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abstract

Structural Parameterizations of Hard Graph

Problems

by

Michail Lampis

Adviser: Amotz Bar-Noy

In traditional computational complexity we measure algorithm running times as

functions of one variable, the size of the input. Though in this setting our goal is

usually to design polynomial-time algorithms, most interesting graph problems are

unfortunately believed to require exponential time.

Parameterized complexity theory refines this by introducing a second variable,

called the parameter, which is supposed to quantify the “hardness” of each specific

instance. The goal now becomes to confine the combinatorial explosion to the pa-

rameter, by designing an algorithm that runs in time polynomial in the size of the

input, though inevitably exponential in the parameter. This will allow us to tackle

instances where the parameter value is much more modest than the input size, which

will happen often if the parameter is chosen well.

In this work we deal with parameterized versions of intractable graph problems.

Our focus will be structural parameterizations, meaning that the parameters we

choose will be measures which attempt to quantify the complexity of a graph. The

most important such measure in the literature is treewidth, a notion which quantifies

how “tree-like” a graph is. Here, we will consider parameterizations by treewidth, but

also by alternative measures of graph complexity such as vertex cover, or maximum

degree.
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Our results move in two directions: First, we study the computational complexity

of structural parameterizations of several specific problems. In this vein we show

hardness results for Maximum Path Coloring parameterized by measures such as

treewidth and maximum degree; we present algorithms for two parameterizations of

Vertex Cover; and we present algorithms and hardness results for three different

parameterizations of the modal satisfiability problem.

Second, we study the algorithmic properties of structural parameters not with

respect to a specific problem, but with respect to whole classes of problems. For

undirected graphs we present algorithmic meta-theorems which show that large classes

of problems are tractable when parameterized by vertex cover or max-leaf number.

Our results strengthen a famous theorem due to Courcelle, for these special cases.

For directed graphs we give hardness results for Hamiltonian Circuit and Max

Di Cut which apply to essentially all the definitions of directed treewidth which have

appeared in the literature, showing that none of them is as algorithmically potent as

(undirected) treewidth.
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Chapter 1

Introduction

1.1 Motivation and Background

In traditional computational complexity, the running time of an algorithm solving

a problem is measured as a function of the input size, and algorithms that run in

polynomial time are considered efficient. However, the vast majority of interesting

graph problems are intractable, that is, the best algorithms that have been found

for them, unfortunately, run in time exponential in the input size, and are thus

impractical. Even worse, it is now known that this cannot be improved, unless widely

believed conjectures are disproved, because most graph problems are known to be

NP-hard.

Parameterized complexity theory offers a different angle to this story. Here, the

running time of an algorithm is measured as a function of two variables: the input

size, and a second variable called the parameter. The parameter is meant to capture

a given instance’s “hardness” and to let us handle exactly the aspect of the problem

that makes it intractable. The goal here is an algorithm that runs in time polynomial

in the input size, though (inevitably) exponential in the parameter. From a practical

point of view, this is much more useful than an exponential-time algorithm because

1



michail lampis Structural Parameterizations 2

it will allow us to solve even large instances if the parameter value is moderate. If the

parameter is chosen wisely, it will have moderate values in a large class of practically

interesting instances.

What exactly is the parameter, though, and how can one choose it wisely? We

must define a parameter value for every instance of the problem while trying to

satisfy two conflicting goals: First, we would like the parameter to offer us useful

algorithmic footholds into the problem, or more precisely, we would like to be able

to prove that instances of the problem where the parameter has moderate value are

tractable. We often say here that we want to “confine the combinatorial explosion”

to the parameter, by obtaining an algorithm that runs in time exponential only in

the value of the parameter, but polynomial in the input size. Second, we would like

as many interesting instances as possible to actually have a low value for the selected

parameter, to make our parameterized algorithm as useful as possible.

To make this a little more concrete, consider a problem such as Graph Col-

oring. One could consider the number of available colors as the parameter. This

would satisfy our second goal, since in a lot of practical situations we need to color

large graphs with a relatively small number of colors. However, it would fail the first

requirement since asking whether a graph is colorable with a small number of colors

(say, three) is still a hard problem. On the other hand, one could consider the num-

ber of vertices in the graph as the parameter. This would trivially satisfy the first

requirement, since in a relatively small graph it’s possible to brute force the problem,

but not the second since the case we are generally interested in is large graphs.

Two main trends have dominated the literature on parameterizations of optimiza-

tion problems on graphs. The first approach, which we might call natural parameteri-

zation, consists simply of considering the target value of the objective function as the

parameter. For example, consider the Vertex Cover problem parameterized by

the size of the vertex cover we seek to find (similar parameterizations of course exist
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for other such problems such as Dominating Set, Clique, etc.). This parameter-

ization has the potential to satisfy our second requirement, since in many practical

instances we may be interested in finding a vertex cover of size much smaller than

the size of the graph. The question then becomes whether we can use the moderate

target value of the objective function to significant algorithmic advantage, thus also

satisfying the first.

The other main trend has been to consider some measure of the input graph’s

complexity as the parameter, regardless of the specific problem we are trying to solve.

In this work, we will call such parameterizations, which do not involve the objective

function, structural parameterizations. By far the most important achievement of

this area has been the development of the algorithmic theory of treewidth and its

related graph widths. Informally, treewidth is a measure that quantifies how “tree-

like” a graph is, with graphs which are closer to having a tree-like structure having

lower treewidth. The reason treewidth is considered such a successful notion of graph

complexity is that, to a large extent, it achieves both of our basic goals: the class

of graphs of moderate treewidth is very large (and includes many well-known classes

such as outerplanar and series-parallel graphs) while at the same time a large number

of normally hard problems have been found to be tractable on graphs of low treewidth.

Though treewidth occupies a rare sweet spot, combining graph generality and

algorithmic amenability, many other related widths have been proposed, each with

its own strengths and drawbacks (e.g. clique-width, pathwidth, etc.). More recently,

research has focused on alternative structural parameterizations, which, rather than

inventing graph widths to quantify the complexity of the input graph, rely on well-

known graph invariants, such as the size of a graph’s minimum vertex cover, or the

number of vertices that need to be deleted to make it bipartite. This work has opened

the door to what could potentially become a huge research area in the future.

One of the most important advantages of structural parameterizations is the fact
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that, quite often, the algorithmic ideas developed in the study of a given parameter,

such as treewidth or vertex cover, can be effectively reused to attack different problems

again and again. This is again exemplified by the case of treewidth, where the basic

ideas of using dynamic programming on graphs of bounded treewidth can be applied

to attack a vast array of graph problems.

Thus, the area of structural parameterizations of graph problems naturally leads

to two directions. One is the study of a given problem parmeterized by various widths

or other measures. This gives an improved understanding of what makes this problem

hard and also gives us better insight into the combinatorial behavior of the problem.

The other is the study of the parameters themselves, or more precisely, the study

of the algorithmic properties of whole families of problems when parameterized by a

given width. This is often called the area of algorithmic meta-theorems.

Algorithmic meta-theorems are general statements which prove tractability for a

family of problems (often defined by expressibility in some logic) when parameterized

by some measure. The most famous and celebrated result of this form is Courcelle’s

theorem, which states that a large family of problems (those expressible in Monadic

Second Order logic) is solvable in linear time on graphs of bounded treewidth. Besides

Courcelle’s theorem, several other results in the same spirit have appeared in the

literature and it has become an interesting topic in and of itself to discover the

boundaries to what kind of meta-theorems can be proved.

1.2 Contribution

In this thesis we give several new results in the area of structural parameterizations

of hard problems, related to the study of both algorithmic meta-theorems and of

parameterizations of specific problems. First, we will review the formal definitions

of parameterized complexity and other fundamental notions, such as treewidth, in



michail lampis Structural Parameterizations 5

Chapter 2. In subsequent chapters, we state and prove our results, after reviewing

additional definitions and background as needed.

In Chapter 3 we work on the area of algorithmic meta-theorems for undirected

graphs and we give several strengthenings of Courcelle’s famous results, but for more

restricted graph classes. More specifically, our motivation here is that the “hidden

constants” in the running time of the algorithm implied by Courcelle’s theorem are

huge (towers of exponentials) and there are lower bounds showing that this probably

cannot be improved. To improve the situation we study two graph parameters which

are more restricted than treewidth, namely vertex cover and max-leaf number, and

show meta-theorems in those cases where the running time is vastly improved. In the

case of vertex cover, we also show essentially matching lower bounds.

In Chapter 4 we switch to the study of treewidth variants for directed graphs.

Unlike the case of undirected graphs, where treewidth is viewed more or less as the

“right” width, several competing definitions of treewidth for digraphs have appeared

in the literature. Here we will show two hardness results which imply that essentially

none of them can reach the same level of success that treewidth reached for undirected

graphs.

Finally, in Chapter 5 we move from the study of widths to the study of specific

problems structurally parameterized. We show three sets of results:

• In Section 5.1 we study the Maximum Path Coloring problem with respect

to several structural parameters: the input graph’s maximum degree, the in-

put graph’s treewidth and the available number of colors. We give a number

of parameterized hardness results which show that, unlike the related Path

Coloring problem, none of these parameters helps much to make the problem

tractable.

• In Section 5.2 we study the problem of satisfiability for the basic modal logic K.

After reviewing the basics of modal logic we show a number of tractability and
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hardness results for various structural parameters which attempt to quantify

how complex a modal formula is.

• Finally, in Section 5.3 we study the Vertex Cover problem, parameterized

by the number of edges one has to delete to make a graph bipartite. We show

how our algorithm can be used to also obtain a tractability results for Vertex

Cover parameterized above a lower bound.



Chapter 2

Definitions and Background

2.1 General Background

Throughout this work we assume a basic background in Algorithms and Complexity

as well as Graph Theory (see Kleinberg and Tardos [2006], Papadimitriou [1994],

West [2001]). In this section we briefly review some basic concepts and notation.

We will be dealing with decision or optimization problems, mainly on graphs. A

graph G is a pair (V,E), where V is the set of vertices and E, which is the set of

edges, is a set of pairs of elements from V . Unless stated otherwise the edges are

unordered and thus the graphs are undirected (We will deal with directed graphs in

Chapter 4). We use n to denote the number of vertices of a graph and m to denote

the number of edges. A path of length p in a graph is a sequence of distinct vertices

v0, v1, v2, . . . , vp such that for all i ∈ {0, . . . , p− 1} we have (vi, vi+1) ∈ E. A cycle is

a path where the last vertex is the same as the first. A graph is connected if there

exists a path between any two of its vertices. A graph without cycles is called a

forest. A connected forest is called a tree. The neighborhood of a vertex v, denoted

N(v) is the set {w ∈ V | (v, w) ∈ E}, while N [v] will denote the closed neighborhood

N(v) ∪ {v}. The degree of a vertex v is |N(v)|. We denote the maximum degree

7
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of any vertex in a graph by ∆. For a subset V ′ ⊆ V we write G[V ′] for the graph

obtained if we delete all the vertices in V \ V ′ and all edges touching them. We call

this the subgraph induced by V ′. If a graph G is connected but for a set of vertices

S we have that G[V \ S] is not connected we say that S is a separator. A clique is

a graph which contains all possible edges, while an independent set is a graph with

no edges. A graph is bipartite if its vertex set can be partitioned into two sets which

induce independent sets.

It is assumed that the reader is familiar with the basics of computational com-

plexity theory. In order to keep the presentation clear we will be informal in the

description of all our algorithms, though it should be straightforward to translate the

results given here to any reasonable concrete model of computation, such as Turing

machines. We treat all problems as (Yes/No) decision problems, assuming in the

case of optimization problems that a target value for the objective function is given

in the input. Recall that P denotes the class of decision problems solvable in time

polynomial in the length of the input and NP denotes the class of problems solvable in

non-deterministic polynomial time. We will often rely on the (standard) assumption

that P 6=NP. In fact, we will sometimes prove results based on the stronger assumption

that there is no 2o(n) algorithm for 3-SAT. This is often called the Exponential-Time

Hypothesis (ETH) in the literature (for more on the ETH see for example Woeginger

[2003]). Besides polynomial and exponential functions we will sometimes see towers

of exponentials in our running times, for which the following definitions are useful:

tow(h) is the function inductively defined as tow(0) = 0 and tow(h + 1) = 2tow(h),

while log∗ n is the function inductively defined as log∗ n = 1+log∗(log n) if n > 1 and

log∗ n = 0 otherwise.
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2.2 Parameterized Complexity

2.2.1 Definitions and Classes

In this section we recall some of the basic facts of parameterized complexity theory.

For more information about parameterized complexity in general see the standard

monographs on the subject Flum and Grohe [2006], Niedermeier [2006], Downey and

Fellows [1999].

We use the standard definitions of parameterized complexity. The input in a

parameterized problem is a pair (χ, k), where χ is a string encoding the actual problem

instance and k is an integer representing the parameter. There is no restriction on

what the additional integer k, which we are given, is supposed to be, but generally

it is expected that the value of k will somehow correspond to the hardness of the

given instance, with higher values indicating a harder instance. A typical example

might be a graph problem where k is the maximum degree of the input graph, or an

optimization problem where k is the value of the objective function we seek to achieve.

Note here that it is possible to define several different parameterized versions of the

same decision problem, by making different decisions about what the parameter is.

We call these alternative “parameterizations” of the problem.

A Fixed-Parameter Tractable problem is a parameterized problem which can be

solved by an algorithm with running time O(f(k) · |χ|c), where f is any computable

function, |χ| is the length of χ and c is a constant independent of (χ, k). The class

FPT is the class of all fixed-parameter tractable problems. The class XP is the class

of all parameterized problems which can be solved by an algorithm running in time

polynomial in |χ| (that is, polynomial when k is constant).

As a first approximation, it is helpful to think of FPT as the parameterized ana-

logue of the class P. In other words it is usually our first goal to achieve a running

time of the form O(f(k) · |χ|c). The motivation is that, if the parameterization of
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the problem is appropriate, many practically important instances will have k much

smaller than |χ|, so such an algorithm will be useful even if f is an exponential func-

tion. On the other hand, an O(|χ|k) algorithm, which is typical of the class XP,

can be thought of as the parameterized analogue of an exponential algorithm. Such

an algorithm quickly becomes practically useless even for moderate values of k if |χ|

is large. Thus, investigating whether a parameterized problem is in FPT or not is

usually our first order of business, just as investigating whether a decision problem is

in P or not is usually the first step one takes in traditional complexity theory.

If a problem is fixed-parameter tractable then the best way to prove this fact is

usually to come up with an algorithm. But if a problem is in XP, how do we prove

that it is not FPT? Though XP does capture the “bad” parameterized situation which

we want to avoid, it is not the right class to prove intractability results. To make this

more clear, XP is usually thought of as the parameterized analogue of EXP. However,

in classical complexity the basic intractability class is NP. The role of this class is

played in parameterized complexity by a hierarchy of classes called the W-hierarchy.

In short, the method used in proving parameterized intractability is similar to the

theory of NP-hardness. We have a collection of classes (denoted W [1],W [2], . . .) for

which we know some “complete” problems. This means that if a problem we know to

be W [1]-complete turned out to be FPT, all problems in W [1] would be FPT. Using

these problems as starting points we can perform parameterized reductions to show

that other problems are also at least as unlikely to be FPT.

To give a more precise definition, we will say that a parameterized problem A

is fpt-reducible to a problem B if there exists an algorithm which given an instance

(χ, k) of A

• Produces an instance (χ′, k′) of B and (χ, k) is a yes-instance of A if and only

if (χ′, k′) is a yes instance of B.

• Runs in time O(f(k)|χ|c).
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• There exists a function g such that k′ = O(g(k)).

When A is fpt-reducible to B we write A ≤fpt B. It is not hard to see that the

notion of fpt reduction preserves FPT solvability, or in other words FPT is closed

under fpt reductions. The crucial fact in the above definition is that k′ must be

defined in terms of k only (it must be independent of |χ|). Due to this fact most

classical reductions are not fpt-reductions.

Just like in classical complexity theory the main starting problem here is satisfia-

bility. More specifically, the main problem is a parameterized version of satisfiability

called Weighted SAT. Here the parameter k is the weight of the satisfying assignment,

that is the number of variables set to true. More formally, Weighted SAT is: given

a propositional formula and an integer k decide if the formula is satisfiable by an

assignment which sets exactly k variables to true.

Clearly this problem is in XP (try out all
(

n
k

)

possible assignments to the n vari-

ables). However, it is not believed to be in FPT. In fact, by the results of Chen et al.

[2004] we know that if there exists even an no(k) algorithm for Weighted 3-SAT then

there exists a sub-exponential algorithm for (unparameterized) 3-SAT. This would

disprove the Exponential Time Hypothesis.

A full definition of the W-hierarchy is beyond the scope of this work. For our

purposes it is sufficient to note that Weighted 3-SAT is the prototypical W[1]-complete

problem while Weighted SAT is the prototypical W[2]-hard problem.

2.2.2 How to Parameterize

As mentioned, even for a given specific decision problem there can be many alter-

native ways to “parameterize” it, that is, to define the meaning of the parameter k.

Typically, the decision problems we care about are NP-hard, meaning that we know

that the class of all instances of the problem contains at least a family of “hard”

instances that requires exponential time to solve (assuming standard complexity as-
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sumptions, such as the ETH). However, this does not rule out the possibility that

other large families of instances are actually tractable.

Our selection of the meaning of k is supposed to reflect this situation. Our work

is at its most fruitful only when k is appropriately chosen so that as many practical

instances of the problem as possible have moderate values of k, while all the hard

instances have large k. Thus, from the practical point of view, picking a parame-

terization for a problem is in fact part of our attempt to solve it by sorting out the

feasible instances from the hard ones.

To make this more concrete let us mention one of the standard ways of parameter-

izing: natural parameterizations. Suppose we want to solve an optimization problem,

such as Vertex Cover or Dominating Set. In these examples we set k to be

simply the size of the target vertex cover or dominating set. The motivation is that

in some interesting practical cases we will have k much smaller than n, the number

of vertices of the input graph. Also, it is easy to see that this parameterization of

both problems is in XP: one can go through all
(

n
k

)

sets of k vertices. So classifying

instances by the target size of the set does at least partially sort out the good from

the bad. But how good is this classification? Are these parameterizations FPT?

This style of parameterization, that is, parameterization by the objective function

is probably the most popular style of parameterization found in the literature. A

wealth of interesting results are known in this field. For our purposes it is important

to note that Dominating Set is W[2]-hard in this parameterization while Inde-

pendent Set and Clique are W[1]-hard. Vertex Cover on the other hand is

FPT.

Nevertheless, besides the natural parameterization which corresponds to every

optimization problem, numerous others can be defined. A parameterization of an

optimization problem where the parameter is independent of the objective function

will be called structural. The subject of this work is such parameterizations of graph
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problems. We’ve already mentioned one possibility in this direction (parameterization

by maximum degree), but as we will see many other interesting possibilities exist.

Let us also mention here, that in many cases in the literature a problem is consid-

ered with two or more parameters at the same time. For example, taking the ideas we

have discussed one step further, one may consider Dominating Set parameterized

by both ∆ and the target size of the set. Formally, we consider the problem as having

been parameterized by the sum of the two values. More parameters can be added

similarly.

2.3 Structural Parameters and Graph Widths

As mentioned in Section 2.2.2 we need to put considerable thought into picking the

right parameter if we want to achieve the most practically meaningful results. To do

this, we have to achieve a compromise between two essentially competing goals:

• As many instances as possible should have a low or moderate value of the

parameter.

• As many problems as possible should be (fixed-parameter) tractable if we use

the parameterization we picked.

Let us give an example to make this concrete. According to the definition it is

possible to parameterize any graph problem by setting k = n. This would satisfy our

second objective, because every decidable problem would be FPT! However, it would

fall far short from achieving our first objective, since the whole point of complexity

theory is dealing with large instances. Going to the other extreme, we could simply

parameterize a problem by setting k = 1 for all instances. In this case, all instances

would have a small value for the parameter, but this would not help us at all compared

to trying to solve the general case of the problem.
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To give a slightly less trivial example, consider the one reasonable structural graph

parameter we have mentioned so far: maximum degree. Though parameterizing

by ∆ makes more sense than the contrived examples we just saw, it is still not

entirely satisfactory: even though it can be argued that a large number of practically

interesting graphs have low or moderate degree, unfortunately most of the problems

we usually consider in complexity theory are still hard, in fact often even for graphs

of maximum degree 3.

Thus, we arrive at one of the motivations for the theory of graph widths : define a

complexity measure on graphs such that by looking at graphs where the measure has

a low value we would be “isolating” a large class of algorithmically easy graphs. By

far the most important specimen in this area is the definition of treewidth, a measure

which informally tells us how much a graph looks like a tree. In the rest of this section

we give the definition of treewidth and review the most important results. We also

mention several other related widths and their connections to treewidth, which are

summarized in Figure 2.2.

2.3.1 Treewidth

Given a graph G(V,E), a tree decomposition is a tree T (X, I) which has the following

properties:

1. Every vertex x ∈ X of T is a subset of V . Moreover, for every v ∈ V there

exists an x ∈ X such that v ∈ x. Informally we say that the tree T consists

of “bags” of the vertices of the original graph and every vertex of the original

graph must appear in some bag.

2. For every edge (u, v) ∈ E there exists a bag x ∈ X such that u ∈ x and v ∈ x.

3. For every vertex u ∈ V , the set of bags Xu = {x ∈ X | u ∈ x} induces a

connected graph.
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Figure 2.1: An example graph and its tree decomposition

We say that the width of a tree decomposition is maxx∈X |x| − 1. The treewidth

of a graph is the minimum width of any of its decompositions.

The definition given above is the standard one found in the literature but it is

rather obscure and confusing at first. There are several other equivalent definitions

for treewidth, but this one is the most important for algorithmic applications. Let us

attempt to explain it.

The goal of a tree decomposition is to capture the tree-like structure of a graph

(if it exists). Intuitively, a graph has a tree-like structure if we can break it down into

small components which are connected in a tree. This is more or less the role played

by the bags in the decomposition. More precisely, the vertices which are contained

in a bag represent a border (a separator) in the graph: they separate the vertices

which are to be found in the subtrees we get by removing this bag from T . In this

light, properties 1 and 2 are not surprising: we want the decomposition to capture

every edge and every vertex of a graph. The key is property 3: we demand that if we

keep all the bags which contain a vertex u then these induce a subtree. The reason

is that we need every bag to act as a separator. Another way to interpret this rule

is as saying that if u is contained in two bags x, y, it is contained in all bags in the

path from x to y in T . This separation property is crucial in getting treewidth-based

algorithms to work.
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Treewidth was first introduced in Robertson and Seymour [1986]. Besides its algo-

rithmic applications, it has proven very interesting from a graph-theoretic perspective,

one of its most important attributes being that it can be equivalently defined in many

seemingly unrelated ways. For example treewidth is connected to chordal graphs,

elimination schemes, partial k-trees, cops-and-robber games (Seymour and Thomas

[1993], Dendris et al. [1997]), reduction rules (Arnborg et al. [1993]) and brambles

(Seymour and Thomas [1993]). A great introduction to the notion of treewidth is

given in Bodlaender’s excellent survey papers Bodlaender [2007, 2006, 1997], Bod-

laender and Koster [2008].

