
Finer Tight Bounds for Coloring on Clique-Width
Michael Lampis1

1 Université Paris-Dauphine, PSL Research University, CNRS, UMR 7243
LAMSADE, 75016, Paris, France, michail.lampis@dauphine.fr

Abstract
We revisit the complexity of the classical k-Coloring problem parameterized by clique-width.

This is a very well-studied problem that becomes highly intractable when the number of colors
k is large. However, much less is known on its complexity for small, concrete values of k. In this
paper, we completely determine the complexity of k-Coloring parameterized by clique-width for
any fixed k, under the SETH. Specifically, we show that for all k ≥ 3, ε > 0, k-Coloring cannot
be solved in time O∗

(
(2k − 2− ε)cw), and give an algorithm running in time O∗

(
(2k − 2)cw).

Thus, if the SETH is true, 2k − 2 is the “correct” base of the exponent for every k.
Along the way, we also consider the complexity of k-Coloring parameterized by the related

parameter modular treewidth (mtw). In this case we show that the “correct” running time, under
the SETH, is O∗

((
k
bk/2c

)mtw). If we base our results on a weaker assumption (the ETH), they
imply that k-Coloring cannot be solved in time no(cw), even on instances with O(logn) colors.

1998 ACM Subject Classification F.2 Analysis of Algorithms and Problem Complexity

Keywords and phrases Clique-width, SETH, Coloring

Digital Object Identifier 10.4230/LIPIcs.ICALP.2018.

1 Introduction

Graph Coloring (from now on simply Coloring) is one of the most intensely studied
problems in theoretical computer science. In this classical problem we are given a graph
G = (V,E) and an integer k and are asked if we can partition V into k sets inducing edge-less
graphs. Coloring is a notoriously hard problem as it remains NP-hard even in very restricted
cases (e.g. 4-regular planar graphs [11]) and is essentially completely inapproximable in
general [12, 31]. This intractability has motivated the study of the problem in the framework
of parameterized complexity, especially with respect to structural graph parameters.1

Treewidth is by far the most widely studied among such graph parameters, and Coloring
has long been known to be FPT by treewidth. This can be seen by either invoking Courcelle’s
theorem [5], or by applying a straightforward dynamic programming technique which, for
each bag of a tree decomposition of width tw considers all possible ktw colorings. Remarkably,
thanks to the work of Lokshtanov, Marx, and Saurabh [24], we know that this basic algorithm
is likely to be optimal, or at least that improving it would require a major breakthrough on
SAT-solving, as, for any k ≥ 3, ε > 0, the existence of a (k− ε)tw algorithm would contradict
the Strong Exponential Time Hypothesis of Impagliazzo and Paturi [19, 20]. More recently,
these lower bounds were strengthened, as Jaffke and Jansen showed that a (k− ε)w algorithm
would contradict the SETH when w is the graph’s vertex edit distance from being a path
[21]. The same paper showed that the trivial algorithm can, however, be improved when one

1 In the remainder, we assume that the reader is familiar with the basics of parameterized complexity,
such as the class FPT, as given in relevant textbooks [9, 14]

EA
T

C
S

© Michael Lampis;
licensed under Creative Commons License CC-BY

45th International Colloquium on Automata, Languages, and Programming (ICALP 2018).
Editors: Ioannis Chatzigiannakis, Christos Kaklamanis, Daniel Marx, and Don Sannella;
Article No. ; pp. :1–:21

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.ICALP.2018.
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

XX:2 Finer Tight Bounds for Coloring on Clique-Width

considers more restrictive parameters, such as vertex cover, but still not to the point that
the base of the exponent becomes a constant. These results thus paint a very clear picture of
the complexity of Coloring with respect to treewidth and its restrictions.

One of the drawbacks of treewidth is that it does not cover dense graphs, even if they
have a very simple structure. This has led to the introduction of clique-width, which is
by now (arguably) the second most well-studied parameter. The complexity of Coloring
parameterized by clique-width has also been investigated. Even though Coloring is
polynomial-time solvable when clique-width is constant, the best known algorithm for this
case runs in time n2O(cw) [22]. Fomin et al. [15] showed that Coloring is not FPT for
clique-width (under standard assumptions), and this was recently followed up by Golovach
et al. [18] who showed, somewhat devastatingly, that the aforementioned algorithm is
likely to be optimal, as an algorithm running in n2o(cw) would contradict the ETH. The
problem thus seems to become significantly harder for clique-width, and this has, in part,
motivated the study of alternative dense graph parameters, such as split-matching width
[29], modular-width [16], and twin cover [17], all of which make Coloring FPT.

Contribution: Although the results mentioned above demonstrate a clear jump in the
complexity of Coloring when moving from treewidth to clique-width, we observe that
they leave open a significant hole: all the aforementioned hardness results for clique-width
([15, 18]) only apply to the case where k is large (polynomially related to the size of the
graph). It is not hard to see that the problem becomes significantly easier if both cw and
k are assumed to have moderate values; indeed Coloring is FPT when parameterized by
cw+k [22]. Since the case where k is relatively small is arguably the most interesting scenario
for most applications, we are strongly motivated to take a closer look at the complexity
of Coloring parameterized by clique-width, in order to obtain a more fine-grained and
quantitative estimate of the “price of generality” for this problem for each fixed value of
k. Our aim is to reach tight bounds that paint a crisper picture of the complexity of the
problem than what can be inferred by lower bounds parameterized only by clique-width, in
the same way that the results of [24] do for k-Coloring on treewidth.

The main result of this paper is a lower bound which states that for all k ≥ 3, ε > 0,
k-Coloring cannot be solved in time (2k − 2− ε)cw, unless the SETH is false. This result
gives a concrete, detailed answer to the question of how much the complexity of 3-Coloring,
4-Coloring, and generally k-Coloring, increases as one moves from treewidth to clique-
width. As in the lower bound of [24], this result is established through a reduction from SAT.
The main challenge here is that we need to pack a much larger amount of information per
unit of width, and in particular that the graph induced by most label sets must be edge-less
(otherwise many of the 2k − 2 choices we need to encode would be invalid). We work around
this difficulty by a delicate use of the rename operation used in clique-width expressions.

Though having 2k − 2 in the base of the running time may seem somewhat curious (and
certainly less natural than the ktw bounds of [24]), we then go on to prove that this is the
“correct” bound by giving a matching algorithm. The algorithm is based on standard DP
techniques (including subset convolution [2, 30]), but requires a non-standard trick that
“looks ahead” in the decomposition to lower the table size from (2k− 1)cw to (2k− 2)cw. This
improves the previously known DP algorithm of [22], which runs in O∗

(
4k·cw).

Beyond these results for clique-width we also consider the closely related parameters
modular treewidth and modular pathwidth, which have more recently been considered as
more restricted versions of clique-width [26, 28]. The modular treewidth of a graph G is
defined as the treewidth of the graph obtained from G if one collapses each twin class into

Michael Lampis XX:3

a single vertex, where two vertices are twins if they have the same neighbors. By slightly
altering our results for clique-width we tightly characterize the complexity of k-Coloring
for these parameters: the problem is solvable in time O∗

((
k
bk/2c

)mtw), but not solvable in

O∗
(

(
(

k
bk/2c

)
− ε)mpw

)
under the SETH. Using the same reduction but relaxing the hypothesis

to the ETH, we show that k-Coloring cannot be solved in time no(mpw), and hence neither
in time no(cw) even on instances where k = O(logn). This can be seen as a strengthening of
the lower bound of [15], which applies only to clique-width and uses Ω(n) colors. Our result
is incomparable to the more recent double-exponential bound of [18] as it applies to the more
restricted case where the number of colors is logarithmic, and is tight for this case. Indeed,
any reduction giving a double-exponential bound, such as the one in [18], must inevitably
use more than logn colors, otherwise it would contradict the aforementioned algorithms.

Non-binary CSPs. We mention as a secondary contribution of this paper a proof that, under
the SETH, n-variable CSPs over an alphabet of size B cannot be solved in time (B − ε)n,
for any B, ε. The interest of such a result is not so much technical (its proof is implicit
in previous SETH-based bounds, going back to [24]), as conceptual. Such CSPs provide a
convenient starting point for a SETH-based lower bound for any base of the exponential and
hence allow us to isolate a technical part of such proofs from the main part of the reduction.
This explicit statement on the hardness of CPSs has allowed the proofs of this paper to be
significantly shortened, and may facilitate the design of other SETH-based hardness proofs.

