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Abstract
In (k, r)-Center we are given a (possibly edge-weighted) graph and are asked to select at most
k vertices (centers), so that all other vertices are at distance at most r from a center. In this
paper we provide a number of tight fine-grained bounds on the complexity of this problem with
respect to various standard graph parameters. Specifically:
I For any r ≥ 1, we show an algorithm that solves the problem in O∗((3r + 1)cw) time, where
cw is the clique-width of the input graph, as well as a tight SETH lower bound matching this
algorithm’s performance. As a corollary, for r = 1, this closes the gap that previously existed on
the complexity of Dominating Set parameterized by cw.
I We strengthen previously known FPT lower bounds, by showing that (k, r)-Center is W[1]-
hard parameterized by the input graph’s vertex cover (if edge weights are allowed), or feedback
vertex set, even if k is an additional parameter. Our reductions imply tight ETH-based lower
bounds. Finally, we devise an algorithm parameterized by vertex cover for unweighted graphs.
I We show that the complexity of the problem parameterized by tree-depth is 2Θ(td2) by showing
an algorithm of this complexity and a tight ETH-based lower bound.

We complement these mostly negative results by providing FPT approximation schemes pa-
rameterized by clique-width or treewidth which work efficiently independently of the values
of k, r. In particular, we give algorithms which, for any ε > 0, run in time O∗((tw/ε)O(tw)),
O∗((cw/ε)O(cw)) and return a (k, (1 + ε)r)-center, if a (k, r)-center exists, thus circumventing the
problem’s W-hardness.
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1 Introduction

In this paper we study the (k, r)-Center problem: given a graph G = (V,E) and a weight
function w : E → N+ which satisfies the triangle inequality and defines the length of each
edge, we are asked if there exists a set K (the center-set) of at most k vertices of V , so that
∀u ∈ V \K we have minv∈K d(v, u) ≤ r, where d(v, u) denotes the shortest-path distance
from v to u under weight function w. If w assigns weight 1 to all edges we say that we have
an instance of un-weighted (k, r)-Center. (k, r)-Center is an extremely well-investigated
optimization problem with numerous applications. It has a long history, especially from the
point of view of approximation algorithms, where the objective is typically to minimize r for
a given k [24, 45, 28, 19, 41, 30, 27, 1, 18]. The converse objective (minimizing k for a given
r) has also been well-studied, with the problem being typically called r-Dominating Set in
this case [11, 42, 35, 12].
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23:2 Parameterized (k, r)-Center

Because (k, r)-Center generalizes Dominating Set (which corresponds to the case
r = 1), the problem can already be seen to be hard, even to approximate (under standard
complexity assumptions). In particular, the optimal r cannot be approximated in polynomial
time by a factor better than 2 (even on planar graphs [19]), while k cannot be approximated
by a factor better than lnn [38]. Because of this hardness, we are strongly motivated to
investigate the problem’s complexity when the input graph has some restricted structure.

In this paper our goal is to perform a complete analysis of the complexity of (k, r)-
Center that takes into account this input structure by using the framework of parameterized
complexity. In particular, we provide fine-grained upper and lower bound results on the
complexity of (k, r)-Center with respect to the most widely studied parameters that measure
a graph’s structure: treewidth tw, clique-width cw, tree-depth td, vertex cover vc, and
feedback vertex set fvs. In addition to the intrinsic value of determining the precise complexity
of (k, r)-Center, this approach is further motivated by the fact that FPT algorithms for
this problem have often been used as building blocks for more elaborate approximation
algorithms [16, 18]. Indeed, (some of) these questions have already been considered, but
we provide a number of new results that build on and improve the current state of the art.
Along the way, we also close a gap on the complexity of the flagship Dominating Set
problem parameterized by clique-width. Specifically, we prove the following:
I (k, r)-Center can be solved (on unweighted graphs) in time O∗((3r + 1)cw) (if a clique-
width expression is supplied with the input), but it cannot be solved in time O∗((3r+ 1− ε)cw)
for any (fixed) r ≥ 1, unless the Strong Exponential Time Hypothesis (SETH) [25, 26] fails.
The algorithmic result relies on standard techniques (dynamic programming on clique-width,
fast subset convolution), as well as several problem-specific observations which are required
to obtain the desired table size. The SETH lower bound follows from a direct reduction
from SAT. A noteworthy consequence of our lower bound result is that, for the case of
Dominating Set, it closes the gap between the complexity of the best known algorithm
(O∗(4cw) [9]) and the best previously known lower bound (O∗((3− ε)cw) [34]).
I (k, r)-Center cannot be solved in time no(vc+k) on edge-weighted graphs, or time no(fvs+k)

on unweighted graphs, unless the Exponential Time Hypothesis (ETH) is false. It was already
known that an FPT algorithm parameterized just by tw (for unbounded r) is unlikely to be
possible [10]. These results show that the same holds for the two more restrictive parameters
fvs and vc, even if k is also added as a parameter. They are (asymptotically) tight, since it is
easy to obtain O∗(nfvs), O∗(nvc), and O∗(nk) algorithms. We remark that (k, r)-Center is
a rare example of a problem that turns out to be hard parameterized by vc. We complement
these lower bounds by an FPT algorithm for the unweighted case, running in time O∗(5vc).
I (k, r)-Center can be solved in time O∗(2O(td2)) for unweighted graphs, but if it can be
solved in time O∗(2o(td2)), then the ETH is false. Here the upper bound follows from known
connections between a graph’s tree-depth and its diameter, while the lower bound follows
from a reduction from 3-SAT. We remark that this is a somewhat uncommon example of
a parameterized problem whose parameter dependence turns out to be exponential in the
square of the parameter.

These results, together with the recent work of [10] showing tight bounds of O∗((2r+1)tw)
on the problem’s complexity parameterized by tw, give a complete and often fine-grained,
picture on (k, r)-Center for the most important graph parameters. One of the conclusions
that can be drawn is that, as a consequence of the problem’s hardness for vc (in the weighted
case) and fvs, there are few cases where we can hope to obtain an FPT algorithm without
bounding r: as r increases the complexity of exactly solving the problem quickly degenerates
away from the case of Dominating Set, which is FPT for all considered parameters.
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A further contribution of this paper is to complement this negative view by pointing
out that it only applies if one insists on solving the problem exactly. If we allow algorithms
that return a (1 + ε)-approximation to the optimal r, for arbitrarily small ε > 0 and while
respecting the given value of k, we obtain the following:
I There exist algorithms which, for any ε > 0, when given a graph that admits a (k, r)-center,
return a (k, (1 + ε)r)-center in time O∗((tw/ε)O(tw)), or O∗((cw/ε)O(cw)), assuming a tree
decomposition or clique-width expression is given in the input.

The tw approximation algorithm is based on a technique introduced in [32], while the
cw algorithm relies on a new extension of an idea from [23], which may be of independent
interest. Thanks to these approximation algorithms, we arrive at an improved understanding
of the complexity of (k, r)-Center by including the question of approximation, and obtain
algorithms which continue to work efficiently even for large values of r. Figure 1 illustrates
the relationships between parameters and Table 1 summarizes our results. Due to space
restrictions, all definitions and related results are deferred to Appendix A, while all proofs of
our results are deferred to Appendix B.

cw, Clique-width

tw, Treewidth

fvs, Feedback Vertex Set

pw, Pathwidth

td, Tree-depth

vc, Vertex Cover

Figure 1 Relationships of
parameters. Algorithmic re-
sults are inherited downwards,
hardness results upwards.

cw tw fvs td vc
FPT exact 3 (w/u) 10 (w/u) 7 (u) 6 (u)
FPT-AS 16 (w/u) 13 (w/u)
SETH LB 1 (u)
ETH LB 5 (w/u) 8 (u) 4 (w)
W[1]-hard 5 (w/u) 4 (w)
Table 1 A summary of our results (theorem numbers) for all con-

sidered parameters. Initials u/w denote the unweighted/weighted
variants of the problem.

Related Work: Our work follows upon recent work by [10], which showed that (k, r)-
Center can be solved in O∗((2r + 1)tw), but not faster (under SETH), while its connected
variant can be solved in O∗((2r + 2)tw), but not faster. This paper in turn generalized
previous results on Dominating Set for which a series of papers had culminated into an
O∗(3tw) algorithm [43, 2, 44], while on the other hand, [34] showed that an O∗((3− ε)pw)
algorithm would violate the SETH, where pw denotes the input graph’s pathwidth. The
complexity of (k, r)-Center by the related parameter branchwidth had previously been
considered in [16] where an O∗((2r + 1) 3

2bw) algorithm is given. Moreover, [36] showed the
problem parameterized by the number k of centers to be W[1]-hard in the L∞ metric, in fact
analysing Covering Points with Squares, a geometric variant. It remains W[2]-hard for
2-degenerate graphs [22]. On clique-width, a O∗(4cw)-time algorithm for Dominating Set
was given in [9], while [40] notes that the lower bound of [34] for pathwidth/treewidth would
also imply no (3− ε)cw · nO(1)-time algorithm exists for clique-width under SETH as well,
since clique-width is at most 1 larger than pathwidth. For the edge-weighted variant, [20]
shows that a (2− ε)-approximation is W[2]-hard for parameter k and NP-hard for graphs
of highway dimension h = O(log2 n), while also offering a 3/2-approximation algorithm
of running time 2O(kh log(h)) · nO(1), exploiting the similarity of this problem with that of
solving Dominating Set on graphs of bounded vc. Finally, for unweighted graphs, [33]
provides efficient (linear/polynomial) algorithms computing (r +O(µ))-dominating sets and
+O(µ)-approximations for (k, r)-Center, where µ is the tree-breadth or cluster diameter in
a layering partition of the input graph.
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2 Definitions and Preliminaries

We use standard graph-theoretic notation. For a graph G = (V,E), n = |V | denotes
the number of vertices, m = |E| the number of edges and for a subset X ⊆ V , G[X]
denotes the graph induced by X. Further, we assume the reader has some familiarity with
standard definitions from parameterized complexity theory, such as the classes FPT, W[1]
(see [15, 21, 17]). For a parameterized problem with parameter k, an FPT-AS is an algorithm
which for any ε > 0 runs in time O∗(f(k, 1

ε )) (i.e. FPT time when parameterized by k + 1
ε )

and produces a solution at most a multiplicative factor (1 + ε) from the optimal (see [37]).
We use O∗(·) to imply omission of factors polynomial in n.