2.3.2 Other Widths

Treewidth is by no means the only graph width in the literature. There are many

other ways to quantify the complexity of a graph, many of them with definitions

related to treewidth. Here, we will briefly mention the most important ones, without

giving formal definitions.

Clique-width1 is a measure related to treewidth with one major difference: clique-

width also “covers” families of dense graphs. This addresses one of the basic con-

straints of treewidth, the fact that only sparse graphs can have low treewidth. Sev-

eral interesting connections are known between the two: first, it is known that

cw(G) ≤ 3(2tw(G)−1) (Corneil and Rotics [2005], Courcelle and Olariu [2000]), mean-

ing that if a graph has small treewidth, it must also have (relatively) small clique-

width (notice though that the clique-width will in the worst case be exponentially

larger). Note that it is not possible to show an inequality in the opposite direction,

since cliques have small clique-width but unbounded treewidth. Therefore, in a sense,

clique-width can be seen as a measure which “generalizes” treewidth.

Local treewidth, introduced in Eppstein [2000], is another generalization of treewidth,

1see Courcelle and Olariu [2000] for a definition
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this time based on the concept of neighborhoods. In addition to treewidth, this no-

tion generalizes the family of bounded-degree graphs and the family of planar graphs.

Informally, the idea here is that a graph has small local treewidth if the local neigh-

borhoods around all vertices induce graphs with small treewidth.

In a graph of maximum degree ∆ we have that |Nr[u]| ≤ ∆r for all vertices

u, where by Nr[u] we denote the set of vertices at distance at most r from u. This

immediately implies that graphs of bounded degree have bounded local treewidth (the

neighborhood has bounded size, therefore also bounded treewidth). Furthermore, it

is known that the treewidth of a planar graph is bounded by its diameter (multiplied

by 3), meaning that planar graphs also have bounded local treewidth. Finally, if a

graph has small treewidth all its neighborhoods must also have small treewidth.

Local treewidth is a proper generalization of treewidth, since there exist planar

graphs of bounded degree (e.g. grids) with unbounded treewidth. It is incomparable

to clique-width, since cliques have unbounded local treewidth and bounded degree

graphs can have unbounded clique-width.

Pathwidth is a natural restriction of treewidth where the tree decomposition is

required to be a path. This immediately implies that graphs with small pathwidth

(that is, graphs which have a path decomposition with small width) must also have

small treewidth. The converse, however, is not necessarily true. In fact, there exist

trees (which by definition have the smallest possible treewidth, 1) of unbounded

pathwidth. For any graph G with n vertices it is known that tw(G) ≤ pw(G) ≤

tw(G)·log n and the inequalities are tight in the worst case. Like treewidth, pathwidth

can also be defined in several equivalent ways, including a cops-and-robbers game,

see Bodlaender et al. [1995].

Another measure which quantifies a graph’s distance from being a tree is feedback

vertex set. A feedback vertex set is a set of vertices of a graph whose removal breaks

all the graph’s cycles (i.e. the remaining vertices form a forest). Graphs with small
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feedback vertex set also have small treewidth (by including all the vertices of the

feedback set in all the bags of the decomposition), but not necessarily small pathwidth

(since there exist trees with unbounded pathwidth). On the other hand graphs with

small pathwidth may have unbounded feedback vertex set, the typical example being

a 2× n grid.

An even more restricted measure is vertex cover. A vertex cover of a graph is

a set of vertices whose removal deletes all edges. It is not hard to see that this is

a parameter that is more restricted than the others we have discussed so far, since

small vertex cover easily implies both small pathwidth and small feedback vertex

set. On the other hand, since paths have unbounded vertex cover it is clear that the

restriction is strict.

Though graphs of bounded vertex cover are very restricted, their algorithmic

properties have attracted attention in the past, both in the subject of their recognition

which is a flagship problem in parameterized complexity (see e.g. Chen et al. [2006])

and in the context of attacking problems which are generally hard for graphs of

bounded treewidth (see e.g. Fellows et al. [2008]).

Finally, another measure which has appeared as a structural parameter in the

literature is max-leaf number. We say that a connected graph G has max-leaf number

at most l if no spanning tree of G has more than l leaves. The algorithmic properties

of this class of graphs have been investigated in the past (Estivill-Castro et al. [2005],

Fellows and Rosamond [2007], Fellows et al. [2009]). An important point is the

characterization of bounded max-leaf graphs from Kleitman and West [1991] which

is also heavily used in Fellows et al. [2009].

The relations between the mentioned parameters are summarized in Figure 2.2.
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Figure 2.2: A hierarchy of graph parameters for undirected graphs. The parame-
ters in this figure are (from top to bottom) clique-width, local treewidth, treewidth,
bounded degree, feedback vertex set, pathwidth, vertex cover and max-leaf number.
Arrows indicate generalization (e.g. graphs with small vertex cover also have small
pathwidth, but not vice-versa). The dashed arrow indicates an exponential blow-up
in the parameter.

.

2.3.3 Algorithmic Results

Now that we have established a basic grasp of the landscape of the graph parameters

we will be working with we can briefly mention some results about their algorithmic

properties. We invite the reader to take another look at Figure 2.2. Though all

the parameters measure different things we have found connections which lead to

immediate conclusions such as the fact that any problem which is easy (FPT) on

graphs of small treewidth is also easy on graphs of small pathwidth, or any problem

which is hard on graphs of small max-leaf number is hard on graphs of bounded degree.

Informally, we could say that (positive) algorithmic results propagate downwards in

this hierarchy while (negative) intractability results propagate upwards.

Treewidth is by far the most thoroughly investigated of these measures, espe-

cially with regards to its algorithmic properties. A large number of graph problems

are known to be FPT when parameterized by treewidth. Algorithms for graphs of

bounded treewidth generally follow a similar pattern: they perform some kind of dy-

namic programming on the bags of the tree decomposition. Informally, one first looks

at the graph induced by the vertices of each bag of the decomposition. On each of

these graphs we enumerate (i.e. list by brute force) all possible partial solutions to



michail lampis Structural Parameterizations 20

the problem. Then, dynamic programming is used to merge the tables of solutions

from each bag to a total solution. This is a process which takes time exponential in

the size of each bag, but polynomial in the order of the graph.

Following the dynamic programming technique roughly outlined above a wide

variety of problems can be solved efficiently on graphs of small treewidth. In fact, a

quick survey of the literature can reveal that a large number of problems of the form

“find the smallest/largest set of vertices such that some property holds” are solvable

in this way when parameterized by treewidth. This includes classical problems such

as Max Cut, Independent Set, Clique, Dominating Set and others, which

are all solvable by more or less the same technique.

This leads to the natural question, can we solve all such problems in FPT time

when parameterized by treewidth? The answer, which is yes, is formalized in a

famous result usually referred to as Courcelle’s theorem. Courcelle’s theorem states

that all problems expressible in a logic language called MSO2 (which we will formally

define in Chapter 3) are solvable in linear-time on graphs of bounded treewidth. This

is a far-reaching and celebrated result which covers the vast majority of NP-hard

graph problems typically covered in an algorithms class today. In Chapter 3 we will

mention more results in this vein, which are usually called algorithmic meta-theorems,

and discuss how Courcelle’s theorem can be strengthened in some special cases.



Chapter 3

Algorithmic Meta-Theorems

In this section we will show the existence of several algorithmic meta-theorems for

(undirected) graphs. Recall that, as mentioned in Chapter 2 the most celebrated

such metatheorem is Courcelle’s theorem (see Courcelle [1990]) which states that

every graph property expressible in monadic second-order (MSO2) logic is decidable

in linear time if restricted to graphs of bounded treewidth.

Here we focus on the study of algorithmic metatheorems in the spirit of Courcelle’s

theorem, where the class of problems we attack is defined in terms of expressibility

in a logic language. More specifically, we will study the algorithmic properties of

two graph classes: graphs of bounded vertex cover and graphs of bounded max-leaf

number. Though Courcelle’s theorem applies here, since these classes have bounded

treewidth, we will show algorithms with significantly better parameter dependence

than that implied by Courcelle’s theorem. In the case of vertex cover, we also give

an essentially matching lower bound. The results presented here have appeared in

Lampis [2010] and Lampis [2011a].

21
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3.1 Previous Work

Metatheorems have been a subject of intensive research in the last years producing

a wealth of interesting results. Some representative examples of metatheorems with

a flavor similar to Courcelle’s can be found in the work of Frick and Grohe (Frick

and Grohe [2001]), where it is shown that all properties expressible in first order

(FO) logic are solvable in linear time on planar graphs, and the work of Dawar et al.

(Dawar et al. [2006]), where it is shown that all FO-definable optimisation problems

admit a PTAS on graphs excluding a fixed minor (see Grohe [2007] and Hlinený et al.

[2008] for more results on the topic). In all these works the defining property for

the problems studied is given in terms of expressibility in a logic language; in many

cases metatheorems are stated with problem being defined by some other property,

for example whether the problem is closed under the taking of minors. This approach,

which is connected with the famous graph minor project of Robertson and Seymour

(see Robertson and Seymour [1983-2004]) has also led to a wealth of significant and

practical results, including the so called bi-dimensionality theory (see Demaine and

Hajiaghayi [2008] for an overview and also the recent results of Bodlaender et al.

[2009]).

In the case where logic is used to define the problems, many interesting extensions

have followed Courcelle’s seminal result: for instance, Courcelle’s theorem has been

extended to logics more suitable for the expression of optimisation problems (Arnborg

et al. [1991]). It has also been investigated whether it’s possible to obtain similar

results for larger graph classes (see Courcelle et al. [2000] for a metatheorem for

bounded cliquewidth graphs, Fomin et al. [2009, 2010] for corresponding hardness

results and Kreutzer and Tazari [2010] for hardness results for graphs of small but

unbounded treewidth). Finally, lower bound results have been shown proving that

the running times predicted by Courcelle’s theorem can not be improved significantly

in general (Frick and Grohe [2004]).
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This lower bound result is one of the main motivations of the results we will present

here, because in some ways it is quite devastating. Though Courcelle’s theorem

shows that a vast class of problems is solvable in linear time on graphs of bounded

treewidth, the “hidden constant” in this running time, that is, the running time’s

dependence on the input’s other parameters, which are the graph’s treewidth and the

formula describing the problem, is in fact (in the worst case) a tower of exponentials.

Unfortunately, in Frick and Grohe [2004] it is shown that this tower of exponentials

is unavoidable even if we restrict ourselves to deciding FO logic on trees. For this

reason, we will focus on two graph classes which do not contain the class of all trees:

graphs of bounded vertex cover and graphs of bounded max-leaf number.

Though graphs of bounded vertex cover or max-leaf number are considerably more

restricted than bounded treewidth graphs, these classes are still interesting from the

algorithmic point of view and the complexity of hard problems parameterized by

vertex cover or max-leaf number has been investigated in the past (Fellows et al.

[2008], Fellows et al. [2009]). Furthermore, as mentioned, strong lower bounds are

known to apply to slightly more general classes: for bounded feedback vertex set and

bounded pathwidth graphs even FO logic is non-elementary, while even for binary

trees (thus for graphs of bounded treewidth and max degree) FO logic is at least

triply exponential (again by Frick and Grohe [2004]). Bounded vertex cover and

bounded max-leaf number evade all these lower bound arguments so it’s natural to

ask what is exactly the complexity of FO and MSO logic for these classes of graphs.

3.2 Preliminaries

We will describe algorithmic meta-theorems, that is, general methods for solving all

problems belonging in a class of problems. However, the presentation is simplified if

one poses this approach as an attack on a single problem, the model checking problem.
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In the model checking problem we are given a logic formula φ, expressing a graph

property, and a graph G, and we must decide if the property described by φ holds in

G. In that case, we write G |= φ. Clearly, if we can describe an efficient algorithm for

model checking for a specific logic, this will imply the existence of efficient algorithms

for all problems expressible in this logic. Let us now give more details about the

logics we will deal with and the graphs which will be our input instances.

Our universe of discourse will be labeled, colored graphs. Specifically, we assume

that the first part of the input is an undirected graph G(V,E), a set of labels L, each

associated with a vertex of V and a set of subsets of V , C = {C1, C2, . . . , Cc}, which

we refer to as color classes. Note that it could be the case that several labels are

assigned to the same vertex and that some vertex belongs in several color classes.

The interesting case here is unlabeled, uncolored graphs (that is, L = C = ∅), but

the additional generality in the definition of the problem makes it easier to describe

a recursive algorithm. We include labels in our definition to allow our formulas to

refer to some constant vertices of the input graph.

The formulas of FO logic are those which can be constructed using vertex vari-

ables, denoted usually by xi, yi, . . ., vertex labels denoted by li, color classes denoted

by Ci, the predicates E(xi, xj), xi ∈ Cj, xi = xj operating on vertex variables or la-

bels, standard propositional connectives and the quantifiers ∃, ∀ operating on vertex

variables. The semantics are defined in the usual way, with the E() predicate being

true if (xi, xj) ∈ E and labels being interpreted as vertex constants corresponding to

the vertices of the graph they are attached to. We also sometimes extend notation

slightly by using conditional quantified variables: ∃x : ψ(x) (φ(x)) can be read as

shorthand for ∃x(ψ(x) ∧ φ(x)), while ∀x : ψ(x) (φ(x)) is short for ∀x(ψ(x) → φ(x)).

For MSO logic the additional property is that we now introduce set variables

denoted by Xi and allow the quantifiers and the ∈ predicate to operate on them. The

semantics are defined in the obvious way. If the set variables are allowed to range
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over sets of vertices only, then the logic is referred to as MSO1.

A variation is MSO2 logic. Here, first-order variables are allowed to range over

vertices or edges, and second-order variables range over sets of vertices or edges. To

keep the presentation simple we will use the letters ei, Fi for variables which range

over edges and sets of edges respectively and we assume that it is clear from the

context what domain each variable is quantified over. We also add the incidence

predicate I(v, e) which is true if edge e is incident on vertex v. Observe that in the

first-order case it does not make a difference if one also allows quantification over

edges or not, because any FO formula that uses edge variables can be transformed

to an equivalent formula that only uses vertex variables: one simply replaces ∃e with

∃x∃y : E(x, y) while also replacing I(v, e) with (v = x) ∨ (v = y). It is known that

this is not possible with MSO in general: there exist MSO2 expressible properties

which are not expressible in MSO1. However, we will use such a transformation that

works for graphs of small vertex cover.

3.2.1 Bounded Vertex Cover and neighborhood diversity

We will work extensively with graphs of bounded vertex cover, that is, graphs for

which there exists a small set of vertices whose removal also removes all edges. We

will usually denote the size of a graph’s vertex cover by k. Note that there exist

linear-time FPT algorithms for finding an optimal vertex cover in graphs where k is

small (see e.g. Chen et al. [2006]). Recall that an algorithm is called fixed-parameter

tractable (FPT) if it runs in time f(k)nO(1) for some function f of the parameter k.

In a graph of vertex cover k, the vertices outside the vertex cover can be partitioned

into at most 2k sets, such that all the vertices in each set have exactly the same

neighbors outside the set and each set contains no edges inside it. Since we will

not make use of any other special property of graphs of small vertex cover, we are

motivated to define a new graph parameter, called neighborhood diversity, which
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intuitively seems to give the largest graph family to which we can apply our method

in a straightforward way.

Definition 3.1. We will say that two vertices v, v′ of a graph G(V,E) have the same

type iff they have the same colors and N(v) \ {v′} = N(v′) \ {v}, where N(v) denotes

the set of neighbors of v.

Lemma 3.2. Having the same type is an equivalence relation on the set of vertices

of a graph G.

Proof. Obviously the relation is reflexive and symmetric, so we only need to prove

that it is transitive. Suppose u and v have the same type and also that v and w have

the same type. First, N(u) \ {v} = N(v) \ {u} and N(v) \ {w} = N(w) \ {v} from

the definition. From this we have N(u) \ {v, w} = N(v) \ {u, w} = N(w) \ {u, v}.

So, it suffices to show that if v is connected to one of u, w it is connected to the

other. But if u, v are connected then u, w are also since v and w have the same type.

Now, because u and v have the same type and u, w are connected then v, w are also

connected.

Definition 3.3. A colored graph G(V,E) has neighborhood diversity at most w, if

there exists a partition of V into at most w sets, such that all the vertices in each set

have the same type.

Lemma 3.4. If an uncolored graph has vertex cover at most k, then it has neighbor-

hood diversity at most 2k + k.

Proof. Construct k singleton sets, one for each vertex in the vertex cover and at most

2k additional sets, one for each subset of vertices of the vertex cover. Place each of

the vertices of the independent set in one of these sets, specifically the one which

corresponds to its neighborhood in the vertex cover.
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In Section 3.7 we will show some more results about neighborhood diversity which

indicate it may be an interesting parameter in its own right. However, until then

our main focus will be graphs of bounded vertex cover. We will prove most of our

algorithmic results in terms of neighborhood diversity and then invoke Lemma 3.4

to obtain our main objective. We will call a partition of the vertex set of a graph

G into w sets such that all vertices in every set share the same type a neighborhood

partition of width w. We will usually assume that a neighborhood partition of the

graph is given to us, because otherwise one can easily be found in linear time by using

the mentioned linear-time FPT algorithm for vertex cover and Lemma 3.4.

3.2.2 Bounded Max-Leaf Number

Recall that a connected graph G has max-leaf number at most l if no spanning tree of

G has more than l leaves. The algorithmic properties of this class of graphs have been

investigated in the past (Estivill-Castro et al. [2005], Fellows and Rosamond [2007],

Fellows et al. [2009]). In this paper we rely heavily on a characterization of bounded

max-leaf graphs by Kleitman and West [1991] which is also heavily used in Fellows

et al. [2009].

Theorem 3.1. (Kleitman and West [1991]) If a graph G has max-leaf number at

most l, then G is a subdivision of a graph on O(l) vertices.

What this theorem tells us intuitively is that in a graph G(V,E) with max-leaf

number l there exists a set S of O(l) vertices such that G[V \S] is a collection of O(l2)

paths. Furthermore, only the endpoints of the paths can be connected to vertices of

S in G.

It is well-known that a graph of max-leaf number at most l has a path decom-

position of width at most 2l. Furthermore, it must have maximum degree at most

l. Bounded max-leaf number graphs are therefore a subclass of the intersection of
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bounded pathwidth and bounded degree graphs (in fact, they are a proper subclass,

as witnessed by the existence of say 2 × n grids). Let us mention again that model

checking FO formulas on binary trees has at least a triply exponential parameter de-

pendence, so the results we present for graphs of bounded max-leaf number can also

be seen as an improvement on the currently known results for FO logic on bounded

degree graphs, for this more restricted case.

3.3 FO Logic for Bounded Vertex Cover

In this Section we show how any FO formula can be decided on graphs of bounded

vertex cover number, with a singly exponential parameter dependence. Our main

argument is that for FO logic, two vertices which have the same neighbors are es-

sentially equivalent. We will state our results in the more general case of bounded

neighborhood diversity and then show the corresponding result for bounded vertex

cover as a corollary.

Lemma 3.5. Let G(V,E) be a graph and φ(x) a FO formula with one free variable.

Let v, v′ ∈ V be two distinct unlabeled vertices of G that have the same type. Then

G |= φ(v) iff G |= φ(v′).

Proof. Let l be a new label which is not currently used in G. Let G1 be the labeled

graph we obtain from G if we associate l with v and G2 be the labeled graph we

obtain if we associate l with v′. Then the labeled graphs G1 and G2 are isomorphic

(meaning that there is a one-to-one correspondence between them that also respects

the labels). Therefore, G1 |= φ(l) iff G2 |= φ(l).

Theorem 3.2. Let φ be a FO sentence of quantifier depth q. Let G(V,E) be a labeled

colored graph with neighborhood diversity at most w and l labeled vertices. Then, there
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is an algorithm that decides if G |= φ in time O((w + l + q)q · |φ|), assuming that an

optimal neighborhood partition is given with the input.

Proof. We will rely heavily on Lemma 3.5 and describe a recursive algorithm. If q = 0

the problem is trivial, so assume q > 0. Assume wlog that φ is in prenex normal form,

φ = Qxψ(x) where Q is ∃ or ∀.

Suppose that V can be partitioned into V1, V2, . . . Vw as required by the definition

of neighborhood diversity. Now, by Lemma 3.5 if v, v′ ∈ Vi for some i, and neither of

the two is labeled then G |= ψ(v) iff G |= ψ(v′). Thus, it suffices to recursively model

check at most (w+l) sentences of q−1 quantifiers to decide φ: we try replacing x with

each of the l labeled vertices or with one arbitrarily chosen nonlabeled representative

from each Vi. If x is existentially quantified we decide that G |= φ if at least one of the

resulting sentences is true, while if x is universally quantified we decide that G |= φ

if all of the resulting sentences are true. In the process we introduce a new label.

Repeating this process constructs a computation tree with at most
∏q−1

i=0 (w+ l+ i) =

O ((w + l + q)q) leaves. The result of the computation tree can be evaluated in time

linear in its size.

Corollary 3.6. There exists an algorithm which, given a FO sentence φ with q vari-

ables and an uncolored, unlabeled graph G on n vertices with vertex cover at most k,

decides if G |= φ in time 2O(kq+q log q)|φ|+O(2kn).

Proof. The second term in the running time comes from the basic FPT algorithm for

finding a vertex cover of size k. From this we can construct a neighborhood partition

and invoke Theorem 3.2 and Lemma 3.4.

Thus, the running time is (only) singly exponential in the parameters, while a

straightforward observation that bounded vertex cover graphs have bounded treewidth
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and an application of Courcelle’s theorem would in general have a non-elementary

running time. Of course, a natural question to ask now is whether it is possible to

do even better, perhaps making the exponent linear in the parameter. As we will see

later on, this is not possible if we accept some standard complexity assumptions.

3.4 FO Logic for Bounded Max-Leaf Number

In this section we describe a model checking algorithm for FO logic on graphs of

small max-leaf number. Because we are not going to solve MSO logic on this class

of graphs, we can simplify things by assuming that our graphs only have labels and

not colors (i.e. all vertices are initially uncolored). Our main tool is the mentioned

observation that all but a small fraction of the vertices have degree 2, and therefore

(since we assume without loss of generality that the graph is connected) induce paths.

We call a maximal set of connected vertices of degree 2 a topo-edge.

Our main argument is that when a topo-edge is very long (exponentially long in

the number of quantifiers of the first-order sentence we are model checking) its precise

length does not matter. Readers familiar with classical results regarding Ehrenfeucht-

Fraisse games and their use in proving negative results for the expressive power of

FO logic on paths will recognize that the technique we use is an extension of this

work to graphs of small max-leaf number (for more information on E-F games see for

example Immerman [1999]).

First we define a similarity relation on graphs.

Definition 3.7. Let G1, G2, be two labeled graphs. For a given q we will say that

G1 and G2 are q-similar and write G1 ∼q G2 iff G1 contains a topo-edge of order at

least 2q+1 consisting of unlabeled vertices, call it P , and G2 can be obtained from G1

by contracting one of the edges of P . We denote the transitive closure of the relation

∼q as ∼
∗
q.
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Our main technical tool is now the following lemma.

Lemma 3.8. Let φ be a FO formula with q quantifiers. Then, for any two graphs

G1, G2 if G1 ∼q G2 then G1 |= φ iff G2 |= φ. Therefore, if G1 ∼
∗
q G2 then G1 |= φ iff

G2 |= φ.

