). Baier et al. [3, Theorem
12] (following an example of [20]) give a family of examples of Int Max BPF whose
integrality gaps with Max BPF is also �(B). As is well-known [35], approximation
ratios coming from the primal–dual algorithm can never be better than the integral-
ity gap. Since here we have families of examples with integrality gaps of �(B), this
algorithm is the best we can do without either relying on a tighter formulation of Int
Min BPC or Int Max BPF, or by using a different type of approximation algorithm.

�
As mentioned in Sect. 2.2, the approximation results of [20] for the Max BEDP

use impractically large values of B. The simple O(B) approximation algorithm here
is likely to be more useful in practice.
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Note that N3,2 has B = 4. The Int Max 4PF value of N3,2 is 1, but the Int Min 4PC
value is 2. This shows that the Max Flow/Min Cut result for B = 3 of Sect. 3.2 has
the largest value of B where this is still true. (This was essentially already pointed out
in [25, Fig. 10].)

Since the set of paths P(B) for the examples in this section is the same whether
the graphs are directed or undirected, and since the approximation algorithm works
the same for undirected graphs, all the results in this section apply equally well to
undirected graphs.

3 The complexity of Max BPF and Min BPC

3.1 The continuous versions are polynomial

We first consider the complexity of the continuous versions. If B is fixed (i.e., not part
of the input), then the cardinality of P(B) is O(nB), which is polynomial. Then Max
BPF and Min BPC are just polynomial-size linear programs, which can be solved in
polynomial time.

Suppose now that B is not fixed. The Separation Problem for Min BPC has a vector
ŷ as input, and asks for the shortest path in P(B) w.r.t. lengths ŷ. This length-restricted
shortest path problem can be solved in polynomial time via dynamic programming. By
the equivalence between Separation and Optimization for dual LPs [19], this shows
that Max BPF and Min BPC are again polynomial even when B is not fixed. This
shortest path of bounded length subproblem is solved as easily for undirected as for
directed graphs, hence the results here apply also to the undirected case.

When B is not fixed, Max BPF and Min BPC are not compact LPs, in that Max BPF
can have an exponential number of variables, and Min BPC can have an exponential
number of constraints. Adapting an idea of Martin et al. [11] we can get equivalent
compact LPs for both problems containing only polynomial numbers of variables and
constraints.

Define an expanded network N ′ containing B+1 copies of the nodes of N denoted
N 0, N 1, …, N B . The copy of i ∈ N in N k is called i k . For each arc i → j of N and
each 0 ≤ k < B make an arc i k → j k+1 with (variable) length yi j . For each i ∈ N
and each 0 ≤ k < B make an arc i k → i k+1 with (fixed, constant) length 0. Then there
is an obvious 1–1 mapping from s–t paths P ∈ P(B) in N , and paths from s0 to t B in
N ′. Therefore y is a feasible solution to Min BPC iff the minimum value of potential
difference πt B−πs0 in N ′ is at least 1. Thus we can write Min BPC as the compact LP:

(Min BPC) min
∑

e

ue ye

s.t. πi k − π j k+1 ≥ yi j for all arcs i → j of N and all k

πi k − πi k+1 ≥ 0 for all nodes i ∈ N and all k

πs0 − πt B ≥ 1

ye ≥ 0 for all e ∈ E .
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The dual of this LP is a compact formulation of Max BPF. It has an arc flow variable
zk

i j on each arc i k → j k+1 of N ′, and a constraint on the sum of the zk
i j over k that

ensures that any decomposition of arc flow z into a flow on paths in P(B) must satisfy
the capacity constraint:

(Max BPF) max
∑

j∈N :s→ j∈E

z0
s j

s.t.
∑

i∈N :i→l∈E

zk
il =

∑

j∈N :l→ j∈E
zk+1

l j for all nodes lk �= s0, t B in N ′

B−1∑

k=0

zk
i j ≤ ui j for all i → j ∈ E

zk
i j ≥ 0 k = 0, . . . , B, i → j ∈ E .

Here s j, il, and l j represent arcs s → j, i → l, and l → j in E , respectively. Again
the same idea works as well for undirected as for directed networks. These LPs could
now be solved by any LP solver without having to use the Ellipsoid Algorithm.

Theorem 3.1 Max BPF and Min BPC have compact linear programming formula-
tions, and so can be solved in polynomial time, even when B is part of the input.

3.2 Complexity of Int Max BPF and Int Min BPC

We now switch to considering the complexity of the integral versions of the problems.
As mentioned in Sect. 2.2 Itai et al. [25] showed that Int Max BPF is Strongly NP
Hard even for B ≥ 5, and Baier et al. [3, Theorem 4] showed that Int Min BPC is
Strongly NP Hard even for B ≥ 4. Alternate proofs appear in [31].