2 Definitions and Preliminaries

We use standard graph-theoretic notation and assume that the reader is familiar with the
basics of parameterized complexity, as well as standard notions such as treewidth [9, 14]. Let
us recall the definition of clique-width (see [7, 6] for more details). A labeled graph G has
clique-width w if it can be constructed using w labels and the following four basic operations:
Introduce(i), for i ∈ {1, . . . , w}, which constructs a single-vertex graph whose vertex has label
i; Union(G1, G2), which constructs the disjoint union of two labeled graphs of clique-width w;
Rename(i, j) which changes the label of all vertices labeled i to j; and Join(i, j) which adds
all possible edges between vertices labeled i and vertices labeled j. Computing a graph’s
clique-width is NP-hard [13], and the best currently known approximation is exponential
in clique-width [27]. In this paper, we will often assume that we are given together with a
graph G, a clique-width expression constructing G. Since most of our results are negative,
this only makes them stronger, as it shows that our lower bounds do not rely on the hardness
of computing clique-width. We view a clique-width expression as a rooted binary tree, where
the sub-tree rooted in each internal node represents the corresponding sub-graph of G. We
use cw(G) to denote the minimum number of labels needed to construct a clique-width
expression of G, and tw(G), pw(G) to denote the treewidth and pathwidth of G respectively.

In a graph G = (V,E) we say that u, v ∈ V are false twins if N(u) = N(v) and true twins
if N [u] = N [v], where N [u] = N(u)∪ {u} denotes the closed neighborhood of u. We say that
u, v are twins if they are true or false twins. We note that in any graph G the partition of
vertices into twin classes is always unique, as the property of being twins is an equivalence
relation [23]. Let Gt be the graph obtained from G by deleting from each twin class all but
a single vertex. We define (following [26]) the modular treewidth of G, denoted mtw(G), as
tw(Gt), and similarly the modular pathwidth mpw(G) as pw(Gt).

I Lemma 1. For all G, pw(G) ≥ mpw(G) ≥ cw(G)− 2 and pw(G) ≥ mpw(G) ≥ mtw(G).

ICALP 2018

XX:4 Finer Tight Bounds for Coloring on Clique-Width

The Exponential Time Hypothesis (ETH) of Impagliazzo, Paturi, and Zane [20] states
that there exists a constant c3 > 1 such that 3-SAT on instances with n variables cannot be
solved in time cn3 . If the ETH is true then we can define, for all q ≥ 3 a constant cq > 1 such
that q-SAT, that is, SAT on instances where clauses have maximum size q, cannot be solved
in time cnq . The Strong Exponential Time Hypothesis (SETH) [19] states that limq→∞ cq = 2,
or equivalently that, for each ε > 0 there exists a q such that q-SAT cannot be solved in
(2− ε)n. We note that sometimes a slightly weaker form of the SETH is used, which states
simply that SAT cannot be solved in (2− ε)n for any ε > 0. The two formulations are not
currently known to be equivalent. In this paper we use the original, stronger formulation of
[19] (see also e.g. [8]) which assumes that cq tends to 2.

For any q,B ≥ 2 we define the q-CSP-B problem as follows: we are given a set X of n
variables which take values in {1, . . . , B}, and a set C of q-constraints onX. A q-constraint c is
defined by an ordered tuple V (c) of q variables of X, and a set S(c) ⊆ {1, . . . , B}q of satisfying
assignments for c. The question is whether there exists an assignment σ : X → {1, . . . , B}
which satisfies all constraints c ∈ C. We say that a constraint c ∈ C is satisfied if applying σ
to V (c) produces a tuple of assignments that appears in S(c). To simplify presentation, we
will assume that in the input the list S(c) of the at most Bq satisfying assignments of each
constraint is given explicitly, and that a q-CSP-B instance is allowed to contain constraints
on fewer than q variables (as we can add dummy variables to a constraint).

3 SETH and Non-binary CSPs

The SETH states, informally, that as SAT clauses become larger, eventually the best
algorithm for SAT is simply to try out all possible assignments to all variables. In this
section we show that the same is essentially true for CSP with a larger, non-binary alphabet.
The interest in presenting such a result is that very often we seek to prove a SETH-based
lower bound showing that a problem does not admit an algorithm running in cw, for some
constant c and width parameter w (such as treewidth, or in our case clique-width). This
becomes complicated when we reduce directly from SAT if c is not a power of 2 as one
cannot make a one-to-one correspondence between binary SAT variables and “units of width”
(in our case labels) in the new instance, which are intended to encode c choices. As a result,
essentially all known SETH lower bounds of this form include as part of their construction
a group gadget, which maps every t variables of the original SAT instance to p elements
of the new problem, for appropriately chosen integers p, t (see e.g. [4, 10, 21, 24]). Such
gadgets are, however, often cumbersome to design, because they require a problem-specific
trick that expresses a mapping of assignments from a binary to a non-binary domain. We
therefore prefer to construct a custom-made CSP with a convenient running time bound,
which will later allow us to reduce directly to the problem we are interested in (Coloring
on clique-width), in a way that maps exactly one variable to one clique-width label. This
will allow our SETH-based bounds to be significantly simplified, as we will no longer have to
worry about a discrepancy between the bases of the exponentials.

I Theorem 2. For any B ≥ 2, ε > 0 we have the following: if the SETH is true, then there
exists a q such that n-variable q-CSP-B cannot be solved in time O∗ ((B − ε)n).

4 SETH-based Lower Bound for Clique-width

In this section we present our main lower bound result stating that k-Coloring cannot be
solved in time (2k − 2− ε)cw, for any k ≥ 3, ε > 0, under the SETH. We begin in Section 4.1

Michael Lampis XX:5

{1, 5}

{2, 5}

{2, 5}

(1,5)
≡

(1 → 2)
≡

(1, 1)
(1, 3)

(1, k)
. . .

{2, 3}

{1, 2, 3}{1, 2, 3} {1, 2, 3}

{2, 3} {3}{2}

Figure 1 Basic gadgets, where empty vertices are internal and solid vertices are endpoints that
will be connected to the rest of the graph. On the left, a weak edge that forbids the combination
(1, 5) on its endpoints. In the middle, an implication that forces color 2 on the right if color 1 is
used on the left. On the right an OR gadget: one of the solid vertices must take color 1.

by presenting some basic gadgets that will also be of use in our lower bound for modular
pathwidth (Section 5). We then go on to present the main part of the proof in Section 4.2.

4.1 List Coloring and Basic Gadgets
The high-level machinery that we will make use of in our reduction consists of two major
points: first, we would like to be able to express implication constraints, that is, constraints
of the form “if vertex u received color c1, then vertex v must receive color c2”; second, we
would like to express disjunction constraints of the form “at least one of the vertices of the
set S ⊆ V must take a special color 1”. We build this machinery in the following steps: first,
we show that we can (almost) equivalently produce an instance of the more general List
Coloring problem; then we use the ability to construct lists to make weak edge gadgets,
which for a given pair of vertices (u1, u2) rule out a specific pair of assigned colors; using
these weak edges we construct the aforementioned implication gadgets; and finally we are
able to implement OR constraints using paths on vertices with appropriate lists.

We give all details for these constructions below. We remark however, for the convenience
of the reader, that a high-level understanding of the informal meaning of implication gadgets
and OR gadgets (precisely stated in Lemmata 7, 10) is already sufficient to follow the
description of the main part of the reduction, given in Section 4.2. See also Figure 1.

List Coloring To simplify the presentation of our reduction it will be convenient to use a
slightly more general problem. In List Coloring, we are given a graph G and a list of
possible colors associated with each vertex and are asked if there is a proper coloring such
that each vertex uses a color from its list. This problem clearly generalizes k-Coloring, as
all lists may be {1, . . . , k}. We will make use of a reduction in the opposite direction.

I Lemma 3. There is a polynomial-time algorithm which, given an instance of List Col-
oring on a graph G where all lists are subsets of {1, . . . , k}, transforms it into an equivalent
instance of k-Coloring on a graph G′. Furthermore, the algorithm transforms a clique-width
expression of G with cw labels, to a clique-width expression of G′ with cw + k labels. If all
twins of G share the same list, the algorithm transforms a modular path decomposition of
width mpw for G, to a modular path decomposition of G′ of width mpw + k.

Weak Edges and Implications Normally, the existence of an edge (u, v) in an instance of
Coloring forbids the vertices u, v from obtaining the same color, whatever that color may
be. We will find it convenient to construct edges that forbid only a specific pair of colors

ICALP 2018

XX:6 Finer Tight Bounds for Coloring on Clique-Width

from appearing on u, v, while allowing any other combination of colors to be used on these
two vertices. Similar versions of this gadget have appeared before, for example [24, 25].

I Definition 4. For two vertices u1, u2 of a graph G and two colors c1, c2 a (c1, c2)-weak
edge from u1 to u2 consists of the following:

1. Three new vertices v1, v2, v3 such that {u1, v1, v2, v3, u2} induces a path in this order,
with endpoints u1, u2, and v1, v2, v3 having no edges to the rest of G.

2. If c1 6= c2 let c′ be a color distinct from c1, c2. We assign to v1, v2, v3 the lists
{c1, c2}, {c2, c

′}, {c2, c
′}. If c1 = c2, we assign lists {c1, c

′}, {c′, c′′}, {c1, c
′′} to v1, v2, v3

respectively, where c′, c′′ are two distinct colors, different from c1.

I Lemma 5. Let G be an instance of List Coloring that contains a (c1, c2)-weak edge
from u1 to u2. Then G does not admit a valid coloring that assigns colors (c1, c2) to (u1, u2).
Furthermore, if G′ denotes the graph obtained by deleting the internal vertices of the weak
edge, any proper list coloring of G′ that does not assign c1 to u1 or does not assign c2 to u2
can be extended to a proper list coloring of G.