In this paper we present approximation schemes with running times of the form (logn/ε)O(k).
These can be seen to imply an FPT running time by a well-known win-win argument (see
Lemma 17 in Appendix A): If a parameterized problem with parameter k admits, for some
ε > 0, an algorithm running in time O∗((logn/ε)O(k)), then it also admits an algorithm
running in time O∗((k/ε)O(k)).

Treewidth and pathwidth are standard notions in parameterized complexity which measure
how close a graph is to being a tree or path (see Appendix A and [8, 5, 29]). We will also
use the standard graph parameter of clique-width, which was introduced as a generalization
of treewidth to dense graphs (see Appendix A and [13, 14]). Additionally, we will use the
parameters vertex cover number and feedback vertex set number of a graph G, which are
the sizes of the minimum vertex set whose deletion leaves the graph edgeless, or acyclic,
respectively. Finally, we will consider the related notion of tree-depth [39], which is defined as
the minimum height of a rooted forest whose completion (the graph obtained by connecting
each node to all its ancestors) contains the input graph as a subgraph. We will denote these
parameters for a graph G as tw(G),pw(G), cw(G), vc(G), fvs(G), and td(G), and will omit G
if it is clear from the context. We recall the following well-known relations between these
parameters [6, 14] which justify the hierarchy given in Figure 1 (Lemma 18 in Appendix A):
For any graph G we have tw(G) ≤ pw(G) ≤ td(G) ≤ vc(G), tw(G) ≤ fvs(G) ≤ vc(G),
cw(G) ≤ pw(G) + 1, and cw(G) ≤ 2tw(G)+1 + 1.

We also recall here the two main complexity assumptions used in this paper [25, 26]. The
Exponential Time Hypothesis (ETH) states that 3-SAT cannot be solved in time 2o(n+m) on
instances with n variables and m clauses. The Strong Exponential Time Hypothesis (SETH)
states that for all ε > 0, there exists an integer k such that k-SAT cannot be solved in time
(2− ε)n on instances of k-SAT with n variables.

3 Clique-width

3.1 Lower bound based on SETH
The result of this section is that for any fixed constant r ≥ 1, the existence of any algorithm
for (k, r)-Center of running time O∗((3r + 1 − ε)cw), for some ε > 0, would imply the
existence of some algorithm for SAT of running time O∗((2− δ)n), for some δ > 0.

Before we proceed, let us recall the high-level idea behind the SETH lower bound for
Dominating Set given in [34], as well its generalization to (k, r)-Center given in [10]. In
both cases the key to the reduction is the construction of long paths, which are conceptually
divided into blocks of 2r + 1 vertices. The intended solution consists of selecting, say, the
i-th vertex of a block of a path, and repeating this selection in all blocks of this path. This
allows us to encode (2r + 1)t choices, where t is the number of paths we make, which ends
up being roughly equal to the treewidth of the construction. The reason this construction
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works in the converse direction is that, even though the optimal (k, r)-Center solution may
“cheat” by selecting the i-th vertex of a block, and then the j-th vertex of the next, one can
see that we must have j ≤ i. Hence, by making the paths that carry the solution’s encoding
long enough we can ensure that the solution eventually settles into a pattern that encodes
an assignment to the original formula (which can be “read” with appropriate gadgets).

In our lower bound construction for clique-width we need to be able to “pack” more
information per unit of width: instead of encoding (2r+ 1) choices for each unit of treewidth,
we need to encode (3r + 1) choices for each label. Our high-level plan to achieve this is
to use a pair of long paths for each label. Because we only want to invest one label for
each pair of paths we are forced to periodically (every 2r + 1 vertices) add cross edges
between them, so that the connection between blocks can be performed with a single join
operation (see the paths A1, B1 in Figure 2 for an illustation). Our plan now is to encode
a solution by selecting a pair of vertices that will be repeated in each block, for example
every i-th vertex of A1 and every j-th vertex of B1. One may naively expect that this
would allow us to encode (2r + 1)2 choices for each label (which would lead to a SETH
lower bound that would contradict the algorithm of Section 3.2). However, because of
the cross edges, the optimal (k, r)-Center solution is not as well-behaved on a pair of
cross-connected paths as it was on a path, and this makes it much harder to execute the
converse direction of the reduction: a solution that takes every i-th vertex of A1 could
alternate repeatedly between various choices for B1, because the selected vertices of A1 also
cover parts of B1. Our strategy is therefore to identify (3r + 1) ordered selection pairs and
show that any valid solution must be well-behaved with respect to these pairs. An overview
of our construction, omitting most technical details of the reduction’s inner mechanism follows.

Construction overview: We construct a graph G, given some ε < 1 and an instance φ
of SAT with n variables and m clauses. We first choose an integer p, depending on ε and r
(for technical reasons that become apparent in the proof of Theorem 1). Note that for the
results of this section, both r and p are considered constants. We then group the variables
of φ into t = dnγ e groups F1, . . . , Ft, for γ = blog2(3r + 1)pc, being also the maximum size
of any such group. Our graph G will consist of t rows of m(3rpt+ 1) gadgets Ĝ, each row
corresponding to one such group of variables. Each gadget Ĝ will contain p pairs of paths
Ai, Bi and any selection of one vertex from each path will be associated with a specific partial
assignment to the variables of the group. Gadgets of the same row will be connected in a
path-like manner: for each i ∈ [1, p] both final vertices of each pair Ai, Bi within each gadget
will be connected to both first vertices of the corresponding pair Ai, Bi of the following
gadget, with a global vertex h adjacent to all the first/last vertices of all such long paths,
with an additional path of length r attached to h to ensure its selection in any minimum-sized
center-set (and allowing for any selection in these first/last gadgets to be valid).

Furthermore, we will show that the possible selections of only one vertex from each path
can be divided into 3r + 1 equivalence classes: we define 3r + 1 canonical pairs of numbers
(αy, βy), indexed (and ordered) by y ∈ [1, 3r+ 1], that give the indices of vertices from a pair
of paths Ai, Bi (i.e. the αy-th vertex of Ai and the βy-th vertex of Bi) that would form the
characteristic selection for each class, and show that any other selection within each class
would be interchangeable (in terms of domination/coverage) with the characteristic selection,
while if some pair with index y is used for selection of vertices from paths Ai, Bi in some
gadget Ĝjτ , then any pair used for the paths of the following gadget Ĝj+1

τ (on the same row)
must be of index y′ ≤ y. Observe that, as the path selections from each column must be well
behaved with respect to our canonical pairs, there is an upper bound of 3r on the number
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23:6 Parameterized (k, r)-Center

of times the selection pattern can change on some pair of paths, giving 3rp for each row of
gadgets and 3rpt times overall. In each gadget Ĝ, we also make 3r + 1 vertices uyi for each
pair Ai, Bi that signify these canonical selections from each path and further, a group of
(3r + 1)p vertices xS for each set S that only contains one such uyi for each i ∈ [1, p].

In this way, a selection of one vertex from each path Ai, Bi will correspond to a selection
uyi , while all p such selections will correspond to one selection xS that will in turn be
associated with a partial assignment to the group of variables assigned to this row of gadgets
(there are 2γ partial assignments for each group and (3r + 1)p ≥ 2γ sets S). Further, each
column of gadgets will correspond to one clause, with the first m columns assigned to one
clause each and 3rpt + 1 repetitions of this pattern giving the complete association. Our
graph G will have one vertex ĉ for each such column of gadgets (representing the associated
clause) at distance r from vertices xS in the gadgets Ĝ of its column that represent the
partial assignments to the variables of the group associated with the gadget’s row (and group
Fτ ) that would satisfy the clause (Figure 2 provides an illustration).

Thus, a satisfying assignment for φ will give a (k, r)-center for G by selecting in each
gadget Ĝ all vertices corresponding to the partial assignment for its associated group of
variables from each pair of paths, as well as the matching uyi and xS vertices (and h). For
the converse direction, as the number of changes of selection pattern is ≤ 3rpt and the
number of columns is m(3rpt + 1), by the pigeonhole principle, there will always exist m
consecutive columns for which the pattern does not change and thus we will be able to
extract a consistent assignment for all clauses.

h

h′

Ĝ1
1

Ĝ
m(3rpt+1)
t

Ĝ1
t

A1

B1

ĉoπ

xS

m(3rpt+ 1)

t

p

...

Figure 2 A simplified picture of the complete construction. Note boxes indicate block gadgets Ĝ,
while there is no vertex anywhere between h and the first/last vertices of the long paths.

I Theorem 1. For any fixed r ≥ 1, if (k, r)-Center can be solved in O∗((3r + 1− ε)cw(G))
time for some ε > 0, then SAT can be solved in O∗((2− δ)n) time for some δ > 0.

I Corollary 2. If Dominating Set can be solved in O∗((4− ε)cw(G)) time for some ε > 0,
then SAT can be solved in O∗((2− δ)n) time for some δ > 0.

3.2 Dynamic programming algorithm
We next present an O∗((3r+1)cw)-time dynamic programming (DP) algorithm for unweighted
(k, r)-Center, using a given clique-width expression TG for G with at most cw labels. Even
though the algorithm relies on standard techniques, there are several non-trivial, problem-
specific observations that we need to make to reach a DP table size of (3r + 1)cw.
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Our first step is to re-cast the problem as a distance-labeling problem (not be confused
with ‘label’/‘label-set’ for a clique-width expression), that is, to formulate the problem as
that of deciding for each vertex what is its precise distance to the optimal solution K. This
is helpful because it allows us to make the constraints of the problem local, and hence easier
to verify: roughly speaking, we say that a vertex is satisfied if it has a neighbor with a
smaller distance to K. It is now not hard to design a clique-width based DP algorithm for
this version of the problem: for each label l we need to remember two numbers, namely the
smallest distance value given to some vertex with label l, and the smallest distance value
given to a currently unsatisfied vertex with label l, if it exists.

The above scheme directly leads to an algorithm running in time (roughly) ((r + 1)2)cw.
In order to decrease the size of this table, we now make the following observation: if a
label-set contains a vertex at distance i from K, performing a join operation will satisfy all
vertices that expect to be at distance ≥ i+ 2 from K, since all vertices of the label-set will
now be at distance at most 2. This implies that, in a label-set where the minimum assigned
value is i, states where the minimum unsatisfied value is between i+ 2 and r are effectively
equivalent. With this observation we can bring down the size of the table to (4r)cw, because
(intuitively) there are four cases for the smallest unsatisfied value: i, i+ 1,≥ i+ 2, and the
case where all values are satisfied.

