IFSA-EUSFLAT 2009

A link between the 2-additive Choquet Integral and Belief functions

Brice Mayag'~

Michel Grabisch!

Christophe Labreuche?

1. University of Paris I, Centre d’Economie de la Sorbonne
106-112 Boulevard de 1'Hopital, 75013 Paris, France
2. Thales Research & Technology
Campus de Polytechnique, 1 avenue Augustin Fresnel
91767 Palaiseau Cedex- France
{brice.mayag, christophe.labreuche }@thalesgroup.com, michel.grabisch@univ-paris1.fr

Abstract— In the context of decision under uncertainty, we
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1 Introduction

Decision under uncertainty is a part of decision mak-
ing where each act has several possible consequences,
depending on the state of nature whose probability of
occurrence is unknown. As shown by the well-known
Ellsberg’s paradox [1, 2], the use of the expected util-
ity model [3] in decision under uncertainty is limited.
Therefore some non-additive models like Choquet ex-
pected utility [4] have been proposed in order to over-
come the limitations of the expected utility model.

The Choquet integral is defined w.r.t. a capacity (or
non-additive monotonic measure, or fuzzy measure),
and can be thought of as a generalization of the expected
value, the capacity playing the role of a probability mea-
sure. In this paper we focus on the 2-additive Choquet
integral [5, 6], a particular Choquet integral where inter-
action between two states of nature can be represented,
but not more complex interaction. This model is in prac-
tice already sufficiently flexible. In many situations, it
is important for the Decision-Maker (DM) to construct a
preference relation over the set of all acts X. Because it is
not an easy task (the cardinality of X may be very large),
we ask him to give, using pairwise comparisons, an or-
dinal information (a preferential information containing
only a strict preference and an indifference relations) on
a particular reference subset B C X. The set B we use is
the set of binary acts or binary actions. A binary action
is a fictitious act which takes only two values denoted
1 and 0 belonging to the set of consequences, such that
1 is strictly preferred to 0. We present necessary and
sufficient conditions on the ordinal information for the
existence of a 2-additive capacity such that the Choquet
integral w.r.t. this capacity represents the preference of
the decision maker. We introduce the new fundamental
property MOP], a kind of monotonicity coming from the
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definition of a 2-additive capacity, in order to have this
characterization. We found through our MOPI property
the following link between the 2-additive Choquet inte-
gral and belief functions (Shafer [7]): Any ordinal infor-
mation representable by a belief function is representable by a
Choquet integral w.r.t. a 2-additive capacity.

Because a belief function is a capacity, we show an-
other characterization of the representation of any ordi-
nal information by a belief function. The new funda-
mental property defined in this case is called the 2-MOPI
property. This property and the MOPI property in the
previous paragraph are related by the following state-
ment: if the 2-MOPI property is satisfied then the MOPI
property is satisfied.

The article is organized as follows. The next section
presents the basic concepts we need. Section 3 concerns
a representation of ordinal information by the 2-additive
Choquet integral. In the last section, after some results
on the case of the k-monotone functions, we study the
representation of an ordinal information by a belief func-
tion.

2 Preliminaries

Let us denote by N = {1,...,n} the set of n states of na-
ture and by 2% the set of all subsets of N. The set of pos-
sible consequences (also called “outcomes”) is denoted
by C. An act z is identified to an element of X = C"
with x = (z, ..., z,,). We introduce the following conve-
nient notation: for two acts x,y € X and asubset A C N,
the compound act z = (z4,yn—4) is defined by z; := x;
if i € A, and z; := y; otherwise. For all 7,5 in N, the
element ¢ V j denotes one of the elements 1, j.

We want to construct a preference relation over X, but
this is not easy because X may contain infinitely many
acts. In practice [8] one can only ask to the DM pairwise
comparisons of acts on a finite subset X’ of X. Hence
we get a preference relation /7y on X’. The question
is then: how to construct ~x from = x.? To this end,
people usually suppose that 7 x is representable by an
overall utility function:

v Zx ye FU() =2 F(U®))

~

1)

where U(z) = (u(z1),...,u(z,)), v : C — Ris called
a utility function, and I’ : R"” — R is an aggregation
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function. Usually, we consider a family of aggregation
functions characterized by a parameter vector 0 (e.g., a
probability distribution over the states of nature). The
parameter vector ¢ can be deduced from the knowledge
of Zx/, that is, we determine the possible values of ¢
for which (1) is fulfilled over X’. We study the case
where F' is the Choquet integral, the parameters are the
2-additive capacity and X’ is the set of binary actions.
The aim of this paper is to give necessary and suffi-
cient conditions on J x+ to be represented by a 2-additive
Choquet integral. The model obtained in X’ will be au-
tomatically extended to X.