Let us now use the weak edges we have defined above to construct an implication gadget.
The intuitive meaning of placing an implication gadget from a vertex u1 to a vertex u2 is to
impose the constraint that if u1 is assigned color c1, then u2 must be assigned color c2.

I Definition 6. For two vertices u1, u2 and two colors (c1, c2) a (c1 → c2)-implication from
vertex u1 to vertex u2 is constructed as follows: for each color c′ 6= c2, we add a (c1, c

′)-weak
edge from u1 to u2.

I Lemma 7. Let G be an instance of List Coloring that contains a (c1 → c2)-implication
from u1 to u2. Then G does not admit a list coloring that gives color c1 to u1 and a color
c′ 6= c2 to u2. Furthermore, if G′ is the graph obtained from G by deleting the internal
vertices of the implication gadget, any coloring of G′ that either does not assign c1 to u1, or
assigns c2 to u2 can be extended to a coloring of G.

I Lemma 8. Let G be an instance of List Coloring, and G′ be the graph obtained from
G by replacing every (c1, c2)-weak edge or (c1 → c2)-implication gadget with endpoints u1, u2
with an edge (u1, u2) (or simply deleting the internal vertices of the weak edge if (u1, u2)
already exists). Then pw(G) ≤ pw(G′) + 3.

OR gadgets We will also make use of a gadget that forces any valid list coloring of a
graph to assign a special color 1 to one vertex out of a set of vertices. Invariably, the idea
will be that this will be a color that activates some implications, allowing us to propagate
information about the coloring between parts of the graph. We recall that a similar version
of an OR gadget was also used in [24].

I Definition 9. An OR gadget on an independent set of vertices S, denoted OR(S), is
constructed as follows: we assign list {1, 2, 3} to all vertices of S; we construct a new set S′
of internal vertices (that will not be connected to the rest of G), such that |S′| = |S|+ 1 and
S ∪ S′ induces a path alternating between vertices of S and S′; we assign list {2, 3} to all
vertices of S′, except the two endpoints of the path, which receive lists {2}, {3}, respectively.

I Lemma 10. If G is a List Coloring instance that contains an OR(S) gadget then G
does not admit a list coloring that does not use color 1 in any vertex of S. Furthermore, for
any vertex u ∈ S, there exists a proper list coloring of the graph induced by the gadget that
assigns color 1 only to u.

Michael Lampis XX:7

...

S0 S1 S2 S3 S4

V 0
1

U0
1

V 0
2

U0
2

V 4
1

U4
1

V 4
2

U4
2

...

a1 a2 a3 a4

V 0,a1
1

V 0,a2
1

V 0,a3
1 V 0,a4

1

U0,a4
1

U0,a2
1U0,a1

1

U0,a3
1

Figure 2 Left: high-level view of the reduction. Rows correspond to variables, columns to
constraints. Here, variable x1 appears in constraints c0, c1, c3, c4. Right: connections between the
OR gadgets OR(Sj) and the V j

i , U j
i sets. Giving color 1 to a1 represents selecting this assignment.

This forces the use of some colors in V 0,a1
1 and the complementary set in U0,a1

1 .

4.2 Reduction for Clique-width
The main theorem of this section is the following:

I Theorem 11. For any k ≥ 3, ε > 0, if there exists an algorithm solving k-coloring in time
O∗
(
(2k − 2− ε)cw), where cw is the input graph’s clique-width, then the SETH is false.

The proof of Theorem 11 consists of a reduction from a CSP produced by Theorem 2.
Before giving details, let us give some intuition. Our new instance will be a graph and a
clique-width expression with, roughly, n labels, where n is the number of variables of the
CSP instance. The set of colors used in each label will encode the value given to a variable
in a satisfying assignment. As a result, with k colors, we will have 2k − 2 encodings available,
as every label set uses at least one color, but will never use all k colors. To verify that these
assignments are correct, we will construct for each constraint an OR gadget which forces the
use of color 1 on a vertex representing a particular assignment. This assignment dictates the
value of each variable of the constraint, and therefore the set of colors used in some of our
label sets. To verify that the assignment is consistent we use implication gadgets that force
some auxilliary vertices to receive the complement of the colors dictated by the constraint
assignment, and then connect these with the vertices encoding the true assignment. If the
assignment used is truly consistent, these edges will end up being properly colored.

Construction. We are given some k ≥ 3, ε > 0. Let B = 2k − 2. Let q be the smallest
integer such that n-variable q-CSP-B does not admit an O∗ ((B − ε)n) algorithm. According
to Theorem 2, such an integer exists if the SETH is true, and it depends only on B, ε.
Consider an arbitrary n-variable instance of q-CSP-B, call it φ. We will use the existence of
the supposed (2k − 2− ε)cw algorithm to obtain an O∗ ((B − ε)n) algorithm that decides φ,
contradicting the SETH.

We define in some arbitrary way a translation function T which, given a value v ∈
{1, . . . , B} returns a non-empty proper subset of {1, . . . , k}. We make sure that T is defined
in such a way that it is one-to-one; this is possible since the number of non-empty proper
subsets of {1, . . . , k} is exactly B = 2k − 2.

Let X = {x1, . . . , xn} be the set of the n variables of the q-CSP-B instance and C =
{c0, . . . , cm−1} the set of its m constraints. Let L = 3m(nk + 1). We now construct our

ICALP 2018

XX:8 Finer Tight Bounds for Coloring on Clique-Width

graph, where if we don’t specify the list of a vertex it can be assumed to be {1, . . . , k}. For
each j ∈ {0, . . . , L− 1} we do the following:

1. Let j′ = j mod m and let S be the set of satisfying assignments of the constraint cj′ . We
construct an independent set of vertices Sj that contains a vertex for every assignment of
S. We construct an OR(Sj) gadget on these vertices.

2. For each xi which appears in cj′ and for each assignment a ∈ S we do the following:

a. Let v ∈ {1, . . . , B} be the value given to xi by the assignment a. Construct an
independent set V j,ai of |T (v)| vertices and an independent set U j,ai of k − |T (v)|
vertices. Recall that T (v), the translation function, returns a set of size between 1 and
k − 1, so both these sets are non-empty.

b. For each color c ∈ T (v) select a distinct vertex in V j,ai and add a (1→ c)-implication
gadget from the vertex that represents the assignment a in Sj to this vertex of V j,ai .

c. For each color c ∈ {1, . . . , k} \ T (v) select a distinct vertex in U j,ai and add a (1→ c)-
implication gadget from the vertex that represents the assignment a in Sj to this
vertex of U j,ai .

d. Connect all vertices of U j,ai with all vertices of previously constructed sets V l,a
′

i , for
all l < j and all assignments a′.

This completes the construction, and we call the constructed List Coloring instance
G(φ). The intended meaning is that the sets V j,ai will use a set of colors that encodes the
value of the variable xi, while the sets U j,ai will use colors from the complement of this set.

I Lemma 12. If φ is a satisfiable q-CSP-B instance, then G(φ) admits a proper list coloring.

Proof. Suppose that we have a satisfying assignment for φ which gives value vi to variable
xi. The invariant we will maintain is that for all j, a, all vertices of sets V j,ai will use only
colors from T (vi), while all vertices of sets U j,ai will use only colors from {1, . . . , k} \ T (vi).
As a result, all edges added in step 2d will be properly colored. The rest of the graph will be
easy to color if we respect the informal meaning of OR and implication gadgets.

More specifically, for each OR(Sj) gadget we let j′ = j mod m and consider the constraint
cj′ . The supposed assignment to φ assigns to the variables of the constraint values consistent
with a satisfying assignment a of cj′ . We give color 1 to the corresponding vertex of Sj . We
use colors {2, 3} to color all remaining vertices of the OR gadget. Note that the OR gadget
is connected to the rest of the graph only through implication gadgets activated by color 1.
Hence, by Lemma 7 we can remove all non-activated implication gadgets. For the remaining,
activated implication gadgets we color their other endpoints, which are found in the sets V j,ai
and U j,ai with the unique viable color. For every other assignment a′ 6= a we color all vertices
of V j,a

′

i using a color we used in V j,ai , and the vertices of U j,a
′

i using a color we used in U j,ai .
The promised invariant is maintained, as the vertices of V j,ai are forced to receive colors

from T (vi), while vertices of U j,ai are forced to receive colors from the complementary set.
Thus, all edges of step 2d are properly colored, and since we also properly colored the OR
gadgets and implication gadgets, we have a proper coloring of the whole graph. J

I Lemma 13. If G(φ) admits a proper list coloring, then φ is a satisfiable q-CSP-B instance.