The last trick that we need to achieve the promised running time departs slightly from
the standard DP approach. We will say that a label-set is live in a node of the clique-width
expression if there are still edges to be added to the graph that will be incident to its
vertices. During the execution of the dynamic program, we perform a “fore-tracking” step,
by checking the part of the graph that comes higher in the expression to determine if a
label-set is live. If it is, we merge the case where the smallest unsatisfied value is i+ 2, with
the case where all values are satisfied (since a join operation will eventually be performed).
Otherwise, a partial solution that contains unsatisfied vertices in a non-live label-set can
safely be discarded. This brings down the size of the DP table to (3r + 1)cw, and then
we need to use some further techniques to make the total running time quasi-linear in
the size of the table. This involves counting the number of solutions instead of directly
computing a solution of minimum size, as well as a non-trivial extension of fast subset convo-
lution from [4] for a 3×(r+1)-sized table (or state-changes, see [44, 9] and Chapter 11 of [15]).

I Theorem 3. Given graph G, along with k, r ∈ N+ and clique-width expression TG of clique-
width cw for G, there exists an algorithm to solve the counting version of the (k, r)-Center
problem in O∗((3r + 1)cw) time.

4 Vertex Cover, Feedback Vertex Set and Tree-depth

In this section we first show that the edge-weighted variant of the (k, r)-Center problem
parameterized by vc + k is W[1]-hard, and more precisely, that the problem does not
admit a no(vc+k) algorithm under the ETH. We give a reduction from k-Multicolored
Independent Set (defined in Appendix A).

This is a well-known W[1]-hard problem that cannot be solved in no(k) under the ETH
[15]. Using essentially the same reduction with that of Theorem 4, we obtain a similar
hardness result for unweighted (k, r)-Center parameterized by fvs.

I Theorem 4. The weighted (k, r)-Center problem is W[1]-hard parameterized by vc + k.
Furthermore, if there is an algorithm for weighted (k, r)-Center running in time no(vc+k)

then the ETH is false.

CVIT 2016
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I Corollary 5. The (k, r)-Center problem is W[1]-hard when parameterized by fvs + k.
Furthermore, if there is an algorithm for weighted (k, r)-Center running in time no(fvs+k),
then the ETH is false.

We next show that unweighted (k, r)-Center admits an algorithm running in time
O∗(5vc), in contrast to its weighted version (Theorem 4). We devise an algorithm that
operates in two stages: first, it guesses the intersection of the optimal solution with the
optimal vertex cover, and then it uses a reduction to Set Cover to complete the solution
optimally.

I Theorem 6. Given graph G, along with k, r ∈ N+ and a vertex cover of size vc of G, there
exists an algorithm solving unweighted (k, r)-Center in O∗(5vc) time.

We next consider the un-weighted version of (k, r)-Center parameterized by td. Theo-
rem 4 has estabilshed that weighted (k, r)-Center is W[1]-hard parameterized by vc (and
hence also by td by Lemma 18), but the complexity of unweighted (k, r)-Center parameter-
ized by td does not follow from this theorem, since td is incomparable to fvs. Indeed, we
show that (k, r)-Center is FPT parameterized by td and precisely determine its parameter
dependence based on the ETH.

I Theorem 7. Unweighted (k, r)-Center can be solved in time O∗(2O(td2)).

I Theorem 8. If (k, r)-Center can be solved in 2o(td2) · nO(1) time, then 3-SAT can be
solved in 2o(n) time.

5 Treewidth: FPT approximation scheme

In this section we present an FPT approximation scheme (FPT-AS) for (k, r)-Center
parameterized by tw. Given as input a weighted graph G = (V,E), k, r ∈ N+ and an
arbitrarily small error parameter ε > 0, our algorithm is able to return a solution that uses
a set of k centers K, such that all other vertices are at distance at most (1 + ε)r from K,
or to correctly conclude that no (k, r)-center exists. The running time of the algorithm is
O∗((tw/ε)O(tw)), which (for large r) significantly out-performs any exact algorithm for the
problem (even for the unweighted case and more restricted parameters, as in Theorems 4
and 5), while only sacrificing a small ε error in the quality of the solution.

Our algorithm will rely heavily on a technique introduced in [32] (see also [3]) to approx-
imate problems which are W-hard by treewidth. The idea is that, if the hardness of the
problem is due to the fact that the DP table needs to store tw large numbers (in our case,
the distances of the vertices in the bag from the closest center), we can significantly speed
up the algorithm if we replace all entries by the closest integer power of (1 + δ), for some
appropriately chosen δ. This will reduce the table size from (roughly) rtw to (log(1+δ) r)tw.

The problem now is that a DP performing calculations on its entries will, in the course of
its execution, create values which are not integer powers of (1 + δ), and will therefore have
to be “rounded” to retain the table size. This runs the risk of accumulating rounding errors,
but we manage to show that the error on any entry of the rounded table can be bounded by
a function of the height of its corresponding bag, then using a theorem of [7] stating that
any tree decomposition can be balanced so that its width remains almost unchanged, yet its
total height becomes O(logn). Beyond these ideas, which are for the most part present in
[32], we will also need a number of problem-specific observations, such as the fact that we
can pre-process the input by taking the metric closure of each bag, and in this way avoid
some error-prone arithmetic operations.
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To obtain the promised algorithm we thus do the following: first we re-cast the problem
as a distance-labeling problem (as in the proof of Theorem 3) and formulate an exact
treewidth-based DP algorithm running in time O∗(rO(tw)). We remark that the algorithm
essentially reproduces the ideas of [10], and can be made to run in O∗((2r + 1)tw) if one
uses fast subset convolution for the Join nodes (the naive implementation would need time
O∗((2r + 1)2tw))) but we give it here to ensure that we have a solid foundation upon which
to build the approximation algorithm. We then apply the rounding procedure sketched
above, and prove its approximation ratio by using the balancing theorem of [7] and indirectly
comparing the value produced by the approximation algorithm with the value that would
have been produced by the exact algorithm.
Distance-labeling: We give an equivalent formulation of (k, r)-Center that will be more
convenient to work with in the remainder, similarly to Section 3.2. For an edge-weighted graph
G = (V,E), a distance-labeling function is a function dl : V → {0, . . . , r}. We say that u ∈ V
is satisfied by dl, if dl(u) = 0, or if there exists v ∈ N(u) such that dl(u) ≥ dl(v) + w((v, u)).
We say that dl is valid if all vertices of V are satisfied by dl, and we define the cost of dl as
|dl−1(0)|. The following lemma shows the equivalence between the two formulations:

I Lemma 9. An edge-weighted graph G = (V,E) admits a (k, r)-center if and only if it
admits a valid distance-labeling function dl : V → {0, . . . , r} with cost k.

I Theorem 10. There is an algorithm which, given an edge-weighted graph G = (V,E) and
r ∈ N+, computes the minimum cost of any valid distance labeling of G in time O∗(rO(tw)).

We now describe an approximation algorithm based on the exact DP algorithm of
Theorem 10. We make use of a result of [7] stating that: There is an algorithm which, given
a tree decomposition of width w of a graph on n nodes, produces a decomposition of the same
graph with width at most 3w + 2 and height O(logn) in polynomial time and of the following
lemma:

I Lemma 11. Let G = (V,E) be an edge-weighted graph, T a tree decomposition of G, and
u, v ∈ V two vertices that appear together in a bag of T . Let G′ be the graph obtained from G

by adding (u, v) to E (if it does not already exist) and setting w((u, v)) = dG(u, v). Then T
is a valid decomposition of G′, and ∀k, r, G′ admits a (k, r)-center if and only if G does.

Let us also give an approximate version of the distance labeling problem we defined
above, for a given error parameter ε > 0. Let δ > 0 be some appropriately chosen secondary
parameter (we will eventually set δ ≈ ε

logn ). We define a δ-labeling function dlδ as a function
from V to {0} ∪ {(1 + δ)i | i ∈ N, (1 + δ)i ≤ (1 + ε)r}. In words, such a function assigns (as
previously) a distance label to each vertex, with the difference that now all values assigned
are integer powers of (1 + δ), and the maximum value is at most (1 + ε)r. We now say that a
vertex u is ε-satisfied if dlδ(u) = 0 or, for some v ∈ N(u) we have dlδ(u) ≥ dlδ(v) + w((v,u))

1+ε .
As previously, we say that dlδ is valid if all vertices are ε-satisfied, and define its cost as
|dl−1

δ (0)|. The following Lemma 12 shows the equivalence of a valid δ-labeling function of
cost k and a (k, (1 + ε)2r)-center for G and using it we conclude the proof of Theorem 13,
stating the main result of this section.

I Lemma 12. If for a weighted graph G = (V,E) and any k, r, δ, ε > 0, there exists a valid
δ-labeling function with cost k, then there exists a (k, (1 + ε)2r)-center for G.

I Theorem 13. There is an algorithm which, given a weighted instance of (k, r)-Center,
[G, k, r], a tree decomposition of G of width tw and a parameter ε > 0, runs in time
O∗((tw/ε)O(tw)) and either returns a (k, (1 + ε))-center of G, or correctly concludes that G
has no (k, r)-center.
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6 Clique-width revisited: FPT approximation scheme

We give here an FPT-AS for (k, r)-Center parameterized by cw, both for un-weighted
and for weighted instances (for a weighted definition of cw which we explain below). Our
algorithm builds on the algorithm of Section 5, and despite the added generality of the
parameterization by cw, we are able to obtain an algorithm with similar performance: for
any ε > 0, our algorithm runs in time O∗((cw/ε)O(cw)) and produces a (k, (1 + ε)r)-center if
the input instance admits a (k, r)-center.

Our main strategy, which may be of independent interest, is to pre-process the input
graph G = (V,E) in such a way that the answer does not change, yet producing a graph
whose tw is bounded by O(cw(G)). The main insight that we rely on, which was first observed
by [23], is that a graph of low cw can be transformed into a graph of low tw if one removes
all large bi-cliques. Unlike previous applications of this idea (e.g. [31]), we do not use the
main theorem of [23] as a “black box”, but rather give an explicit construction of a tree
decomposition, exploiting the fact that (k, r)-Center allows us to relatively easily eliminate
complete bi-cliques. As a result, we obtain a tree decomposition of width not just bounded
by some function of cw(G), but actually O(cw(G)).