Proof. We will prove the first statement by induction on q and the second statement

follows directly from it. For q = 0 the statement is trivial because φ can only refer to

labeled vertices and G1, G2 are identical with respect to these vertices.

Suppose that the statement is true for at most q−1 quantifiers. It suffices to show

the statement for q quantifiers for a formula φ of the form ∃xψ(x), and the statement

then easily follows for formulas which are boolean combinations of formulas of at most

q quantifiers. So, suppose that G1 |= ∃xψ(x). This means that there exists a vertex

in G1 such that if we label it with a new label l to obtain a graph G′
1 (which is G1

with the label l added) we have G′
1 |= ψ(l). Now we must take cases for the vertex

where l is placed.

If l is placed on a vertex outside of P then it is not hard to see that G2 |= φ: we

place l on the same vertex on G2 (and obtain G′
2) and now we have G′

1 ∼(q−1) G
′
2 so

from the inductive hypothesis G′
2 |= ψ(l).

Now the interesting case is when l is placed on a vertex of P . Number the vertices

of P from 1 to |P |, starting from one of the endpoints of the path induced by P .

Partition P into two parts: P2 contains the last 2
q vertices and P1 the rest. In G2 we

use the same numbering for the vertices of the path (of course now the numbering is

from 1 to |P | − 1, since one edge has been contracted).

Suppose that l is placed on a vertex of P1. We place l on the same vertex in

G2. Now, we have G
′
1 ∼(q−1) G

′
2, because in both graphs P has been broken into two

paths P ′ and P ′′. P ′ has the same size on both (depending on the position where l

was placed) and P ′′ has size at least 2q on G′
1 and one less than that on G′

2. So, by

the inductive hypothesis G′
1 |= ψ(l) iff G′

2 |= ψ(l).
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Finally, if l is placed on a vertex of P2 we place l on a vertex of G2 that has the

same distance from the end of the path and two (q − 1)-similar graphs G′
1, G

′
2 are

obtained, because the smaller part of the two into which P is broken has the same

size on both graphs and the larger has size at least 2q. So by the inductive hypothesis

G′
1 |= ψ(l) iff G′

2 |= ψ(l).

The converse directions where we know that G2 |= φ and need to show that this

implies G1 |= φ can be established with a similar argument.

Now we are ready to state our main result of this section.

Theorem 3.3. Let G be a graph on n vertices with max-leaf number k and φ a FO

formula with q quantifiers. Then, there exists an algorithm for deciding if G |= φ

running in time poly(n) + 2O(q2+q log k).

Proof. By applying Theorem 3.1 we know that G can be partitioned into a set of

at most O(k) vertices of degree at least 3 and a collection of paths. By applying

Lemma 3.8 we know that there exists a G′ such that G ∼∗
q G

′ and G′ consists of the

same O(k) vertices of degree at least 3 and at most O(k2) paths whose length is at

most 2q+1. Of course, G′ can be found in time polynomial in n.

Now, we can apply the straightforward algorithm to model check φ on G′. The

trivial algorithm takes time O(|V |q) = O((k22q+1)q) giving the promised running

time.

3.5 MSO Logic for Bounded Vertex Cover

Here we will follow a similar strategy as in Section 3.3 proving that if there is a very

large number of vertices of a certain type in our graph then it is safe to delete some of
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them without affecting the truth of the MSO sentence we are trying to model check.

To do this we first define another kind of similarity relation on graphs.

Definition 3.9. Let G1, G2, be two labeled colored graphs. For given integers qS, qV

we will say that G1 and G2 are (qS, qV )-similar and write G1 ∼(qS ,qV ) G2 iff G2 can

be obtained by G1 by deleting an unlabeled vertex u and G1 contains at least 2qSqV

additional unlabeled vertices of the same type as u. We denote the transitive closure

of the relation ∼(qS ,qV ) as ∼
∗
(qS ,qV ).

Lemma 3.10. Let φ be a MSO1 formula with qS set quantifiers and qV vertex quan-

tifiers. Then, for any two graphs G1, G2 if G1 ∼(qS ,qV ) G2 then G1 |= φ iff G2 |= φ.

Therefore, if G1 ∼
∗
(qS ,qV ) G2 then G1 |= φ iff G2 |= φ.

Proof. We will prove the first statement by induction on qS + qV and the second

statement will immediately follow. For qV = 0 the statement is trivial since without

vertex variables the formula may only refer to the labeled vertices where G1 and G2

are identical so the statement is proved for qS + qV = 0.

Suppose that we have proved the statement for formulas with at most q quantified

(vertex and set) variables and we are given a formula φ with qS set variables and qV

vertex variables, where qS + qV = q + 1. We are also given two graphs G1, G2 such

that G1 ∼(qS ,qV ) G2. The two interesting cases are φ = ∃xψ(x) and φ = ∃Xψ(X) (i.e.

φ begins with an existentially quantified vertex or set variable) because the universal

quantification case and boolean combinations of simpler formulas follow directly if we

deal with these.

First, assume that φ = ∃Xψ(X) and that G1 |= φ. So, there exists a set S1

of vertices of G1 such that assigning a new color C to these, thus obtaining a new

colored graph G′
1, gives us G

′
1 |= ψ(C). Let T be the type of vertices of G1 where if

we delete a vertex we obtain G2 (recall that |T | ≥ 2qSqV + 1). We select a set S2 of

vertices of G2 as follows: for every type other than T we select the same number of
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vertices as S1 has selected from this type in G1. From T , if S1 contains at most half

the vertices of type T in G1 we place the same number of vertices from that type of

G2 in S2. Otherwise, we select from type T one vertex less than S1 contains from

that type in G1. We thus obtain a graph G′
2 by coloring all the vertices of S2 with a

new color C. Informally, we can say that G′
1 and G′

2 are the same except that one of

the types of G′
1 has one more vertex than the corresponding type of G′

2. Note that

we have made sure that this type has at least half the vertices of T . The claim now

is that G′
1 ∼(qS−1,qV ) G

′
2. To see this, observe that we can obtain G′

2 from G′
1 by

deleting a vertex which had type T in G1. If |S1 ∩ T | = |S2 ∩ T | that vertex is one

which did not receive the new color C, but this happens if at most half the vertices

did, meaning its type contains at least ⌈(2qSqV + 1)/2⌉ = 2qS−1qV + 1 vertices in G′
1.

Otherwise, the vertex we can delete is one that received the new color, which means

in this case its type again contains at least 2qS−1qV + 1 vertices. From the inductive

hypothesis we now get G′
1 |= ψ(C) iff G′

2 |= ψ(C), which gives G1 |= φ iff G2 |= φ.

Similar arguments can be applied if we start with the assumption G2 |= φ.

Second, if φ = ∃xψ(x) and G1 |= φ, there exists a vertex of G1 such that assigning

to it a new label l, thus obtaining a new graph G′
1, we have G

′
1 |= ψ(l). We assign the

label l to a vertex of the same type in G2, obtaining G
′
2. Now, we have G

′
1 ∼(qS ,qV −1)

G′
2, because the number of unlabeled vertices in the type where G1 and G2 differ has

been decreased by at most one. Therefore, it is now at least 2qSqV ≥ 2qS(qV − 1) + 1.

By inductive hypothesis we get G′
2 |= ψ(l) so G2 |= φ. Similar arguments can again

be applied if we initially assume that G2 |= φ.

Theorem 3.4. Let G be a graph on n vertices with neighborhood diversity at most

w and φ be a MSO1 formula with qS set quantifiers and qV vertex quantifiers. Then,

given a neighborhood partition of G, there exists an algorithm which can decide if

G |= φ in time 2O(w2qS qV +qV log qV ).
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Proof. Using Lemma 3.10 we can assume that no type has more than 2qSqV vertices,

otherwise we can delete one vertex and get an equivalent graph. Thus, the total

number of vertices is at most w2qSqV .

The trivial MSO1 model checking algorithm on a graph on n vertices would take

time O((2n)qS · nqV · |φ|) (try all possible cases for each set variable and each vertex

variable). Using the above bound on n gives the promised running time.

Corollary 3.11. There exists an algorithm which, given a MSO1 sentence φ with q

variables and an uncolored, unlabeled graph G with vertex cover at most k, decides if

G |= φ in time 22
O(k+q)

+O(2kn).

Again, this gives a dramatic improvement compared to Courcelle’s theorem, though

exponentially worse than the case of FO logic. This is an interesting point to consider

because for treewidth there does not seem to be any major difference between the

complexities of model checking FO and MSO1 logic.

The natural question to ask here is once again, can we do significantly better?

For example, perhaps the most natural question to ask is, is it possible to solve this

problem in 22
o(k+q)

? As we will see later on, the answer is no, if we accept some

standard complexity assumptions.

Finally, let us briefly discuss the case of MSO2 logic. In general this logic is more

powerful than MSO1, so it is not straightforward to extend Theorem 3.4 in this case.

However, if we are not interested in neighborhood diversity but just in vertex cover

we can observe that all edges in a graph with vertex cover of size k have one of their

endpoints in one of the k vertices of the vertex cover. Thus, any edge set X can be

written as the union of k edge sets. In turn, each of these k edge sets can easily

be replaced by vertex sets, without loss of information, since we already know one

of the endpoints of each of these edges. Using this trick we can replace every edge

set variable in an MSO2 sentence with k vertex set variables. This leads to a 22
O(kq)
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algorithm for MSO2 logic on graphs of bounded vertex cover.

Lemma 3.12. Let φ be an MSO2 sentence with q quantifiers and G be a graph of

vertex cover k. Then, there exists an MSO1 sentence φ′ with O(kq) quantifiers and a

graph G′ with vertex cover k and k labeled vertices such that G |= φ iff G′ |= φ′.

Proof. We’ll first argue that edge and edge-set variables can be removed from φ.

G′ will simply be G with k labels l1, . . . , lk, each attached to a different vertex of

the vertex cover. Suppose wlog that φ is in prenex normal form, and the edge-

set variables which appear in φ are F1, . . . , Fm, while the edge variables which ap-

pear are e1, . . . , ep. For the former, we replace their quantifications QFi, where

Q is ∃ or ∀, with k new quantified set variables for each: QXi,1QXi,2 . . . QXi,k :

(∧1≤j≤k∀x : x ∈ Xi,j(E(x, lj))). For edge variables, we replace Qei with QxeiQyei :

E(xei , yei) where xei , yei are new vertex variables.

We continue by replacing every occurence of ei ∈ Fj with the formula ∨1≤i′≤k(xi =

li′ ∧ yi ∈ Xj,i′), while we replace each occurence of I(x, ei) with (x = xei ∨ x = yei).

Thus, we are left with an MSO1 formula. It is not hard to see that the new formula

has at most k quantifiers for every quantifier of the old formula. Its total size is also

at most O(k|φ|).

Now φ′ is equivalent to φ because every valuation of the edge and edge-set variables

of φ corresponds to a valuation of the new variables of φ′ and vice-versa.

Corollary 3.13. There exists an algorithm which, given a MSO2 sentence φ with q

variables and an uncolored, unlabeled graph G with vertex cover at most k, decides if

G |= φ in time 22
O(kq)

+O(2kn).
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3.6 Lower Bounds for Vertex Cover

In this Section we will prove some lower bound results for the model checking problems

we are dealing with for vertex cover. Our proofs rely on a construction which reduces

SAT to a model checking problem on a graph with small vertex cover.

Given a propositional 3-CNF formula φp with n variables and m clauses, we want

to construct a graph G that encodes its structure, while having a small vertex cover.

The main problem is encoding numbers up to n with graphs of small vertex cover but

this can be achieved by using the binary representation of numbers. We will begin

by constructing a colored graph and then briefly describe how the reduction can be

strengthend to apply to uncolored graphs as well. Without loss of generality we will

assume that n is a power of 2 (dummy variables can be added to φp if necessary).

We begin constucting a graph by adding 7 log n vertices, call them u(i,j), 1 ≤ i ≤

7, 1 ≤ j ≤ log n. Add all edges of the form (u(i,j), u(k,j)) (so we now have log n disjoint

copies of K7). Let Ni = {u(i,j) | 1 ≤ j ≤ log n}.

For every variable xi in φp add a new vertex to the graph, call it vi. Define for

every number i the set X(i) = {j | the j-th bit of the binary representation of i is 1}.

Add the edges (vi, u(1,j)), j ∈ X(i), that is, connect every variable vertex with the

vertices of N1 that correspond to the binary representation of its index. Let U =

{vi | 1 ≤ i ≤ n} be the vertices corresponding to variables.

For every clause ci in φp add a new vertex to the graph, call it wi. If the first

literal in ci is a positive variable xk then add the edges (wi, u(2,j)), j ∈ X(k). If the

first literal is a negated variable ¬xk, add the edges (wi, u(3,j)), j ∈ X(k). Proceed in

a similar way for the second and third literal, that is, if the second literal is positive

connect wi with the vertices that correspond to the binary representation of the

variable in N4, otherwise in N5. For the third literal do the same with N6 or N7. Let

W = {wi | 1 ≤ i ≤ m} be the vertices corresponding to clauses.

Finally, set the color classes to be {N1, N2, . . . , N7, U,W}.
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Now, looking at the graph it is easy to see if a vertex vi corresponds to a variable

that appears positive in the clause represented by a vertex wj. They must satisfy the

formula

pos(vi, wj) =
∨

k=2,4,6

∀x : x ∈ N1 (∃y : y ∈ Nk((E(vi, x) ↔ E(wj, y)) ∧ E(x, y))))

It is not hard to define neg(vi, wj) in a similar way. Now it is straight-forward to

check if φp was satisfiable:

φ = ∃S(∀x : x ∈ S(x ∈ U)) ∧ (∀w : w ∈ W (∃x : x ∈ U

(((pos(x, w) ∧ x ∈ S) ∨ (neg(x, w) ∧ x 6∈ S)))))

Clearly, φ holds in the constructed graph iff φp is satisfiable. S corresponds to the

set of variables set to true in a satisfying assignment. It is relatively easy to eliminate

the colors and labels from the construction above. Colors can be reduced to labels

by adding a labeled vertex for each color and connecting all the vertices that had

that color to the labeled vertex. Finally, labels can also be eliminated by attaching

a different FO-definable gadget to each labeled vertex. In particular, observe that all

the vertices in our construction now have degree at least two. Thus, attaching a leaf

to a vertex can be seen as labeling it (this can be expressed in FO logic). Similarly,

we attach two leaves to the next vertex we want to label and so on. We only need

a constant number of labels to simulate the constant number of color classes our

construction uses. Therefore the lower bounds given below apply to the natural form

of the problem.

Lemma 3.14. G |= φ iff φp is satisfiable. Furthermore, φ has size O(1) and G has
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a vertex cover of size O(log n).

Proof. Follows from the description of the construction.

Theorem 3.5. Let G a graph with vertex cover k. Then, there exists a fixed MSO

formula φ such that, unless 3-SAT can be solved in time 2o(n), there is no algorithm

which decides if G |= φ in time O(22
o(k)

· poly(n)).

Proof. We have already observed that the construction we described has k = O(log n).

Since the construction can clearly be performed in polynomial time, an algorithm

running in time O(22
o(k)

· poly(n)) would imply an algorithm for SAT running in

2o(n) · poly(n).

Note that, since the formula used in Theorem 3.5 is fixed, it is also implied that a

O(22
o(k+q)

· poly(n)) algorithm would also give a sub-exponential algorithm for SAT.

Thus, Theorem 3.5 essentially matches the results of Corollary 3.11.

Theorem 3.6. Let φ be a FO formula with qv vertex quantifiers and G a graph with

vertex cover k. Then, unless 3-SAT can be solved in time 2o(n), there is no algorithm

which decides if G |= φ in time O(2o(kqv) · poly(n)).

Proof. We use the same construction, but begin our reduction from Weighted 3-

SAT, a well-known W[1]-hard parameterized problem. Suppose we are given a 3-

CNF formula and a number w and we are asked if the formula can be satisfied by

setting exactly w of its variables to true. The formula φ we construct is exactly the

same, except that we replace the ∃S with ∃x1∃x2 . . . ∃xw(
∧

1≤i<j≤w xi 6= xj) and all

occurences of x ∈ S with
∨

1≤i≤w x = xi. It is not hard to see that the informal

meaning of φ now is to ask whether there exists a set of exactly w distinct variables

such that setting them to true makes the formula true.
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We now have qv = w+O(1) so an algorithm running in time 2o(kqv) ·poly(n) would

imply an algorithm for Weighted 3-SAT running in 2o(w logn) · poly(n) = no(w), and

thus, by the results of Chen et al. [2004] that there exists a sub-exponential algorithm

for 3-SAT.

3.7 Neighborhood Diversity

In this Section we give some general results on the new graph parameter we have de-

fined, neighborhood diversity. We will use nd(G), tw(G), cw(G) and vc(G) to denote

the neighborhood diversity, treewidth, cliquewidth and minimum vertex cover of a

graph G. We will call a partition of the vertex set of a graph G into w sets such that

all vertices in every set share the same type a neighborhood partition of width w.

First, some general results

Theorem 3.7. 1. Let V1, V2, . . . , Vw be a neighborhood partition of the vertices of

a graph G(V,E). Then each Vi induces either a clique or an independent set.

Furthermore, for all i, j the graph either includes all possible edges from Vi to

Vj or none.

2. For every graph G we have nd(G) ≤ 2vc(G)+vc(G) and cw(G) ≤ nd(G)+1. Fur-

thermore, there exist graphs of constant treewidth and unbounded neighborhood

diversity and vice-versa.

3. There exists an algorithm which runs in polynomial time and given a graph

G(V,E) finds a neighborhood partition of the graph with minimum width.

Proof. For the first statement, to show that every Vi induces either a clique or an

independent set, we may assume that |Vi| ≥ 3, otherwise the statement is trivial.

Suppose that some Vi includes at least one edge (u, v). Consider another vertex
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w ∈ Vi. The vertex w has the same type as u, therefore (w, v) must be an edge.

Similarly, (w, u) must also be an edge, and generally all other vertices in Vi are

connected to both u and v. Finally, if w,w′ are two vertices of Vi other than u, v it

must be the case that (w,w′) is an edge, because (u, w′) is an edge and u and w have

the same type. Another way to see this observation is to say that the property of two

vertices having the same type is an equivalence relation as observed in Lemma 3.2.

For the edges between Vi and Vj, suppose that there exists at least an edge (u, v)

between them and let w ∈ Vi, w
′ ∈ Vj. v has the same type as w′, therefore (u, w′)

must be an edge. Now, w has the same type as u so (w,w′) must also be an edge,

and once again this is true for any w,w′.

We have already shown the first part of the second statement. For the part with

cliquewidth, we remind the reader that the graphs of cliquewidth k are those which

can be constructed by repeated application of the following operations: introducing

a new vertex with a label in {1, . . . , k}, joining all vertices of label i with all vertices

of label j, renaming all vertices of label i to label j and taking disjoint union of two

graphs of cliquewidth at most k. We must show how to construct a graph in such a

way starting from a neighborhood partition of width w, using at most w + 1 labels.

The labels in {1, . . . , w} will only be used for the vertices of the corresponding set in

the partition, while the extra label will be used to construct the cliques. For each Vi,

if Vi is an independent set introduce |Vi| new vertices with label i. If Vi is a clique

repeat |Vi| times: introduce a new vertex of label w + 1, join all vertices of label i to

w + 1 and rename w + 1 to i. After all the vertices have been introduced, for all i, j

for which the graph had all edges between Vi and Vj join the vertices labeled i with

those labeled j.

To see why treewidth is incomparable to neighborhood diversity consider the ex-

amples of a complete bipartite graph Kn,n and a path on n vertices.

Finally, let us argue why neighborhood diversity is computable in polynomial
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time. As mentioned already, the property of two vertices having the same type is

an equivalence relation. The number of sets in an optimal partition is equal to the

number of equivalence classes, so we simply need to determine these. It is easy to see

that one can check if two vertices have the same type in polynomial time, so dividing

the vertices into equivalence classes can also be done in polynomial time by checking

all pairs of vertices.

Taking into account the observations of Theorem 3.7 we summarize what we know

about the graph-theoretic and algorithmic properties of neighborhood diversity and

related measures in Figure 3.1.

FO MSO MSO2

Cliquewidth tow(w) tow(w) tow(w)
Treewidth tow(w) tow(w) tow(w)

Vertex Cover 2O(w) 22
O(w)

22
O(w)

Neighborhood Diversity poly(w) 2O(w) Open

Figure 3.1: A summary of the relations between neighborhood diversity and other
graph widths. Included are cliquewidth, treewidth, pathwidth, feedback vertex set
and vertex cover. Arrows indicate generalization, for example bounded vertex cover is
a special case of bounded feedback vertex set. Dashed arrows indicate that the gener-
alization may increase the parameter exponentially, for example a graph of treewidth
w has cliquewidth at most O(2w) and this is known to be tight. The table summa-
rizes the best known model checking algorithm’s dependence on each width for the
corresponding logic.

There are several interesting points to make here. First, though this work is mo-

tivated by a specific goal, beating the lower bounds that apply to graphs of bounded

treewidth by concentrating on a special case, it seems that the results which can

achieved are at least somewhat better; it is possible to prove stronger meta-theorems

by focusing on a class which is not necessarily smaller than bounded treewidth, only

different. However, this class is a special case of another known width which gen-
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eralizes treewidth as well, namely cliquewidth. Since the lower bound results which

apply to treewidth apply to cliquewidth as well, this work can perhaps be viewed

more appropriately as an improvement on the results of Courcelle et al. [2000] for

bounded cliquewidth graphs when restricting our attention to the more special case

of bounded neighborhood diversity.

Second, there is the case of MSO2 logic. The very interesting hardness results

shown in Fomin et al. [2009, 2010] demonstrate that the tractability of MSO2 logic

is in a sense the price one has to pay for the additional generality that cliquewidth

provides over treewidth. It is natural to ask if these results can be strengthened to

apply to neighborhood diversity or MSO2 logic can be shown to be tractable when

parameterized by neighborhood diversity.

Though we cannot yet fully answer the above question related to MSO2, we can

offer some first indications that this direction might merit further investigation. In

Fomin et al. [2009] it is shown that MSO2 model checking is not fixed-parameter

tractable when the input graph’s cliquewidth is the parameter by considering three

specific MSO2-expressible problems and showing that they are W-hard. The problems

considered are Hamiltonian cycle, Graph Chromatic Number and Edge Dominating

Set. We can show that these three problems admit FPT algorithms on graphs of small

neighborhood diversity (for Hamiltonian cycle this is in fact an easy consequence of

an old result from Cosmadakis and Papadimitriou [1984]). Since small neighborhood

diversity is a special case of small cliquewidth, where these problems are hard, this

result could be of independent interest.

Theorem 3.8. Given an n-vertex graph G whose neighborhood diversity is w, there

exist algorithms running in time O(f(w) · poly(n)) that decide Hamiltonian cycle,

Graph Chromatic Number and Edge Dominating Set.

Proof. We will make use of an auxiliary graph G′ on w vertices. Each vertex of G′

corresponds to a set in an optimal neighborhood partition of G and two vertices of G′



michail lampis Structural Parameterizations 44

have an edge iff the corresponding sets of the partition of G have all possible edges

between them.