Proof. Suppose we have a list coloring of G(φ) given by the function c : V → {1, . . . , k}. For
a set V ′ ⊆ V we will write c(V ′) to denote the set of colors used by c for vertices of V ′, that
is, c(V ′) = {c | ∃u ∈ V ′, c(u) = c }. Let j ∈ {0, . . . , L− 1}, j′ = j mod m, and S be the set

Michael Lampis XX:9

of satisfying assignment of the constraint cj′ , which contains a variable xi. Consider the set
V ji = ∪a∈SV j,ai . We define the candidate assignment of xi at index j as vji := T−1(c(V ji)).
In other words, to obtain the candidate assignment for xi at index j, we take the union of
all colors used in V j,ai , and then translate this set back into a value in {1, . . . , B}.

We observe that for all i, j, such that xi appears in cj′ , where j′ = j mod m, there exists
an assignment a such that c(V j,ai) = {1, . . . , k} \ c(U j,ai). To see this, note that by Lemma
10, one of the vertices of the OR(Sj) gadget must have received color 1, say the vertex
that corresponds to assignment a. All the implications incident on this vertex are therefore
activated, which means that, if a gives value v ∈ {1, . . . , B} to xi, then c(V j,ai) = T (v) and
c(U j,ai) = {1, . . . , k} \ T (v) (because of the implications of steps 2b,2c and Lemma 7).

A key observation now is the following: for all j2 > j1 and for all i such that variable xi
appears in constraints cj′1 , cj′2 with j′1 = j1 mod m, j′2 = j2 mod m, we have c(V j1

i) ⊆ c(V j2
i).

In other words, the set of colors used in V ji can only increase as j increases. To see this,
suppose that there exists c ∈ c(V j1

i) \ c(V j2
i). As argued in the previous paragraph, there

exists an assignment a2 such that c(V j2
i) ⊇ c(V j2,a2

i) = {1, . . . , k} \ c(U j2,a2
i). Because

c 6∈ c(V j2,a2
i) we must have c ∈ c(U j2,a2

i), but because of step 2d, all vertices of U j2,a2
i are

connected to all of V j1
i . Since c ∈ c(V j1

i), this contradicts the correctness of the coloring.
The property established in the previous paragraph implies that for each i there exist

at most k distinct candidate assignments vji we can obtain for different values of j, as each
assignment is obtained by translating the set of colors used in V ji , this set only increases,
it always contains at least one color and at most k colors. Let us say that an index j1 is
problematic if, for some i ∈ {1, . . . , n} we have the following: xi appears in constraint cj′1 ,
where j′1 = j1 mod m; and if j2 is the minimum index such that j2 > j1 and xi appears in
constraint cj′2 , where j

′
2 = j2 mod m, then vj1

i 6= vj2
i . In other words, an index is problematic

if the candidate assignment it produces for a variable disagrees with the candidate assignment
produced for the same variable in the next index that involves this variable. It is not hard
to see that there are at most kn problematic indices, because for each variable there are at
most k problematic indices. Therefore, since L = 3m(nk + 1), by pigeonhole principle, there
exists an interval L′ of at least 3m consecutive non-problematic indices.

We now obtain an assignment for the original instance as follows: for each variable i we
take an index j ∈ L′ such that xi appears in constraint cj′ , where j′ = j mod m, and give xi
the candidate value vji from that index. Observe that, by the definition of L′ the index we
select is irrelevant, as all candidate values are constant throughout the interval L′.

We claim that this is a satisfying assignment. Suppose not, so there exists an unsatisfied
constraint cj′ . Because L′ contains 3m consecutive indices, there exists three indices j1 <

j2 < j3 ∈ L′ such that j′ = j1 mod m = j2 mod m = j3 mod m. We observe that for all
variables xi appearing in cj′ we have given value vj2

i , that is the candidate value obtained at
index j2, since all indices in L′ give the same candidate values to all variables.

Now, there exists a vertex in Sj2 that received color 1, representing an assignment a. If
the assignment we produced is not consistent with a, there exists a variable xi such that we
have given xi value v = vj2

i , while a gives it value v′ 6= v. Consider now the set V j2,a
i . Because

of the implication gadgets, it uses the colors T (v′) 6= T (v). If there exists c ∈ T (v) \ T (v′)
then c ∈ c(U j2,a

i). But U j2,a
i is connected to all vertices of V j1

i , which, we assumed use all
colors of T (v), therefore also color c, contradicting the correctness of the coloring. If on the
other hand there exists c ∈ T (v′) \ T (v), then since c(V j3

i) = T (v), there exists an a′ such
that c(U j3,a

′

i) = {1, . . . , k} \ T (v). Therefore, c ∈ c(U j3,a
′

i), while c ∈ c(V j2,a
i), and by step

2d these sets are connected, again obtaining a contradiction. We therefore conclude that we
must have a consistent satisfying assignment. J

ICALP 2018

XX:10 Finer Tight Bounds for Coloring on Clique-Width

I Lemma 14. G(φ) can be constructed in time polynomial in |φ|, and we have cw(G) ≤
n+O(qk2Bq) = n+ f(ε, k) for some function f .

Proof. For fixed k ≥ 3, ε > 0, we have that B = 2k− 2 and q is a constant that only depends
on B, ε (that is, on k, ε). Each constraint of the q-CSP-B instance has at most Bq satisfying
assignments. Therefore, it is not hard to see that the whole construction can be performed
in polynomial time, if k, ε, B, q are constants. For clique-width we use the following labels:

1. n main labels, representing the variables of φ.
2. A single junk label. Its informal meaning is that a vertex that receives this label will not

be connected to anything else not yet introduced in the graph.
3. O(Bq) constraint work labels.
4. O(qk2Bq) variable-contraint incidence work labels.

To give a clique-width expression we will describe how to build the graph, following
essentially the steps given in the description of the construction by maintaining the following
invariant: before starting iteration j, all vertices of the set

⋃
j′<j V

j′,a
i (where we take the

union over all assignments a), have label i, and all other vertices have the junk label.
This invariant is vacuously satisfied before the first iteration, since the graph is empty.

Suppose that for some j ∈ {0, . . . , L− 1} the invariant is true. We use the O(Bq) constraint
work labels to introduce the vertices of the OR(Sj) gadget of step 1, giving each vertex a
distinct label. We use join operations to construct the internal edges of the OR gadget.

Then, for each variable xi that appears in the current constraint we do the following:
we use O(k2Bq) of the variable-constraint incidence work labels to introduce the vertices
of V j,ai , U j,ai as well as the implication gadgets connecting these to Sj . Again we use a
distinct label for each vertex, but the number of vertices (including internal vertices of the
implication gadgets) is O(k2Bq), so we have sufficiently many labels to use distinct labels for
each of the q variables of the constraint. We use join operations to add the edges inside all
implication gadgets. Then we use join operations to connect U j,ai to all vertices

⋃
j′<j V

j′,a
i ,

for j′ < j. This is possible, since the invariant states that all the vertices of
⋃
j′<j

V j
′,a

i have

the same label. We then rename all the vertices of U j,ai , for all a to the junk label, and do
the same also for internal vertices of all implication gadgets. We proceed to the next variable
of the same constraint and handle it using its own O(k2Bq) labels. Once we have handled
all variables of the current constraint, we rename all vertices of each V j,ai to label i for all a.
We then rename all vertices of the OR(Sj) gadget to the junk label and increase j by 1. It is
not hard to see that we have maintained the invariant and constructed all edges induced by
the vertices introduced in steps up to j, so repeating this process constructs the graph. J

5 Modular Pathwidth and ETH

In this section we present a lower bound on the complexity of k-Coloring parameterized
by modular pathwidth. Specifically, we show that, under the SETH, no algorithm can solve
k-Coloring in O∗

(
(
(

k
bk/2c

)
− ε)mpw

)
. This bound is somewhat weaker than the one in

Theorem 11, which is natural since modular pathwidth is more restrictive than clique-width.
As we see in Section 6, however, this bound is tight, even for the more general parameter
modular treewidth. The reduction reuses the gadgets of Section 4.1. We complete this section
by performing the same reduction with the ETH, rather than the SETH, as a starting point.
Under this weaker assumption we prove that k-Coloring does not admit an algorithm
running in no(mpw), even when k = O(logn), which implies that the problem does not admit

Michael Lampis XX:11

an algorithm running in 2o(k·mpw). This is tight, and also applies to clique-width (Lemma 1).
In this way, our reduction gives an alternative proof that k-Coloring is unlikely to be FPT
parameterized by clique-width, even in instances with a logarithmic number of colors.

5.1 SETH-based Lower Bound
I Theorem 15. For any k ≥ 3, ε > 0, if there exists an algorithm solving k-coloring in time
O∗
(

(
(

k
bk/2c

)
− ε)mpw

)
, where mpw is the graph’s modular pathwidth, then the SETH is false.

As in Theorem 11, we begin our reduction from a q-CSP-B instance, where the alphabet
size B is equal to the base of the exponential in our lower bound. The intuition will be
that the “important” vertices of the bags in a modular tree decomposition of our graph will
correspond to classes of bk/2c true twin vertices. The set of bk/2c colors used to color them
will encode the value of one variable of the original instance. We then use gadgets similar to
those of Theorem 11 to verify that the assignment is satisfying and consistent.

