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Abstract

We consider the Proactive Countermeasure Selection Problem (PCSP) for complex
Information and Communication Technology (ICT) systems. Given 1) the Risk As-
sessment Graphs (RAGs), a set of digraphs, in which a node is either an access point
which is the start point of an attacker, or an asset-vulnerability node to be secured;
2) a positive security threshold for each access point and each asset-vulnerability
node; and 3) a set of countermeasures to deploy on the asset-vulnerability nodes,
the PCSP consists in selecting the countermeasures placement with minimal cost,
guaranteeing the security of all the most likely paths- from attackers point of view-
between each access point and each asset-vulnerability node.
We propose a bilevel programming model for the PCSP. We present two single-

level reformulations of the bilevel program. The first formulation is a compact
one, based on primal-dual optimality conditions. The second formulation is an
extended one, employing an exponential number of path constraints. We propose
a branch-and-cut algorithm to solve this formulation to optimality. Several series
of experiments are conducted on random instances showing the efficiency of the
branch-and-cut algorithm to solve the extended formulation. In addition, prelimi-
nary computational comparisons between the two formulations are discussed.

Keywords: Bilevel programming, Risk Assessment Graphs, Countermeasure
selection, Branch-and-cut.

1 Introduction

Today ICT Systems are becoming more and more complex. They include a
large number of heterogeneous elements connected by non-linear interactions,
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and evolve frequently over the time. Such systems are subject to intruder
threats, and their risk management is of major concern. Generally, there are
two main steps of risk management [8]: the risk assessment and the risk treat-
ment. Recently in [1], we have proposed a new risk assessment framework to
supervise the state of complex ICT systems. We have introduced the concept
of the Risk Assessment Graphs (RAGs) and a quantitative risk evaluation
approach. The purpose of this paper concerns the risk treatment process and
is strongly related to our risk assessment framework developed in [1].

The RAGs capture the security information in terms of vulnerabilities and
topological information. A node in the RAG is either an access point from
which an intruder starts an attack, or an asset-vulnerability node to be se-
cured. An arc between two nodes exists if there is a topological access between
them allowing the exploitation of the target node. Each arc is weighted by
the arc propagated potentiality, which is a scalar between 0 and 1 measuring
how easy it is for an attacker to exploit the target node of an arc from the
source one. These graphs are adaptive to the system change over the time.

In [1], we have proposed a quantitative risk evaluation approach. Our
basic security metric is the path propagated risk from an access point u to an
asset-vulnerability node w, at a time slot t. This is the maximum product
of the arc propagated potentialities, over all the u − w paths. The resulting
path is the path of maximum propagated risk, called the most likely path. By
labelling the arcs of the RAGs with the log of the inverse of the arc propagated
potentiality (i.e, the arc propagation difficulty of an attacker), the u−w most
likely path at time t is nothing but the path minimizing the sum of the arc
propagation difficulties (the u − w shortest path). Finding the u − w most
likely path at each time slot t is crucial. Indeed, when such path is secured
(i.e, its shortest path value is greater then a given path propagation difficulty

threshold), all the u−w paths are so, and the system is said to be secured at
time t.

The risk treatment is the final step of the risk management process. It
uses the output of the risk assessment, and should give efficient protection
decisions. To this end, a set of countermeasures must best be utilized to reduce
the risk. However, the deployment of countermeasures might be expensive. In
this paper, we aim at selecting the location of countermeasures guaranteeing
the security of all the most likely paths at each time slot, while minimizing the
total cost of deployment–OPerational EXpenditure (OPEX) cost. We simulate
the effect of placing a countermeasure on a node by increasing the ongoing
arcs the propagation difficulty of this node with the countermeasure effect.
The protection strategy we consider is proactive, i.e, the countermeasures
placement is selected at the initial state of the system to be fixed over the
time, and this is based on the pre-constructed RAGs.

Our problem can be seen as a ”game” between a defender and several
attackers. Attackers try to find the most likely paths. But they are forced
to act according a certain hierarchy. In fact, the defender who will select the
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countermeasures placement in order to make all the most likely paths secured.
To get the placement decision of minimal cost, the defender will anticipate the
reactions of the attackers to its decisions. From a mathematical programming
point of view, the problem is a bilevel programming one [5]. That is an opti-
mization problem (the leader) having other parametric optimization problems
(the followers) as part of its constraints.

Bilevel programming is one of the most popular new topics to solve several
security problems. In [9] the authors study the electric grid security under
disruptive threat problem. In [10] a bilevel programming model for transmis-
sion network expansion planning with security constraints is proposed. The
most related works to ours are Shortest Path Network Interdiction Problems

(SPNIPs) [7], [2], [3], and [4], which consist in interdicting the arcs in order
to maximize the shortest s-t path length.