For Hamiltonian cycle we rely on the results of Cosmadakis and Papadimitriou

[1984]. There it is shown that the TSP problem is FPT parameterized by the number

of cities even when one has to visit each city a number of times given in the input.

We take G′ and add a self-loop to every vertex that corresponds to a clique in G.

The number of times we want to visit each vertex of G′ is equal to the size of the

corresponding set of the neighborhood partition. We set the cost of each edge to 1

and each non-edge to 2 and solve the resulting TSP instance on G′. G is Hamiltonian

iff there is a TSP tour on G′ with cost n.

Let us now show how to solve graph coloring. Observe that if a set Vi of a neigh-

borhood partition of G induces an independent set, we can delete all of its vertices but

one, without affecting the graph’s chromatic number, because there always exists an

optimal coloring where all the vertices of Vi take the same color. So, we can assume

without loss of generality that all the sets Vi of a neighborhood partition of G induce

cliques (some of them of order one).

We are now going to reformulate the problem, using the fact that in any coloring

of G every color class intersects each set of the neighborhood partition in at most

one vertex (since all the sets of the partition induce cliques). In other words, every

color class essentially coincides with an independent set of G′. Let I be the set of all

independent sets of G′ and let Vp be the set of vertices of G
′, each of which represents

a set in the neighborhood partition of G. Consider the following ILP with variables

xI , I ∈ I (i.e. at most 2w variables):

min
∑

I∈I
xI

s.t. ∀v ∈ Vp :
∑

I:v∈I
xI = |Vp|
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Intuitively, in the above ILP the variables xI encode how many different color

classes coincide with the independent set I of G′ in a coloring of G.

We argue that the optimal solution to this problem is exactly the chromatic num-

ber of G. First, suppose that there exists a coloring of G with c colors. Every color

class induces an independent set, so by looking at the collection of sets of the neigh-

borhood partition that the class intersects we have that every color class corresponds

to some I ∈ I. Several color classes may correspond to the same set I, so we set xI

to be equal to the number of color classes that correspond to the set I. It should be

easy to see then that
∑

xI = c. The requirement that |Vi| =
∑

I:i∈I xI is satisfied

because every vertex belongs in exactly one color class.

For the other direction, suppose that there exist integers xI which satisfy the ILP

and
∑

xI = s. We can produce a coloring of G with s colors: as long as there exists

an I with xI > 0 select a new color and arbitrarily pick exactly one uncolored vertex

from each Vi with i ∈ I. Color these vertices with the new color, and set xI := xI−1.

It is not hard to see that this algorithm will use exactly s colors. It produces a valid

coloring because in the beginning we have |Vi| =
∑

I:i∈I xI and the equality continues

to hold at each step if we only count the uncolored vertices on the left-hand side of

the equation.

Thus, intuitively we have reformulated the problem as one of selecting the inde-

pendent sets that will form the color classes. The main observation now is that the

possible choices for the independent sets are only 2w. Thus, we can recast the prob-

lem as an Integer Linear Program with at most 2w variables and w constraints for

the equations |Vi| =
∑

I:i∈I xI . It follows from a seminal result of Lenstra (Lenstra Jr

[1983]) that solving this can be performed in FPT time.

In the edge dominating set problem, we are asked to find a set of edges of minimum

size such that all other edges share an endpoint with one of the edges we selected.

This problem is equivalent to the minimum maximal matching problem, where we
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are trying to find a minimum size independent set of edges that cannot be extended

by picking another edge of the graph. To see why the optimal solution to the edge

dominating set problem can always be transformed to a matching, suppose that we

have a solution S which includes two edges (u, v), (u, v′). Now, if all the neighbors of

v′ are incident on an edge of S we can simply remove (u, v′) from S and improve the

size of the solution. If there is a neighbor w of v′ that is not incident on an edge of S

we can replace (u, v′) with (w, v′) in S. To see why a solution to the edge dominating

set problem can always be transformed to a matching that is maximal, suppose that

the matching we got was not maximal. Then there would be two unmatched vertices

connected by an edge, which would imply that this edge is not dominated.

Our algorithm will proceed as follows: for every vertex cover V ′ of G′ repeat the

following (there are at most 2w vertex covers to be considered): from V ′ infer a vertex

cover of G by placing into the vertex cover all the vertices that belong in a type whose

corresponding vertex is in V ′. Also place in the vertex cover all but one (arbitrarily

chosen) vertex of every vertex type that induces a clique but whose corresponding

vertex is not in V ′. Denote the resulting vertex cover of G by V ′′. Find a maximum

matching on the graph induced by V ′′, call it M1. Take the bipartite graph induced

by the unmatched vertices of V ′′ and V \ V ′′ and find a maximum matching there,

call it M2. The solution produced is M1 ∪M2. After repeating this for all vertex

covers of G′, pick the smallest solution.

Now we need to argue why this solution is optimal. Let S be an optimal solution

for G. We say that a set of the neighborhood partition Vi is full if all of its vertices

are incident on edges of S. If we take in G′ the corresponding vertices of the full sets

of G, they must form a vertex cover of G′, otherwise there would be two neighboring

vertices with neither having any edge of S incident to it, which would mean that S

is not maximal. This is a vertex cover of G′ considered by our algorithm, since our

algorithm considers all vertex covers of G′, call it V ′. Let V ′′ be again the vertex
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cover of G our algorithm derived from V ′ by also including a minimal number of

vertices from each remaining clique. Let V ∗ be the set of vertices of G incident on

some edge of S, which must also be a vertex cover of G. Without loss of generality

we will assume that V ′′ ⊆ V ∗, because the two vertex covers of G agree on taking

all vertices of the full sets and V ′′ takes a minimal number of vertices from every

other clique. Even if V ∗ leaves out a different vertex from some clique because all the

vertices of the clique have the same neighbors we can apply an exchanging argument

and transform S appropriately without increasing its size so that both sets leave out

the same vertex.

Now note that |M2| ≤ |V ′′| − 2|M1|. So our algorithm’s solution has size at

most |V ′′| − |M1|. On the other hand the optimal solution S includes some edges

with both endpoints in V ′′, call this set S1. Because M1 is a maximum matching,

|S1| ≤ |M1|. From what we have so far, the fact that all vertices of V ∗ are matched

by S and the fact that V ′′ is a vertex cover, so V ∗ \ V ′′ induces no edges we have

|V ∗| = |V ∗ ∩V ′′|+ |V ∗ \V ′′| = |V ′′|+ |V ′′| − 2|S1| ≥ 2|V ′′| − 2|M1|. This implies that

|S| ≥ |V ′′| − |M1| which concludes the proof.



Chapter 4

Directed Graphs

In this chapter we will present some parameterized complexity results concerning

directed graphs. As mentioned in the previous chapter, much work has been devoted

to the investigation of the algorithmic properties of (undirected) treewidth and its

variations. Much of this work can be applied in a straightforward way to digraph

problems: simply consider the treewidth of the underlying undirected graph (that

is, the graph obtained if we ignore the directions of all the edges) as the parameter.

This approach, however, feels less than satisfactory, since much of the structure of

the input is ignored. For example, the Directed Hamiltonian Circuit problem

is always easy on DAGs, regardless of the underlying graph’s treewidth, which may

be arbitrarily high. Thus, this motivates the question of whether one can define a

width more finely tuned to digraphs, which would more accurately characterize the

“easy” families of instances.

As a result, several (competing) definitions of directed treewidths have appeared

in the literature. In this chapter we will present two hardness results which af-

fect essentially all known definitions of directed treewidth: we show that Directed

Hamiltonian Circuit is W-hard parameterized by the input graph’s directed width

and that Max Di Cut is NP-hard even for DAGs. Together with other hardness

48
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results which have appeared in the literature more recently, these give evidence that

the proposed digraph widths are unlikely to be as successful as treewidth. The results

presented here have appeared in Lampis et al. [2008] and Lampis et al. [2011].

4.1 Previous Work

Several attempts have been made recently to define a treewidth for digraphs. The

most notable such variations of treewidth that have been proposed in the past are

probably directed treewidth (Johnson et al. [2001]), DAG-width (Obdrzálek [2006])

and Kelly-width (Hunter and Kreutzer [2007]). All these three measures can be viewed

as good generalizations of treewidth in the sense that, if we take an undirected graph

and replace each edge with two opposite directed edges the width of the new digraph

will be the same for all three definitions and equal to the treewidth of the original

graph. Directed treewidth is the most general of the three, in the sense that a graph of

bounded Kelly-width or DAG-width will also have bounded directed treewidth, while

the converse may not be true. Also DAG-width and Kelly-width are conjectured to

be only a constant factor apart on any graph (Hunter and Kreutzer [2007]).

Thus, Kelly-width and DAG-width have the potential to provide better algorith-

mic properties than directed treewidth and some evidence is given in this direction in

the form of an algorithm for solving a class of parity games, a problem that is open

so far for directed treewidth (note though that this algorithm is not FPT, and that

the problem is not believed to be NP-complete).

The most important positive result of directed treewidth (which can be extended

to all the three measures) is an algorithm that solves Directed Hamiltonian

Circuit in O(nf(k)) time, k being the width of the input graph. Nevertheless, this

algorithm is still far from the performance of the best treewidth-based algorithm for

Hamiltonian Circuit, which runs in fixed-parameter linear time. Unfortunately,
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the reason for this distance is not addressed in Johnson et al. [2001] or in Hunter

and Kreutzer [2007] where another algorithm (of similar complexity) for this problem

is given. In addition, the few already known algorithmic results on these measures

don’t seem to indicate that they are likely to achieve a level of success comparable to

treewidth, as no FPT algorithms are known for any hard digraph problems.

More recently in Kreutzer and Ordyniak [2008] the authors investigate the con-

cepts of DAG-width and Kelly-width more closely and prove several interesting re-

sults: First, they show that the cops-and-robber games associated with both measures

are non-monotone, which draws a contrast with the case of treewidth whose associ-

ated cops-and-robber games have been shown to be monotone. Second, they show

that several problems which are polynomially solvable for DAGs are still NP-complete

even for graphs of constant Kelly-width and DAG-width. Yet more hardness results

are shown in Dankelmann et al. [2009] where the Minimum Leaf Outbranch-

ing problem is shown to be NP-complete even for constant width, even though it is

polynomially solvable on DAGs.

A related measure is directed pathwidth. Just as pathwidth is a restriction of

treewidth in the undirected case directed pathwidth is a restriction of all the previ-

ously mentioned directed measures, thus having even greater algorithmic potential.

However, to the best of our knowledge no such results have been shown for directed

pathwidth. In Barát [2006] it is shown that a cops-and-robber game is equivalent

to directed path-width and that there always exists an (almost) optimal monotone

strategy. It is worthy of note that, unlike the undirected case where treewidth and

pathwidth are generalizations of different graph topologies (trees and paths respec-

tively) in the directed case all the measures we have mentioned are based on the

concept of DAGs as the simplest case.

It is also worth noting the existence of a related digraph complexity measure which

is often overlooked in this discussion: cycle rank. Cycle rank was first defined in the
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Figure 4.1: Summary of relations between digraph widths. Arrows indicate general-
izations. DFVS stands for directed feedback vertex set. The undirected widths are
taken with respect to the underlying undirected graph (ignoring arc directions).

1960s in Eggan [1963] and it has mainly found applications in the context of regular

languages (it has been shown that the star height of a regular language is connected

to the cycle rank of the NFAs which accept it). As pointed out in Gruber and Holzer

[2008] cycle rank is also relevant in our discussion here, since it can be shown (Gruber

and Holzer [2007]) that the directed pathwidth of a graph is upper bounded by its

cycle rank.

Finally, let us point out that the current state-of-the art in the area of digraph

widths is nicely summarized in Ganian et al. [2009, 2010]. In these two papers it is

discussed in even more depth whether the currently proposed definitions of directed

treewidth, or even some other variation thereof, could give algorithmic results com-

parable to those of undirected treewidth. In short, the answer seems to be no, as

Ganian et al. [2010] presents evidence that any digraph width which satisfies some

basic algorithmic and graph-theoretic properties must necessarily be essentially the

same as (undirected) treewidth.

The relations between the mentioned digraph widths are summarized in Figure

4.1.
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4.2 Preliminaries

As mentioned, the main results of this section are negative: we will present hardness

results for Directed Hamiltonian Circuit and Max Di Cut, affecting their

parameterizations by directed treewidth. We will also give an extension that proves a

hardness result for the related Minimum Leaf Outbranching problem. But first,

we need to give all the necessary definitions.

First, let us give the definitions of the two problems that will be our focus.

Definition 4.1. The Directed Hamiltonian Circuit problem is that of deciding

whether there exists a permutation (v1, v2, . . . , vn) of the vertices of an input digraph

G(V,E) s.t. ∀i ∈ {1, . . . , n− 1} (vi, vi+1) ∈ E and (vn, v1) ∈ E.

Definition 4.2. The Minimum Leaf Outbranching problem is the following:

given a directed graph G(V,E), find an outbranching (a spanning rooted directed

tree) such that the number of leaves of the tree is minimized. (see Dankelmann et al.

[2009])

Definition 4.3. TheMax Di Cut problem is the following: given a digraph G(V,E)

and a weight function on the edges w : E → N, find a partition of V into two sets V0

and V1 so that the weight of the edge set C = {(u, v) | u ∈ V0, v ∈ V1} is maximized.

That is, the objective is to maximize
∑

e∈C w(e).

Max Di Cut was shown APX-hard in Papadimitriou and Yannakakis [1991].

Here we show APX-hardness for the problem’s restriction to DAGs. Then we show

that APX-hardness also holds for the cardinality version of the problem restricted to

DAGs.

We should also recall the definitions of the two problems that will be the starting

points of our reductions.

Definition 4.4. Dominating Set is the problem of finding a minimum cardinality
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subset of vertices D of an undirected graph G(V,E) s.t. any vertex in V \ D has a

neighbor in D.

When a vertex u ∈ D is a neighbor of a vertex v, we will say that u dominates

v. We will also follow the convention of saying that any vertex in D dominates itself.

We will make use of the well-known result that Dominating Set is W [2]-complete

when the parameter k is the size of the dominating set we are looking for (Downey

and Fellows [1999]).

Definition 4.5. NAE3SAT is the problem of finding a truth assignment which, for

every clause of an input 3CNF formula, assigns the value true to at least one literal,

and the value false to at least one literal.

We follow the convention of saying that a clause is satisfied in the NAESAT

sense, or simply satisfied, when a truth assignment assigns different truth values to

two of its literals. We will mainly be concerned with the maximization version of

NAE3SAT where the objective is to find a truth assignment that satisfies as many

clauses as possible. This variant was shown to be APX-hard in Papadimitriou and

Yannakakis [1991].

We have already mentioned that directed pathwidth can be defined in terms of a

cops-and-robber game. The game’s definition is the following:

Definition 4.6. The k-cop invisible-eager robber game is the game where k cops

attempt to catch an invisible robber hiding in a vertex of a digraph G. The cops are

stationed on vertices of G and a cop can move by removing himself from the graph

and then “landing” on any other vertex. The robber can move at any time and he is

allowed to follow any directed path of G, under the condition that he does not enter

vertices occupied by stationary cops.

We say that k cops have a monotone strategy to win this game when they have a

strategy such that the robber can never visit a vertex previously occupied by a cop.
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In Barát [2006] it was shown that k cops have a monotone strategy on a graph G iff

the graph has directed pathwidth k.

Kelly-width, DAG-width and directed treewidth have also been shown to be con-

nected to similar games, restricted to monotone strategies. In fact, DAG-width is

equivalent to the above game but with the robber being visible, while Kelly-width is

equivalent to the above game but with the robber only being allowed to move when a

cop enters his vertex. Using the approximate connection between directed treewidth

and a similar game it was shown in Hunter and Kreutzer [2007] that the directed

treewidth of a graph is upper-bounded by its Kelly-width multiplied by a constant.

It is not hard to infer from these results that, since the robber is stronger in the

game related to directed pathwidth, a graph G will have higher pathwidth than any of

the other widths. Since we are interested in proving hardness results, it will therefore

suffice to show that a problem is hard for graphs of small directed pathwidth and

hardness for the other widths will directly follow.

In addition to the above widths we may also wish to consider cycle rank. Cycle

rank can be defined inductively as follows: if G(V,E) is acyclic then cr(G) = 0, if

G is strongly connected then cr(G) = 1 + minv∈V cr(G − v) and finally if G is not

strongly connected then cr(G) is equal to the maximum cycle rank of any of G’s

strongly connected components. As mentioned, it has been shown in Gruber and

Holzer [2007] that in any digraph G the cycle rank is lower bounded by the directed

pathwidth (more precisely, this relation holds up to an additive constant), therefore

showing a hardness result for bounded cycle rank immediately implies hardness for

all the widths we have mentioned. For the sake of completeness here is another short

proof of the relation between cycle rank and directed pathwidth.

Lemma 4.7. For any digraph G, dpw(G) ≤ cr(G) + 1, where dpw(G) denotes the

directed pathwidth of G and cr(G) the cycle rank of G.

Proof. By induction on cr(G). If cr(G) = 0 then G is acyclic and dpw(G) ≤ 1.
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Suppose that the relation is true for all graphs of cycle rank up to k. Consider a graph

G with cr(G) = k+1. If it is strongly connected then there exists a vertex v such that

cr(G−v) = k. From the inductive hypothesis this implies dpw(G−v) ≤ k+1, which

means that k+1 cops have a wining monotone strategy for G−v. Then k+2 cops have

a winning strategy for G: just keep the extra cop in v at all times. If G is not strongly

connected there must exist an ordering of its strongly connected components, so that

edges with endpoints in different components are always directed towards components

later in the ordering. Applying the same argument to each component in this order

we obtain a monotone winning strategy for the cops, because at any time the robber

can either remain in the component he currently is (where the cops have a strategy)

or move to a component later in the ordering (which means he can never come back).

4.3 Directed Hamiltonian Circuit

In this section we focus on the Directed Hamiltonian Circuit problem, a prob-

lem which can be solved using directed treewidth in O(nf(k)) time (Johnson et al.

[2001]). Of course this algorithm also applies to DAG-width, Kelly-width and di-

rected pathwidth, as they are restrictions of directed treewidth. In addition, another

O(nf(k)) algorithm for this problem tailored for Kelly-width is given in Hunter and

Kreutzer [2007]. Thus, a significant gap exists between the performance of treewidth,

which is fixed-parameter polynomial on the corresponding undirected problem and

the performance of its directed variants. We show that this is a gap that can not

be bridged unless W [2] = FPT , by demonstrating that Directed Hamiltonian

Circuit is W [2]-hard when the parameter is any of these widths.

The hardness proof for Directed Hamiltonian Circuit will be a parameter-

ized reduction from the naturally parameterized version of Dominating Set.
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Figure 4.2: An example of our construction. The graph on the left is the original
undirected graph and we are looking for a dominating set of size 2. The three parts
of the produced graph are outlined. To simplify the figure some edges are not shown:
the dark vertices of V3 are the vertices which are connected to all the vertices of V1.
The gadgets C1, C2 and C3 are on top in V3, while C4, C5 and C6 are below.

Theorem 4.1. The parameterized versions of Directed Hamiltonian Circuit,

where the parameter is the directed treewidth, Kelly-width, DAG-width, directed path-

width or cycle rank of the input graph, are W [2]-hard.

Proof. We will show a parameterized reduction from the naturally parameterized

version of Dominating Set, where the parameter k is the size of the set by con-

structing a digraph whose cycle rank is bounded by a function of k s.t. the digraph

will be Hamiltonian iff the original graph had a dominating set of size k.

Suppose we are given a graph G(V,E) with V = {1, 2, . . . , n} and need to decide

whether G has a dominating set of size k. Note that we assume that V is ordered in

some way. The ordering may be arbitrary, as long as we fix it in the beginning.

Our digraph G′ has vertex set V ′ = V1 ∪ V2 ∪ V3 where

1. V1 = {u1, u2, . . . , uk}.

2. V2 = {v1, v2, . . . , vn}.

3. V3 = {g(w,j,p) | w ∈ {1, . . . , n}, j ∈ N [w], p ∈ {In,Out}}. Here N [w] denotes

the neighborhood of vertex w in G including w itself (i.e. all the vertices that w

dominates). N [w] is an ordered set according to the above mentioned ordering.

It is also supplied with the constants fw and lw which denote the first and the
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last elements in N [w] respectively and the operation sw(j) which outputs the

element that comes after j in N [w] according to the ordering.

E(G′) consists of the following sets of directed edges

1. E1 = {(ui, vj) | i ∈ {1, . . . , k}, j ∈ {1, . . . , n}}.

2. E2 = {(vi, vi+1) | i ∈ {1, . . . , n}} (where we consider n+1 to be the same as 1).

3. E3 = {(g(w,j,In), g(w,sw(j),Out)) | w ∈ {1, . . . , n}, j ∈ N [w]}, where sw(lw) = fw.

4. E4 = {(g(w,j,Out), g(w,j,In)) | w ∈ {1, . . . , n}, j ∈ N [w]}.

5. Finally, E5 contains the following edges: For any vertex w of the original graph

G, the edge (vw, g(fw,w,In)) and the edges (g(j,w,Out), g(sw(j),w,In)) for all j ∈ N [w]

are included in E5. Finally, the edges (g(lw,w,Out), ui) for all i ∈ {1, . . . , k} are

also included in E5. We will call the subgraph induced by the group of vertices

g(w,j,p) for a specific w, the gadget Cw.

Let us now discuss the basic idea behind this construction, before we get into more

details. Our digraph G′ consists of three parts: a constraint part V1, a choice part

V2 and a satisfaction part V3. V1 functions as a constraint part because it only has k

vertices and the only edges going into V2 originate here, thus forcing us to enter the

choice part exactly k times. A Hamiltonian tour will leave V2 k times. The vertices

from which it leaves V2 must be (as we will prove) a dominating set of G, and that is

why V2 is the choice part. Finally, V3 is arranged in such a way that it can only be

traversed in a Hamiltonian way if the choice made in V2 is indeed a dominating set.

It is clear that every gadget Cw is a directed cycle of 2 · |N [w]| vertices. Further-

more, the gadget Ci is connected to the gadget Cj iff there exists a vertex w in the

original graph such that i, j ∈ N [w] and j = sw(i). Also notice that all edges between

gadgets connect vertices having the same second coordinate and any vertex vw of V2

is only connected with vertices of the gadgets having w as the second coordinate.
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Figure 4.2 gives an example of our construction and makes it clear how the edges

of E5 are placed. For example, consider the edges we place for vertex 5 of the original

graph. N [5] = {1, 4, 5, 6} in the original graph. So we must have a directed edge from

v5 to C1, from C1 to C4, from C4 to C5, from C5 to C6 and C6 back to both vertices

of V1. In order to do so we connect the vertices of each gadget that correspond to 5.

Such a vertex exists in every gadget C1, C4, C5, C6 according to the construction of

V3.

The crucial part of this reduction is the way the gadget Cw works. Notice that

the gadget’s vertices induce a directed cycle. Also, the only way to enter this cycle is

through an In vertex, and the only way to leave is through an Out vertex. Suppose

that a Hamiltonian tour enters a gadget Cw m times and that X ⊆ N [w] is the index

set of the In vertices which were used. Then it must also be the index set of the

Out vertices used. To see that, suppose that X = {j1, j2, . . . , jm} in increasing order.