We now consider small values of B. Although Int Max BPF was already shown to
be polynomial for B ≤ 3 by [25] using essentially the same construction we use here,
we re-prove it here in a way that shows the same for Int Min BPC.

Theorem 3.2 Int Max BPF and Int Min BPC can be solved in polynomial time when
B ≤ 3 for both directed and undirected graphs.

Proof Given such an undirected instance N = (N , E) of Int Max 3PF or Int Min 3PC,
we construct a directed instance Ñ = (Ñ , Ẽ) of Max∞PF/Min∞PC as follows (see
Fig. 2 for an example): First note that any s to t edges are essentially independent of
the rest of the problem, and so can be dealt with separately, so we can assume that no
s — t edges exist. Second, any node i which does not have an edge s — i or i — t
cannot belong to any path of at most 3 edges and so can be deleted. Thus if we define
S = {i ∈ N | s — i ∈ E} and T = { j ∈ N | j — t ∈ E}, then S ∪ T = N .

Let T ′ be a disjoint copy of T (where we denote the copy of j ∈ T that is in T ′
by j ′), and set Ñ = {s} ∪ {t} ∪ S ∪ T ′. For each edge s — i ∈ E with capacity usi

make arc s → i ∈ Ẽ also with capacity usi , for each j — t ∈ E make j ′ → t ∈ Ẽ
with capacity u jt , and for each i — j ∈ E with i, j /∈ {s, t}, if i ∈ S and j ∈ T
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Max Flow and Min Cut with bounded-length paths 281

Fig. 2 Example of the construction of Theorem 3.2, with N on the left with ue on each edge e, Ñ on the
right with ui j , x∗i j on each arc i → j , where x∗ is an ordinary max flow. The dashed edges of N are a Min
3PC of capacity 5 (note that they do not cut the heavy path of four arcs), which corresponds to the dashed
arcs of the ordinary min cut induced by the three bold nodes of Ñ

make arc i → j ′ with capacity ui j (thus if i, j ∈ S ∩ T and i — j ∈ E , then
i → j ′, j → i ′ ∈ Ẽ). For each i ∈ S ∩ T make an arc i → i ′ ∈ Ẽ with capacity
infinity. Note that there is a 1–1 correspondence between the arcs from S to T ′ in Ñ
and the paths of length at most 3 in N . That is, path s — i — j — t in N corresponds
to arc i → j ′, and path s — i — t corresponds to arc i → i ′.

We claim that there is a correspondence between feasible 3PFs x in N and feasible
flows x̃ in Ñ that preserves objective value, and a correspondence between minimal
feasible 3PCs in N and minimal finite capacity cuts in Ñ that also preserves objective
value.

Suppose that x is a feasible 3PF in N . If we have paths P1 = s — i — j — t and
P2 = s — j — i — t with xP1 > 0 and xP2 > 0, then we can modify x as follows:
Let δ = min(xP1 , xP2), and define P3 = s — i — t and P4 = s — j — t . Now put
xP1 ← xP1 − δ, xP2 ← xP2 − δ, xP3 ← xP3 + δ, and xP4 ← xP4 + δ. This new x
is still feasible, and has the same objective value, and one of xP1 or xP2 has become
zero. So for each i — j ∈ E with i, j ∈ S ∩ T , we can assume that at least one of
xsi j t and xs ji t is zero.

For i → j ′ ∈ Ẽ corresponding to path P , define x̃i j ′ to be xP . For i → j equal to
s → j or i → t in Ẽ , define xi j =∑{xP | i — j is an edge of P}. By the previous
paragraph this is a feasible flow in Ñ with the same objective value.

Conversely, given flow x̃ in Ñ , for i — j ∈ E with i, j ∈ S ∩ T we can use the
same trick to modify x̃ to ensure that at most one of x̃i j ′ and x̃ j i ′ is positive. Then put
xP equal to x̃i j ′ for the arc i → j ′ corresponding to P . This flow x is feasible, and
has the same value as x̃ .