In the remainder we deal with the weighted version of (k, r)-Center. To allow clique-
width expressions to handle weighted edges, we interpret the clique-width join operation η
as taking three arguments. The interpretation is that η(a, b, w) is an operation that adds
(directed) edges from all vertices with label a to all vertices with label b and gives weight w to
all these edges. It is not hard to see that if a graph has a (standard) clique-width expression
with cw labels, it can also be constructed with cw labels in our context, if we replace every
standard join operation η(a, b) with η(a, b, 1) followed by η(b, a, 1). Hence, the algorithm we
give also applies to un-weighted instances parameterized by (standard) clique-width. We will
also deal with a generalization of (k, r)-Center, where we are also supplied, along with the
input graph G = (V,E), a subset I ⊆ V of irrelevant vertices. In this version, a (k, r)-center
is a set K ⊆ V \ I, with |K| = k, such that all vertices of V \ I are at distance at most r
from K. Clearly, the standard version of (k, r)-Center corresponds to I = ∅. As we explain
in the proof of Theorem 16, this generalization does not make the problem significantly
harder. In addition to the above, in this section we allow edge weights to be equal to 0. This
does not significantly alter the problem, however, if we are interested in approximation and
allow r to be unbounded, as the following lemma shows:

I Lemma 14. There exists a polynomial algorithm which, for any ε > 0, given an instance
I = [G,w, k, r] of (k, r)-Center, with weight function w : V → N, produces an instance
I ′ = [G,w′, k, r′] on the same graph with weight function w′ : V → N+, such that we have the
following: for any ρ ≥ 1, any (k, ρr′)-center of I ′ is a (k, ρr)-center of I; any (k, ρr)-center
of I is a (k, (1 + ε)ρr′)-center of I ′.

Our main tool is the following lemma, whose strategy is to replace every large label-set by
two “representative” vertices, in a way that retains the same distances among all vertices of
the graph. Applying this transformation repeatedly results in a graph with small treewidth.
The main theorem of this section then follows from the above.

I Lemma 15. Given a (k, r)-Center instance G = (V,E) along with a clique-width ex-
pression T for G on cw labels, we can in polynomial time obtain a (k, r)-Center instance
G′ = (V ′, E′) with V ⊆ V ′, and a tree decomposition of G′ of width tw = O(cw), with the
following property: for all k, r, G has a (k, r)-center if and only if G′ has a (k, r)-center.
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I Theorem 16. Given G = (V,E), k, r ∈ N+, clique-width expression T for G on cw labels
and ε > 0, there exists an algorithm that runs in time O∗((cw/ε)O(cw)) and either produces a
(k, (1 + ε)r)-center, or correctly concludes that no (k, r)-center exists.
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A Omitted Definitions and Preliminaries

This section of the appendix contains the formal definitions of notions omitted from Section 2,
as well as the proof of Lemma 17.

We define the (k, r)-Center problem as follows: given a graph G = (V,E) and a weight
function w : E → N+ which satisfies the triangle inequality and defines the length of each
edge, we are asked if there exists a set K of at most k vertices of V , so that ∀u ∈ V \K we
have minv∈K d(v, u) ≤ r, where d(v, u) denotes the shortest-path distance from v to u under
weight function w. If w assigns weight 1 to all edges we say that we have an instance of
un-weighted (k, r)-Center. Note that, dealing with (k, r)-Center we allow, in general, the
function w to be non-symmetric. We also require edge weights to be strictly positive integers
but, as we will see (Lemma 14 in Appendix B), this is not a significant restriction.

I Lemma 17. If a parameterized problem with parameter k admits, for some ε > 0, an
algorithm running in time O∗((logn/ε)O(k)), then it also admits an algorithm running in
time O∗((k/ε)O(k)).

Proof. We consider two cases: if k ≤
√

logn then (logn/ε)O(k) = (1/ε)O(k)(logn)O(
√

logn) =
O∗((1/ε)O(k)). If on the other hand, k >

√
logn we have logn ≤ k2, so O∗((logn/ε)O(k)) =

O∗((k/ε)O(k)). J

A tree (path) decomposition of a graph G = (V,E) is a pair (X , T ) with T = (I, F ) a tree
(path) and X = {Xi|i ∈ I} a family of subsets of V (called bags), one for each node of T ,
with the following properties:

1)
⋃
i∈I Xi = V ;

2) for all edges (v, w) ∈ E, there exists an i ∈ I with v, w ∈ Xi;
3) for all i, j, k ∈ I, if j is on the path from i to k in T , then Xi ∩Xk ⊆ Xj .
The width of a tree (path) decomposition ((I, F ), {Xi|i ∈ I}) is maxi∈I |Xi|−1. The treewidth
(pathwidth) of a graph G is the minimum width over all tree (path) decompositions of G,
denoted by tw(G) (pw(G)).

Moreover, for rooted T , let Gi = (Vi, Ei) denote the terminal subgraph defined by node
i ∈ I, i.e. the induced subgraph of G on all vertices in bag i and its descendants in T . Also
let Ni(v) denote the neighborhood of vertex v in Gi and di(u, v) denote the distance between
vertices u and v in Gi, while d(u, v) (absence of subscript) is the distance in G.

In addition, a tree decomposition can be converted to a nice tree decomposition of the
same width (in O(tw2 ·n) time and with O(tw ·n) nodes): the tree here is rooted and binary,
while nodes can be of four types:

a) Leaf nodes i are leaves of T and have |Xi| = 1;
b) Introduce nodes i have one child j with Xi = Xj ∪ {v} for some vertex v ∈ V and are

said to introduce v;
c) Forget nodes i have one child j with Xi = Xj \ {v} for some vertex v ∈ V and are said to

forget v;
d) Join nodes i have two children denoted by i− 1 and i− 2, with Xi = Xi−1 = Xi−2.

The set of graphs of clique-width cw is the set of vertex-labelled graphs that can be
inductively constructed by using the following operations:

1) Introduce: i(l), for l ∈ [1, cw] is the graph consisting of a single vertex with label l;
2) Join: η(G, a, b), for G having clique-width cw and a, b ∈ [1, cw] is the graph obtained

from G by adding all possible edges between vertices of label a and vertices of label b;
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3) Rename: ρ(G, a, b), for G having clique-width cw and a, b ∈ [1, cw] is the graph obtained
from G by changing the label of all vertices of label a to b;

4) Union: G1 ∪G2, for G1, G2 having clique-width cw is the disjoint union of graphs G1, G2.
Note we here assume the labels are integers in [1, cw], for ease of exposition.

A clique-width expression of width cw for G = (V,E) is a recipe for constructing a
cw-labelled graph isomorphic to G. More formally, a clique-width expression is a rooted
binary tree TG, such that each node t ∈ TG has one of four possible types, corresponding to
the operations given above. In addition, all leaves are introduce nodes, each introduce node
has a label associated with it and each join or rename node has two labels associated with it.
For each node t, the graph Gt is defined as the graph obtained by applying the operation of
node t to the graph (or graphs) associated with its child (or children). All graphs Gt are
subgraphs of G and for all leaves of label l, their associated graph is i(l). For a graph Gt,
the set of vertices with label l is called the label-set of l.

We next state a lemma giving the relationships between parameters used in this paper.

I Lemma 18. [6, 14] For any graph G we have tw(G) ≤ pw(G) ≤ td(G) ≤ vc(G), tw(G) ≤
fvs(G) ≤ vc(G), cw(G) ≤ pw(G) + 1, and cw(G) ≤ 2tw(G)+1 + 1.

Finally, k-Multicolored Independent Set is defined as follows: we are given a graph
G = (V,E), with V partitioned into k cliques V = V1 ] · · · ] Vk, |Vi| = n, ∀i ∈ [1, k], and are
asked to find an S ⊆ V , such that G[S] forms an independent set and |S ∩ Vi| = 1,∀i ∈ [1, k].

B Omitted constructions and proofs

This section of the appendix contains all omitted constructions and proofs of statements.

B.1 From Section 3.1, Clique-width: Lower bound based on SETH
We describe the construction of a graph G, given some ε < 1 and an instance φ of SAT
with n variables and m clauses. We first choose an integer p ≥ 1

(1− λ) log2(3r + 1) , for

λ = log3r+1(3r + 1− ε) < 1, for reasons that become apparent in the proof of Theorem 1.
Note that for the results of this section, both r and p are considered constants. We then
group the variables of φ into t = dnγ e groups F1, . . . , Ft, for γ = blog2(3r + 1)pc, being also
the maximum size of any such group. Our construction uses a main Block gadget Ĝ and
three smaller gadgets T̂N , X̂N and ÛN as parts.

Guard gadget T̂N : This gadget has N input vertices and its purpose is to allow for any
selection of a single input as a center to cover all vertices within the gadget, while offering
no paths of length ≤ r between the inputs. Thus if two guard gadgets are attached to a set
of inputs, any minimum-sized center-set will select one of them to cover all gadget vertices.

Construction and size/cw bounds for T̂N : Given vertices v1, . . . , vN , we construct the
gadget as follows: we first make b r2c vertices u

1
i , . . . , u

b r2 c
i forming a path for each vi and we

connect each u1
i to each vi. We then make another path on d r2e vertices, called w

1, . . . , wd
r
2 e,

and we make vertices ub
r
2 c
i adjacent to the starting vertex w1 of this path for all i ∈ [1, N ].

Finally, if r is even, we make all vertices ub
r
2 c
i into a clique, while for odd r the construction

is already complete. Figure 3 provides an illustration. The number of vertices in the gadget
is |T̂N | = Nb r2c+ d r2e, while he gadget can also be constructed by a clique-width expression
using at most this number of labels, by handling each vertex as an individual label.
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v1 vN

r is even r is odd

u1
1

d r
2e

b r
2c

u
b r
2 c

1

w1

wd r
2 e

Figure 3 A general picture of the guard gadget T̂N for even and odd r. Note the box indicating
vertices forming a clique for the case of even r.

I Lemma 19. All vertices of gadget T̂N are at distance ≤ r from any input vertex vi, i ∈ [1, N ],
while d(vi, vj) = r + 1, for any i 6= j ∈ [1, N ].