We refer to our problem as the Proactive Countermeasures Selection Prob-
lem (PCSP). We formulate the PCSP as a bilevel program in which the leader
will play the role of the defender and each follower will play the role of an
attacker. We propose two single-level reformulations of the model. The first
formulation is based on primal-dual optimality conditions. This gives a com-
pact Integer Linear Programming (ILP) formulation that is directly solved
using the ILP solver CPLEX [6]. The second one enumerates all possible
paths between each access point and each asset-vulnerability node in order to
ensure the safety of all of them. This gives an extended formulation with an
exponential number of constraints, and will be solved to optimality using a
branch-and-cut algorithm.

The rest of the paper is organized as follows. In Section 2, we present the
problem and study its complexity. In Section 3, we formulate the PCSP as a
bilevel program. In Section 4, we give the compact and the extended single-
level reformulations of the bilevel program. Numerical results are discussed in
Section 5, and concluding remarks are given in Section 6.

2 The PCSP Statement and Complexity

In this section, we state the PCSP and study its complexity. We consider the
RAGs model as introduced in [1]. That consists of a set of directed graphs
(Gt = (V,At))t∈I , where I = [|1, . . . , T |] is a discrete time interval. The set
of nodes V is partitioned into two specified subsets U and W . A node in
U represents an attacker access point, and a node in W represents an asset-
vulnerability pair. An arc from w1 = (a1, v1) to w2 = (a2, v2) of W represents
the possibility of exploiting the vulnerability v2 of the asset a2 after exploiting
the vulnerability v1 of the asset a2. An arc from u to w exists if the exploitation
of w from the access point u is possible. Note that the subgraph induced by
the nodes U is a stable set. With each arc ij ∈ At is associated a weight wt

ij

representing the arc propagation difficulty.

We have a set of countermeasures K to deploy in W . The placement of a
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countermeasure k ∈ K on a node w ∈W has a cost ck, and yields an increase
of the weight of the ongoing arcs of w by an effect αk ∈ R

+. For each u ∈ U
and w ∈W , we have a path propagation difficulty threshold du,w ∈ R

+ on the
length of the u − w shortest path to respect. The goal of the PCSP consists
in finding a placement of the countermeasures of K on W in such a way that
the cost of deployment is minimum and the shortest path from each u ∈ U to
each w ∈W in Gt is at least du,w, for all t ∈ I. We have the following result.

Theorem 2.1 The PCSP is NP-Complete.

Proof. We will use a reduction from the Minimum Vertex Blocker to Short
Paths Problem (MVBP). Given a directed graph G = (V,A), two nodes s, t ∈
V , the length lij ∈ R

+ of each arc ij ∈ A, and an integer d, the MVBP
consists in finding a subset V ′ ⊆ V of minimum cardinality such that the
shortest path from s to t in G\V ′ is at least d. This problem is NP-Complete
[2]. We construct an instance of the PCSP as follows. Let T = 1; there is
only one RAG G1. Let G1 = G, U = {s} and t ∈ W = V \ {s}. We choose
|K| = 1; there is only one countermeasure with c1 = 1 and e1 = +∞. We
set ds,t = d, and ds,w = 0 ∀w ∈ W \ {t}. Remark that the placement of a
countermeasure of effect e1 on a node w is the same as deleting w, since the
effect of the ongoing arcs of w becomes infinite. On the other hand, |V ′| is
equal to the cost of placement of c1, since we have a countermeasure with a
unit cost. For this particular instance of PCSP, we have exactly the MVBP
problem. �

Our work is a generalization of SNIPs [7], [2], [3], and [4], where instead of
removing arcs, the leader can pay a given price to increase the length of all the
ongoing arcs of a given node. In addition, we consider all the shortest paths
between each access point and each asset-vulnerability node in the RAGs.

3 The Bi-level Model

In this section, we formulate the PCSP as a bilevel problem in which the
leader controls the countermeasure deployment, and forces the shortest paths
between each access point u ∈ U , and each asset-vulnerability node w ∈ W ,
at each t ∈ I, to be at least du,w. On the other hand, several followers will
play the role of the attackers. For each t ∈ I, u ∈ U , and w ∈W each follower
will compute the u− w shortest paths after the leader acts (countermeasures
placement). That is the tuw-follower problem.