Construction. We are given some k ≥ 3, ε > 0. Let B =
(

k
bk/2c

)
. Let q be the smallest

integer such that n-variable q-CSP-B does not admit an O∗ ((B − ε)n) algorithm. Consider
an arbitrary n-variable instance of q-CSP-B, call it φ. We use the existence of the supposed
algorithm to obtain an O∗ ((B − ε)n) algorithm that decides φ, contradicting the SETH.

As in Theorem 11 we define a one-to-one translation function T . This time, when T

is given as input a value v ∈ {1, . . . , B}, it returns a subset of {1, . . . , k} of cardinality
bk/2c. Let X = {x1, . . . , xn} be the set of the n variables of the q-CSP-B instance and
C = {c0, . . . , cm−1} the set of its m constraints. We construct our graph G(φ) as follows,
where if we don’t specify a list for a vertex its list is {1, . . . , k}:

1. For each variable i ∈ {1, . . . , n} we construct a clique Vi on bk/2c vertices.
2. For each j ∈ {0, . . . ,m− 1}, let S be the set of satisfying assignments of the constraint cj .

We construct an independent set Sj with one vertex for each element of S. We construct
an OR(Sj) gadget on the set Sj .

3. For each j ∈ {0, . . . ,m− 1}, each satisfying assignment a for the constraint cj , and each
variable xi appearing in cj we do the following:

a. We construct a set U j,ai of dk/2e vertices.
b. Suppose a assigns value v to xi. For each color c ∈ {1, . . . , k} \ T (v) we select a vertex

of U j,ai . We construct a (1→ c)-implication gadget from the vertex representing a in
Sj to this vertex of U j,ai .

c. We connect all vertices of U j,ai with all vertices of Vi.

I Lemma 16. If φ is a satisfiable q-CSP-B instance, then G(φ) admits a proper list coloring.

I Lemma 17. If G(φ) admits a proper list coloring, then φ is a satisfiable q-CSP-B instance.

I Lemma 18. G(φ) can be constructed in time polynomial in |φ|, and mpw(G) ≤ n+O(1).

5.2 ETH-based Lower Bound
I Theorem 19. If there exists an algorithm that solves k-Coloring on instances with n
vertices and k = O(logn) in time no(mpw), then the ETH is false. As a result, if there is an
algorithm solving k-Coloring in time 2o(k·mpw), then the ETH is false.

ICALP 2018

XX:12 Finer Tight Bounds for Coloring on Clique-Width

6 Algorithms

We present two algorithms establishing that the lower bounds of Sections 4,5 are essentially
tight. Though both algorithms are based on standard techniques, we remark that the
algorithm for clique-width requires some extra effort to obtain a DP of the promised size.

6.1 Clique-width algorithm
Our algorithm is based on standard DP. Its basic idea is that a partial solution is characterized
by the set of colors it uses to color a set of vertices that share the same label. This leads to a
DP table of size (2k − 1)cw, by observing that for any non-empty label set, any viable partial
solution will use at least one color, hence there are 2k − 1 possible subsets of {1, . . . , k} to
consider. To improve this to (2k − 2)cw, which would match the lower bound of Theorem 11
we need a further idea which will allow us to also rule out the set that uses all k colors.

Let t be a node of the binary tree representing the clique-width expression of G, and let
V it be the set of vertices that have label i ∈ {1, . . . , cw} in the labeled graph Gt produced by
the sub-expression rooted at t. We will say that V it is a live label set if there exists an edge
in G that is incident on a vertex of V it and does not appear in Gt. In other words, a label set
is live if there is a join operation that involves its vertices which has not yet appeared in t.
The main observation is that live label sets cannot use all k colors in a valid partial solution,
since then the subsequent join operation will fail. Non-live label sets, on the other hand, are
irrelevant, since if the coloring is already valid for such a set it is guaranteed to remain valid.
Our DP algorithm will therefore keep track of the partial colorings only of live label sets,
and thus produce a DP table of size (2k − 2)cw. In this sense, our DP algorithm is slightly
non-standard, as part of its procedure involves “looking ahead” in the graph to determine if
a label set is live or not. What remains is the problem of implementing the DP so that it
takes time linear in the table size; this is handled using the techniques introduced in [2, 30].

I Theorem 20. There is an algorithm which, given a graph G, an integer k, and a clique-
width expression for G with cw labels decides if G is k-colorable in time O∗

(
(2k − 2)cw).

6.2 Modular Treewidth Algorithm
For modular treewidth, we remark that k-Coloring for this parameter can be seen as an
equivalent version of Multi-Coloring parameterized by treewidth. In Multi-Coloring,
each vertex v has a demand b(v), and we are asked to assign b(v) distinct colors to each
vertex so that neighboring vertices have disjoint colors (see e.g. [3]). In our context, the
vertex representing a class of b true twins corresponds to a vertex with demand b.

I Theorem 21. There is an algorithm which, given a graph G, an integer k, and a modular
tree decomposition of G of width mtw, decides if G is k-colorable in time O∗

((
k
bk/2c

)mtw).
7 Conclusions – Open Problems

We have given tight bounds for k-Coloring parameterized by clique-width, complementing
previously known bounds for treewidth. A natural question is now how robust these bounds
are, especially in the context of approximation. Specifically, does there exist a constant factor
approximation algorithm for k-Coloring running in O∗ ((k − ε)tw) or O∗

(
(2k − 2− ε)cw)?

Current knowledge cannot even rule out the existence of such algorithms with a small additive
approximation error and this area is still largely unexplored.

Michael Lampis XX:13

References
1 Hans L. Bodlaender and Arie M. C. A. Koster. Combinatorial optimization on graphs of

bounded treewidth. Comput. J., 51(3):255–269, 2008.
2 Hans L. Bodlaender, Erik Jan van Leeuwen, Johan M. M. van Rooij, and Martin Vatshelle.

Faster algorithms on branch and clique decompositions. In MFCS, volume 6281 of Lecture
Notes in Computer Science, pages 174–185. Springer, 2010.

3 Marthe Bonamy, Lukasz Kowalik, Michal Pilipczuk, Arkadiusz Socala, and Marcin
Wrochna. Tight lower bounds for the complexity of multicoloring. In ESA, volume 87
of LIPIcs, pages 18:1–18:14. Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik, 2017.

4 Glencora Borradaile and Hung Le. Optimal dynamic program for r-domination problems
over tree decompositions. In IPEC, volume 63 of LIPIcs, pages 8:1–8:23. Schloss Dagstuhl
- Leibniz-Zentrum fuer Informatik, 2016.

5 Bruno Courcelle and Joost Engelfriet. Graph Structure and Monadic Second-Order Logic -
A Language-Theoretic Approach, volume 138 of Encyclopedia of mathematics and its appli-
cations. Cambridge University Press, 2012.

6 Bruno Courcelle, Johann A. Makowsky, and Udi Rotics. Linear time solvable optimization
problems on graphs of bounded clique-width. Theory Comput. Syst., 33(2):125–150, 2000.

7 Bruno Courcelle and Stephan Olariu. Upper bounds to the clique width of graphs. Discrete
Applied Mathematics, 101(1-3):77–114, 2000.

8 Marek Cygan, Holger Dell, Daniel Lokshtanov, Dániel Marx, Jesper Nederlof, Yoshio
Okamoto, Ramamohan Paturi, Saket Saurabh, and Magnus Wahlström. On problems
as hard as CNF-SAT. ACM Trans. Algorithms, 12(3):41:1–41:24, 2016.

9 Marek Cygan, Fedor V. Fomin, Lukasz Kowalik, Daniel Lokshtanov, Dániel Marx, Marcin
Pilipczuk, Michal Pilipczuk, and Saket Saurabh. Parameterized Algorithms. Springer, 2015.
doi:10.1007/978-3-319-21275-3.

10 Marek Cygan, Jesper Nederlof, Marcin Pilipczuk, Michal Pilipczuk, Johan M. M. van Rooij,
and Jakub Onufry Wojtaszczyk. Solving connectivity problems parameterized by treewidth
in single exponential time. In FOCS, pages 150–159. IEEE Computer Society, 2011.

11 David P. Dailey. Uniqueness of colorability and colorability of planar 4-regular graphs are
NP-complete. Discrete Mathematics, 30(3):289–293, 1980.

12 Uriel Feige and Joe Kilian. Zero knowledge and the chromatic number. J. Comput. Syst.
Sci., 57(2):187–199, 1998.

13 Michael R. Fellows, Frances A. Rosamond, Udi Rotics, and Stefan Szeider. Clique-width
is np-complete. SIAM J. Discrete Math., 23(2):909–939, 2009.

14 Jörg Flum and Martin Grohe. Parameterized Complexity Theory. Texts in Theoretical
Computer Science. An EATCS Series. Springer, 2006.

15 Fedor V. Fomin, Petr A. Golovach, Daniel Lokshtanov, and Saket Saurabh. Intractability
of clique-width parameterizations. SIAM J. Comput., 39(5):1941–1956, 2010.

16 Jakub Gajarský, Michael Lampis, and Sebastian Ordyniak. Parameterized algorithms for
modular-width. In IPEC, volume 8246 of Lecture Notes in Computer Science, pages 163–
176. Springer, 2013.