Proof. The distance from any input vertex vi, with i ∈ [1, N ], to vertex ub
r
2 c
i is d(vi, u

b r2 c
i ) =

b r2c, while the distance from u
b r2 c
i to wd

r
2 e is d(ub

r
2 c
i , wd

r
2 e) = d r2e, thus d(vi, wd

r
2 e) =

b r2c+d
r
2e = r. Further, the distance from u

b r2 c
i to any vertex u1

j , for j 6= i, is d(ub
r
2 c
i , u1

j ) = b r2c
for even r, and d(ub

r
2 c
i , u1

j) = 1 + b r2c for odd r. Thus d(vi, u1
j) = b r2c+ b r2c = r for even r,

and d(vi, u1
j ) = b r2c+ 1 + b r2c = r for odd r. Thus any vertex on these paths is at distance

≤ r from vi, while any other input vertex vj , being at distance 1 from its corresponding u1
j ,

is at distance r + 1 from vi. J

Clique gadget X̂N : This gadget again has N input vertices and the aim now is to make
sure that any selection of a single input vertex as a center will cover all other vertices of the
gadget, that no selection of any single vertex that is not an input would suffice instead, while
all paths connecting the inputs are of distance exactly r.

Construction and size/cw bounds for X̂N : Given vertices v1, . . . , vN , we first connect
them to each other by paths on r − 1 new vertices, so that the distances between any two of
them are exactly r. We then make all middle vertices that lie at distance b r2c from some
vertex vi on these paths adjacent to each other (into a clique): for even r the middle vertex
of each path is at distance r/2 from the path’s endpoint vertices vi, vj , while for odd r the
middle vertices are the two vertices at distance (r − 1)/2 from one of the path’s endpoints
vi, vj . Thus all vertices on these paths are at distance at most r from any vertex vi, as they lie
within distance < b r2c from a middle vertex on their path, which is at distance exactly b r2c+1
from any input vertex vi. Next, we make another vertex uli,j for each middle vertex of these
paths between vi, vj (and l ∈ [1, 2] for odd r) and we make it adjacent to its corresponding
middle vertex. We then add another vertex x that we also connect to all vi vertices by paths
using r − 1 new vertices (thus at distance r from each vi), making the middle vertices on
these new paths adjacent to each other as well (into another, disjoint clique). See Figure 4
for an illustration. The size of the gadget is |X̂N | = N + 1 +

(
N
2
)
· r +N(r − 1) for even r

and |X̂N | = N + 1 +
(
N
2
)
· (r + 1) +N(r − 1) for odd r. The gadget can also be constructed

by a clique-width expression using at most this number of labels, by handling each vertex as
an individual label.
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r is even r is odd

v1

vN

u1,N

x

v1

vN

u1
1,N

u2
1,N

x

b r
2c b r

2c b r
2c

Figure 4 A general picture of the clique gadget X̂N for even and odd r.

I Lemma 20. Any minimum-sized center-set restricted to the vertices of X̂N , will select
exactly one of the input vertices vi, i ∈ [1, N ], to cover all other vertices in X̂N .

Proof. Assume the selection of any single vertex from X̂N in any minimum-sized center-set:
if the selected vertex is on one of the original paths, then vertex x is not covered, as its
distance is at least r+ 1 from any such vertex (via the closest vi), while if the selected vertex,
say w, is on one of the new paths between some vi and x, there will be at least one vertex
ulj,k on a path between two input vertices vj , vk for l ∈ [1, 2] that is not covered, as the
distances from w to vj , vk are at least 1 + b r2c and the distances from there to the ulj,k are
also 1 + b r2c. On the other hand, if the selected vertex is one of the inputs vi, then all other
vertices are covered: the distance from vi to any other input vj or x is exactly r, thus all
vertices on these paths are covered (including vertices of the type uli,j), while for vertices on
paths not originating at vi, the distance from vi to some middle vertex on a path adjacent
to it is b r2c and the distance from there to any vertex on some other path (or even adjacent
to a middle vertex) is ≤ b r2c, giving an overall distance of ≤ r. J

Assignment gadget ÛN : Once more, there are N input vertices v1, . . . , vN for this gadget,
while the purpose here is to ensure that, assuming all input vertices have already been
covered, any minimum-sized center-set will select exactly N − 1 of them to cover all other
vertices in the gadget.

Construction and size/cw bound for ÛN : We first connect all input vertices to each other
by two distinct paths each containing r new vertices, so that all distances between any pair
of input vertices are exactly r + 1. Let the vertices on these paths between vi, vj be uli,j
and ûli,j for l ∈ [1, r]. Then, for odd r, we also attach a path of b r2c vertices to the middle
vertex of each path, that is, the vertices ub

r
2 c+1
i,j and ûb

r
2 c+1
i,j that are at distance b r2c+ 1 from

both endpoints vi, vj of their paths. We call the vertices on these new paths wmi,j and ŵmi,j
for m ∈ [1, b r2c]. For even r, we make a vertex wr/2i,j (resp. ŵr/2i,j ) for each path and attach
two paths of r/2− 1 vertices to it, naming the vertices on these paths wo,mi,j (resp. ŵo,mi,j ) for
o ∈ [1, 2] and m ∈ [1, r/2− 1], finally attaching the other endpoint vertex w1,1

i,j (resp. ŵ1,1
i,j )

to ur/2i,j (resp. ûr/2i,j ) and also w2,1
i,j (resp. ŵ2,1

i,j ) to u
r/2+1
i,j (resp. ûr/2+1

i,j ), being the vertices at
distance r/2 from one of the two endpoints vi (and r/2 + 1 from the other vj). Thus between
any two inputs vi, vj , there are two vertices wb

r
2 c
i,j , ŵ

b r2 c
i,j at distance exactly r from both. See

Figure 5 for an illustration. The size of the gadget is |ÛN | = N + 2
(
N
2
)
· (r + b r2c) for odd r

and |ÛN | = N + 2
(
N
2
)
· (2r − 1) for even r, while the gadget can also be constructed by a
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clique-width expression using at most this number of labels, by handling each vertex as an
individual label.

r is odd r is even

v1

vN

u1
1,N

ur
1,N

û1
1,N

w
b r
2 c

1,N

ŵ
b r
2 c

1,N

r + 1

v1 vN
u1
1,N

ûr
1,N

w
r
2

1,N

ŵ
r
2

1,N

b r2c r
2 − 1

Figure 5 A general picture of the assignment gadget ÛN for odd and even r.

I Lemma 21. Assuming all input vertices v1, . . . , vN need not be covered by this selection,
any minimum-sized center-set restricted to the vertices of ÛN will select exactly N − 1 of the
input vertices to cover all other vertices in ÛN .

Proof. The claim on the gadget’s function is shown by induction on N : for all N ≥ 2 any
minimum-sized center-set will select exactly N − 1 input vertices, while if any non-input
vertex is selected there will be at least N vertices required. The base case is N = 2 and we
have two input vertices v1, v2 and two paths between them, with selection of either v1 or v2
indeed covering all vertices on these paths. On the other hand, as on each path between
v1, v2 there is a vertex wb

r
2 c

1,2 or ŵb
r
2 c

1,2 at distance exactly r from both v1, v2 (and the distance
between them is 2r), selection of any single vertex on these paths will cover all vertices on its
path but not all vertices on the other path and thus at least two selections will be required.
For the induction step, assuming the claim holds for N − 1, we extend it for N : the gadget
ÛN is constructed by the gadget ÛN−1 by adding a new input vertex vN and two paths from
it to every other input vertex v1, . . . , vN−1. Let vi with i ∈ [1, N − 1] be the vertex that is
not selected from the original N − 1 input vertices of the ÛN−1 gadget. Then in ÛN , all
vertices that were already in ÛN−1 have been covered, as well as all vertices on the paths
between vertices vj with j ∈ [1, N − 1], j 6= i and vN . The only vertices that still need to be
covered are the ones on the two paths between vi and vN . Again, as on each path between
vi, vN there is a vertex wb

r
2 c
i,N or ŵb

r
2 c
i,N at distance exactly r from both vi, vN , any selection of

a single vertex from inside these two paths will be insufficient to cover both wb
r
2 c
i,N and ŵb

r
2 c
i,N ,

while selecting either vi or vN indeed covers all vertices. J

Block gadget Ĝ: This gadget is the main building block of our construction and uses
the above gadgets as inner components. We first make p pairs of paths A1, B1, . . . , Ap, Bp
consisting of 2r+ 1 vertices each, named a0

i , . . . , a
2r
i and b0i , . . . , b2ri for every pair Ai, Bi with

i ∈ [1, p]. We then make two copies of the guard gadget T̂N for Ai, where the N = 2r + 1
inputs are the vertices a0, . . . , a2r and repeat the same for Bi. We refer to all vertices in
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these gadgets T̂2r+1 as the guards.

a0i ari a2ri
b0i bri b2ri

Ai

Bi

Figure 6 The paths Ai, Bi along with their attached guard gadgets for r = 2. Note the boxes
indicating cliques (for even r).

Canonical pairs: We next define 3r+1 canonical pairs of numbers (αy ∈ [0, 2r], βy ∈ [0, 2r]),
indexed and ordered by y ∈ [1, 3r+1]: for 1 ≤ y ≤ 2r, the pair is given by (αy = by2 c, βy = by2 c)
if y is odd, while if y is even the pair is given by (αy = y/2 − 1, βy = 2r − y/2 + 1). For
2r+ 1 ≤ y ≤ 3r+ 1 the pair is given by (αy = y− r− 1, βy = y− r− 1). As an example, the
pairs in the correct order for r = 2 are (0,0),(0,4),(1,1),(1,3),(2,2),(3,3),(4,4).

In our construction, these pairs will correspond to the indices of the vertices of paths
Ai (αy) and Bi (βy) that a (canonical) minimum-sized center-set can select. As already
mentioned, in the final construction there will be a number of consecutive such pairs of paths
Aji , B

j
i connected in a path-like manner. We first provide a substitution lemma showing that

any minimum-sized center-set does not need to make a selection that does not correspond
to one of the canonical pairs followed by a lemma showing that any center-set only making
selections based on canonical pairs will have to respect the ordering of the pairs it uses, i.e.
if some pair with index y is used for selection from paths Aji , B

j
i , then any pair used in the

following paths Aj+1
i , Bj+1

i must be of index y′ ≤ y. This will form the basis of a crucial
argument for showing that any solution will eventually settle into a specific pattern that
encodes an assignment without alternations.