3.1 tuw-Lower Level Problem Formulation

Let xkw, k ∈ K,w ∈W be the binary variable used to indicate if the counter-
measure k is deployed on the node w or not. We denote by ltuw(x) the length
of the shortest path, at time t ∈ I, from u to w, after the leader acts. Each
tuw-follower problem aims at finding the value ltuw(x).
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The weight of an arc ij ∈ At after applying a countermeasure k in the
node j is wt

ij(x) = wt
ij + αkxkj . Now, let z

uw,t
ij ∀t ∈ Iu ∈ U,w ∈W, ij ∈ At be

the binary variable indicating whether or not an arc ij belongs to the u − w
shortest path at time t. Hence, we have ltuw(x) =

∑
ij∈At

wt
ij(x)z

uw,t
ij

For all t ∈ I, u ∈ U,w ∈W , the tuw-follower formulation is then equivalent
to:

(tuw-F )

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Min ltuw(x) =
∑
ij∈At

(wt
ij +

∑
k∈K

αkxkj)z
uw,t
ij

∑
j∈Γ+(i)

zuw,t
ij −

∑
j∈Γ−(i)

zuw,t
ji =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

1 if i = u

0 if i /∈ {u, w}

−1 if i = w

∀i ∈ V,

zuw,t
ij ≥ 0 ∀ij ∈ At.

The LP dual of tuw−F ∀t ∈ I, u ∈ U,w ∈W is :

(tuw-FD)

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

Max λuw,t
w − λuw,t

u

λuw,t
j − λuw,t

i ≤ wt
ij +

∑
k∈K

αkxkj ∀ij ∈ At,

λuw,t
i free ∀i ∈ V.

3.2 The Bi-level Formulation

The leader controls the countermeasure deployment respecting the security
constraints: given the most likely paths thresholds du,w for each u ∈ U and
w ∈ W , the leader forces the shortest paths returned by the tuw-followers to
be at least du,w, at each time slot t ∈ I. The objective function is to minimize
the total cost of the countermeasure deployment. The PCSP is then equivalent
to the following bilevel program:
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Min
∑
w∈W

∑
k∈K

ckxkw

∑
ij∈At

(wt
ij +

∑
k∈K

αkxkj)z
uw,t
ij ≥ du,w, ∀t ∈ I, u ∈ U,w ∈W,

∀tuw − F

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Min
∑

ij∈At

(wt
ij +

∑
k∈K

αkxkj)z
uw,t
ij ,

∑
j∈Γ+(i)

zuw,t
ij −

∑
j∈Γ−(i)

zuw,t
ji =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

1 if i = u

0 if i /∈ {u, w}

−1 if i = w

∀i ∈ V,

zuw,t
ij ∈ {0, 1} ∀ij ∈ At.

xkw ∈ {0, 1} ∀k ∈ K,w ∈ W.

4 Single-Level Reformulations

Here, we present two different single-level reformulations of our PCSP bi-
level model. First, primal-dual optimality conditions are used to obtain a
single level compact formulation of the problem [5]. Second, we present a non
compact formulation, controlling all the possible paths between each u ∈ U
and w ∈ W .

4.1 Compact Single-Level Formulation

According to the weak and strong duality theorems, every LP problem can
be replaced with the primal feasibility constraints, the dual feasibility con-
straints, and the weak duality equation. Hence, by replacing the follower with
its primal-dual optimality conditions, we obtain a single level formulation of
the bilevel PCSP model described in Section 3. Note that the primal-dual
transformation holds because the linear relaxation of the shortest path prob-
lem is integral. To linearize the term xjkz

uw,t
ij , we introduce a binary vari-

able yuw,t
k,ij that takes the value 1 if xkj and zuw,t

ij are both equal to 1, and
0 otherwise. These operations yield the following compact ILP formulation
∀t ∈ I, u ∈ U,w ∈W :
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PCSP1: Min
∑
w∈W

∑
k∈K

ckxkw

∑
ij∈At

(wt
ijz

uw,t
ij +

∑
k∈K

αky
uw,t
k,ij ) ≥ du,w,

∑
j∈Γ+(i)

zuw,t
ij −

∑
j∈Γ−(i)

zuw,t
ji =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

1 if i = u

0 if i /∈ {u, w}

−1 if i = w

∀i ∈ V,

λuw,t
j − λuw,t

i ≤ wt
ij +

∑
k∈K

αkxkj ∀ij ∈ At,

∑
ij∈At

(wt
ijz

uw,t
ij +

∑
k∈K

αky
uw,t
k,ij ) = λuw,t

w − λuw,t
u ,

yuw,t
k,ij ≤ 1/2(xkj + zuw,t

ij ) ∀ij ∈ At,

yuw,t
k,ij ≥ xk,j + zuw,t

ji − 1 ∀ij ∈ At,

xkw, z
uw,t
ij , yuw,t

k,ij ∈ {0, 1} ∀ij ∈ At, k ∈ K.

4.2 Extended Single-Level Formulation

A second single-level reformulation of the bilevel model consists in controlling
all the paths from each u ∈ U to each w ∈ W , for all t ∈ I, to be greater or
equal than du,w. In fact, if all the paths are at least of length du,w the shortest
one is so, and vice versa. Let πt

u,w be the set of all paths between u and w
at time t. The following extended ILP formulation is equivalent to the PCSP
bilevel model:

PCSP2: Min
∑
w∈W

∑
k∈K

ckxkw

∑
ij∈π

∑
k∈K

αkxkj ≥ du,w −
∑
ij∈π

wt
ij ∀t ∈ I, u ∈ U,w ∈ W,π ∈ πt

u,w (1)

xkw ∈ {0, 1} ∀w ∈W, k ∈ K.