When entering from g(w,j1,In) the tour has no choice but to proceed to g(w,sw(j1),Out).

Then if sw(j1) 6= j2 the tour must move to g(w,sw(j1),In), because if it were to exit, it

would be impossible to visit g(w,sw(j1),In) in the future. Using this argument again can

exclude the possibility of this part of the tour exiting through any vertex other than

g(w,j2,Out). Similarly, the path that starts at g(w,j2,In) will exit at g(w,j3,Out) and so on,

with g(w,jm,In) exiting through g(w,j1,Out). This procedure covers all the vertices of the

gadget, therefore we proved that, for any set of entry vertices X, the gadget can be

traversed in a way that does not exclude the existence of a Hamiltonian tour of the

whole graph iff X corresponds also to the exit vertices used.

Suppose that G does not have a dominating set of size k, but that a Hamiltonian

tour of G′ exists. As noticed, a Hamiltonian tour will traverse V2 in total k times. Let

D be the set of choices made by the tour in V2, i.e. the set of vertices through which

the tour exits V2. The selection of the set D in G leaves some vertex not dominated,

say vertex w. Consider the gadget Cw. Since the tour is Hamiltonian, the gadget Cw
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should be traversed. Suppose that the Hamiltonian tour enters Cw through vertex

g(w,q,In). That means that q belongs in N [w]. Combining the previously established

properties of the gadgets, the Hamiltonian tour enters and exits every gadget using

only vertices having second coordinates from the set D. From this we conclude that

q belongs to D. Thus, we have a contradiction since D dominates w.

It remains to prove the converse, namely that a dominating set of size k implies

a Hamiltonian tour. Let D = {d1, d2, . . . , dk} be a dominating set. Informally, these

will be exactly the vertices through which our tour will exit V2. Also, because of

the construction of the Cw gadgets, if such a gadget through a set of In vertices it

is possible to traverse it in a Hamiltonian way exiting exactly from the same set of

corresponding Out vertices. Keeping that into account we will have to show that

all Cw gadgets are entered at least once, but that follows from the fact that D is a

dominating set.

Let us first describe the tour outside the gadgets. Starting at u1, move to vdk+1

(once again, vn+1 is the same as v1) and then follow the edges in V2 until vd1 is

reached. Then we exit V2 towards the gadgets. When we reach an Out gadget vertex

that points to V1 we move to u2. From there we move to vd1+1, then to vd2 and so

on. This procedure makes sure that, even though we enter V2 only k times, all of its

n vertices are covered.

Let us now describe the traversal of the gadgets, starting from gadget 1. First

note that D ∩N [1] 6= ∅ because D is a dominating set. It is not hard to see that our

tour will enter gadget C1 through vertices g(1,dj ,In) for all j such that dj ∈ D ∩N [1],

since fj = 1 for all these j and we leave V2 only from exit points corresponding to

D. Once inside the gadget at the vertex g(1,dj ,In) our tour follows the unique path

to g(1,dl,Out), where dl is the next element of D ∩ N [1] according to the ordering (or

the first element of D ∩ N [1] if dj is the last). Note that if |D ∩ N [1]| = 1 then

dl = dj. Thus, all vertices of gadget C1 are visited exactly once and the gadget is
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exited through vertices corresponding to D ∩N [1].

We will now inductively prove the same for all gadgets. Suppose that for all

gadgets up to gadget Ci we have shown that all their vertices are visited exactly once

and the gadgets are entered and exited through vertices corresponding to D ∩ N [i].

Let us now consider gadget Ci+1. Once again D ∩ N [i + 1] 6= ∅ because D is a

dominating set. The gadget Ci+1 is entered only through vertices g(i+1,dj ,In) such that

dj ∈ D ∩ N [i + 1] because the only edges going into gadget Ci+1 originate in V2 or

one of the previous gadgets for which we have assumed that they are exited through

vertices corresponding to D. Once inside gadget Ci+1 we follow a similar tour as

in gadget 1; starting from vertex g(i+1,dj ,In) we follow the unique path to g(i+1,dl,Out)

and leave the gadget, where dl is the element of D ∩ N [i + 1] which comes after dj

(or the first element of D ∩ N [i + 1] if dj is the last). With the same reasoning as

previously, all vertices of gadget Ci+1 are visited exactly once and the gadget is exited

only through vertices corresponding to D ∩ N [i + 1]. This completes the proof that

a Hamiltonian tour can be constructed.

Finally, what is left is to argue is that G′ has low width.

First, notice that cr(G′) ≤ |V1| + cr(G′ − V1) = k + cr(G′ − V1). But G′ − V1 is

not strongly connected and all its strongly connected components are directed cycles

(V2 and the gadgets Ci). Therefore, cr(G
′ − V1) ≤ 1.

We modify the above reduction in order to prove the following theorem

Theorem 4.2. The parameterized version of Minimum Leaf Outbranching where

the parameter is the number of the leaves of the outbranching is W[2]-hard even when

restricted to graphs with constant cycle rank.

Proof. We reduce the Dominating Set problem to the Minimum Leaf Out-

branching problem. We modify the construction of the graph G′ of theorem 4.1,
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adding a vertex r with arcs pointing to the k vertices of set V1 and deleting those

edges of E5 that connect the gadgets with V1. We name the new graph G′′.

Vertex r will definitely serve as the root of the outbranching since it is a source.

We prove that G has a dominating set of size k iff G′′ has an outbranching with k

leaves.

Suppose that there is a dominating set of size k in G. From theorem 4.1 we have

that G′ has a hamiltonian cycle which uses k edges of E5 that connect V3 with V1.

Those edges are missing from G′′. Therefore there are k disjoint paths from V1 to V3

that cover all the vertices of G′. Thus there is an outbranching with root r with k

leaves.

Furthermore suppose that G′′ has an outbranching T with at most k leaves. Notice

that, since r is its root and there are no arcs from V2 or V3 to V1, all the k arcs from

r to V1 are contained in T . Thus there are exactly k disjoint paths in T , thus exactly

k leaves. Notice that if the k leaves are vertices of V3 that connect to V1 in G′ then

from T we can construct a hamiltonian circuit in G′, which can help find a dominating

set of size k in G (by theorem 4.1). Name these vertices of V3 that connect to V1

in G′ black vertices. We prove that from any outbranching T with k leaves we can

construct an outbranching T ′ with k black leaves.

First of all we can assume that T has no leaves in V1 or V2. If there was a leaf ui

in V1 and the arc (vj−1, vj) is part of T then we could add the arc (ui, vj) and remove

the arc (vj−1, vj) from T so ui wouldn’t be a leaf anymore. If there was a leaf vj in V2,

following a similar procedure as above we could add the arc (vj, g(fj ,j,In)) and remove

the arc (g(fj ,j,Out), g(fj ,j,In)), so vj wouldn’t be a leaf anymore. Furthermore notice

that there is no way that a vertex g(i,w,In) could be a leaf since vertex g(sw(i),w,Out)

could not be reached. So wlog we can assume that all the leaves of T are out vertices

of the gadgets.

We show by induction on the gadgets that we can eliminate all non-black leaves
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from T . For every gadget i starting from gadget 1 up to n − 1 we eliminate all

the black leaves from gadget i. Suppose that there is a leaf g(i,w,Out) in T which

is not a black vertex. Then the arc (g(i,w,Out), g(sw(i),w,In)) is not in T . However,

vertex g(sw(i),w,In) is in T , thus the arc (g(sw(i),w,Out), g(sw(i),w,In)) should be in T . By

removing (g(sw(i),w,Out), g(sw(i),w,In)) and then adding (g(i,w,Out), g(sw(i),w,In)) we assure

that g(i,w,Out) is not a leaf anymore while making sure that this procedure doesn’t

create non-black leaves in gadgets 1 . . . i− 1. We repeat the procedure until no non-

black leaf exists in gadget i. Then we continue with gadget i + 1. Finally the last

gadget n cannot have a non-black leaf since all its Out vertices are black.

Furthermore, G′′ has constant cycle rank since it is not strongly connected and

all the strongly connected components are cycles which have constant cycle rank.

4.4 Maximum Directed Cut

Let us now focus on a problem of much different nature: Max Di Cut. Even though,

as we saw in Section 4.3, no digraph complexity measure manages to provide an

FPT algorithm for Directed Hamiltonian Circuit, they do succeed in providing

algorithms with polynomial running times, when the width k is fixed. For Max Di

Cut the situation is much worse, as we will show that the problem is NP-hard even

for k = 1. This creates an even larger gap with the FPT performance of treewidth

than we had in the case of Directed Hamiltonian Circuit.

We will prove that Max Di Cut is both NP and APX-hard, even when restricted

to DAGs by showing a reduction from the maximization version of NAE3SAT.

Theorem 4.3. Max Di Cut is NP-hard and APX-hard, even when restricted to

DAGs.

Proof. We give a gap-preserving reduction from NAE3SAT to Max Di Cut.
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Figure 4.3: The above figure presents an example of the construction for the formula
φ = (x1 ∨ x2 ∨ ¬x3) ∧ (¬x2 ∨ x3 ∨ x4). From φ we construct φ′ = (x1 ∨ x2 ∨ ¬x3) ∧
(¬x1 ∨ ¬x2 ∨ x3) ∧ (¬x2 ∨ x3 ∨ x4) ∧ (x2 ∨ ¬x3 ∨ ¬x4). In order for the figure to be
understandable we excluded most of the edges of E5 together with some edges of E3.

Given a NAE3SAT formula φ with m clauses and n variables we construct a new

NAE3SAT formula φ′ with 2m clauses and n variables and show that φ is satisfiable

iff φ′ is satisfiable (satisfaction is in the NAESAT sense). Then from φ′ we construct

a (weighted) DAG G and show that φ′ is satisfiable iff G has a directed cut of size

46m. Without loss of generality, we may assume that every clause of φ has exactly

three literals (otherwise we may repeat one).

The new formula φ′ is constructed by taking φ and adding to it, for every clause

the same clause with all literals complemented. If an assignment satisfies t clauses

of the original formula, it must satisfy exactly 2t of the 2m clauses of φ′. Note that,

if we denote by fi the number of appearances of the variable xi in φ, then the same

variable will appear 2fi times in φ′: fi times as xi and fi times as ¬xi. In other words,

the positive and negative appearances of each variable in φ′ are balanced. We will

make use of this fact several times. Furthermore, since every clause of φ has exactly

three literals, we have that
∑

i fi = 3m

Let us now construct the DAG G(V,E). V consists of four disjoint sets of vertices
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A,X,C,B. A = {a1, . . . , an} will be a set of source vertices. B = {b1, . . . , b2m} will

be a set of sink vertices. X = {x1, x
′
1, x2, x

′
2, . . . , xn, x

′
n} will be the set of vertices

corresponding to literals of φ′ while C = {ci,j,k | i ∈ {1, 2, . . . , 2m}, j, k ∈ {1, 2, 3}}

will correspond to the clauses of φ′.

E consists of the following sets of weighted edges:

1. The set E1 = {(ai, xi) | i ∈ {1, . . . , n}}. Each of these edges has weight 6fi,

where fi is the total number of appearances of the variable xi in φ.

2. The set E2 = {(xi, x
′
i) | i ∈ {1, . . . , n}}. Each of these edges also has weight

6fi.

3. The set E3 = {(ci,j,k, bi) | i ∈ {1, . . . , 2m}, j, k ∈ {1, 2, 3}, j 6= k}. These have

weight 1.

4. The set E4 = {(ci,k,k, ci,j,k | i ∈ {1, . . . , 2m}, j, k ∈ {1, 2, 3}, j 6= k}. These also

have weight 1.

5. Finally, E5 consists of edges that connect vertices of the set X to the corre-

sponding vertices of C. That is, we add the edges {(xl, ci,j,k), k ∈ {1, 2, 3}}

when the literal xl appears in the j-th position of the i-th clause of φ′, and the

edges (x′l, ci,j,k) when the literal ¬xl appears in that position. These edges have

weight 2.

An illustrative example of the construction is presented in figure 4.3. Vertex x′4 is

connected to c4,3,1, c4,3,2 and c4,3,3 since ¬x4 appears in the third position of the fourth

clause. The intuition behind our construction is that the placement of the vertices of

C on either side of the cut will correspond to the truth assignments for the literals.

The edges inside C take care of the satisfaction. For each clause we construct three

triplets of vertices. Each triplet corresponds to a different arrangement of the literals

in the specific clause, where in each arrangement a different literal of the clause is
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placed on top and this retains the symmetry in the clauses. Specifically, the vertex

ci,j,k corresponds to the j-th literal of the i-th clause of φ′ in the arrangement where

the k-th literal is placed on top. In a satisfied clause one literal is false and one true

and there is always an arrangement which places the true literal on top and the false

one on bottom, thus contributing to the cut. However for non-satisfied clauses none

of the arrangements contribute to the cut.

Suppose we are given a truth assignment that satisfies (in the NAESAT sense)

t of the m clauses of φ. It must satisfy 2t of the 2m clauses of φ′. Let us partition

V into V0 and V1. Place all vertices of A into V0 and all vertices of B into V1. Place

the vertices of X that correspond to true literals in V1 and the rest in V0. Place the

vertices of C that correspond to true literals in V0 and the rest in V1.

Let us calculate the weight of this cut. If a variable xi is assigned the value 1

in the assignment, the edge (ai, xi) contributes 6fi to the cut. If it is assigned 0,

then x′i is in V1, therefore the edge (xi, x
′
i) contributes 6fi to the cut. Thus, the total

contribution of all edges in E1 ∪ E2 is 6
∑

i fi = 18m. Because the appearances of

each variable in φ′ are balanced, there are as many literals that took the value true as

there are literals that took the value false, in any assignment. Therefore, exactly half

the edges of E3 contribute to the cut. The number of edges in E3 is 12m so, a weight

of 6m is contributed to the cut. It is not hard to see that, for a satisfied clause Ci, the

edges of E4 incident on vertices that correspond to this clause contribute exactly 2 to

the cut. On the other hand, the edges of E4 incident on vertices of C that correspond

to a clause that is not satisfied will contribute 0 to the cut, since all these vertices

correspond to literals with the same truth value and are therefore on the same side

of the partition. Thus, we get a total of 4t contributed to the cut, since 2t clauses

are satisfied. Finally, once again because of the balancing of φ′, exactly half of the

edges of E5 contribute to the cut: those incident on vertices of X that we placed in

V0, i.e. vertices that correspond to false literals. For each such element of X we have
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in total 3fi edges. Since the weight of each such edge is 2, this adds up to a total

contribution of 6
∑

i fi = 18m.

Thus, the total size of the cut is 18m+6m+18m+4t = 42m+4t, which is equal

to 46m when the truth assignment satisfies every clause of φ.

Now for the other direction, suppose we are given a partition of V into V0 and V1.

We will show that we can transform such a cut into a cut of the previous form, thus

obtaining a truth assignment. First, observe that for any optimal cut A ⊆ V0 and

B ⊆ V1, because it is always optimal to place a source in V0 and a sink in V1. Now,

suppose that in the cut we are given, for some i, xi, x
′
i ∈ V0. Then place x′i in V1 and

this will not make the cut smaller because now the edge (xi, x
′
i) contributes to the

cut and its weight is exactly as much as the weight of all other edges incident on x′i.

Also, if xi, x
′
i ∈ V1 place xi in V0. This can not make the cut smaller, since the only

edge lost is (ai, xi) and its weight is the same as that of (xi, x
′
i) which now enters the

cut. Therefore, we have now made sure that for all i, xi and x
′
i are on different sides

of the partition, without decreasing the size of our cut.

Consider now a vertex ci,j,j. We know that there exists an edge (xi, ci,j,j) (or an

edge (x′i, ci,j,j)) of weight 2, which is as much as the weight of all other edges incident

on ci,j,j. Therefore, if xi (resp. x′i) is in V0, then we can place ci,j,j in V1 without

decreasing the size of the cut. Otherwise, we can place ci,j,j in V0, because the edge

of weight 2 can not be included in the cut by changing the side of ci,j,j only, and

therefore placing it in V0 is not worse because this way we may also include some of

the other edges in the cut. This establishes that every vertex ci,j,j is on a different

side of the partition from its predecessor in X.

Finally, consider a vertex ci,j,k, j 6= k. If its predecessor in X is in V0 we can place

it in V1 without decreasing the size of the cut, because then the edge of weight 2 is

included. Otherwise we can place it in V0, and this will include the edge (ci,j,k, bi) in

the cut. This does not decrease the size of the cut, since the edge of weight 2 was
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not included anyway, therefore we might at most lose the other edge incident on this

vertex, which also has weight 1. This establishes that each of the remaining vertices

of C is also on a different side of the partition from its predecessor in X.

Now, observe that starting with any given cut, we have transformed it into a cut

of a special form, without decreasing its size. From this cut we can construct a truth

assignment: set to true the literals corresponding to vertices in X that we placed in

V1. This is a valid assignment, since exactly one of xi, x
′
i is in V1. Also, if we repeat

the process of the first direction of this reduction starting from this assignment we

will get the same cut. Therefore, we have shown that there is a truth assignment

that satisfies t of the m clauses of φ iff there is a cut in the DAG G of size at least

42m+ 4t. Thus,

OPTNAESAT (φ) = m ⇒ OPTMDC(G) = 46m

OPTNAESAT (φ) ≤ (1− ǫ)m ⇒ OPTMDC(G) ≤ (1−
2ǫ

23
)46m

It is not hard to extend the results of the previous theorem to the cardinality

version of Max Di Cut, that is, the version where all edges have the same weight.

Theorem 4.4. Cardinality Max Di Cut is NP and APX-hard, even when re-

stricted to DAGs.

Proof. First, observe that all the edge weights used in the proof of Theorem 4.3

are polynomially (in fact linearly) bounded by the size of the original NAE3SAT

formula. Thus, if we extend the problem’s definition to include multigraphs, we can

replace every edge of weight w by w parallel edges of weight 1. It is not hard to see

that this does not affect the rest of the proof.
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Now, let us show how to eliminate parallel edges. For each edge (u, v) introduce

a directed path of length 3 u, w1, w2, v where w1 and w2 are new vertices. Observe

that, if u is assigned 0 and v is assigned 1, then it is possible to include 2 of the 3

edges of the path in the cut, by assigning 0 to w2 and 1 to w1. However, any other

assignment to u and v ensures that at most 1 of the three edges can be included in

the cut, and in fact this is always possible by assigning 0 to w1 and 1 to w2. Thus,

it is not hard to see that the reduction’s arguments can now be applied with little

modification.

Corollary 4.8. Max Di Cut is NP-hard and APX-hard even when restricted to

graphs of bounded directed treewidth, DAG-width, Kelly-width, directed pathwidth or

cycle rank.

Proof. The proof is immediate, because DAGs have width at most 1 under the defi-

nitions of all these widths.



Chapter 5

Structural Parameterizations for

Specific Problems

The main theme of both chapters 3 and 4 was the investigation of algorithmic proper-

ties of variations of treewidth. Though treewidth has been one of the greatest success

stories of parameterized complexity theory it makes sense for one to ask whether it is

fruitful to consider other structural parameters, disconnected from the whole concept

of “graph widths”. For example, does it make sense to parameterize a problem by the

input graph’s maximum degree or its distance from bipartite-ness? In this section we

will give examples of such parameterizations and present results for three different

problems.

First, we will consider the Path Coloring problem, a well-known optimization

problem with applications to optical networks. We will study several structural pa-

rameterizations of interest in practice, such as by the maximum degree of the input

graph or the available number of colors.

Second, we will consider the satisfiability problem for the basic modal logic K.

Modal logic is an extension of standard propositional logic with many applications

(for example in AI or game theory), for which the basic satisfiability problem is known

69
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to be PSPACE-hard. Here we investigate parameterizations of this problem by the

structure of the input formula (e.g. the quantifier depth).

Finally, we will examine the Vertex Cover problem. This is a flagship problem

in parameterized complexity theory and its standard parameterization (by the size of

the solution) has been widely researched. Here we will focus on a structural parame-

terization (by the input graph’s distance from bipartiteness) and show an application

to a parameterization of the same problem above a lower bound.

5.1 Path Coloring

The Path Coloring (PC) and Maximum Path Coloring (MaxPC) problems

are two well-known and widely studied combinatorial problems with applications in

the field of optical networks. In PC we are given a graph representing the optical

network and a set of paths on that graph and are asked to find a coloring of the paths

such that any two paths which share an edge have distinct colors and the number of

colors used is minimized. In the MaxPC problem on the other hand we are given a

specified number of colors and must select a maximum cardinality set of paths which

can be properly colored with the available colors. If the graph contains cycles we may

alternatively be given the endpoints of the communication requests only, with the

flexibility to choose the most suitable path for each. Then the problem is often called

Routing and Path Coloring (RPC and MaxRPC). Of course, if the underlying

graph is a tree the two versions of the problems are equivalent.

PC is unfortunately known to be hard to solve exactly even on very simple topolo-

gies and therefore the same holds for MaxPC. As a consequence the vast majority

of research on the two problems has focused on coming up with good approximation

algorithms for either minimizing the number of colors or maximizing the number of

colored paths. Here, however, we investigate the complexity of solving MaxPC on
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trees and tree-like graphs exactly, from the point of view of parameterized complexity

theory.

The main observation we want to exploit is that MaxPC is a problem rich with

reasonable parameters. For example in practical situations one may often expect

that the network will have moderate maximum degree and it will be a tree or perhaps

“tree-like”. Furthermore, technological limitations mean that the number of available

colors on each edge is also likely to be moderate. Also, as observed in Anand et al.

[2003], communications networks are often built with maximum capacity in mind,

meaning that typically the available resources should be enough to satisfy all or almost

all requests. Interestingly, nothing prevents several of these facts from happening

together. This motivates the study of the problem through a parameterized lens: one

identifies a parameter (or set of parameters) expected to be small and then attempts

to design an FPT algorithm for this particular parameterization or prove that none

exists.

The main results we present here are the following: we study structural param-

eterizations, that is, parameterizations which do not involve the objective function,

which is the number of requests to be satisfied. Specifically, for trees the parameters

we consider are the maximum degree ∆ and the number of available colors W . We

show that MaxPC is W-hard when parameterized by one of these parameters, even

when restricted to instances where the other is a small constant. Furthermore, we

show that in general graphs, MaxPC is W-hard when parameterized by treewidth,

even if both ∆ and W are small constants. The results presented here will appear in

Lampis [2011b].

5.1.1 Previous work

PC andMaxPC are very well-studied problems, starting from the 1980s (see Golumbic

and Jamison [1985]). As mentioned, when the network graph contains cycles one may
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consider either the case where requests are pre-routed or where routing is part of the

problem. Furthermore, the communication network can either be assumed to be undi-

rected or bi-directed, where in the second case every request has a direction and two

requests with the same color can share an edge if they use it in opposite directions.

PC is known to be hard even in very restricted topologies, from which fact the

hardness of MaxPC also follows trivially. Specifically, PC is NP-hard for undirected

stars by equivalence to edge coloring in multi-graphs (Erlebach and Jansen [2001a]),

undirected rings (Garey et al. [1980]) and bi-directed binary trees (Erlebach and

Jansen [2001a], Kumar et al. [1997]). However, it is known to be FPT in undirected

trees when parameterized by the maximum degree of the tree ∆ (Erlebach and Jansen

[2001a], Kumar et al. [1997]), and also to be FPT in bi-directed trees when parame-

terized by the maximum number of requests touching any node (Erlebach and Jansen

[2001a]). A 4/3-approximation algorithm is known for PC in undirected trees (Er-

lebach and Jansen [2001a]) and a 5/3-approximation for bi-directed trees (Erlebach

et al. [1999]).