2.1 The 2-additive Choquet Integral

The 2-additive Choquet integral [6] is a particular case
of the Choquet integral [9, 10]. This integral generalizes
the arithmetic mean and takes into account interactions
between the states of nature. A 2-additive Choquet inte-
gral is based on a 2-additive capacity defined below and
its Mobius transform [11, 12]:

Definition 2.1.

1. A capacity on N is a set function y : 2V —
that:

(@) p(0) =0
(b) u(N) =1

(c) VA,B € 2V,
(monotonicity).

[0, 1] such

[A € B = uA) < w(B)

2. The Mobius transform of a capacity p on N is a func-
tion m : 2V — R defined by

m(T) = > (=1)"VKIu(K),vT € 2N

KCT

@

When m is given, it is possible to recover the origi-
nal x by the following expression:

>

KCT

w(T) = m(K), VT € 2 3)

Definition 2.2. A capacity p on N is said to be 2-additive
if

e For all subset T of N such that |T'| > 2, m(T) = 0;

e There exists a subset B of N such that |B| = 2 and
m(B) # 0.

Notations We simplify our notations by using for a
capacity p and its Mobius transform m: p; = p({i}),
pig = p({i,7}), mi = m({i}), mi; := m({i,j}), for all
i,j € N, i # j. Whenever we use ¢ and j together, it
always means that they are different.

The following important Lemma shows that a 2-
additive capacity is entirely determined by the value of
the capacity on the singletons {i} and pairs {i, j} of 2VV:

Lemma 1.
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1. Let pu be a 2-additive capacity on N. We have

> -

{ig}CK

(1K1-2) Y mi, VK C N, |K| > 2.
ieK

(4)

2. If the coefficients p; and p;; are given for all i,j € N,
then the necessary and sufficient conditions that y is a
2-additive capacity are:

Do omig— (=2 pi=1 (5)
{i,j}CN iEN
pi>0,Vie N (6)
> (win — i) = (JA| = 2)puk, VA C N, |A] > 2,Vk € A.
i€ A\{k}
@)
Proof. See [6] O

For an act « := (21, ...,x,) € X, the expression of the
Choquet integral w.r.t a capacity p is given by:

Cul(u(@y),y ooy u(zn))) := u( +Z
w(@r(i-1))p{7(@), ... 7(n)})

where 7 is a permutation on N such that u(z,)) <
U(IT(Q)) <..< U(IT(H—I)) < ’U,(I-,—(n))

A Choquet integral with a 2-additive capacity p is
called a 2-additive Choquet integral. Given an act = :=
(x1,...,x,) € X, the 2-additive Choquet integral can be
written also as follows:

Tr(1) ) Tri)) =

Cu((u(zr),...,u(zy))) = Z viu(a;)—
= ®)
Z Lijlu(a;) — u(w;)]
{z,J}CN
wherew; = 3 7 |K|n'_ DUEIE K Giy— (i)
KCN\i '

represents the importance of the state of nature i and
corresponds to the Shapley value [13]; I;; = i — i — 145
is the interaction index between the two states of nature
7 and j.

The above development suggests that the Choquet in-
tegral w.r.t. a 2-additive capacity seems to be of particu-
lar interest, and offers a good compromise between flex-
ibility of the model and complexity. Therefore, we focus
in this paper on the 2-additive model.

2.2 Binary actions

We assume in this paper that the DM is able to iden-
tify in C' two consequences denoted 1 and 0 such that
he strictly prefers 1 to 0. In the sequel, we call 0 the
“neutral level” (even if this is not the neutral level un-
derstood in bipolar model).

We call a binary action or binary act, an element of the
set B = {ON, (17;,01\[_7;), (1,‘]‘,0]\/_2']'), 1,7 € N,1 7é ]} -
X where

e Oy = (13,0n) =: ag is an act which has a conse-
quence 0 on all states of nature.
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e (1,,0n_;) =: a; is an act which has a consequence
1 on state of nature ¢ and a consequence 0 on the
other states of nature.

e (1,;,0n_;;) =: a;; is an act which has a conse-
quence 1 on states of nature i and j and a conse-
quence 0 on the other states of nature.

By convention we set (0) = 0 and (1) = 1. The above
convention have the following consequences:
Remark 1.