The number of constraints (1) could be exponential in O(n), we use a
branch-and-cut algorithm to solve the problem to optimality. The separation
problem corresponds to a shortest path problem: for a given t ∈ I if the
shortest path between an access point u and an asset-vulnerability node w is
greater than du,w, it is so for all u− w paths.

5 Experimental Results

In this section, numerical results are discussed for a set of instances randomly
generated.
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5.1 Instances Description and Implementation Environment

We set I = [|1, . . . , 12|] and |U | = 1
2
|W |. For each time slot in I, two specific

subsets of arcs are randomly generated: the arcs induced by the nodes of
W , denoted by At(W ), and the arcs connecting the nodes of U with those
of W , denoted by At(U,W ). The sub-graph induced by the nodes of W is
an Erdös-Renyi random graph [11] of parameters W and p = 0.5. This is
generated by randomly connecting |W | nodes. Each arc in At(W ) is included
with probability 0.5 independent from every other arc.

On the other hand, the arcs At(U,W ) are constructed as follows: Let W1

be the subset ofW whose out degree is greater than or equal to those inW\W1

and such that |W1| = 1/2|W | = |U |. We randomly connect each node in U
to exactly one node in W1. The weights of the arcs are randomly generated.
The thresholds vary in [|1, 10|]. Finally, three countermeasures available for
each node in W are used and described in Table 1.

We implement our formulations with the ILP solver CPLEX 12.6. We
use Python 2.7 as programming language and Networkx as graph library. In
the following we show, for PCSP2, the variation of the CPU time and the
objective value with the number of the nodes. Further preliminary results are
also provided for PCSP1.

Countermeasure effect cost

c1 10 100

c2 5 10

c3 1 1

Table 1
Countermeasures

5.2 PCSP2 Numerical Results

In Figure 1(a), we vary the number of the nodes of the RAGs |V | from 10
to 240. The execution time is short from 10 to 100, relatively short between
100 and 150 nodes, and becomes critical from 150 nodes onwards. A future
polyhedral analysis could potentially improve the CPU time for these critical
instances, by identifying a set of efficient valid inequalities of the polytope
PCSP2.

In Figure 1(b), we observe a non monotone cost variation in function of the
number of the nodes. This is explained by the fluctuation of the risk from an
instance to another, independently of its size. In fact, an instance of a big size
may have a lower risk than another one with a smaller size. This generates a
smaller cost of countermeasure deployment for the bigger instance. In Figure
1(b), this can be seen with the instances |V | = 110 and |V | = 120.
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Fig. 1. Computational Results

5.3 PCSP1 and PCSP2 Preliminary Comparison

In Table 2, we present some results of PCSP1 compared to those obtained
by solving PCSP2. We refer to the objective value by OPT , to the CPU
time by CPU , and to the preprocessing time by PP . First, we notice the
same values of objective functions. However, these preliminary results show
that, even with small instances, the execution time of solving PCSP2 with
the branch-and-cut algorithm is less than the one of solving the PCSP1 using
CPLEX. Furthermore, PCSP1 preprocessing time is much larger than the one
of the PCSP2. Indeed, it uses six different types of constraints, and contains a
large number of variables (i.e, at most |W |[(|T ||U |max

t
{|At|}(|K|+1))+ |K|])

compared to PCSP2 (i.e, |K||W |).

|V |
PCSP1 PCSP2

OPT PP (s) CPU(s) OPT PP (s) CPU(s)

12 1360 1920 13.16 1360 180 0.15

13 2160 11400 17.91 2160 320 0.17

15 4160 19703 29.39 4160 382 0.2

22 8324 40319 116.24 8324 514 0.6

Table 2
PCSP1 and PCSP2 Comparison

6 Conclusion and Ongoing Work

In this paper, we considered a bilevel model for the Proactive Countermeasure
Selection Problem (PCSP), in complex ICT systems. We proposed two single-
level reformulations of the model. The first one, PCSP1, was compact and
based on primal-dual optimality conditions. The second formulation, PCSP2,
was an extended one and based on listing all possible paths between each
access point and each asset-vulnerability node in the RAGs. A branch-and-
cut algorithm was used to solve the extended formulation. We conducted
computational results for PCSP2 with a set of random instances. Numerical
results showed that PCSP2 is better than PCSP1.
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This paper gave preliminary results on the PCSP. Polyhedral analysis of
PCSP2 is in progress in order to strengthen the linear relaxation. Another
interesting direction consists in the use of robust optimization to investigate
the PCSP with uncertain parameters such as the accessibilities between the
assets.
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