For MaxPC a 2.22-approximation is known for bi-directed trees (Erlebach and

Jansen [1998]) and a 1.58-approximation is known for undirected trees (Wan and Liu

[1998]). For bi-directed trees it is also known that MaxPC is solvable in polynomial

time if both the maximum degree and the number of colors are constant (Erlebach and

Jansen [1998]), a result which can be extended to undirected trees in a straightforward

manner. Note though that this is an XP, not an FPT algorithm (the degree of the

polynomial depends on the parameter), a fact that we will return to later. For the

special case where only one color is available the problem is also known as Maximum

Edge Disjoint Paths, and is known to be NP-hard for bi-directed trees (Erlebach

and Jansen [2001b]) but in P for undirected trees (Garg et al. [1997]).
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5.1.2 Definitions

We will discuss the Path Coloring problem (PC) and its corresponding maximiza-

tion problem MaxPC. Our main topic is their restriction to trees. The input we are

given in this case consists of an undirected tree G(V,E) and a multi-set of demands

D ⊆ V × V . We are also given two integers W (the number of colors) and B (the

number of demands we seek to satisfy). The question is whether there exist W mu-

tually disjoint subsets D1, D2, . . . , DW ⊆ D s.t. no set Di contains two demands that

share an edge and
∑W

i=1 |Di| ≥ B.

In other words we are asked if there exists a W -colorable set of at least B paths

from the set of the given demands. This problem, where we seek to maximize B is

usually calledMaxPC, while PC is simply the special case when B = |D|. The graph

G can either be considered undirected, in which case the ordering of each demand

pair is irrelevant, or bi-directed, in which case two satisfied demands with the same

color are allowed to use the same edge but only in opposite directions (another way to

think of this is as replacing every undirected edge with two parallel arcs of opposite

directions).

The problems can be generalized to graphs that contain cycles. Here, we will

focus on the case where for each demand we are given the path that it must follow

on the graph, but also briefly mention how our results can be extended to the case

where routing is part of the problem.

We will look into different parameterizations of the same problem. The candi-

date parameters we are interested in are the maximum degree ∆ , the input graph’s

treewidth t, and the available number of colors W . To keep the presentation short

and concise we will use a notation where different parameterizations of MaxPC are

denoted by prepending it with the list of variables we consider constant or parameters.

For example, the (p∆)−MaxPC problem is the parameterized version of MaxPC

when ∆ is our only parameter. The reason for this notation is that we will consider
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various combinations of parameters and also cases where some values are parameters

and some others are fixed constants. For example (pW, c∆)−MaxPC is the special

case of (pW )−MaxPC restricted to bounded degree trees. Observe that this is not

the same as the problem (pW, p∆)−MaxPC since a hypothetical algorithm running

in time say 2Wn∆ is FPT for the first problem but not for the second.

5.1.3 Structural Parameterizations

In this section we investigate parameterizations which involve the maximum degree

∆, the input graph’s treewidth t and the number of available colors W . Some fixed-

parameter tractability results are known in the case of PC for these cases, but unfor-

tunately for the corresponding cases of MaxPC only XP algorithms are known and

as we will show this can probably not be improved.

First, recall that in Erlebach and Jansen [1998] it was shown that MaxPC can

be solved in polynomial time on bi-directed trees if both ∆ and W are constant. The

basic idea is a bottom-up dynamic programming technique which can be extended in

a straightforward way to undirected trees also. Our first observation is that this idea

can in fact be extended to graphs of bounded treewidth as well.

Theorem 5.1. (cW, c∆, ct)-MaxPC can be solved in polynomial time for both undi-

rected and bi-directed graphs.

Proof. (Sketch) The algorithm is based on bottom-up dynamic programming on the

tree decomposition of G. Recall that the vertices of a (non-leaf) bag of the decom-

position form a separator of G. Root the tree decomposition on some arbitrary bag.

The key observation now is that in any feasible solution, for any given bag B, we can

only have at most O(tW∆) satisfied demands touching the vertices of B, because no

edge can have more than W satisfied demands going through it, no vertex has more

than ∆ edges touching it (or 2∆ for bi-directed graphs) and all bags have at most
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t+1 vertices. This means that we can enumerate all possible sets of satisfied demands

touching a bag in polynomial time (about |D|O(tW∆)).

We now follow the standard treewidth techniques of calculating bottom-up for each

possible local solution in a bag what is the maximum number of satisfied demands

we can get for the graph induced by the vertices in the bag and those below it in the

tree decomposition.

Theorem 5.1 essentially applies common dynamic programming techniques as-

sociated with treewidth to obtain an XP algorithm. The algorithm is likely to be

extremely impractical though, even for small values of the parameters, since the ex-

ponent relies on all three. So the natural, and more important question to ask is

whether any kind of fixed-parameter tractability result can be obtained.

Ideally, one would like an FPT algorithm running in time f(W,∆, t) · nc, that is,

an FPT algorithm for (pW, p∆, pt)-MaxPC. Barring that, it would still be helpful if

any one of the three parameters could be moved out of the exponent of n, even by

itself. Unfortunately, we resolve this problem in a negative way, showing that even

if any two of the parameters are small fixed constants (and are therefore allowed to

appear in the exponent of n in an FPT algorithm) it is still impossible to obtain an

FPT algorithm for the problem, under standard complexity assumptions. We prove

this by using three parameterized reductions.

The reductions presented here will use a slightly more general problem we will

call CapMaxPC. In this problem, for each edge e ∈ E we are given an integer

capacity 1 ≤ c(e) ≤ W and have the additional constraint that in a feasible solution

at most c(e) satisfied demands may be using e. For parameterizations not involving

the objective function this problem is shown FPT-reducible to MaxPC by using

a simple trick where limited edge capacity on an edge is simulated by adding an

appropriate number of length 1 demands going through the edge.
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We will also use another intermediate problem in our reductions, which we will call

Disjoint Neighborhoods Packing (DNP). In DNP we are given an undirected

graph G(V,E) and are asked to find a maximum cardinality set V ′ ⊆ V such that

∀u, v ∈ V ′ we have N [u] ∩N [v] = ∅. The parameter we consider is the size of V ′.

Overall our strategy is to start from the well-known W[1]-hard problem Inde-

pendent Set and present reductions to our problems through the two intermediate

problems described above, that is, we aim to prove that IS ≤fpt DNP ≤fpt Cap-

MaxPC ≤fpt MaxPC. The trickiest step in this process will be the second reduction,

where we will show three different versions, one for each parameterization of MaxPC

we are interested in.

Lemma 5.1. For both undirected and bi-directed graphs we have

• (pW, c∆)-CapMaxPC ≤FPT (pW, c∆)-MaxPC ‘

• (cW, p∆)-CapMaxPC ≤FPT (cW, p∆)-MaxPC

• (cW, c∆, pt)-CapMaxPC ≤FPT (cW, c∆, pt)-MaxPC

Proof. For each edge (or arc) (u, v) whose capacity is c < W we add W − c demands

from u to v. Let A be the total number of new demands added this way. After

doing this we forget about capacities and we now have an instance of MaxPC. It

is not hard to see that the original CapMaxPC instance has a coloring satisfying

B demands iff the new MaxPC instance has a coloring satisfying A + B demands,

because there must exist some optimal solution to the new instance which uses all

the newly added demands.

Lemma 5.2. DNP is W[1]-hard.

Proof. We present a reduction from the Independent Set problem. Given a graph

G(V,E) and assuming without loss of generality that it has no isolated vertices and we
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are looking for an independest set of size k > 2 in G, we will construct an equivalent

instance of DNP. First, subdivide every edge of G, that is, replace each (u, v) ∈ E

with a path of length 2. Connect all newly added vertices into a clique. We will argue

that the new graph has a packing of k disjoint neighborhoods iff the original graph

has an independent set of size k.

If the original graph has an independent set of size k this immediately gives us

a packing of the same size on the new graph by selecting the same vertices. The

packing is valid since the only way two of the original vertices could have a common

neighbor in the new graph is if one of the vertices introduced in the subdivisions is

connected to both and that can only happen if an edge was connecting them in the

original graph.

If the new graph has a packing of k > 2 disjoint neighborhoods given by the set of

vertices V ′, then we can immediately infer that V ′ cannot include two or more of the

vertices introduced in the subdivisions, since they are all connected in a clique. If V ′

contains one of these new vertices, say the one introduced in the subdivision of (u, v)

(call that vertex w) then it cannot contain any vertices in V \ {u, v} because every

original vertex is connected to at least one new vertex and that vertex is connected to

w. V ′ may also contain at most one of {u, v}, so its total size cannot be more than 2

in this case. We conclude that a packing of k > 2 disjoint neighborhoods must consist

entirely of vertices from the original graph. To see that these form an independent

set in the original graph, observe that if two were originally connected they would

have a common neighbor in the new graph, violating the feasibility of the packing.

Theorem 5.2. (pW, c∆)-MaxPC is W[1]-hard for both undirected and bi-directed

trees.

Proof. Given Lemma 5.1 and Lemma 5.2 the only thing left to prove is that DNP

≤fpt (pW, c∆)-MaxPC. Given an instance of DNP, that is a graph G(V,E) and a
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target size for the DNP set k, we construct a MaxPC instance as described below.

We first show the reduction for undirected trees and then describe how it can be made

to work for bi-directed trees as well.

First, let |V | = n and we construct a “backbone”, which is simply a path on n+2

vertices. We take n + 2 disjoint copies of a path on n vertices and attach one of

the endpoints of each to one of the vertices of the backbone so that each backbone

vertex now has a path hanging from it. Label the backbone vertices bi, 0 ≤ i ≤ n+ 1

and the vertices of the other paths pi,j, 0 ≤ i ≤ n + 1, 1 ≤ j ≤ n, so that the path

vertex connected to bi is called pi,1, its other neighbor is pi,2 and so on. Finally, for

each 1 ≤ i, j ≤ n we add three vertices in the graph vi,j, ui,j and wi,j and the edges

(vi,j, wi,j), (ui,j , wi,j) and (wi,j, pi,j). In other words, we construct a path on three

vertices and connect the middle vertex to pi,j. This completes the description of the

graph, which is a tree of maximum degree 3.

Now let us describe the demands. Suppose that the vertices of the original graph

are numbered {1, 2, . . . , n}. For each i ∈ V we consider the neighborhood N(i) in

increasing order and let N(i) = {j1, j2, . . . , jd(i)}, where d(i) is the degree of i. We

add a demand from p0,i to uj1,i. Then, for each l, 1 ≤ l < d(i) we add a demand from

vjl,i to ujl+1,i. We also add a demand from vjd(i),i to pn+1,i. We add all these demands

for each i ∈ V and call these demands global demands. Finally, for each 1 ≤ i, j ≤ n

we add a demand from vi,j to ui,j . We call these demands local.

The only thing left is to specify W , which we set to W = k, and the capacities.

We leave all capacities unconstrained except for the edges (bi, pi,1), 1 ≤ i ≤ n, which

have a capacity of 2 and the edges (ui,j , wi,j) and (vi,j, wi,j) which have a capacity of

1. The construction is now complete.

To give some intuition about this construction, notice the interaction between

local and global demands. Each local demand intersects exactly two global demands

in edges of capacity 1. Thus, if the local demand is satisfied the global demands are
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rejected. Furthermore, if exactly one of the global demands is satisfied in a solution

we can exchange it with the local demand, therefore this gadget ensures that either

both global demands will be taken or both will be rejected in some optimal solution.

Observe also that from all the local demands found in a branch attached to the

backbone at most one will be rejected, since the edge (bi, pi,1) acts as a bottleneck

allowing at most two global demands to go through. The idea will be that if a vertex

i is in the neighborhood packing then we will select the global demand starting at p0,i

and satisfy one after the other pairs of demands that go into branches that correspond

to its neighbors, making these branches unusable for other global demands.

For a more precise argument, suppose that the original graph has a packing V ′ of

size k, we will construct a MaxPC solution of size n2 + k. Start with a solution of

size n2 by selecting all the local demands of the instance and nothing else. Now for

each i ∈ V ′ we will inrease the size of the solution by 1. We do this by satisfying all

the global demands associated with i, that is, all demands touching a vertex pi,j for

any j. Each time we perform this improvement step we use a new color and remove

from the solution all local demands that intersect with these global demands (it is

not hard to see that this gives a profit of exactly one demand). Since we are using

different colors in each step the only way this process could run into a problem is in an

edge where fewer that k colors can be used. For that to happen we must be trying to

satisfy more than two requests going through an edge (bj, pj,1) but that would imply

that j is a common neighbor of two vertices of the packing, violating its feasibility.

For the other direction, suppose that a solution of size n2+k exists. As mentioned,

if in a set of one local and its two intersecting global demands the solution satisfied

exactly one of the global demands, we exchange it with the local demand. This means

that for each edge (bi, pi,1) we are either satisfying two of the demands crossing it or

none and furthermore that if we are satisfying two, one of them is going “left” (that

is, it’s other endpoint is towards bi−1) and the other is going “right” (so its other
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endpoint is towards bi+1). Therefore, the number of satisfied requests going through

each edge (bi, bi+1) is constant for all i, call this number L. We will establish that

L = k. Pick an arbitrary satisfied demand which uses a backbone edge and delete it

from the solution. This will reduce the size of the solution by one, but it will also

allow us to reduce L by one, since by the same arguments used before we can make

the number of satisfied demands on each backbone edge the same without affecting

the size of the solution1. Repeat this process L times and now we have a solution

which satisfies only local demands and has size n2 + k − L. Since there are exactly

n2 local demands it must be the case that k = L. Now we can conclude that there

are k vertices in the branch connected to b0 whose demands are satisfied and all

subsequent global demands associated with them are also satisfied. These give us a

neighborhood packing in the original graph because if two of them had a common

neighbor the solution would be exceeding some branch’s bottleneck capacity of 2.

It is not hard to modify this reduction to also work for bi-directed trees. The

only difference in the network is that edges (bi, pi,1) are given a capacity of 1, since

they are intended to be traversed twice but in different directions. Other than that

we remain consistent with the ordering that we have implied in our description, that

is, every global demand is ordered towards the vertex that lies further to the right

(the vertex closer to pn+1,n. so to speak). We also make sure that the local demands

are directed in such a way that they intersect both global demands with which they

share an edge and the rest of the arguments of the reduction go through unchanged.

Theorem 5.3. (cW, p∆)-MaxPC is W[1]-hard for both undirected and bi-directed

trees. The result holds even for instances where all the vertices but one have degree

bounded by 3.

1This is implicitly relying on the fact that all global demands must intersect some local demand,
which is true if the original graph had no isolated vertices
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Proof. Once again we will describe a reduction from DNP, but now the produced

instance will have maximum degree depending on k and a constant W . We will reuse

some of the ideas of Theorem 5.2, properly adjusted. Again we will first describe

a construction for undirected graphs and then discuss how it can be modified for

bi-directed graphs.

Take k copies of a path on n vertices and label the vertices Si,j, 1 ≤ i ≤ k, 1 ≤

j ≤ n. Take k more copies and label the vertices Ti,j , 1 ≤ i ≤ k, 1 ≤ j ≤ n. Add a

new vertex to the graph, call it C, and connect it to all Si,n and Ti,n for 1 ≤ i ≤ k.

Set the capacities of all edges to 1. Also, for each i, j, 1 ≤ i ≤ k, 1 ≤ j ≤ n add a

demand from S(i, j) to T (i, j).

Before we go on, let us examine the construction so far. It should be clear that

the optimal solution satisfies k paths by selecting k vertices in the S branches and

their corresponding vertices in the T branches. The k selected vertices will eventually

encode the vertices we will pick for our neighborhood packing. What is of course

missing is some machinery to ensure that our selection is indeed a packing in the

original graph.

The constraints of a valid packing can be broken down as follows: for each of the
(

k
2

)

pairs of vertices selected for the packing we must make sure that they do not

share common neighbors. Thus, our basic tool will be a gadget that takes two of the

k choices we have made and checks their compatibility. We will make
(

k
2

)

copies of

that gadget, attach them to C and then properly reroute the demands from S to T

vertices through these gadgets.

To describe the pairwise consistency gadget, consider the instance constructed

in the proof of Theorem 5.2. We modify it as follows: First, we add local requests

gadgets, identical as those used in vertices pi,j, 1 ≤ i, j ≤ n to the vertices of the

paths p0 and pn+1. We extend all demands which currently had an endpoint in p0,j or

pn+1,j for some j ∈ {1, . . . , n} to the vertices v0,j and un+1,j respectively, so that they
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intersect the new local demands. Now we make an exact copy of the branch p0 and

all its connected gadgets (i.e. the vertices p0,j , u0,j , v0,j , w0,j , 1 ≤ j ≤ n). We call the

new branch p′0 (and the new vertices respectively p′0,j, u
′
0,j , v

′
0,j , w

′
0,j , 1 ≤ j ≤ n) and

attach it also to b0. We also make sure to replicate all demands that existed betweem

the branch p0 and the rest of the graph so that corresponding demands are placed

between the branch p′0 and the rest of the graph. We perform another full copy for

the branch pn+1 producing the branch p′n+1 with identical vertices and demands and

attach this to bn+1. Now the whole gadget has n(n + 4) local demands overall. We

set the capacities of all backbone edges to 4, all edges used by local demands to 1

and all other edges to 2.

To demonstrate the use of this gadget we will connect one such gadget on our

initial construction and use it to ensure that in the optimal solution the choices

encoded in the paths S1 and S2 (i.e. the encoding of the first two choices for the

packing) are compatible. Take a gadget as described and connect its b0 to C by an

edge of capacity 4. Recall that for all j ∈ {1, . . . , n} there is a demand from S1,j to

T1,j . Remove these n demands and for all j ∈ {1, . . . , n} add a demand from S1,j to

u0,j and a demand from vn+1,j to T1,j (in other words we are rerouting the S1 → T1

demands through the gadget). Do the same for demands from S2 to T2, only reroute

them through the p′0 and p′n+1 branches.

A solution of size n(n + 4) + k can be achieved now iff the selections for active

vertices in S1 and S2 are compatible, that is, the corresponding vertices of the initial

graph have no common neighbors. This follows from the analysis of the properties of

our gadget performed in Theorem 5.2.

It is now possible to complete the construction by adding more of the consistency

gadgets so as to make sure that all
(

k
2

)

pairs of choices are compatible. The final

graph consists of the
(

k
2

)

gadgets plus the 2k paths all attached to a single vertex

of degree
(

k
2

)

+ 2k. The total number of vertices is O(n2k2) and a solution of size
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(

k
2

)

n(n+ 4) + k can be achieved iff the original graph has a packing of size k.

Modifying this construction to bi-directed trees is again strightforward, since a

direction was implicit in our description. Again the only major difference is that we

change edges with capacities 4 and 2 to capacities 2 and 1 respectively. For the last

remark of the theorem, notice that the only vertex of high degree is C. All other

vertices have degree at most 3, except the b0 vertices of the gadgets, but even this

can easily be fixed since it is not necessary for the reduction to attach p′0 and p0 to

the same vertex. We can simply subdivide the (b0, b1) edge and attach p′0 there.

Theorem 5.4. (cW, c∆, pt)-MaxPC and (cW, c∆, pt)-MaxRPC are W[1]-hard for

both undirected and bi-directed graphs.

Proof. The proof is a modification of the proof of Theorem 5.2. Informally, the only

edges where we needed W = k in that reduction, that is, the only edges which were

meant to be traversed by k satisfied paths are those of the backbone, while in the

branches numbered 1 through n we allowed up to only two satisfied demands on each

edge. So the question is how to fix the backbone and first and last branch to use a

constant number of colors also, using a construction of treewidth k.

To do this we replace the backbone with a (n + 2) × k grid, with its vertices

numbered bi,j, 0 ≤ i ≤ n+ 1, 1 ≤ j ≤ k. The edges (bi,j , bi,j+1) have capacity 2, while

the edges (bi,j , bi+1,j) have capacity 1. The branches pi, 1 ≤ i ≤ n are identical as in

the reduction of Theorem 5.2 and are connected to the vertices bi,k. For the branch p0

we simply make k copies of it (including the demands) and connect each to a vertex

b0,j , 1 ≤ j ≤ k. Similarly, for the branch pn+1 we make k copies and connect them to

bn+1,j, 1 ≤ j ≤ k. We set the capacities of the edges inside these copied branches to

1.

Now the construction is complete and even though there are many ways to route

the demands, it does not make a difference if we allow every possible routing (i.e.
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solve MaxRPC) or specify that demands starting at the j-th copy of the branch p0

must stay on the same level of the grid (for MaxPC). In both cases the arguments

of Theorem 5.2 go through, since it is not hard to establish that for any i the total

number of satisfied requests going through the edges (bi,j , bi+1,j) is the same as the

total number of satisfied requests going through the edges (bi,j, bi−1,j) (the quantity

L in Theorem 5.2). The modification for bi-directed graphs is also straightforward.

Finally, observe that this graph has W = 2,∆ = 4 while the treewidth (in fact,

the pathwidth) of the graph can be upperbounded by k + 2.

As a final note in this section, note that it is known that assuming standard

complexity assumptions (specifically the Exponential Time Hypothesis which states

that 3-SAT cannot be solved in 2o(n)) it is not possible to find an independent set of

size k on an n-vertex graph in time no(k). The reductions in Theorems 5.2 and 5.4 are

linear in the parameter, meaning that assuming the ETH we know there is no no(W )

algorithm forMaxPC even for binary trees and there is no no(t) algorithm, even when

W = 2,∆ = 4. The reduction in Theorem 5.3 is quadratic in the parameter, meaning

that no no(
√
∆) algorithm is possible. Putting these results together tells us that no

no(Wt
√
∆) algorithm is possible. Contrasting this with the algorithm of Theorem 5.1

we see that the only small gap left to close here is the complexity as a function of ∆.

5.2 Modal Satisfiability

In this section we consider the computational complexity of deciding formula sat-

isfiability, for modal logics, focusing on the standard modal logic K. Although the

complexity of satisfiability for modal logic has been studied extensively in the past,

this has not been done before from a parameterized perspective. Here, several pa-

rameterized complexity results are presented for three different parameterizations of
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the satisfiability problem. More specifically, we will look into parameterizations that

try to quantify how “hard” an input formula is, just like treewidth tries to quantify

how “hard” a graph is. The results of this section have appeared in Achilleos et al.

[2010] and Achilleos et al. [2011].

5.2.1 Previous Work

Modal logic is a family of systems of formal logic where the truth value of a sentence

φ can be qualified by modality operators, usually denoted by � and ♦. Depending

on the specific modal logic and the application one considers, �φ and ♦φ can be

informally read to mean, for example, “it is necessary that φ”, or “it is known that

φ” for � and “it is possible that φ” for ♦. The fundamental normal modal logic system

is known as K, while other common variations of this logic system include T, D, S4,

S5. Modal logic systems provide a diverse universe of logics able to fit many modern

applications in computer science (for example in AI or in game theory), making modal

logic a widespread topic of research. The interested reader in the recent state of modal

logic and its applications is directed to Blackburn et al. [2006].