1. The Choquet integral satisfies the following prop-
erty [14, 10]: if p is a capacity then

Cu(U(1a,0n_4)) = u(A), VACN.  (9)

2. Let y1 be a 2-additive capacity. We have
Cu(Ulao)) = 0;

CulU(ai) =pi=vi—3 Y T
KEN, ki

Cu(Ulaiz)) = piz Zvi—l—vj—% Z
kEN, kgZ{i,j}

(Li + k)

Generally the DM knows how to compare some acts
using his knowledge of the problem, his experience, etc.
These acts form a set of reference acts and allows to
determine the parameters of a model (utility functions,
subjective probabilities, weights,...) in the decision pro-
cess (see [8] for more details). As shown by the previous
Remark 1 and Lemma 1, it should be sufficient to get
some preferential information from the DM only on bi-
nary acts. To entirely determine the 2-additive capacity
this information is expressed by the following relations:

P = {(z,y) € Bx B: DM strictly prefers z to y}, [ =
{(z,y) € B x B: DM is indifferent between x and y}.

Definition 2.3. The ordinal information on B is the struc-
ture {P, I}.

Now we will suppose P nonempty for any ordinal in-
formation { P, I} (“non triviality axiom”). Before we end
this section, let us introduce another relation M which
completes the ordinal information {P, I} given by the
DM and models the natural relations of monotonicity
between binary actions. For (z,y) € {(a;,a0),i € N} U
{(aijaai)viaj € sz 7é ]}/

x M yifnot(z (PUI)y).

The relation M models the monotonicity conditions
u({i}) > 0and pu({i, j}) > pu({i}) for a capacity s

Example 1. If we consider
N = {1,2,3}, B = {Clo,al,ag,ag,alg,alg,a23}, P =
{(alg, ag), (ag, a3), (a23, O)}, I = {(a12, CLl)}, then the
relation M iS M = {(alg,a0)7(0,13,0,0),((11,0,0)7(0,2,
ao), (a3, ao), (a12, az), (a1s, a1), (azs, az), (azs, as)}.
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3 The representation of the ordinal
information by the Choquet integral

An ordinal information {P, I'} is said to be representable
by a 2-additive Choquet integral if there exists a 2-additive
capacity p such that:

1L Vo,yeB, x Py= C,(U(x) > C.(U(y))
2. Ve,ye B, 1y = Cu(U(x)) = Cu(U(y)).

Given an ordinal information {P,I}, we look for
the necessary and sufficient conditions on B for which
{P, I} is representable by a 2-additive Choquet integral.
To do it, we need to define first the notion of strict cycle
of the relation (PU T U M).

3.1 Cycleof (PUIUM)

For a binary relation R on B and x,y elements of B,
{z1,22,--- ,x,} C Bis a path of R from z to y if z =
1 RxaR---Rap—1 Rap,=y. Apathof R from z to z
is called a cycle of R.

o A path {z1,22,...,2,} of (PUIU M) is said to be
a strict path from x to y if there exists ¢ in {1, ...,p —
1} such that z; P x;y;. In this case, we will write
xTCpy.

o A cycle (x1,22,...,xp) of (P UI U M) is a nonstrict
cycle if it is not strict.

e We note x ~ y if there exists a nonstrict cycle of
(PUIUM) containing = and y.

Contrarily to the strict cycle which is a classic concept
used in graph theory [15, 16], we need to define a new
fundamental property called MOPI.

3.2 MOPI property and theorem of Characterization

Before defining the property MOPI, let us discover this
new condition through a simple example:

Example 2. Suppose that the DM says : a1z I a3, ai3 I as
and a1 P ag. Using the relation M, we have
a2 M a9 I ais M as 1 ai9. SO, ((112,(12,(113, as, alg)forms
a nonstrict cycle of (PUIUM). If {P, I} is representable by
a 2-additive Choquet integral C,,, this implies j112 = pi3 =
po = pg and py > 0. However, we get a contradiction with
the monotonicity constraint j1o + p13 > p1 + po + i of a
2-additive capacity with the subset A = {1,2,3}, k = 1 (see
Equation (7) in Lemma 1).

This type of inconsistency is defined by:
Definition 3.1 (MOPI property). Let4,j, k € N, i fixed.

1. We call Monotonicity of Preferential Information in
{i,7,k} wr.t. i the following property (denoted by
(i, j, k},4)-MOPI):

Qij ~ Qv

?ka jN eai{vikj} [not(a; TCp ag)
ivke{ik} Le ik} \{iVkivj}]
IVj#iVEk
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If the property ({4, j, k},4)-MOPI is satisfied then the
element a;,1 € {i,5,k} \ {i V k,iV j} is called the
neutral binary action of {i, j, k} w.r.t. i.