I Lemma 22. In a series of M pairs of paths Aji , B
j
i , j ∈ [1,M ], where the last vertices of

Aji , B
j
i are joined with the first vertices of Aj+1

i , Bj+1
i , j ∈ [1,M−1], any center-set K of size

|K| = 2m that contains one vertex from each path Aji , B
j
i can be substituted by a center-set

K ′ of size |K ′| = |K| = 2m, where the indices of each pair of selected vertices is canonical.

Proof. First, observe that due to the connection of both final vertices from each pair of
paths Aji , B

j
i with both first vertices of the following pair Aj+1

i , Bj+1
i , any selection al ∈ Aji

and bo ∈ Bji is equivalent in terms of the vertices it covers with the opposite selection
ao ∈ Aji and bl ∈ Bji , i.e. the same vertices from preceding/succeeding pairs of paths
Aj−1
i , Bj−1

i /Aj+1
i , Bj+1

i are covered by both selections, while within Aji , B
j
i the vertices

covered are the opposite. Due to this symmetry, any center-set K in which the index
l ∈ [0, 2r] of the selected vertex al ∈ Aji is larger than the index o ∈ [0, 2r] of the selected
vertex bo ∈ Bji , for any j ∈ [1,M ], can be substituted by a center-set K ′ of the same size in
which l ≤ o (by replacing one with the other), without affecting the outcome.

Given such a center-set, we claim that any pair of selections alj ∈ A
j
i , b

o
j ∈ B

j
i can in fact

be substituted by a canonical pair, by showing that all pairs can be partitioned in equivalence
classes, each being represented by a canonical pair: the center-set can alternate between any
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of the pairs within each class without any change in vertex coverage and we can thus replace
any pair of selections by the canonical pair representing the class to which it belongs.

Consider the canonical pairs for y ∈ [1, 2r] and odd: the pair is given by (αy = by2 c, βy =
by2 c) and we define the corresponding class of non-canonical pairs to include all pairs where
(αy = by2 c, b

y
2 c ≤ βy ≤ 2r − dy2 e), i.e. any pair where αy is the same as the canonical

representative, yet βy can now range from the same value by2 c up to 2r − dy2 e. To see why
any selections within the class are interchangeable, consider the two extreme cases: let
a
b y2 c
j ∈ Aji , b

b y2 c
j ∈ Bji be a selection followed by ab

y
2 c
j+1 ∈ A

j+1
i , b

2r−d y2 e
j+1 in the subsequent pair

of paths. Both selections ab
y
2 c
j , b

b y2 c
j will be at distance 0 < d = r − by2 c ≤ r from the middle

vertices arj , brj on their paths Aji , B
j
i and all vertices ab

y
2 c+1
j , b

b y2 c+1
j , . . . , a2r−d

j , b2r−dj from the
same paths will be covered by these selections. As the selection from Aji always matches
the one from Aj+1

i , the remaining vertices on these paths will be covered by the subsequent
selection ab

y
2 c
j+1 ∈ A

j+1
i , as well as all vertices on path Bj+1

i up to position r−by2 c−2, meaning
the selection from this path can be up to distance r+1 from this “last” covered vertex, giving
the index of the furthest possible choice from Bj+1

i as 2r−by2 c− 1 = 2r−dy2 e, being exactly
the extremal case for this class. Observe also that this selection will not cover more vertices
of the subsequent paths Aj+2

i , Bj+2
i as it can reach up to vertices at position r − by2 c − 2 in

both these paths, which are exactly already covered by the selection of ab
y
2 c
j+2 ∈ A

j+2
i , meaning

any other intermediate selections would indeed produce the same result as well.
Next, consider the canonical pairs for y ∈ [2r + 2, 3r + 1]: the pair is given by (αy =

y − r − 1, βy = y − r − 1) and we define the corresponding class of non-canonical pairs to
include all pairs where (3r + 2 − y ≤ αy ≤ y − r − 1, βy = y − r − 1), i.e. any pair where
βy is the same as the canonical representative, yet now αy can range from the same value
y − r − 1 down to 3r + 2− y. To see why any selections within the class are interchangeable,
consider the two extreme cases, as before: let ay−r−1

j ∈ Aji , b
y−r−1
j ∈ Bji be a selection

followed by a3r+2−y
j+1 ∈ Aj+1

i , by−r−1
j+1 ∈ Bj+1

i in the subsequent pair of paths. Both selections
ay−r−1
j , by−r−1

j will be at distance 0 ≤ d = 3r + 1− y ≤ r from the final vertices a2r
j , b

2r
j on

their paths Aji , B
j
i and all vertices a0

j+1, b
0
j+1, . . . , a

r−d−1
j+1 , br−d−1

j+1 from the following paths
Aj+1
i , Bj+1

i will be covered by these selections. As the selection from Bji always matches
the one from Bj+1

i , all the remaining vertices of Bj+1
i are covered, as well as vertices

ad
′

j+1, . . . , a
2r
j+1 from Aj+1

i , where d′ = (y − r − 1)− r + 2d+ 2 = 4r + 3− y is the maximum
distance in Aj+1

i that selection by−r−1
j+1 can reach, meaning the selection from this path Aj+1

i

can be up to distance r + 1 from this “first” covered vertex (a4r+3−y
j+1 ), giving the index of

the nearest possible choice from Aj+1
i as 4r + 3− y − (r + 1) = 3r + 2− y, being exactly the

extremal case for this class.
The final observation required for the claim to be shown is that indeed all possible pairs

(l, o) ∈ [0, 2r]2, where l ≤ o, either exactly match some canonical pair, or are contained in one
of the classes given above. As any opposite selections are symmetrical and within each class
the actual selections are interchangeable, any arbitrary center-set K can be substituted by a
center-set K ′ of the same size, where all indices of each pair of selections is canonical. J

I Lemma 23. In a series of M pairs of paths Aji , B
j
i , j ∈ [1,M ], where the last vertices of

Aji , B
j
i are joined with the first vertices of Aj+1

i , Bj+1
i for j ∈ [1,M − 1], in any center-set

K that only selects vertices whose indices correspond to canonical pairs, the index y of any
canonical pair selected in some pair of paths Aji , B

j
i must be larger than, or equal to the index

y′ of any canonical pair selected in its following pair of paths Aj+1
i , Bj+1

i .
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Proof. Consider two consecutive pairs of paths Aji , B
j
i and Aj+1

i , Bj+1
i and let aαyj , b

βy
j and

a
αy′
j+1, b

βy′
j+1 be the selections from Aji , B

j
i and Aj+1

i , Bj+1
i , respectively, with y, y′ ∈ [1, 3r + 1].

First, for any pair (αy = y−r−1, βy = y−r−1), where y ∈ [2r+1, 3r+1], both selections
a
αy
j , b

βy
j will be at distance 0 ≤ d = 3r+1−y ≤ r from the final vertices a2r

j , b
2r
j on their paths

Aji , B
j
i and all vertices a0

j+1, b
0
j+1, . . . , a

r−d−1
j+1 , br−d−1

j+1 from the following paths Aj+1
i , Bj+1

i

will be covered by these selections. Thus for both paths Aj+1
i , Bj+1

i , the corresponding
distance d′ of the selections aαy′j+1, b

βy′
j+1 from the final vertices a2r

j+1, b
2r
j+1 will be the same for

both and at least equal to d, which in turn implies both αy′ ≤ αy and βy′ ≤ βy, that gives
y′ ≤ y (note that y′ can be within [1, 2r] as long as both inequalities hold).

Next, for any pair (αy = by2 c, βy = by2 c), with y ∈ [1, 2r] and odd, both selections aαyj , b
βy
j

will be at distance 0 < d = r − by2 c ≤ r from the middle vertices arj , brj on their paths
Aji , B

j
i and all vertices aαy+1

j , b
βy+1
j , . . . , a2r−d

j , b2r−dj from the same paths will be covered by
these selections. Thus in at least one of the following paths Aj+1

i , Bj+1
i there must be some

selection aαy′j+1 or bβy′j+1 at distance d′, that is at least equal to d, from either arj+1 or brj+1. As
for all pairs (αy, βy) it is always βy ≥ αy, if this selection is from Bj+1

i , then it is βy′ ≤ βy
and αy′ ≤ αy which gives y′ ≤ y, while if this selection is from Aj+1

i , we have αy′ ≤ αy,
which means either also βy′ ≤ βy and thus y′ ≤ y, or βy′ = 2r − y′/2 + 1 and y′ = y + 1. In
this case, observe that bβy′j+1 covers all vertices br−y

′/2+1
j+1 , . . . , b

2r−y′/2
j+1 , while aαy′j+1 can cover

all vertices from b0j+1 (for d′ > 1) up to br−y
′/2−1

j+1 from Bj+1
i , thus leaving vertex br−y

′/2
j+1 at

distance > r from any selected vertex.
Finally, for even y ∈ [1, 2r] and any pair (αy = y/2−1, βy = 2r−y/2 + 1), selected vertex

a
αy
j covers all vertices aαy+1

j , . . . , a
αy+r
j , while selected vertex bβyj can only cover all vertices

from a
αy+r+2
j to a2r

j (for y < 2r), thus requiring at least one selection from the following
pair of paths Aj+1

i , Bj+1
i , at distance at most y/2− 1 from the first vertex on its path a0

j+1
or b0j+1. In either case, we have αy′ ≤ αy and thus also y′ ≤ y. J

Now we can continue the description of the block gadget Ĝ. For each pair of paths Ai, Bi
with i ∈ [1, p] we make 3r + 1 vertices uyi , for y ∈ [1, 3r + 1], that we connect to vertices aαyi
and bβyi by paths of length r + 1, i.e. each vertex uyi is at distance r + 1 from the vertices in
Ai, Bi, whose indices match the numbers in the pair corresponding to its own index y (via
one path for one such vertex in Ai or Bi). Let the r intermediate vertices on the path from
each uyi to some vertex in Ai be called vy,1i . . . , vy,ri and the r intermediate vertices on the
other path to some vertex in Bi be called vy,r+1

i . . . , vy,2ri .
Next, we add another vertex qi that we attach to all vertices uyi by paths of length r − 1

(making the distances between them and qi equal to r) and then we also attach 3r + 1 paths
of length r to qi, naming the (2r − 1)(3r + 1) vertices on these paths q1

i , . . . , q
(2r−1)(3r+1)
i .

Let Ui be the set of all uyi vertices for all y ∈ [1, 3r + 1] and U be the union of all Ui for
i ∈ [1, p]. We then make use of the assignment gadget ÛN described above by making a copy
of ÛN for each Ui, where the N = 3r + 1 inputs are identified with the vertices uyi .