As in propositional logic, the satisfiability problem for modal logic is one of the

most important and fundamental problems considered and many results are known

about its (traditional) computational complexity. In Ladner [1977] it was shown

that satisfiability for K, T and S4 is PSPACE-complete, while for S5 the problem is

NP-complete. Furthermore, in Halpern [1995], it is shown that the problem remains

PSPACE-complete when the formulas have at most one variable and in Chagrov and

Rybakov [2002] it is shown that satisfiability for K and K4 is PSPACE-complete even

for formulas without any variables. In Halpern and Rêgo [2007], Halpern and Rêgo

showed that the negative introspection axiom is in an essential way what makes the

difference between normal modal logics whose satisfiability problem is in NP and

those for which it is PSPACE-complete. It should be noted that the satisfiability of
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propositional logic is a subcase of satisfiability for any normal modal logic, thus for

any normal modal logic the problem is NP-hard. For an introduction to modal logic

and its complexity see Halpern and Moses [1992], Fagin et al. [1995].

The idea of trying to isolate an “easy” family of input formulas by looking at

their structure is of course not new. Perhaps the most natural way to quantify this

in modal logic is to look at a formula’s modal depth, that is, the nesting depth of

modal operators. This complexity measure was already known in Halpern [1995] (see

also Spaan [1993]) where in fact a fixed-parameter tractability result is shown when

the problem is parameterized by the sum of the number of propositional variables of

the formula (denoted by v) and the modality depth. However, since parameterized

complexity was not well-known at the time, in Halpern [1995] it is only pointed out

that the problem is solvable in linear time for fixed values of the parameters, without

mentioning how different values of v and the depth affect the running time.

Here, we take the ideas of Halpern [1995] a step further. First, we take a second

look at the problem parameterized by v and the modal depth and discover that the

parameter dependence is, in the worst case, a tower of exponentials. Even worse, we

give a lower bound argument proving that this cannot be improved by any algorithm,

unless P=NP. Then, we define two other formula complexity measures, called diamond

dimension and modal width. We try to use these as parameters, instead of modal

depth, and show that in these cases the parameter dependence is much better (doubly

exponential for diamond dimension and singly exponential for modal width).

5.2.2 Definitions

As mentioned, we will study the language of modal logic. This language contains

exactly the formulas that can be constructed using propositional variables, the stan-

dard propositional operators ∧,∨, ¬ (and the operators which can be defined using

these, such as →, ↔) and the unary modality operators (�, ♦).
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More specifically, the language of modal logic is defined recursively in the following

way. We have a set of propositional variables, P . Any variable in P is a formula.

Furthermore, if φ, ψ are formulas, then (φ ∧ ψ), (φ ∨ ψ),¬φ and �φ,♦φ are formulas

of the language.

It is usually assumed that P is infinite, but for our purposes we do not need to

assume anything about its cardinality. However, if P = ∅, we need to include ⊥ (or

⊤) in our language in order to be able to form formulas. It is true that we do not

need so many operators in our language and that there are many choices for more

succinct list of initial symbols (ex. ∧ and ¬; ⊥ and →, etc, with either � or ♦), but

for our purposes it is convenient to include all these.

In our language we do not include the constants ⊥ and ⊤, for false and true, but

we may use them to form formulas, as they can be considered shorthand for x ∧ ¬x

and x ∨ ¬x respectively, where x ∈ P .

Standard Kripke semantics are considered here: a Kripke frame is a pair (W,R)

of a set of states W and an accessibility relation R between states. A Kripke frame

together with a valuation V , which is a function that defines for each propositional

variable the set of states where it is true, is called a Kripke structure.

We will consider the system of modal logic usually denoted by K, where R is

allowed to be an arbitrary relation between states. Other standard modal logics (e.g.

T,D,S4) can be obtained by imposing various restrictions on R (e.g. if we only allow

reflexive relations).

Given a Kripke structure M = (W,R, V ), we define the relation |= between states

and formulas recursively on the structure of the formula:

M, s |= p if and only if s ∈ V (p),

M, s |= φ ∧ ψ if and only if M, s |= φ and M, s |= ψ,

M, s |= φ ∨ ψ if and only if M, s |= φ or M, s |= ψ,
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M, s |= ¬φ if and only if M, s 6|= φ,

M, s |= �φ if and only if for any v ∈ W , if sRs′, then M, s′ |= φ,

M, s |= ♦φ if and only if there is some s′ ∈ W , such that sRs′ and M, s′ |= φ,

where p ∈ P , s ∈ W and φ, ψ are formulas.

When M, s |= φ, we say that φ is satisfied at s, or that φ is true at s and that φ

is satisfied in M, or that M is a model for φ. A formula φ is valid in a structure M,

if it is satisfied at all states s of the structure and we say that φ is valid if φ is valid

in all structures.

The problem studied here is modal satisfiability for K, that is, given a modal

formula φ, does φ have model? The modal validity for K is the problem of determining

whether a given modal formula is valid. Although we focus on satisfiability, the two

problems are equivalent for modal logic, as any formula φ is satisfiable if and only if

¬φ is not valid.

5.2.3 Modal Depth

In this section we give the definition of modality depth. As we will see, a fixed-

parameter tractability result can be obtained when satisfiability is parameterized by

the number of propositional variables v and the modality depth of the input formula.

This was first observed in Halpern [1995], but in this section we more precisely bound

the running time (in Halpern [1995] it was simply noted that the running time is

linear for constant depth and constant v with a hidden constant which “may be

huge”). More importantly we show that the “huge constant” cannot be significantly

improved by giving a hardness proof which shows that, if the running time of an

algorithm for modal satisfiability is significantly less than an exponential tower of

height equal to the modality depth, then P=NP.
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Definition 5.3. The modality depth of a modal formula φ is defined inductively as

follows:

• md(p) = 0, if p is a propositional variable,

• md(♦φ) = md(�φ) = 1 + md(φ),

• md(φ1 ∨ φ2) = md(φ1 ∧ φ2) = max{md(φ1),md(φ2)},

• md(¬φ) = md(φ)

Note that, since for all φ we have md(φ) = md(¬φ) this implies that the results

of this section, which we state in terms of the satisfiability problem, also apply to the

validity prodblem, since deciding if some formula is valid is equivalent to deciding if

its negation is satisfiable.

Theorem 5.5. (Halpern [1995]) Modal satisfiability for the logic K is FPT when

parameterized by v and md(φ).

Proof. We define the d-type of a state s in a Kripke structure M to be the set

{φ | (M, s) |= φ and md(φ) ≤ d}. We will prove by induction on d that if we

restrict ourselves to formulas with at most v variables then for any d ≥ 0 there

are at most fv(d) d-types, where fv is the function recursively defined: fv(0) = 2v,

fv(n+ 1) = 2fv(n)+v.

For d = 0 If md(φ) = 0, then the formula is propositional, thus the 0-type of any

state is directly defined by the set of propositional variables assigned true in

the state. The number of all such possible sets of variables is 2v = fv(0).

For the case of d+ 1 The (d + 1)-type of a state s depends on the assignment of

the propositional variables in s and on the truth values of formulas of the forms

�φ′ and ♦φ′, where md(φ′) ≤ d. Notice that these truth values depend only on



michail lampis Structural Parameterizations 90

the set of d-types of the accessible states from s. Thus the number of different

(d+ 1)-types on a state s is fv(d+ 1) = 2fv(d)+v.

Now, suppose that φ is a satisfiable formula of modality depth d ≥ 1. We will show

how to construct a Kripke structure of about fv(d− 1) states to satisfy φ. To achieve

this, for all i ∈ {0, 1, . . . , d − 1} and for all i-types we will construct a state of that

i-type, thus in total we will construct
∑d−1

i=0 fv(i) = O(fv(d− 1)) states. To construct

the fv(0) = 2v states that give all the different 0-types we just construct 2v states,

each with a different valuation of the propositional variables. For the subsequent

levels, to construct all the states for all the different (i + 1)-types we pick for each

state a set of successor states out of the states that give us the different i-types and

a valuation of the propositional variables. If φ is satisfiable, it must be satisfiable in

this structure by adding a new state s, selecting a subset of the states that give us

the different (d − 1)-types to be its successors and a valuation of the propositional

variables in s. The number of combinations of all possible subsets of successors and

all variable valuations is fv(d), so the problem is solvable in O(fv(d) · f
2
v (d− 1) · |φ|),

because the structure has O(fv(d− 1)) states and thus size O(f 2
v (d− 1)) and model

checking can be performed in bilinear time (linear with respect to both |φ| and the

size of the model).

Lower Bound

Let us now proceed to the main result of this section, which is that even though

modal satisfiability is fixed-parameter tractable, the exponential tower in the running

time cannot be avoided. Specifically, we will show that solving modal satisfiability

parameterized by modality depth, even for constant v, requires a running time which

is a tower of exponentials with height linear in the modality depth. We will prove

this under the assumption that P 6=NP, by reducing the problem of propositional
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satisfiability to our problem. Our proof follows ideas similar to those found in Frick

and Grohe [2004].

Suppose that we are given a propositional CNF formula φp with variables x1, . . . , xn

and we need to check whether there exists a satisfying assignment for it. We will en-

code φp into a modal formula φm (the subscripts p and m stand for propositional and

modal respectively) with small depth and a constant number of variables. In order

to do so we inductively define a sequence of modal formulas.

• In order to encode the variables of φp we need some formulas to encode numbers

(the indices of the variables). The modal formula vi is defined inductively as

follows2: v0 := �⊥ and vn :=
(
∧

i:ni=1 ♦vi
)

∧ �
(
∨

i:ni=1 vi
)

where by ni we

denote the i-th bit of n when n is written in binary and the least significant

bit is numbered 0. So, for example v1 = ♦v0 ∧ �v0, v2 = ♦v1 ∧ �v1, v5 =

♦v2 ∧ ♦v0 ∧ �(v2 ∨ v0) and so on. Observe that v0 can only be true in a state

with no successor states. Also, what is important is that these formulas allow

us to encode very large numbers using only a very small modality depth and no

variables (or just one variable if ⊥ is considered short for x ∧ ¬x).

• Next, we need to encode the literals of φp. The modal formula L(xi) is defined

as L(xi) := ♦vi ∧�vi. The formula L(¬xi) is defined as L(¬xi) := ♦vi ∧ ♦v0 ∧

� (vi ∨ v0).

• Now, to encode clauses we set C(l1∨l2∨. . .∨lk) :=
(

∧k
i=1 ♦L(li)

)

∧�
(

∨k
i=1 L(li)

)

.

• Finally, to encode the whole formula we use F(c1∧ c2∧ . . .∧ cm) :=
∧m
i=1 ♦C(ci)

So far we have described how to construct a modal formula F(φp) from φp. F(φp)

encodes the structure of φp. Now we need to add two more ingredients: we must

use a modal formula to describe that φp is satisfied by an assignment and that the

2We will use := to denote syntactic definitions of formulas and = to denote syntactic equality
between formulas.
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Figure 5.1: A partial example, illustrating our construction for a specific clause. For
the encoding of the clause (x5 ∨ ¬x6) we build the formula C(x5 ∨ ¬x6) which holds
in the state at the top of the depicted model.

assignment is consistent among clauses. We give two more formulas, S and CA(n),

which play the previously described roles respectively:

• S := �♦ [((♦v0) → (�¬y)) ∧ ((¬♦v0) → (�y))], where we have introduced a

single variable y.

• CA(n) :=
∧n
i=1 (♦♦♦(y ∧ vi) ↔ ¬♦♦♦(¬y ∧ vi))

Our full construction is, given a propositional CNF formula φp with n variables

named x1, . . . , xn, we create the modal formula φm := F(φp) ∧ S ∧ CA(n).

Lemma 5.4. φp is satisfiable if and only if φm is satisfiable in K.

Proof. Suppose that φm is true at a state s of some Kripke structure. Then CA(n)

is true at s therefore for each i we have either that ♦♦♦(y ∧ vi) is true at s or that

♦♦♦(¬y ∧ vi) is true at s. From this we create a satisfying assignment: for those i

for which the first holds we set xi = ⊤ and for the rest xi = ⊥. We will show that

this assignment satisfies φp.

Suppose that it does not satisfy φp, therefore there is some clause ci which is

not satisfied. However, since F(φp) is true at s there exists a state p with sRp such

that C(ci) is true at p. In every successor state of p we have that L(lj) is true for

some literal lj of ci and there exists such a state for every literal of ci. Also, in s we

have that S is true, therefore in p we have ♦ [((♦v0) → (�¬y)) ∧ ((¬♦v0) → (�y))].

Therefore, in some q such that pRq we have ((♦v0) → (�¬y))∧ ((¬♦v0) → (�y)) and
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we also have that L(lj) is true for some literal lj of ci. Suppose that lj is a negated

literal, that is lj = ¬xk. Then L(lj) = ♦vk ∧♦v0 ∧�(vk ∨ v0). Therefore, since ♦v0 is

true at q this means that �¬y is true. Because ♦vk and �¬y are both true at q there

exists an r such that qRr and vk ∧ ¬y is true at r. But then ♦♦♦(vk ∧ ¬y) is true

at s which implies that our assignment gives the value false to xk. Since ci contains

¬xk it must be satisfied by our assignment, a contradiction. Similarly, if lj = xk then

L(lj) = ♦vk ∧ �vk. Clearly, v0 and vk cannot be true at the same state for k > 0

therefore in q we have ¬♦v0 which implies �y. Therefore in some r with qRr we have

y ∧ vk which implies that our assignment sets xk to true and since ci has the literal

xk it must be satisfied.

The other direction is easier. We build a Kripke structure where for each vi

there exists a state such that vi holds in that state. We start by introducing a state

without successors, in which v0 holds. Then, for each i ∈ {1, . . . , n} we add a state

with appropriate transitions to states previously introduced so that vi holds in that

state (see Figure 5.1 for an example).

Note that each time we construct a new state and place the appropriate transitions

so that vi holds in that state, we know that no other vj with j 6= i can hold in that

state. The reason is that, as follows from the definition of vi, the formula vi ∧ vj for

i 6= j is unsatisfiable. This, in turn, can be established by induction: first, v1 ∧ v0 is

obviously unsatisfiable. Second, if for some i > j we have vi∧ vj is true at some state

of some model, then in some state accessible from it we will have vk ∧ vl, where k is

the position of the most significant bit where i and j differ and l 6= k is the position

of some bit of j that is set to 1. Clearly, k < i and l < j so this contradicts the

inductive hypothesis.

Now the completion of the Kripke structure so that φm is satisfied is straightfor-

ward. For every i with 1 ≤ i ≤ n we create two more states: the first has as its

only successor the state where vi is true. The other has two successors: the state
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where vi is true and a state without successors (where v0 holds). Thus, for each i

we have a state where L(xi) is true and a state where L(¬xi) is true. For every

clause we create a state and for each literal lj in the clause we add a transition to the

state where L(lj) is true. Therefore, for each clause ci we have a state where C(ci)

is true. Finally, we add a state and transitions to all the states where some C(ci) is

true. Clearly, F(φp) is true at that state, which we call the root state. Observe that

CA(n) will also be satisfied in the root state independent of where y is true, because

for every i ∈ {1, . . . , n} we have made a unique state pi where vi is true and pi is at

distance exactly 3 from the root.

Take a satisfying assignment; for every xi which is true set the variable y to true

at the state of the Kripke structure where vi is true. Set y to false in every other

state. Now, we must show that S is true at the root state. This is not hard to

verify because for every clause in the original formula there is a true literal, call

it l. If that literal is not negated then in the state where L(l) is true we have

¬♦v0 (because the literal is not negated) and �y (because the literal is true, so

its variable is true thus we must have set y to true at the variable’s corresponding

state). Therefore (¬♦v0 → �y) ∧ (♦v0 → �¬y) is true at the literal’s corresponding

state and ♦ [(¬♦v0 → �y) ∧ (♦v0 → �¬y)] is true at the clause’s corresponding state.

Similar arguments can be made for a negated literal. Since we start with a satisfying

assignment the same can be said for every clause, thus S is also true at the root state.

Now, we need to show that the produced modal formula has very small depth and

the hardness result will follow in a way very similar to the results of Frick and Grohe

[2004].

Recall the definition of the tow function from Section 2.1.

Lemma 5.5. Suppose that φp is a propositional CNF formula with n variables. Then,

if tow(h) ≥ n the formula φm = F(φp)∧S ∧CA(n) has modality depth at most 4+h.
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Proof. First observe that the modality depth of φm is at most

3 + max
0≤i≤n

md(vi).

Therefore, we just have to bound the modality depth of vi.

We will use induction on h to show that tow(h) ≥ n⇒ md(vn) ≤ h+1. For h = 0

we have tow(h) ≥ n⇒ n = 0, therefore md(v0) = 1 and the proposition holds.

Suppose that the proposition holds for h.

Observe that md(vn) ≤ 1+max0≤i≤log n{md(vi)} because writing n in binary takes

at most log n + 1 bits. If we have n ≤ tow(h + 1) then log n ≤ tow(h). From the

inductive hypothesis md(vi) ≤ h + 1 for i ≤ log n. Therefore, md(vn) ≤ h + 2 and

the proposition holds.

Theorem 5.6. There is no algorithm which can solve modal satisfiability in K for

formulas with a single variable and modality depth d in time f(d) · poly(|φ|) with

f(d) = O(tow(d− 5)), unless P=NP.

Proof. Suppose that there exists an algorithm A which in time f(d) · poly(|φ|) can

decide if a modal formula φ with modality depth d and just one variable is satisfiable.

We will use this algorithm to solve propositional satisfiability in polynomial time.

Given a propositional CNF formula φp we construct φm as described, and if φp

has n variables let H = min{h | n ≤ tow(h)}. Then md(φm) ≤ H + 4 and of course

φm can be constructed in time polynomial in |φp|. Now we can use the hypothetical

algorithm to see if φm is satisfiable.

We have that f(d) = O(tow(d − 5)). Therefore, running this algorithm will take

time f(H + 4) · poly(|φm|) = O(tow(H − 1) · poly(|φm|)). But by the definition of H

we have tow(H − 1) ≤ n, therefore this bound is polynomial in |φm| and therefore,

also in |φp|, which means that we can solve an NP-complete problem in polynomial
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time.

5.2.4 Diamond Dimension

In this section we propose a structural characteristic of modal formulas called dia-

mond dimension. This is an alternative natural formula complexity measure which

intuitively bounds the size of a model required to satisfy a formula. As we will see

the parameter dependence of a satisfiability algorithm for formulas of small diamond

dimension is doubly exponential, immensely lower than the dependence for modal

depth. However, we will also show a lower bound indicating that it is unlikely that

an algorithm with singly exponential parameter dependence could exist for this mea-

sure.

Definition 5.6. Let φ be a modal formula in negation normal form, that is, with the

¬ symbol appearing only directly before propositional variables. Then its diamond

dimension, denoted by d♦(φ) is defined inductively as follows:

• d♦(p) = d♦(¬p) = 0, if p is a propositional variable

• d♦(φ1 ∧ φ2) = d♦(φ1) + d♦(φ2)

• d♦(φ1 ∨ φ2) = max{d♦(φ1), d♦(φ2)}

• d♦(�φ) = d♦(φ)

• d♦(♦φ) = 1 + d♦(φ)

Our goal with this measure is to prove that if d♦(φ) is small then φ’s satisfiability

can be checked in models with few states. This is why the two properties of φ which

can increase d♦(φ) are ♦ (which requires the creation of a new state) and ∧ (which

requires the creation of states for both parts of the conjunction).
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Lemma 5.7. If a modal formula φ is satisfiable and d♦(φ) ≤ k then there exists a

Kripke structure with O(2k/2) states which satisfies φ.

Proof. Suppose that there exists a Kripke structure which satisfies φ, that is there

exists some state s in that structure where φ holds. We will construct a working set

of modal formulas S which will satisfy the following properties:

(i) All formulas in S hold in s.

(ii) (
∧

φi∈S φi) → φ is a valid formula.

(iii) d♦(φ) ≥
∑

φi∈S d♦(φi).

We begin with S = {φ} which obviously satisfies the above properties. We will

apply a series of transformations to S while retaining these properties until eventually

we reach a point where every formula in S is simple (in a sense we will make precise

later) and then we will construct a model with the promised number of states for φ.

While possible we apply the following rules to S:

1. If there exists a formula ψ ∈ S such that ψ = ψ1 ∧ ψ2 then remove ψ from S

and add ψ1 and ψ2 to S.

2. If there exists a formula ψ ∈ S such that ψ = ψ1 ∨ ψ2 then remove ψ from S.

If ψ1 is true at state s add ψ1 to S, otherwise add ψ2 to S.

3. If there are two formulas �ψi and �ψj in S then remove them and insert the

formula �(ψi ∧ ψj).

It should be clear that rule 1 does maintain the properties of S. Rule 2 also

maintains the properties: property (i) is maintained because we assumed that ψ is

true at state S therefore if ψ1 is not true we add ψ2 which must be true. The other

properties are also straightforward. Finally, the third rule maintains the properties

of S because of the fact that �ψi ∧�ψj ↔ �(ψi ∧ ψj) is a valid formula.
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It should be clear that applying all the rules until none applies will take polynomial

time. When we can no longer apply the rules we have that S = {�ψ,♦φ1, . . . ,♦φk, l1, . . . , lm},

where the li are propositional literals; in other words, we have (at most) one formula

that starts with a �, say �ψ, and some number k of formulas that start with ♦, say

♦φi, 1 ≤ i ≤ k.

Now we will use induction on the diamond dimension to prove the lemma. Let s(d)

be a function which upper bounds the number of states in the smallest model which

are needed to satisfy formulas of diamond dimension d (we are going to calculate

s(d) recursively and prove that it is finite). First, we can say that s(0) = 1, because

a formula with diamond dimension 0 has no diamonds. Therefore, S contains one

formula that starts with a � and some literals, for which there exists an assignment

to make them all true (because of the first property of S). Clearly, a model with just

one state where we pick this assignment will also make the formula that starts with

� trivially true, and by the second property of S will satisfy φ.

For the inductive step, suppose that all the satisfiable formulas of dimension at

most d = d♦(φ) need at most s(d) states to be satisfied. Let’s consider the diamond

dimension of all the formulas in S. There are three cases: either S does not have a

formula that starts with a �, or it doesn’t have any formulas that start with ♦, or it

has both.

If we have no formulas starting with diamonds we can easily see that the same

model as in the base case suffices, since �ψ is trivially true at a state without suc-

cessors. So in this case we have just one state.

Suppose that all the formulas in S are literals or start with ♦. In this case, we

have for all φi that d♦(φi) ≤ d♦(φ) − k. Using the inductive hypothesis we get that

the number of states to satisfy each formula φi is at most s(d♦(φi)). Clearly, we can

create a model which is the union of the models for all the φi plus one state where

we give an appropriate assignment to the literals and appropriate transitions so that
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♦φi is true for all i. This model has at most 1+
∑k

i=1 s(d♦(φi)) ≤ 1+ k · s(d♦(φ)− k)

states.