2. Wesay that {7, j, k} satisfies the property Monotonic-
ity of Preferential Information (MOPI) if VI € {3, j, k},
({1, 4, k},1)-MOPI is satisfied.

Example 3. Let N = {1,2,3,4} and i = 1 fixed. The prop-
erty ({1,2,3},1)- MOPI reads as follows:

aip ~a

° 12 2 = not(az TCp ag)
aiz ~ ay
aip ~a

o 127" o not(ay TCp ag)
a13 ~ as
aiz ~a

o 12 > = not(a; TCp ay)
a13 ~ as

The MOPI condition given in this paper is equivalent
to the MOPI property presented in [5]. We give below
our theorem of characterization of consistent ordinal in-
formation { P, I'} representable by a 2-additive Choquet
integral:

Theorem 1. An ordinal information {P, 1} is representable
by a 2-additive Choquet integral on B if and only if the follow-
ing conditions are satisfied:

1. (P UIU M) contains no strict cycle;

2. Any subset K of N such that | K| = 3 satisfies the MOPI
property.

Is it possible to represent an ordinal information by
another operator instead of the 2-additive Choquet in-
tegral? If the answer is yes, can we give a similar char-
acterization like in Theorem 1? In the next section, we
will show that it is possible by using for instance belief
functions.

4 The representation of ordinal
information by belief functions

4.1  General definitions

Beliefs functions are one of the fundamental concepts
used in the theory of evidence of Shafer [7]. They are
defined by the belief function mass m as follows:

Definition 4.1. A function m : 2V — [0,1] is called a
mass distribution or a basic belief assignment if m satisfies
the following two properties:

1. m(0) =0;
2. ) m(4) =1.
ACN

The quantity m(A) expresses the total amount of belief
that supports the proposition: “ the actual state of nature
is in A”, and does not support any more specific subset
of N because of lack of information.
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Based on this concept, we define the belief function
Bel by:
Bel(A)= Y m(B) VACN.
BCA

Remark 2.
e Bel is a capacity;

e The sets A such that m(A) > 0 are called the focal
elements;

o If all focal elements are singletons then a mass dis-
tribution can be considered as a probability distri-
bution;

e The mass distribution m corresponds to the Mébius
transform of Bel. So we have VT € 2V,

> (-)MEIBel(B).

BCA

m(A) :=

Thus, we can have a definition of the representation of
ordinal information by a belief function which is similar
to the same representation by a Choquet integral (see
Section 3).

Definition 4.2. An ordinal information {P, I'} is said to
be representable by a belief function if there exists a belief
function Bel such that

1. Va,y € B, c Py = Cp(U(x)) > Cpa(U(y))
2. Ve,ye B, xTy= Cpa(U(x)) = Cpa(U(y)).

By using Definition 2.2, a 2-additive belief function
has a mass distribution m characterized by:

1. 3i,5 € N tel que m({i,j}) #0;
2. VK € 2V tel que |K| > 3, m(K) = 0.

Theorem 2 below provides a relation between a k-
monotone function [6, 12] and a belief function, and a
relation between k-monotone functions and the previ-
ous MOPI property.

4.2 k-monotone functions and belief functions

Given an integer & > 2, a function p : 2V — [0,1] is
k-monotone (shorthand for: monotone of order k) if for
each family {41, As,..., A} C 2V, we have

2

0AIC{1,....k}

(=DM () 42)-

iel

(10)

A simpler characterization of k-monotone functions by
their Mobius inversion is given by the following propo-
sition:

Proposition 1. Let u : 2V — [0, 1] and m its Mébius trans-

form. wis k-monotone (k integer, k > 2) if and only if

> m(L)>0 VA,BCN,ACBand2<|A|<k.
ACLCB
(11)
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Proof. See [12] O

It is well-known that p : 2V — [0, 1] is a belief func-
tion if and only if ; is a k-monotone capacity for all
k > 2. The following result gives another sufficient con-
dition to obtain a belief function from a k-monotone and
2-additive capacity, and relates belief function with the
MOPI condition translated in terms of capacity.

Theorem 2.
Let yu : 2V — [0, 1] be a function and k be an integer such
that k > 2.

1. If u is monotone, k-monotone and 2-additive then 1 is a
belief function (precisely a 2-additive belief function);

2. If ju is monotone and k-monotone then i satisfies the fol-
lowing property: for all i, j,k € N, 1 fixed

Hij = [ivj

Hik = Hivk [ =

Ve {i,j =0,

ZV]E{’L,]} = L) ) ) )
ivke{ik} Le {i, g, k}\{ivkivj}]
IVj#iVk

We end the paper by a characterization of ordinal in-
formation by belief functions.