Suppose that D is a minimal feasible 3PC in N . If s — i or j — t is in D, add arc
s → i or j → t to D̃. We say that i — j is gone if either i — j ∈ D or i — j /∈ E .
If i — j ∈ D with i, j /∈ {s, t}, then at least one of s — i, i — t must be gone, and
at least one of s — j, j — t must be gone. If s — i and s — j were both gone, then
we could drop i — j from D, contradicting minimality of D; similarly, we could not
have both i — t and j — t gone. Thus either the pair {s — i, j — t} is gone, or the
pair {s — j, i — t} is gone, but not both. If both s — i and j — t are gone, then add
j → i ′ to D̃, else add i → j ′ to D̃. Then D̃ has the same capacity as D, and it is easy
to check that it is a minimal finite capacity cut in Ñ .
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Fig. 3 Example of the construction of Corollary 3.3, with the instance of MHC on the left, and the con-
structed instance of Min 3PC on the right. If w1 < w2 + w3, then the optimal objective value of MHC
is w1, coming from the optimal partition S = {σ, a, b, c}, T = {τ }. The nodes of S are bolded on the
right, and the dashed edges are the edges of C . Edge weights are shown only for the s — ei and e′i — t
in C to reduce clutter. Notice that, e.g., t — e′2 /∈ C because every possible path t — e′2 — v — s with
v ∈ e2 already has v — s ∈ C . On the other hand, e.g., s — e1 and s — e′1 must both be in C to cut
the paths s — e1 — a — t and t — e′1 — τ — s, respectively. The optimal objective value of 3PC is
5M + (M + w1), where the 5M term comes from the five s — v and v — t pairs, and the M + w1 term
comes from the s — ei and e′i — t in C

Conversely, suppose that D̃ is a minimal finite capacity cut in Ñ , so that D̃ does
not contain any i → i ′ arc. This means that for each i ∈ N , at least one of s → i and
i ′ → t is gone. By minimality of D̃, i → j ′ ∈ D̃ only if neither of s → i and j ′ → t
is gone. This implies that if i → j ′ ∈ D̃, then j → i ′ /∈ D̃. Thus we can define D to
contain each s — i with s → i ∈ D̃, each j — t with j ′ → t ∈ D̃, and each i — j
such that one of i → j ′ or j ′ → i is in D̃, and D will be a minimal 3PC in N with
the same capacity as D̃.

This proof works even more simply in the case where N is directed. This shows that
we can compute Int Max 3PFs and Int Max 3PCs using just one call to Max Flow/Min
Cut, and that the Max Flow/Min Cut Theorem holds between Int Max 3PF and Int
Max 3PC. �

This proof gives a polynomial algorithm for what looks at first like an unrelated
problem: Min Hypergraph Cut (MHC). We are given a hypergraph H on vertex set
V with two distinguished vertices σ and τ , and with edge set E (i.e., each e ∈ E is a
subset of V ). Each edge e ∈ E has weight we ≥ 0. The question is to find a partition
(cut) V = S ∪ T of V with σ ∈ S, τ ∈ T , such that its weight w(S, T ) = ∑{we |
e ∩ S �= ∅, e ∩ T �= ∅} is minimum.

Corollary 3.3 Min Hypergraph Cut can be solved in polynomial time.

Proof To reduce an instance of MHC to an instance of Int Min 3PC, make two dis-
joint copies E and E ′ of E , and put N = {s} ∪ {t} ∪ V ∪ E ∪ E ′ (see Fig. 3). Choose
M = 1 + 2

∑
e∈E we. Connect s to τ with an edge of weight∞, and to every other

v ∈ V by an edge of weight M < ∞, and to every e ∈ E by an edge of weight we.
Similarly connect t to σ with an edge of weight∞, and to every other v ∈ V by an
edge of weight M < ∞, and to every e′ ∈ E ′ by an edge of weight we. For each
e ∈ E , connect e to each v ∈ V such that v ∈ e with an edge of weight∞, and for
each e′ ∈ E ′, connect e′ to each v ∈ V such that v ∈ e with an edge of weight∞.
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Now solve Int Min 3PC on this graph, getting a cut C . Clearly C must include
exactly one of the edges s — v and v — t for each v ∈ V . Thus if we define
S = {v ∈ V | s — v ∈ C} and T = {v ∈ V | v — t ∈ C}, then S and T partition
V , and we have σ ∈ S and τ ∈ T , so (S, T ) is a hypergraph cut. Conversely, any
hypergraph cut (S, T ) yields such a partition, and the contribution of these edges to
w(C) is M |V |, independent of (S, T ).

If e ∈ E has e ⊆ S then C must contain s — e (to cut paths s — e — v — t
with v ∈ e) but not e′ — t (since all paths t — e′ — v — s with v ∈ e already
have v — s ∈ C); similarly, if e ∈ E has e ⊆ T then C must contain e′ — t but not
s — e; otherwise (i.e., e contributes we to w(S, T )) then C must contain both s — e
and e′ — t . Hence if e contributes 0 to w(S, T ) then it contributes we to w(C), and
if e contributes we to w(S, T ) then it contributes 2we to w(C), so the (S, T ) induced
from C must solve Min Hypergraph Cut. �
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