Then, for every set S ⊂ U that contains exactly one vertex from each Ui (the number of
such sets being (3r + 1)p) we make a vertex xS . Here we make use of the clique gadget X̂N

described above, where these xS vertices act as inputs and N = (3r + 1)p. Let X be the set
containing all vertices in the gadget, including all xS vertices. Then, for every vertex xS we
make a copy of the guard gadget T̂N , where the N = p+ 1 inputs are xS and the vertices
in U for which uyi ∈ S (one from each Ui). See Figure 7 for an illustration. This concludes
the construction of the Block gadget Ĝ.
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a0i ari a2ri

b0i bri b2ri

Ai

Bi

Ui

u1
i u3r+1

i

a0j arj a2rj

b0j brj b2rj

Aj

Bj

Uj

u1
j u3r+1

j

X

xS

xS∗

p+ 1

(3r + 1)p

qi

q1i

q
(2r−1)(3r+1)
i

v1,1i

v3r+1,2r
i

v1,ri

v3r+1,r+1
i

Figure 7 Inside a block gadget Ĝ: two pairs of paths Ai, Bi, Aj , Bj with attached Ui, Uj , clique
gadget X and guard gadgets between U and X, while guard vertices and all qj are omitted for
clarity. Note boxes around vertices in Ui, Uj , X indicate a gadget, while boxes around the p + 1
vertices in the guard gadgets indicate cliques (for even r).

h

h′

Ĝ1
1

Ĝ
m(3rpt+1)
t

Ĝ1
t

A1

B1

ĉoπ

xS

m(3rpt+ 1)

t

p

Figure 8 A simplified picture of the complete construction. Note boxes indicate block gadgets Ĝ,
while there is no vertex anywhere between h and the first/last vertices of the long paths.
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Global construction: Graph G is then constructed as follows. For every group Fτ of
variables of φ with τ ∈ [1, t], we make m(3rpt+ 1) copies of the gadget Ĝ that we call Ĝµτ for
1 ≤ µ ≤ m(3rpt+ 1). Then, for each τ ∈ [1, t] we connect gadgets Ĝ1

τ , Ĝ
2
τ , . . . , Ĝ

m(3rpt+1)
τ in

a path-like manner: for every 1 ≤ µ < m(3rpt+ 1) and 1 ≤ i ≤ p, we connect both vertices
a2r
i , b2ri in Ĝµτ to both vertices a0

i , b0i in Ĝµ+1
τ . We then make another vertex h that we

connect to all vertices a1
i , b

1
i in Ĝ1

τ for all i ∈ [1, p] and τ ∈ [1, t], as well as to all vertices
a2r
i , b

2r
i in Ĝm(3rpt+1)

τ for all i ∈ [1, p] and τ ∈ [1, t], i.e. to all the first and last vertices on
the long paths created upon connecting gadgets Ĝ1

τ , Ĝ
2
τ , . . . , Ĝ

m(3rpt+1)
τ . We also attach a

path of length r to vertex h, the final vertex of this path named h′.
Next, for every 1 ≤ τ ≤ t we associate a set S ⊂ U that contains exactly one vertex

from each Ui with an assignment to the variables in group Fτ and as there are at most
2γ = 2blog2(3r+1)pc assignments to the variables in Fτ and (3r+1)p ≥ 2γ sets S, the association
can be unique for each τ . For each clause Cπ of φ with π ∈ [1,m], we make 3rpt+ 1 vertices
ĉoπ for 0 ≤ o < 3rpt+ 1. Then, to each ĉoπ we attach a path of length r − 1 and we consider
every assignment to the variables of group Fτ for every τ ∈ [1, t] that satisfies the clause Cπ:
a vertex xS in Ĝmo+πτ , for every 0 ≤ o < 3rpt+ 1, is adjacent to the endpoint of this path
(thus being at distance r from ĉoπ), where S is the subset associated with this assignment
within the gadget. This concludes our construction, while Figure 8 provides an illustration.

I Lemma 24. If φ has a satisfying assignment, then G has a (k, r)-center of size k =
((3r + 3)p+ 1)m(3rpt+ 1)t+ 1.

Proof. Given a satisfying assignment for φ we show the existence of a (k, r)-center K of
G of size |K| = k = ((3r + 3)p+ 1)m(3rpt+ 1)t+ 1. Set K will include the vertex h and
(3r + 3)p+ 1 vertices from each gadget Ĝµτ , for τ ∈ [1, t] and µ ∈ [1,m(3rpt+ 1)]. For each
group Fτ of variables we consider the restriction of the assignment for φ to these variables
and identify the set S associated with this restricted assignment. We first add vertex xS to
K and then, for every i ∈ [1, p], we also add vertex qi and all uzi ∈ Ui \ S, as well as the two
vertices aαyi and bβyi from the paths Ai, Bi that are connected to the only uyi ∈ S for this
i by paths of length r + 1, i.e. the vertices whose indices αy, βy ∈ [0, 2r] correspond to the
pair (αy, βy) for the index y ∈ [1, 3r+ 1] of this vertex. In total, we have 3r vertices uyi , plus
the three aαyi , bβyi and qi for each i ∈ [1, p], with the addition of vertex xS completing the
selection within each Ĝµτ . Repeating the above for all m(3rpt+ 1)t gadgets completes the
selection for G and what remains is to show that K is indeed a (k, r)-center of G.

First, our selection of one vertex from each path Ai, Bi ensures that all guard vertices are
within distance r from some selected vertex. Next, for each τ ∈ [1, t] and i ∈ [1, p], consider
the “long paths” formed by joining both vertices a2r

i , b
2r
i in Ĝµτ to both a0

i , b
0
i in Ĝµ+1

τ . Since
the associations between sets S and partial assignments to variables of Fτ are consistent
for each τ , the patterns of selection of vertices from each Ai and Bi are repeating, i.e. K
contains every (2r+ 1)-th vertex on each path Ai and Bi, meaning all vertices on these paths
are within distance r from some selected vertex, apart from the first/last r− 1 depending on
the actual selection pattern, yet these vertices are within distance r from selected vertex h.

Next, within each gadget Ĝµτ , our selection of vertices qi for every i ∈ [1, p] brings all
q1
i , . . . , q

(2r−1)(3r+1)
i and uji vertices within distance r from K. Further, our selection of

a
αy
i , b

βy
i covers vertices vy,1i . . . , vy,2ri on the two paths from a

αy
i , b

βy
i to uyi ∈ S, while all

other vz,wi vertices are covered by our selection of each uzi ∈ Ui \ S. This selection of all
uzi ∈ Ui \ S also covers all vertices in the assignment gadgets as well as the guard gadgets T̂p
between the uzi and xS′ for all S′ 6= S, while selection of xS covers all vertices in X and all
vertices in the guard gadget where xS is an input.
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Finally, concerning the clause vertices ĉoπ for π ∈ [1,m] and o ∈ [0, 3rpt], observe that if
the given assignment for φ satisfies the clause Cπ, there will be some literal contained therein
that is set to true, that corresponds to a variable in a group Fτ for some τ ∈ [1, t] and a
matching partial assignment for the variables in Fτ associated with some set S∗. Our set K
contains vertex xS∗ in Ĝmo+πτ for every o ∈ [0, 3rpt] and vertices ĉoπ are within distance r
from xS∗ , through a path whose vertices are also covered by xS∗ . J

I Lemma 25. If G has a (k, r)-center of size k = ((3r + 3)p+ 1)m(3rpt+ 1)t+ 1, then φ
has a satisfying assignment.

Proof. Given a (k, r)-center K of G of size |K| = k = ((3r + 3)p+ 1)m(3rpt+ 1)t+ 1, we
show the existence of a satisfying assignment for φ. First, observe that K must contain
vertex h, as all vertices on the path attached to it and h′ must be within distance r from
K. Next we require an averaging argument: as the remaining number of vertices in K is
((3r + 3)p+ 1)m(3rpt+ 1)t and there are m(3rpt+ 1)t gadgets Ĝµτ , if there are more than
(3r + 3)p + 1 vertices selected from some block gadget, then there will be less than these
selected from some other block gadget. We will show that not all vertices within a block
gadget can be covered by less than (3r + 3)p+ 1 selected vertices, which implies that exactly
this number is selected from each block gadget in any center-set of size k.

Consider a gadget Ĝµτ . First, observe that at least one of the xS vertices must be selected
to cover all vertices in X and that any such selection indeed covers all vertices in X, as well
as all vertices in the guard gadget of which it is an input. This leaves (3r + 3)p vertices
to cover all other p groups of vertices in the gadget. Observe also that for every i ∈ [1, p],
any minimum-sized center-set must contain one vertex from each path Ai, Bi to cover all
the guards, as well as qi to cover q1

i , . . . , q
(2r−1)(3r+1)
i , as any single selection of some guard

vertex will not be sufficient to cover all other guard vertices attached to the same path. This
leaves 3rp vertices to cover the vy,wi vertices on the paths between the aji , bli that have not
been selected from each pair Ai, Bi, as well as all vertices in the guard gadgets in which
each xS∗ that was not selected is an input. Due to the structure of the assignment gadgets
Û , there must be 3r vertices selected from each Ui, thus completing the set K (and the
averaging argument). We then claim that the selections from the paths Ai, Bi must match
(complement) these selections from Ui, that in turn must match (also complement) the
selection of xS from X.

First, suppose that for some i ∈ [1, p] the selections aji , bli with j, l ∈ [0, 2r] from Ai, Bi
do not correspond to some canonical pair for some y ∈ [1, 3r + 1] with (αy = j, βy = l).1

Vertex aji will cover at most 2r vertices vz,1i , . . . , vz,ri and vz
′,1
i , . . . , vz

′,r
i , for z 6= z′ (if index

j happens to be included in two pairs and only the first r for inclusion in a single pair),
but not vertices vz,r+1

i or vz
′,r+1
i . Similarly, vertex bli will also cover at most 2r vertices

vw,r+1
i , . . . , vw,2ri and vw

′,r+1
i , . . . , vw

′,2r
i , again for w 6= w′, but not vertices vw,1i or vw

′,1
i .