4.3 A link between Belief functions and the 2-additive
Choquet integral

In this section, we give through the MOPI property (see
Section 3) a link between beliefs functions and the 2-
additive Choquet integral.

Proposition 2. Let {P, I} be an ordinal information on B.

If there exist ,j,k € N, i fixed such that the property
({i, 4, k},9)-MOPI is violated, then there is no belief function
Bel which represents { P, I}.

Corollary 1. Every ordinal information {P, 1} on B repre-
sentable by a belief function Bel : 2N — [0, 1] is representable
by a 2-additive Choquet integral.

The inverse of Corollary 1 is false. If we suppose
P = {(asz,a0)}, I = {(a12,a1)} and p a 2-additive ca-
pacity, we will have { P, I'} representable by a 2-additive
Choquet integral and /12 = mi2 = pi2 — p1 — p2 < 0. So
no belief function can represent { P, I'} in this case. Then
it is interesting to look for the class of 2-additive capac-
ities which are belief functions. In order to characterize
them, we introduce a new fundamental property called
2-MOPI property:

Definition 4.3. An ordinal information {P, I} satisfies
the 2-MOPI property if
Vi,j € N,i# j,[ai; ~ a; = not(a; TCp ap)].  (12)

The relation between the 2-MOPI property and the
MOPI property is given by the following proposition:

Proposition 3. Let {P, I} an ordinal information on B.
{P, I} satisfies the 2-MOPI property
¢
Vi, j, k € N, {i,j, k} satisfies the MOPI property
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Now we have the main result of this section:

Theorem 3.
{P, I} is representable by a 2-additive belief function if and
only if the two following conditions are satisfied:

1. (P UIU M) contains no strict cycle;
2. {P, I} satisfies the 2-MOPI property.

4.4 Interpretation of 2-MOPI and MOPI properties

We try to give an interpretation in terms of decision be-
havior of the two main conditions introduced in this pa-
per. We assume here for clarity that consequence 1 is a
good consequence for the DM, while consequence 0 is
neither bad nor good (statu quo).

Facing a situation where for two states of nature ¢ and
Jj the DM is indifferent between the two acts a;; and a;,
the 2-MOPI property says that act a; is equivalent to act
ap (statu quo for every state of nature). Hence in such
a situation, the DM thinks that state of nature j is un-
likely to occur. This is a strong condition, since it suf-
fices that one such state i exists to infer the “nullity” of
state j. This condition can be related to the notion of null
set in generalized measure theory (see, e.g., [17]): a set
A C N issaid to be null for capacity p if f(BUA) = pu(B),
VB C N\ A. Taking A = {j} and B = {i} gives our con-
dition 2-MOPL Observe that for the nullity condition,
{j} would be null if for all subsets B not containing j we
would have (B U j) = u(B), but the 2-MOPI condition
asks to find only one singleton satisfying this equality.

The MOPI property is a weakening of the above one,
and can be interpreted in a similar way. Let us consider
now three states of nature i, j and k. The MOPI condi-
tion can be translated as follows (see Example ??, with
i=1,j=2,and k = 3). Suppose that a;; and a; are in-
different. As above, this would suggest that ¢ is unlikely
to occur for the DM, but this is relatively to the occurence
of j, or put differently, i is much less likely than j. Sup-
pose in addition that a;;, is indifferent to a;. Again, this
suggests that k£ much less likely to occur than i. Since
i is much less likely than j, the conclusion is that k is
very unlikely to occur, hence ay, is indifferent to ag. This
explains the first case in the MOPI condition. The sec-
ond case (indifference between a;; and ay, and between
a;; and a;) works exactly the same way. The third case
says that a;; and a; are indifferent (¢ is much less likely
than j) as well as a;;, and ay, (i is much less likely than
k). Since i is much less likely than both j and £, the con-
clusion is that 7 is very unlikely, so that a; is indifferent
with ag.

For N = {1,2}, the 2-MOPI property can be also
viewed as uncertainty aversion! (see [18]). Indeed,

1Uncertainty aversion, as presented in [18], is defined as
follows: For three acts z, y, z, if y and z are comonotonic then:

r~yYy=>x+2z2Y+ 2

Comonotonicity between two acts y, z means that there are no
i,j € N such that u(y;) > u(y;) and u(z) < u(z;).
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given the three acts a12 = (1,1), a1 = (1,0), z = (-1,0)
and using the property of uncertainty aversion, we have:

(1,0) ~ (1,1) = (0,0) Z (0,1)

which corresponds to the 2-MOPI property in this case.
However, this interpretation does not work any more for
the MOPI condition.
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