17 Robert Ganian. Twin-cover: Beyond vertex cover in parameterized algorithmics. In IPEC,
volume 7112 of Lecture Notes in Computer Science, pages 259–271. Springer, 2011.

18 Petr A. Golovach, Daniel Lokshtanov, Saket Saurabh, and Meirav Zehavi. Cliquewidth III:
the odd case of graph coloring parameterized by cliquewidth. In SODA, pages 262–273.
SIAM, 2018.

19 Russell Impagliazzo and Ramamohan Paturi. On the complexity of k-sat. J. Comput. Syst.
Sci., 62(2):367–375, 2001.

20 Russell Impagliazzo, Ramamohan Paturi, and Francis Zane. Which problems have strongly
exponential complexity? J. Comput. Syst. Sci., 63(4):512–530, 2001.

ICALP 2018

http://dx.doi.org/10.1007/978-3-319-21275-3

XX:14 Finer Tight Bounds for Coloring on Clique-Width

21 Lars Jaffke and Bart M. P. Jansen. Fine-grained parameterized complexity analysis of
graph coloring problems. In CIAC, volume 10236 of Lecture Notes in Computer Science,
pages 345–356, 2017.

22 Daniel Kobler and Udi Rotics. Edge dominating set and colorings on graphs with fixed
clique-width. Discrete Applied Mathematics, 126(2-3):197–221, 2003.

23 Michael Lampis. Algorithmic meta-theorems for restrictions of treewidth. Algorithmica,
64(1):19–37, 2012. URL: https://doi.org/10.1007/s00453-011-9554-x, doi:10.1007/
s00453-011-9554-x.

24 Daniel Lokshtanov, Dániel Marx, and Saket Saurabh. Known algorithms on graphs on
bounded treewidth are probably optimal. In SODA, pages 777–789. SIAM, 2011.

25 Dániel Marx and Valia Mitsou. Double-exponential and triple-exponential bounds for choos-
ability problems parameterized by treewidth. In ICALP, volume 55 of LIPIcs, pages 28:1–
28:15. Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik, 2016.

26 Stefan Mengel. Parameterized compilation lower bounds for restricted cnf-formulas. In
SAT, volume 9710 of Lecture Notes in Computer Science, pages 3–12. Springer, 2016.

27 Sang-il Oum and Paul D. Seymour. Approximating clique-width and branch-width. J.
Comb. Theory, Ser. B, 96(4):514–528, 2006.

28 Daniël Paulusma, Friedrich Slivovsky, and Stefan Szeider. Model counting for CNF formulas
of bounded modular treewidth. Algorithmica, 76(1):168–194, 2016.

29 Sigve Hortemo Sæther and Jan Arne Telle. Between treewidth and clique-width. Algorith-
mica, 75(1):218–253, 2016.

30 Johan M. M. van Rooij, Hans L. Bodlaender, and Peter Rossmanith. Dynamic programming
on tree decompositions using generalised fast subset convolution. In ESA, volume 5757 of
Lecture Notes in Computer Science, pages 566–577. Springer, 2009.

31 David Zuckerman. Linear degree extractors and the inapproximability of max clique and
chromatic number. Theory of Computing, 3(1):103–128, 2007.

https://doi.org/10.1007/s00453-011-9554-x
http://dx.doi.org/10.1007/s00453-011-9554-x
http://dx.doi.org/10.1007/s00453-011-9554-x

Michael Lampis XX:15

A Omitted Material

A.1 Proof of Lemma 1
Lemma 1. The inequality pw(G) ≥ mpw(G) follows trivially from the definition of modular
pathwidth and the fact that deleting vertices from a graph can only decrease its pathwidth.
The inequality mpw(G) ≥ mtw(G) follows from the fact that paths are trees.

Finally, observe that if u, v are twins of G then cw(G) = cw(G − v), because given a
clique-width expression for the graph obtained by deleting v, we can obtain a clique-width
expression for G by introducing v immediately after u using a different label, joining them
if they are true twins, and then renaming the label of v to that of u. We therefore have
cw(G) = cw(Gt) ≤ pw(Gt) + 2 = mpw(G) + 2. J

A.2 Proof of Theorem 2
Theorem 2. Fix a B, ε, and suppose that there is an algorithm solving n-variable q-CSP-B
in (B − ε)n time, for any q. We will find some δ > 0, such that we will obtain an algorithm
that solves n-variable q-SAT in time (2− δ)n for any q. This will contradict the SETH.

Suppose that we are given a q-SAT instance with n variables. We first define an integer
p and a real δ > 0 such that there exists an integer t for which we have:

(B − ε)p ≤ (2− δ)t < 2t ≤ Bp

In particular, it suffices to select p so that Bp ≥ 2(B−ε)p for such a t to exist. Equivalently,
p logB ≥ 1 + p log(B − ε)⇒ p ≥ 1

log B
B−ε

, so we set p = d 1
log B

B−ε
e, and then a δ that satisfies

the second inequality always exists.
We now group the n variables of the given SAT instance into γ = dn/te groups of at

most t variables each. Call these groups V1, V2, . . . , Vγ . For each such group Vi we construct
a group of p variables of the CSP instance, call them Xi. Furthermore, we define (in some
arbitrary way) a correspondence which for each assignment to the variables of Vi gives a
distinct assignment to the variables of Xi. This is always possible, since 2t ≤ Bp. Observe
that our CSP instance has γp = pdn/te ≤ pn

t + p variables.
Now, for each clause of the q-SAT instance, if it involves variables from the groups

Vi1 , Vi2 , . . . , Viq , we construct a constraint that involves all the variables of the groups
Xi1 , . . . , Xiq (in other words, we transform q-clauses into (qp)-constraints). To define the
satisfying assignments of the constraint, recall that we have defined a function that maps
each assignment of a group Vi to an assignment of a group Xi. We extend these to obtain
a function that maps assignments to Vi1 ∪ . . . ∪ Viq to assignments of Xi1 ∪ . . . ∪Xiq , and
retain as satisfying assignments for the constraint exactly those assignments that are images
of assignments that satisfy the original clause.

This completes the construction, and we remark that everything can be performed in
polynomial time if q,B, ε are constants, as p, t only depend on B, ε. It is also not hard to see
that the instances are equivalent: if there is a satisfying SAT assignment, we give each Xi

the assignment that the satisfying assignment of Vi is mapped to; in the converse direction,
because all constraints are satisfied we have selected for each Xi an assignment that is the
image of some assignment to Vi, and in such a way that the obtained assignment for the
SAT instance satisfies all clauses.

We now invoke the supposed CSP algorithm on our instance where each constraint
involves at most qp variables, and the number of variables is N = pdn/te ≤ pn

t + p. The
algorithm will run in time

ICALP 2018

XX:16 Finer Tight Bounds for Coloring on Clique-Width

(B − ε)N ≤
(
(B − ε)p

)n
t +1 ≤

(
(2− δ)t

)n
t +1 ≤ 2t · (2− δ)n

Again, because t only depends on B, ε, this running time is O∗((2− δ)n), and we have
obtained a faster than 2n algorithm for q-SAT, for any q. J

A.3 Proof of Lemma 3
Lemma 3. For modular pathwidth, we add to the graph a clique on k vertices, call them
c1, . . . , ck. For each vertex u of G whose list is L ⊆ {1, . . . , k} we connect u to all ci such
that i 6∈ L. It is not hard to see that this produces an equivalent instance. Furthermore, if all
twins of G share the same list, they remain twins. We can therefore obtain a modular path
decomposition of the new graph by adding c1, . . . , ck to all bags of the original decomposition.

To obtain a clique-width expression we start with a clique-width expression of the original
graph, and let l1, . . . , łk be k fresh labels. For every vertex u whose list is L(u) ⊆ {1, . . . , k},
we replace its introduce node with a sub-expression which introduces the vertex u, as well as
k new vertices each using a distinct label from l1, . . . , lk; and then performs join operations
between the label of u and all labels li, for i 6∈ L(u). In the root of the expression we add
join operations between every pair of labels in {l1, . . . , lk}. As a result, we have added to the
graph a complete k-partite graph, and each original vertex is connected to a subset of the
parts of this graph in a way that simulates its list. J

A.4 Proof of Lemma 5
Lemma 5. Suppose we assign colors c1, c2 to u1, u2. If c1 6= c2 this would mean that we
would have to color v1 with c2, which forces v2 to color c′, which leaves no available color to
v3. If c1 = c2 and we use this color on both u1, u2 then we must give colors c′, c′′ to v1, v3
respectively, making it impossible to color v2.

For the converse direction, suppose a coloring of G′ assigns a color other than c1 to u1.
We can then give color c1 to v1 and this means that for any color we give to v3, v2 has a
color available to complete the coloring. If on the other hand a coloring gives a color other
than c2 to u2, we give color c2 to v3. If c1 = c2 we are done, because the list of v2 does not
contain c2, so we can always extend a coloring of v1 to v2. If c1 6= c2, we color v2 with c′,
and this will not contradict any coloring of v1, since c′ is not in the list of v1. J

A.5 Proof of Lemma 7
Lemma 7. Follows directly from the proof of Lemma 5. In particular, if u1 receives c1 and
u2 receives c′ 6= c2, by construction there exists a (c1, c

′)-weak edge from u1 to u2 which
cannot be colored. For the converse direction, all weak edges of the implication gadget are
activated either by setting u1 to c1, or setting u2 to a color other than c2. J

A.6 Proof of Lemma 8
Lemma 8. We prove the lemma just for (c1, c2)-weak edges, since implication gadgets are
just collections of weak edges that share the same endpoints.