Finally, if we have both types of formulas in S we construct the following model:

consider all the formulas ψ∧φi, for all i. Clearly, they are satisfiable, because �ψ∧♦φi

is true at s. We know from the third property of S that d♦(φ) ≥ d♦(ψ) + k +
∑k

i=1 d♦(φi). Therefore, d♦(ψ ∧ φi) = d♦(ψ) + d♦(φi) ≤ d♦(φ) − k −
∑

j 6=i d♦φj ≤

d♦(φ) − k. Now, we take the union of the models for each ψ ∧ φi, and each model

has at most s(d − k) states. We add one state and transitions to the appropriate

states where ψ ∧ φi are true, which together with an appropriate assignment makes

all formulas of S true at that state. The number of states is at most 1+k ·s(d♦(φ)−k).

From all the above cases we can upper bound s(d) as s(d) ≤ max1≤k≤d{1 + k ·

s(d − k)}. The fastest growing of these functions, obtained for k = 2, is in turn

upper-bounded by O(2d/2).

Theorem 5.7. Given a modal formula φ with v variables and diamond dimension

d♦(φ) = k we can solve the satisfiability problem for φ in time 2O(2k·v) · |φ|.

Proof. From Lemma 5.7 it follows that if φ is satisfiable, this can be verified in a

model of O(2k/2) states. There are at most 2O(2k) Kripke frames from which we can

get such models. For each we just enumerate through all possible assignments to the

v variables in the O(2k/2) states, a total of 2O(2k/2·v) different assignments. Once we

have fixed a model deciding if φ holds can be done in bilinear time.

Lower Bound

We will now present a lower bound argument showing that, under reasonable com-

plexity assumptions, the results we have shown for diamond dimension cannot be

improved significantly. We will once again encode a propositional 3-CNF formula φp
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into a modal formula φm, this time with a goal of achieving small diamond dimension.

We will also use a small number of propositional variables. We assume without loss

of generality that we are given a 3-CNF formula φp with n variables, where n is a

power of 2.

Let �j be short-hand for j consecutive repetitions of �, with �0φ being equiv-

alent to φ. We recursively define the formulas F (i) as F (0) := �⊥ and F (i) :=
(

♦(
∧i−1
j=0�

jbi)
)

∧
(

♦(
∧i−1
j=0 �

j¬bi)
)

∧�F (i− 1), where bi are propositional variables.

It is not hard to see that d♦(F (i)) = 2i and also that F (i) can only be satisfied in a

model with at least 2i states. The model to keep in mind here is a complete binary

tree of height i.

We will use the formula F (log n) to encode a 3-CNF formula with n variables

and each leaf of the tree that must be constructed to satisfy it will correspond to a

variable. It is now natural to encode the variables of the original formula using their

binary representation. We define B(xk) :=
∧

ki=1 bi ∧
∧

ki=0 ¬bi, where once again ki

denotes the i-th bit in the binary representation of k, now with the least significant

bit numbered 1.

Our modal formula will also have a propositional variable y which will be true at

leaves that correspond to variables of the 3-CNF formula that must be set to true.

We encode a literal consisting of the variable xk as L1(xk) := �logn(B(xk) → y). The

corresponding negated literal is L2(¬xk) := �log n(B(xk) → ¬y). A clause is encoded

as the disjunction of the encodings of its three literals. Our final modal formula φm

is a conjunction of F (log n) with the encodings of all the clauses of the propositional

formula φp.

Lemma 5.8. Given a propositional 3-CNF formula φp the modal formula φm is sat-

isfiable in K iff φp is satisfiable.

Proof. Suppose that φp is satisfiable. We construct a binary tree of height log n as

our model and φm will be made true at the root. It is not hard to satisfy F (log n)
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at the root: simply set blogn to be true on all states on one of the subtrees of height

log n−1 and false in all states of the other, then proceed to satisfy F (log n−1) at the

subtrees recursively in the same manner. Every leaf of the model corresponds to a

variable of φp if we read the variables bi as encoding the binary representation of the

index of the variable. We set y to be true at the leaves that correspond to variables

which are true at a satisfying assignment. It is not hard to see that this satisfies the

encoding of all the clauses on the assumption that we started with an assignment

satisfying φp.

Now for the other direction, suppose that φm is satisfied in a state of some model.

A first observation is that for all i ∈ {1, . . . , n} there must exist a state in which B(i)

holds and is at distance log n from the state where φm holds, as this is required for

F (log n) to hold. From this we can infer that �logn(B(i) → y) and �logn(B(i) → ¬y)

cannot both hold in the state where φm holds. Therefore, we can extract a consistent

assignment for the variables of φ from the model, by setting to true the xi for which

�logn(B(i) → y) holds. It is not hard to see that this assignment must satisfy φp

because its clauses are encoded in φm.

Now that we have described how to embed a 3-CNF formula into a modal formula

with only logarithmically many variables and logarithmic diamond dimension we can

use this fact to prove a lower bound. This time we rely on the ETH. This allows us

to obtain a much sharper bound than simply assuming that P 6=NP.

Theorem 5.8. There is no algorithm which can decide the satisfiability in K of a

modal formula φ with v variables and d♦(φ) = k in time 22
o(v+k)

poly(|φ|) unless the

Exponential Time Hypothesis (ETH) fails.

Proof. Suppose that an algorithm running in time 22
o(v+k)poly(|φ|) did exist. Then

we could use the described construction to decide 3-CNF satisfiability for any formula
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with n variables. It is not hard to see that v + k = O(log n) and that the size of the

produced modal formula is polynomial in the size of the 3-CNF formula, thus this

would give an algorithm running in time 2o(n), contradicting the ETH.

5.2.5 Modal Width

In this section we give another structural parameter for modal formulas called modal

width. We will show that satisfiability can be solved in time only singly exponential

in the modal width and v. Thus, we will give an algorithm that works more efficiently

for the class of modal formulas which have small width.

To give some intuition, the modal width measures how many different modal

subformulas our formula contains at depth i. The idea is that the truth value of

the subformulas of depth i at some state s depends only on the truth value of the

subformulas of depth i+1 at the successors of s. If the maximum width of the formula

is bounded we can exhaustively check all possible truth values for subformulas at the

next level of depth and decide if some particular truth assignment to the subformulas

of depth i is possible. Using this idea it is possible to obtain an algorithm with the

promised running time if we use a dynamic programming technique.

First we define inductively the function sub(φ) which given a modal formula re-

turns a set of modal formulas. Intuitively, whether φ holds in a given state s of a

Kripke structure depends on two things: the values of the propositional variables in s

and the truth values of some formulas ψi in the successor states of s. These formulas

are informally the subformulas of φ which appear at modal depth 1 and sub(φ) gives

us exactly this set of formulas.

• sub(p) = ∅ if p is a propositional variable

• sub(¬φ) = sub(φ), sub(φ1 ∨ φ2) = sub(φ1 ∧ φ2) = sub(φ1) ∪ sub(φ2)
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• sub(�ψ) = sub(♦ψ) = {ψ}

Now we inductively define the set Si(φ), which intuitively corresponds to the set

of subformulas of φ at depth i.

• S1(φ) = sub(φ)

• Si+1(φ) =
⋃

ψ∈Si(φ)
sub(ψ)

Finally, we can now define the modal width of a formula φ at depth i as mwi(φ) =

|Si(φ)| and the modal width of a formula as mw(φ) = maximwi(φ).

Observe that, as in the case of modal depth, negations do not affect the width of a

formula. Therefore, the following results, which we state in terms of the satisfiability

problem, also apply to the validity problem.

The following lemma is a basic observation regarding mwi(φ) and md(φ).

Lemma 5.9. For all i ≥ md(φ) we have mwi(φ) = 0.

Proof. Observe that for all formulas φ such that md(φ) ≥ 1 we have md(φ) >

maxψ∈sub(φ) md(ψ). Using this fact the proof follows easily by induction on md(φ).

Theorem 5.9. There exists an algorithm which decides the satisfiability of a modal

formula φ with v variables, md(φ) = d and mw(φ) = w in time O(22v+3w · d ·w · |φ|).

Proof. We will need to use a function Prop(φ) which, given a modal formula φ, returns

a propositional formula which corresponds to φ with all modal subformulas replaced

by new propositional variables. Prop(φ) can be inductively defined as follows (notice

that once again we consider ♦φ as shorthand for ¬�¬φ):

• Prop(p) = p if p is a propositional variable;

• Prop(φ1 ∨ φ2) = Prop(φ1) ∨ Prop(φ2);
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• Prop(φ1 ∧ φ2) = Prop(φ1) ∧ Prop(φ2);

• Prop(¬φ) = ¬Prop(φ1);

• Prop(�φ) = qj, where qj is a new propositional variable.

Let P = {p1, p2, . . . , pv} be the set of propositional variables appearing in φ. For

all i ∈ {0, . . . , d − 1}, for all P ′ ⊆ P and for all S ′ ⊆ Si(φ) we define the formula

F (i, P ′, S ′),

F (i, P ′, S ′) =
∧

pj∈P ′

pj ∧
∧

pj∈P\P ′

¬pj ∧
∧

ψ∈S′

ψ ∧
∧

ψ∈Si(φ)\S′

¬ψ.

Clearly there are at most 2v+wd formulas F (i, P ′, S ′) defined and for each one of these

we will compute whether it is satisfiable or not using dynamic programming. We will

use a boolean matrix A(i, P ′, S ′) of size 2v+wd to store the results.

First, we have Sd(φ) = ∅. It is not hard to see that all formulas F (d, P ′, ∅) are

indeed satisfiable, so we initialize the corresponding entries in A to True. Suppose

now that for some i we have filled out completely all entries A(i + 1, P ′, S ′). We

will show how to fill out any position in row i, say position A(i, P ′, S ′). The crucial

part now is that if we consider the formula Prop(F (i, P ′, S ′)), it will have some new

variables qi which correspond to modal subformulas which all appear in Si+1(φ).

The formula Prop(F (i, P ′, S ′)) has at most v + w variables. It is not hard to

see that if F (i, P ′, S ′) is satisfiable, then Prop(F (i, P ′, S ′)) is also satisfiable, so our

first step is to check this. The truth assignments for the v variables are easy to

infer, therefore we only need to go through the 2w possible assignments for the new

variables. For each satisfying assignment we find we then need to check if a model

that satisfies F (i, P ′, S ′) can be built from it.

So, suppose that Q is the set of new variables, and we have found an assign-

ment which sets the variables of Q′ ⊆ Q to true and the rest to false and satis-
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fies Prop(F (i, P ′, S ′)). Each variable qj of Q corresponds to a formula �φj with

φj ∈ Si+1(φ)∪P . If qj ∈ Q′ we must make sure that φj is true at all successors of the

state s where F (i, P ′, S ′) will hold, in the model we are building. Let S ′′ ⊆ Si+1(φ)∪P

be the set of formulas φj which we conclude that must hold in all successors of s in

this way.

If qj 6∈ Q′ we have that ¬�φj must hold in s, thus s must have a successor where

¬φj is true, or equivalently φj is false. Let S∗ ⊆ Si+1(φ) ∪ P be the set of formulas

φj for which we conclude that they must be false in some successor of s in this way.

To decide if it is possible to build appropriate successors to s so that all these

conditions are satisfied, we look at row i+ 1 of A. Specifically we consider the set of

entries A(i+1, P ′, S ′) such that S ′′ ⊆ S ′∪P ′ and A(i+1, P ′, S ′) = T . Informally, these

correspond to formulas which are satisfiable (because the corresponding entry is set

to true) and which also can serve as successors to s without violating the conditions

of S ′′, that is, in any state where they hold all formulas which we need to be true at

all successors of s are indeed true. Now, we simply check if for each φj ∈ S∗ there

exists an entry in the set we have selected so far with φj 6∈ S ′ ∪ P ′. If this is the

case we can conclude that F (i, P ′, Q′) is satisfiable and set the corresponding entry

of A to true, otherwise we conclude that no satisfying model can be built from the

assignment we get from Q, even though Prop(F (i, P ′, S ′)) is satisfied. This whole

process of computing S ′′ and S∗ and checking through row i+1 of A can be performed

in time O(w · 2v+w|φ|).

To decide if the initial formula φ is satisfiable, we compute Prop(φ) and perform

the same process: for every satisfying assignment of Prop(φ) we look at corresponding

entries of row 0 of A to see if a model for φ can be built. The total time for this

algorithm is O(23w+2vwd|φ|), because for each of the at most 2v+wd entries of A

we need to check through at most 2w assignments and for each we spend at most

O(w · 2v+w|φ|).
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Lower Bound

Intuitively, one would probably not expect that a significantly better algorithm is

possible in this case, since the algorithm we have described is singly exponential in

the parameter v + w. Indeed, it follows if one accepts the ETH that for formulas of

width 0 (that is, propositional formulas) it is not possible to achieve time 2o(v+w).

Nevertheless, this kind of lower bound argument is not entirely satisfactory for our

purposes, since it completely neglects the contribution of the modal width to the

problem’s hardness. For all we know, the best algorithm’s dependence on w alone

might be sub-exponential, though this would be surprising.

However, a more careful examination of the lower bound arguments we have pre-

sented for diamond dimension is useful here. The formulas constructed there have

a logarithmic number of variables and linear modal width. Therefore, an algorithm

which in general runs in time 2O(v)+o(w) would in this case give an algorithm run-

ning in time 2o(n) for propositional SAT, contradicting the ETH. In addition, even

if one assumes a constant v, things cannot improve much. A second reading of the

lower bound argument for modal depth shows that our construction has modal width

O(n · polylog(n)). This implies that any algorithm which runs in 2O(wc) for any c < 1

in the case of constant v would imply a 2o(n) algorithm for SAT, again contradicting

the ETH. Thus, the existence of an algorithm with significantly better dependence

on w than the one presented here is unlikely.

5.3 Vertex Cover

In this section we will deal with a simpler problem: Vertex Cover parameterized by

the number of edges one needs to delete from the input graph to make it bipartite. As
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we will see, it is not very hard to obtain an FPT algorithm for this problem. However,

the more interesting part is that we use this algorithm as a black box to obtain a non-

trivial FPT algorithm for another parameterization of Vertex Cover. Thus, one of

the points of this section is to illustrate that solutions for structural parameterizations

of common problems can come in handy in many cases. The results of this section

have appeared in Gutin et al. [2011a].

5.3.1 Parameterizations Above Tight Bounds

Recall that, for the natural parameterization of Vertex Cover, that is, when the

solution size k is the parameter, the problem is FPT. This can be very useful in cases

where k has moderate values, much smaller than n. It is of little use, however, when

k is also expected to be large.

A typical such case is when the input graph has low maximum degree. In a graph

with m edges and maximum degree ∆ we know that any vertex cover must have

size at least m
∆
, since no vertex can cover more than ∆ edges. Therefore, it makes

little sense to investigate the case where k is small since we know a lower bound on

k. Rather, it was suggested in Mahajan et al. [2009] that instead one could study

Vertex Cover parameterized above the lower bound. In other words, we are given

an input graph with maximum degree ∆ and m edges and we are asked, is there a

vertex cover with at most m
∆
+ k vertices? The question now is if we can obtain an

FPT algorithm when the parameter k is the distance from the known lower bound,

even if we restrict ∆ to be constant.

Let us mention here, that such parameterizations above or below tight bounds

have been of much interest recently in the parameterized complexity community,

both for their practical applications and their theoretical interest. For example, for

Vertex Cover it is now known that it is FPT parameterized by the number of

vertices one is allowed to use beyond the size of the graph’s maximum matching



michail lampis Structural Parameterizations 108

from the results of Razgon and O’Sullivan [2009] and Mishra et al. [2007]. A few

other such parameterizations for Vertex Cover are given in Gutin et al. [2011a].

Many interesting results have also been obtained recently for parameterizations of

satisfiability problems relative to tight bounds (see for example Gutin et al. [2011b,

2010]).

5.3.2 Vertex Cover on Almost Bipartite Graphs

Consider the following problem: given a graph G such that deleting a set of e of its

edges the graph becomes bipartite (the set of edges is also given). Find an optimal

vertex cover of G.

Obviously, in general this problem is no easier than Vertex Cover. It may

become easier though if we only consider cases where e is much smaller than the size

of the graph. In other words, we would like to parameterize Vertex Cover by the

input graph’s distance from being bipartite. Is this problem FPT?

Theorem 5.10. Vertex Cover is FPT when parameterized by the number of edges

that need to be deleted to make the input graph bipartite.

Proof. There are at most 2e minimal covers for the e edges whose removal makes the

graph bipartite: for each edge we can either select its first or its second endpoint. For

each of these minimal covers repeat the following: remove the cover’s vertices from

the graph. Now the graph must be bipartite, since the removed vertices cover all of

the e edges. Solve Vertex Cover on the remaining graph optimally in polynomial

time. In the end, select the best of the solutions computed this way.

It is not hard to see that this algorithm take O(2enO(1)) time and that it will

always return an optimal solution, because every feasible vertex cover must contain

one of the minimal covers of the e bipartizing edges.



michail lampis Structural Parameterizations 109

Let us also remark that Theorem 5.10 holds even if the set of edges is not given in

the input. Thanks to the results of Guo et al. [2006] we can find a set of bipartizing

edges of size e in time FPT parameterized by e.

Let us now move to apply Theorem 5.10 to the problem’s parameterization above

a tight bound. Consider the following problem: given a graph G with m edges and

maximum degree ∆ we are asked if there exists a vertex cover of size m
∆
+ k. We will

look for an FPT algorithm when the problem is parameterized by ∆ and k.

First, is it easy to determine if the answer is YES, even when k = 0? The answer

is given by the following lemma.

Lemma 5.10. If a graph G with m edges and maximum degree ∆ has a vertex cover

of size m
∆

then G is bipartite.

Proof. Let V0 be a vertex cover of the prescribed size. Observe that V0 must induce

an independent set, because if V0 contains both endpoints of an edge then in total it

covers strictly fewer than |V0| ·∆ = m edges. But V \ V0 is also an independent set,

since V0 is a vertex cover, so G is bipartite.

The above lemma gives us some insight into the structure of graphs where the

vertex cover is almost equal to m
∆
. It can be generalized for any k.

Lemma 5.11. If a graph G with m edges and maximum degree ∆ has a vertex cover

of size m
∆
+ k then there exists a set D of at most k∆ edges whose removal makes G

bipartite.

Proof. Again, let V0 be a vertex cover of the prescribed size. Then, if S is the set

of edges induced by V0 we know that V0 cannot cover more than |V0| · ∆ − |S| =

m + k∆ − |S| edges. So we have k∆ − |S| ≥ 0. But removing S makes the graph

bipartite.
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Putting it all together, we can get an FPT algorithm for Vertex Cover param-

eterized above m
∆
. First, look for a set of bipartizing edges of size k∆ using the FPT

algorithm of Guo et al. [2006]. If none exists, by Lemma 5.11 the answer is NO. If one

is found, use the FPT algorithm of Theorem 5.10 to find the optimal vertex cover.



Chapter 6

Conclusions

In this work we presented several results in the theory of structural parameterizations

of hard problems. This is a relatively young but rapidly evolving and advancing field

of algorithmic research and hopefully the results here serve to give a small taste of

the possibilities. Here, let us briefly outline a couple of future research directions.

First, there is definitely much more to be done in the area of meta-theorems for

undirected graphs. This is an area which shares a lot with the field of descriptive

complexity theory, though working in a slightly different setting. There is a lot of

room for innovation here, both in the definition of various widths but also in the

definition of new logics to capture interesting families of problems. This was for

example recently explored in Pilipczuk [2011], where a meta-theorem was proved for

problems expressible in some modal logic. On the other hand, there are still open

problems for FO and MSO logic. To give a concrete one, the complexity of deciding

MSO sentences parameterized by max-leaf is left open in this work.

Second, another topic which has been of interest in the community lately is the

development of multiple-parameter theory, where one adds not only one but several

parameters to a problem. In fact, the development of such a multivariate theory is the

goal of a research program, as outlined in Fellows [2009]. In this work, we presented

111
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several multi-parameter results, especially for the Maximum Path Coloring prob-

lem in Section 5.1. Much more work in this direction is possible, especially in the

interplay between graph widths. One combination that could prove to be especially

interesting is parameterizations by both treewidth and maximum degree.
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Igor and Peter Ruzicka, editors, MFCS, volume 1295 of Lecture Notes in Computer
Science, pages 19–36. Springer, 1997. ISBN 3-540-63437-1.

Bodlaender, Hans L. Treewidth: Structure and algorithms. In Prencipe, Giuseppe
and Shmuel Zaks, editors, SIROCCO, volume 4474 of Lecture Notes in Computer
Science, pages 11–25. Springer, 2007. ISBN 978-3-540-72918-1.

Bodlaender, Hans L. Treewidth: Characterizations, applications, and computations.
In Fomin, Fedor V., editor,WG, volume 4271 of Lecture Notes in Computer Science,
pages 1–14. Springer, 2006. ISBN 3-540-48381-0.

113



michail lampis Structural Parameterizations 114

Bodlaender, Hans L. and Arie M. C. A. Koster. Combinatorial optimization on graphs
of bounded treewidth. Comput. J., 51(3):255–269, 2008.

Bodlaender, Hans L., Fedor V. Fomin, Daniel Lokshtanov, Eelko Penninkx, Saket
Saurabh, and Dimitrios M. Thilikos. (meta) kernelization. In FOCS, pages 629–
638. IEEE Computer Society, 2009. ISBN 978-0-7695-3850-1.

Bodlaender, H.L., J.R. Gilbert, H. Hafsteinsson, and T. Kloks. Approximating
treewidth, pathwidth, frontsize, and shortest elimination tree. Journal of Algo-
rithms, 18(2):238–255, 1995. ISSN 0196-6774.

Chagrov, Alexander V. and Mikhail N. Rybakov. How Many Variables Does One
Need to Prove PSPACE-hardness of Modal Logics. In Balbiani, Philippe, Nobu-
Yuki Suzuki, Frank Wolter, and Michael Zakharyaschev, editors, Advances in Modal
Logic, pages 71–82. King’s College Publications, 2002. ISBN 0-9543006-2-9.

Chen, Jianer, Xiuzhen Huang, Iyad A. Kanj, and Ge Xia. Linear FPT reductions
and computational lower bounds. In Babai, László, editor, STOC, pages 212–221.
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Rossmanith, and Somnath Sikdar. Are there any good digraph width measures? In
Raman, Venkatesh and Saket Saurabh, editors, IPEC, volume 6478 of Lecture Notes
in Computer Science, pages 135–146. Springer, 2010. ISBN 978-3-642-17492-6.

Garey, M.R., D.S. Johnson, GL Miller, and C.H. Papadimitriou. The complexity of
coloring circular arcs and chords. SIAM Journal on Algebraic and Discrete Methods,
1:216, 1980.

Garg, N., V.V. Vazirani, and M. Yannakakis. Primal-dual approximation algorithms
for integral flow and multicut in trees. Algorithmica, 18(1):3–20, 1997.



michail lampis Structural Parameterizations 117

Golumbic, Martin Charles and Robert E. Jamison. Edge and vertex intersection of
paths in a tree. Discrete Mathematics, 55(2):151–159, 1985. ISSN 0012-365X.

Grohe, Martin. Logic, graphs, and algorithms. Electronic Colloquium on Computa-
tional Complexity (ECCC), 14(091), 2007.

Gruber, Hermann and Markus Holzer. Finite automata, digraph connectivity, and
regular expression size. In Aceto, Luca, Ivan Damg̊ard, Leslie Ann Goldberg,
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