Consider a path decomposition of G′. We construct a path decomposition that contains
the internal vertices of a weak edge with endpoints u1, u2 as follows: first we find a bag of
the decomposition of G′ that contains both u1, u2 (such a bag exists because (u1, u2) is an
edge of G′); then we insert after this bag an identical bag, into which we insert the three
internal vertices of the weak edge. We repeat this process for all weak edges. J

Michael Lampis XX:17

A.7 Proof of Lemma 10
Lemma 10. Observe that a coloring that does not use color 1 in S would be a two-coloring
of the path induced by S ∪ S′ using colors {2, 3}. However, this path has an odd number
of vertices, therefore the endpoints would need to be assigned the same color. Because we
have assigned to the endpoints the singleton lists {2}, {3}, this is impossible. For the second
claim, if we give color 1 to a vertex u ∈ S, the remaining vertices induce two disjoint paths,
each of which has a single vertex with a singleton list, hence both paths can be two-colored
with {2, 3}. J

A.8 Proof of Theorem 11
Theorem 11. The proof now follows from the described construction, Theorem 2, and
Lemmata 3, 12, 13, 14. In particular, given any fixed k ≥ 3, ε > 0, our construction, in
combination with Lemma 3 and 12 produces a k-Coloring instance of clique-width n+f(k, ε)
and size polynomial in the original q-CSP-B instance. If there exists an algorithm running
in O∗

(
(2k − 2− ε)cw) for k-Coloring, since we have set B = 2k − 2, this immediately gives

a O∗ ((B − ε)n) algorithm for q-CSP-B. However, we assumed that q is sufficiently large
that the existence of such an algorithm would contradict the SETH. J

A.9 Proof of Lemma 16
Lemma 16. Suppose we have a satisfying assignment to φ. If the assignment gives value
vi to variable xi, we use the colors of T (vi) to color Vi, in some arbitrary way. For each
constraint cj , the assignment gives values to the variables of cj consistent with some satisfying
assignment a of the constraint. We give color 1 to the vertex of Sj representing a, and use
colors 2, 3 to color the rest of Sj . The only implication gadgets activated in this way are
those incident on the vertex representing a; we give to their other endpoint, which is found
in U j,ai , the only viable color. For all other a′ 6= a we give to vertices of U j,a

′

i a color that we
used in U j,ai . We claim that this is a proper coloring because the colors we used in U j,ai are
{1, . . . , k} \ T (vi), while the colors we used in Vi are T (vi), hence all edges between Vi and
U j,ai are properly colored for any a. J

A.10 Proof of Lemma 17
Lemma 17. Suppose that we are given a proper list coloring c : V → {1, . . . , k} for G. We
extract an assignment for φ as follows: for each i ∈ {1, . . . , n}, let c(Vi) be the set of colors
the coloring uses for Vi. Since Vi is a clique, this set includes bk/2c elements. We therefore
set xi = T−1(c(Vi)) and this is well-defined since T is a one-to-one correspondence between
{1, . . . , B} and subsets of {1, . . . , k} of size bk/2c.

We argue that this assignment is satisfying. Suppose to the contrary that it does not
satisfy a clause cj . Because of the OR gadget, one of the vertices of Sj has received color
1, say the vertex that represents the satisfying assignment a of cj . This assignment must
disagree with our assignment in some variable that appears in cj , say the variable xi. Suppose
that a assigns value v′ to xi, while our assignment has given value v to xi.

Because of the implication gadgets incident on the vertex representing a in Sj , we have
that U j,ai uses the dk/2e colors of {1, . . . , k} \ T (v′). However, Vi uses the bk/2c colors of
T (v). If T (v) 6= T (v′) then T (v) ∩ ({1, . . . , k} \ T (v′)) 6= ∅, which contradicts the correctness
of the coloring. J

ICALP 2018

XX:18 Finer Tight Bounds for Coloring on Clique-Width

A.11 Proof of Lemma 18
Lemma 18. We first observe that, for all i ∈ {1, . . . , n}, the vertices of Vi are true twins
with the same list ({1, . . . , k}). For the purposes of computing the modular pathwidth of the
graph, we can therefore retain a single vertex of each Vi. We now delete these n vertices,
and what remains is to show that the graph we obtain has pathwidth O(1).

By Lemma 8 we can replace all implication gadgets by simple edges, and this will not
decrease the pathwidth of the graph by more than a small constant. We observe that
after removing the sets Vi, the graph is disconnected, and we have one component for each
j ∈ {0, . . . ,m}. This component contains an OR(Sj) gadget, and the vertices of the sets
U j,ai . However, all such vertices are now leaves, because each such vertex is connected to a
unique vertex of Sj and its other neighbors (the set Vi) no longer exist in the graph. If we
remove such leaves the graph that remains is simply the OR(Sj) gadgets, which form paths.
Hence, the graph obtained after removing the sets Vi has constant pathwidth. J

A.12 Proof of Theorem 15
Theorem 15. The proof now follows from the described construction, Theorem 2, and
Lemmata 3, 16, 17, 18 in a same way as the proof of Theorem 11. J

A.13 Proof of Theorem 19
Theorem 19. The construction we use to prove Theorem 19 is identical to the construction
presented in the previous section. We change, however, our starting point: given an n-variable
3-SAT instance, we will construct a q-CSP-B instance where q = 3 and B = n.

More specifically, given an instance φ1 of 3-SAT with n variables, our first step will
be to construct an instance φ2 of q-CSP-B. We assume without loss of generality that n
is a power of 2. We partition the variables of φ into t sets V1, . . . , Vt, such that each set
contains at most logn variables. Therefore t = dn/ logn/e. For each group of variables
Vi we define a CSP variable xi that will take values in {1, . . . , n}. We make a one-to-one
correspondence translation between values of xi and truth assignments for the variables of Vi.
We now construct the constraints of φ2 as follows: for each clause cj of φ1, suppose that cj
involves three variables, from the groups Vj1 , Vj2 , Vj3 . We construct a constraint c′j involving
the variables xj1 , xj2 , xj3 . The satisfying assignments of this constraint are all assignments
whose translation satisfies cj . It is not hard to see that the construction of φ2 can be done
in polynomial time, and that we produce an equivalent instance.

We have now constructed a q-CSP-B with N = dn/ logne variables, alphabet size B = n,
and arity q = 3. If there exists an algorithm solving this instance in Bo(N) = 2o(n), then
the ETH is false. Set k := 2 logn. We observe that

(
k
bk/2c

)
= (2 logn)!

(logn)!(logn)! ≥ 2logn = B. We
therefore perform the construction of Theorem 15, where we have q = 3, k = 2 logn, and we
define the translation function T so that it is one-to-one; this is possible since

(
k
k/2
)
≥ B. All

the arguments of the construction go through unchanged, and the produced graph has size
polynomial in n and modular pathwidth N +O(1) = n

logn +O(1). Therefore, if there exists
an algorithm running in time |G|o(cw) = 2o(n) this would contradict the ETH. Similarly, if
there was an algorithm running in 2o(k·mpw) = 2o(n) this would contradict the ETH. J

A.14 Proof of Theorem 20
Theorem 20. We assume we are given a binary tree representing the clique-width expression
that produces G. For each node t let `(t) be the number of live labels in the graph Gt, that

Michael Lampis XX:19

is, the graph produced by the sub-expression rooted at t. A label i is live at Gt if the set V it
of vertices that have this label in Gt is non-empty, and there is an edge in G that is incident
on a vertex of V it and does not appear in Gt. Clearly, `(t) ≤ cw.

Let C := 2{1,...,k} \ {∅, {1, . . . , k}} be the set of all interesting sets of colors, that is, all
sets of colors except the empty set and the set that contains all colors. For each node t of
the tree we will maintain a dynamic programming table At : C`(t) → N. The meaning of
such a table is the following: its input, describes the signature of a partial solution, that
is, a valid k-coloring of Gt, in the sense that it defines for each live label i the set of colors
used in a partial coloring to color the vertices of V it . Given such a signature the table stores
the number of colorings of Gt that agree with this signature. The reason we select to solve
the more general counting problem is that this allows us to adopt the techniques of [30] to
speed up that computation of the table in union nodes. To ease notation, we will interpret
signatures S ∈ C`(t) as functions which, given a live label return the set of colors used in this
label set in signature S.

Before proceeding, let us explain why this table, whose size is O∗
(
(2k − 2)cw) stores

sufficient information to solve the problem. First, it is not hard to see that it is not a problem
that At does not store information regarding empty label sets, hence it is not a problem
that ∅ 6∈ C. Second, if a partial solution uses all colors {1, . . . , k} to color a live label set
V it , it is clear that this solution cannot be extended to a coloring of the whole graph, as the
vertices of V it will later acquire a new common neighbor (since i is live), for which no color is
available. Hence, not considering such solutions for live labels is also not a problem. Finally,
if a partial solution represents valid k-colorings of Gt, vertices belonging to a non-live label
have all their edges properly colored. Since the label is non-live, these vertices already have
their incident edges properly colored in G, At does not need to store information on non-live
labels, apart from the fact that the coloring of Gt is valid.

Given the above definition of the table we will now proceed inductively on its calculation.
For introduce nodes that construct a vertex with label l ∈ {1, . . . , cw} there is only one live
label, so for each color c ∈ {1, . . . , k} the table At has an entry At[{c}] = 1.

For a join node t with child node t′ where the join operation is performed between labels
i1, i2, for every signature S ∈ C`(t′) such that S(i1) ∩ S(i2) 6= ∅ we update the corresponding
entry of At′ to 0. Then, if i1, i2 are still live labels in t we simply copy At′ to At. If i1 has
become non-live in t we set At[S] =

∑
S1∈C At′ [S × S1], that is, to compute the number of

solutions that produce a signature S in t we consider all signatures S′ in t′ which extend S
by giving a set of colors to label i1, and take the sum of the corresponding entries. We do a
similar operation if i2, or both i1, i2 become non-live.

For a rename node t with child node t′ where the rename operation is performed from
label i1 to label i2, we have several cases. First, if i1 was a non-live label in t′, then i2
is also non-live in both t, t′. In this case, we simply copy the table At′ to At. Second,
if i1 is live in t′, then i2 is live in t. Now, suppose that i2 is non-live in t′. This means
that i2 is empty in t′, so we can again copy At′ to At replacing label i1 with i2 in every
signature. Finally, the interesting case is when i1, i2 are both live in t′, therefore i2 is live
in t. We have `(t) = `(t′) − 1. We initialize At to be 0 everywhere and then, for every
entry of At′ we do the following: if At′ [S] = v we take the signature S′ in t which sets
S′(i2) = S(i1) ∪ S(i2), and S′(i′) = S(i′) for i′ 6= i2, and add to A[S′] the value v, under the
condition that S(i1) ∪ S(i2) 6= {1, . . . , k}. In other words, in order to calculate how many
solutions give a set of colors to label i2 in t, we consider all solutions in t′ such that the
union of colors used in i1, i2 gives this set. As explained, we disregard signatures S for which
S(i1) ∪ S(i2) = {1, . . . , k}, because such signatures do not represent solutions that can be

ICALP 2018

XX:20 Finer Tight Bounds for Coloring on Clique-Width

extended to colorings of G, due to the liveness of i1, i2.
Finally, the most challenging part of this algorithm is how to handle a union node t with

two children t1, t2. Here, we will need to transform the tables At1 , At2 in a form that will
more easily allow us to combine the solutions, along the lines of the technique used in [30].
In particular, define two tables Bt1 , Bt2 : C`(t) → N whose intended meaning is the following:
the input is a signature S giving set of colors for every live label of t (note that some of
these labels may be empty in t1 or t2); a partial solution in Gt1 satisfies this signature if for
each live label i of t the coloring uses a subset of S(i) to color V it1 (and similarly for Gt2). In
other words, the difference between tables A,B is that in A the sets of colors given in the
signature are exact, while in B they form upper bounds on the set of allowed colors that
a partial solution may use in a label set. It is not hard to see that the size of Bt1 , Bt2 is
O∗
(
(2k − 2)cw), because once again we are only interested in live labels of t.
We now need to describe three steps: first, how we can convert At1 , At2 to Bt1 , Bt2 in

time almost-linear in the size of the tables; second, how we can compute Bt from Bt1 , Bt2 in
the same time; third, how we can obtain At from Bt.

For the first part, we proceed inductively. Let ` = `(t1) be the number of live labels
of t1, and suppose without loss of generality that these labels are {1, . . . , `}. For each
i ∈ {1, . . . , `} and j ∈ {0, 1, . . . , k + 1} we define Bi,jt1 [S] as the number of colorings with the
following property: if the coloring uses the set of colors Cl to color V lt1 then for all l < i,
Cl ⊆ S(l); for all l > i, Cl = S(l); and for l = i, Cl ∩ {1, . . . , j} ⊆ S(l) ∩ {1, . . . , j}, and
Cl ∩ {j + 1, . . . , k} = S(l) ∩ {j + 1, . . . , k}. We observe that B1,0

t1 = At1 , while B
l,k+1
t1 = Bt1 .

We also observe that Bi,k+1
t1 = Bi+1,0

t1 , for all i ∈ {1, . . . , ` − 1}. Therefore, it suffices to
explain how to compute Bi,jt1 from Bi,j−1

t1 for all i ∈ {1, . . . , `} and j ∈ {1, . . . , k + 1} in time
O∗
(
(2k − 2)cw), and then we can repeat this process k` times. We now use the fact that

for all signatures S, such that j 6∈ S(i), Bi,jt1 [S] = Bi,j−1
t1 [S]; while for signatures S where

j ∈ S(i) we have Bi,jt1 [S] = Bi,j−1
t1 [S] +Bi,j−1

t1 [S′], where S′ is the signature that agrees with
S everywhere, except it sets S′(i) = S(i) \ {j}. The correctness of this procedure follows
directly from the definitions given above. Note that we have defined Bt1 on signatures on live
labels in t1, rather than signatures on live labels of t. However, the labels which are live in t
but not t1 are empty in Gt1 , hence their coloring is irrelevant, and a version of Bt1 that uses
signatures on live labels of t can easily be obtained. We obtain Bt2 with the same algorithm.

For the second part, we observe that for all signatures S we have Bt[S] = Bt1 [S]×Bt2 [S].
Since multiplication of numbers with nO(1) bits can be dones in nO(1) time, this step also
takes time O∗

(
(2k − 2)cw).

Finally, to convert Bt to At we use the reverse of the procedure we described. We
again define Bi,jt in the same way, and compute Bi,j−1

t from Bi,jt for all i ∈ {1, . . . , `},
j ∈ {1, . . . , k + 1}. For a signature S such that j 6∈ S(i) we set Bi,j−1

t [S] = Bi,jt [S]; while if
j ∈ S(i), and S′ is the signature that agrees with S everywhere except S′(i) = S(i) \ {j}, we
set Bi,j−1

t [S] = Bi,jt [S]−Bi,jt [S′]. J

A.15 Proof of Theorem 21
Theorem 21. The algorithm uses standard DP techniques, so we will sketch some of the
details. We assume that we are given the graph Gt, where each twin class is represented
by a single vertex (otherwise, Gt can be computed in polynomial time). Furthermore, we
can assume that G did not contain any false twins, because if for two vertices u, v we have
N(u) = N(v) then deleting one of the two vertices does not affect the k-colorability of the
graph. Hence, every vertex of Gt represents a class of true twins in G. For each vertex v of
Gt we define b(v) as the size of the class of true twins that contains v in G (therefore, for

Michael Lampis XX:21

vertices without twins in G we have b(v) = 1). We observe that maxv∈V b(v) ≤ k, because
otherwise there exists a clique of size k + 1 and we can immediately reject.

We will now solve Multi-Coloring on Gt with the demands b(v) we defined. We recall
that the goal is to assign to each vertex v a subset C(v) ⊆ {1, . . . , k} with |C(v)| = b(v) so
that for any edge (u, v) ∈ E we have C(v) ∩ C(u) = ∅.

Our algorithm will, in every bag consider all possible assignments of b(v) colors to each
vertex v of the bag. We reject partial solutions for which two neighbors in the bag have
non-disjoint assignments. It is not hard to see how this table can be maintained with standard
DP techniques in time linear in its size, if we are working with a nice tree decomposition [1].
Let us therefore bound the size of the table. For a vertex v with demand b(v) our algorithm
will consider all

(
k
b(v)
)
possible colorings. However,

(
k
b(v)
)
≤
(

k
bk/2c

)
, we therefore have that

the size of the table is at most
(

k
bk/2c

)mtw. J

ICALP 2018

	Introduction
	Definitions and Preliminaries
	SETH and Non-binary CSPs
	SETH-based Lower Bound for Clique-width
	List Coloring and Basic Gadgets
	Reduction for Clique-width

	Modular Pathwidth and ETH
	SETH-based Lower Bound
	ETH-based Lower Bound

	Algorithms
	Clique-width algorithm
	Modular Treewidth Algorithm

	Conclusions – Open Problems
	Omitted Material
	Proof of Lemma 1
	Proof of Theorem 2
	Proof of Lemma 3
	Proof of Lemma 5
	Proof of Lemma 7
	Proof of Lemma 8
	Proof of Lemma 10
	Proof of Theorem 11
	Proof of Lemma 16
	Proof of Lemma 17
	Proof of Lemma 18
	Proof of Theorem 15
	Proof of Theorem 19
	Proof of Theorem 20
	Proof of Theorem 21