Note that since the two choices do not correspond to some canonical pair all these indices
will be different: z 6= z′ 6= w 6= w′. Now, as there are no more selections from Ai, Bi, all
vertices vy

′,1
i and vy

′,r+1
i are definitely not covered for y′ 6= z, z′, w, w′ (due to any adjacent

selections being at distance at least r+ 1). In short, there is at least one vertex vy,1i or vy,r+1
i

(or both) that is not covered for each y ∈ [1, 3r + 1]. Since the number of selections from
Ui is 3r and no other selection would reach these vertices (e.g. from some other Ui′ , due to

1 In fact, Lemma 22 already shows that any (k, r)-center that does not make selections based only on
canonical pairs can always be substituted for a (k, r)-center that does. Nevertheless, we show here that
this requirement is also enforced by the structure of the graph, mostly for completeness.
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the guard gadgets employed anywhere in between sets U and X), there will be at least one
such vertex that is not covered, implying the selections from every Ai, Bi must match some
canonical pair y and the 3r selections from Ui must complement this y. Further, suppose
the selection xS from X, for S = {uy1

1 , . . . , u
yp
p }, does not match the 3r selections from each

Ui, i.e. that for some i ∈ [1, p], it is uyii ∈ K ∩ Ui and uzi /∈ K ∩ Ui for all z 6= yi. Then for
set S∗ = S \ {uyii } ∪ {uzi } we have that xS∗ /∈ K and also S∗ 6⊂ K. This means all vertices
in the guard gadget attached to xS∗ are not covered.

Next, we require that there exists at least one o ∈ [0, 3rpt] for every τ ∈ [1, t] for which
K ∩ {

⋃
i∈[1,p]Ai ∪Bi} is the same in all gadgets Ĝmo+πτ with π ∈ [1,m], i.e. that there exists

a number of successive copies of the gadget for which the pattern of selection of vertices
from the paths Ai, Bi does not change. As noted above, set K must contain two vertices
a
αy
i , b

βy
i from each Ai and Bi, such that the indices αy, βy of these two selections match

the pair corresponding to the index y of some uyi . Consider the “long paths” consisting of
paths Ai, Bi sequentially joined with their followers in the next gadget on the same row.
Depending on the starting selection, observe that the pattern can “shift towards the left”
a number of times in each pair of paths Ai, Bi, as the first and last r − 1 vertices will be
covered by h. That is, a pattern can be selected on some pair Ai, Bi within some gadget
Ĝµτ and a different pattern can be selected on the pair Ai, Bi following it in gadget Ĝµ+1

τ ,
without affecting whether all vertices on the long paths are covered. As shown by Lemma 23,
this can only happen if the index y′ that gives the pair of indices (αy′ , βy′) of the second
pattern is smaller than or equal to the index y that gives the pair of indices (αy, βy) of the
first pattern, or y′ ≤ y.

As there are 3r+1 different indices y and pairs (αy, βy), the “shift to the left” can happen
at most 3r times for each i ∈ [1, p], thus at most 3rp times for each τ ∈ [1, t], or 3rpt times
over all τ . By the pigeonhole principle, there must thus exist an o ∈ [0, 3rpt] such that no
such shift happens among the gadgets Ĝmo+πτ , for all τ ∈ [1, t] and π ∈ [1,m].

Our assignment for φ is then given by the selections for K in each gadget Ĝmo+1
τ for this

o: for every group Fτ we consider the selection of xS ∈ X that corresponds to a set S ⊂ U ,
that in turn is associated with a partial assignment for the variables in Fτ . In this way we
get an assignment to all the variables of φ. To see why this also satisfies every clause Cπ
with π ∈ [1,m], consider clause vertex ĉoπ: this vertex is at distance r from some selected
vertex xS in some gadget Ĝmo+πτ . Since the pattern for selection from paths Ai, Bi remains
the same in all gadgets Ĝmo+1

τ , . . . , Ĝmo+πτ , so does the set U and also selection of vertices
xS , giving the same assignment for the variables of Fτ associated with S. J

I Lemma 26. Graph G has clique-width cw(G) ≤ tp+ f(r, ε), for f(r, ε) = O(1).

Proof. We show how to construct graph G using the clique-width operations introduce, join,
relabel and at most f(r, ε) labels. We first introduce vertex h and all vertices on the path of
length r from it to h′, using one label for each vertex, then consecutively join labels/vertices
to form the path. The construction will then proceed in a vertical manner, successively
constructing the gadgets Ĝµτ for each τ ∈ [1, t], before proceeding to repeat the process for
each of the m(3rpt+ 1) columns.

To construct gadget Ĝµτ we do the following: we first introduce all guard vertices using
one label for each vertex, subsequently applying the appropriate join operations. We do
the same for all vertices qi, q1

i , . . . , q
(2r−1)(3r+1)
i , as well as vertices uyi in Ui and all vertices

in gadgets Û3r+1 and vy,1i . . . , vy,2ri , along with all vertices in X and the guard gadgets T̂
attached to each xS . We have also introduced the clause vertex ĉoπ that corresponds to this
column and all vertices on the path attached to it, the endpoint of which we now join with
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matching vertices xS (if any, for this Fτ ). We have thus created all vertices (and appropriate
edges) in gadget Ĝµτ , apart from the paths Ai, Bi for i ∈ [1, p], using one label per vertex.
This accounts for the f(r, ε) labels, where function f is O(rp) = O(1).

Now, for i = 1, we introduce vertices aj1, b
j
1 in turn for each j ∈ [0, 2r], using one label

for each vertex and appropriately join each with its previous in the path (for j ≥ 2), the
endpoints of the guard gadgets, as well as the corresponding vertices vy,w1 , completing the
construction of paths A1, B1. We then relabel the vertex b2r1 with the same label as a2r

1 (the
last vertices of A1, B1) and repeat the process for i = 2, . . . , p. When the above has been
carried out for all i, the construction of gadget Ĝµτ has been completed and we can relabel
all vertices to some “junk” label, apart from the two final vertices a2r

i , b
2r
i for each i ∈ [1, p]

(that have the same label) and the endpoint of the path of length r − 1 attached to clause
vertex ĉoπ. This relabelling with some junk label will enable us to reuse the same labels when
constructing the same parts of other gadgets. We then repeat the above for the following
gadget in the column, until the column is fully constructed. When the column has thus been
constructed, we can also relabel the endpoint of the path from clause vertex ĉoπ to the junk
label, thus reusing its former label for the endpoint of the path attached to the clause vertex
of the subsequent column.

During construction of the following column, the first vertices a0
i , b

0
i on each path Ai, Bi

will both be joined with the label that includes the last vertices a2r
i , b

2r
i of the previous

column’s corresponding path A′i, B
′
i and after each such join, we again relabel these two

vertices with the junk label. The construction proceeds in this way until graph G has been
fully constructed. Note that during construction of the first and last columns, the first/last
vertices of each path have also been joined with vertex h.

In total, the number of labels used simultaneously by the above procedure are the f(r, ε)
labels used each time for repeating constructions (also counting the constant number of
“outside” labels for h, the clause vertices and the junk label), plus one label for each pair
of paths Ai, Bi (containing the last vertices of these paths) in each of the t rows of the
construction. The number of these being tp, the claimed bound follows. J

Theorem 1. For any fixed r ≥ 1, if (k, r)-Center can be solved in O∗((3r + 1− ε)cw(G))
time for some ε > 0, then SAT can be solved in O∗((2− δ)n) time for some δ > 0.

Proof. Assuming the existence of some algorithm of running time O∗((3r + 1− ε)cw(G)) =
O∗((3r+1)λcw(G)) for (k, r)-Center, where λ = log3r+1(3r+1−ε), we construct an instance
of (k, r)-Center, given a formula φ of SAT, using the above construction and then solve
the problem using the O∗((3r + 1− ε)cw(G))-time algorithm. Correctness is given by Lemma
24 and Lemma 25, while Lemma 26 gives the upper bound on the running time:
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O∗((3r + 1)λcw(G)) ≤ O∗
(

(3r + 1)λ(tp+f(r,ε))
)

(1)

≤ O∗

(3r + 1)
λp

⌈
n

blog2(3r + 1)pc

⌉ (2)

≤ O∗
(3r + 1)

λp
n

blog2(3r + 1)pc+λp
 (3)

≤ O∗
(3r + 1)

λ
np

bp log2(3r + 1)c
 (4)

≤ O∗
(3r + 1)

δ′
n

log2(3r + 1)
 (5)

≤ O∗(2δ
′′n) = O((2− δ)n) (6)

for some δ, δ′, δ′′ < 1. Observe that in line (2) the function f(r, ε) is considered constant,
as is λp in line (4), while in line (5) we used the fact that there always exists a δ′ < 1 such

that λ p

bp log2(3r + 1)c = δ′

log2(3r + 1) , as we have:

p log2(3r + 1)− 1 < bp log2(3r + 1)c

⇔ λp log2(3r + 1)
p log2(3r + 1)− 1 >

λp log2(3r + 1)
bp log2(3r + 1)c ,

from which, by substitution, we get: λp log2(3r + 1)
p log2(3r + 1)− 1 > δ′,

now requiring: λp log2(3r + 1)
p log2(3r + 1)− 1 ≤ 1,

or: p ≥ 1
(1− λ) log2(3r + 1) ,

that is precisely our definition of p. This concludes the proof. J

B.2 From Section 3.2, Clique-width: Dynamic programming algorithm
Distance labeling: We first require an alternative formulation of the problem, based on the
existence of a function dl that assigns numbers dl(v) ∈ [0, r] to all vertices v ∈ V .

Let dl : V 7→ [0, r] and dl−1(i) be the set of all vertices with assigned number i ∈ [0, r] by
dl. A function dl is then called valid, if for all labels l ∈ [1, cw] and nodes t of the clique-width
expression, at least one of the following conditions holds for all vertices u ∈ Vl ∩Gt \ dl−1(0):

1) There is a neighbor v of u in Gt with a strictly smaller number: ∃v ∈ Gt : (u, v) ∈
Et ∧ dl(v) < dl(u);

2) There is a vertex v in the same label l as u and at distance 2 from it in Gt, while their
difference in numbers is at least 2: ∃v ∈ Gt ∩ Vl ∧ dl(v) ≤ dl(u)− 2 ∧ dt(u, v) = 2;

3) There is a vertex v in the same label l as u in Gt with their difference in numbers at
least 2 and some vertex w adjacent to it in the final graph G: ∃v ∈ Gt ∩ Vl ∧ dl(v) ≤
dl(u)− 2 ∧ ∃w ∈ G : (u,w) /∈ Gt ∧ (u,w) ∈ G.
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Note that in condition 3) above, vertex w will also be adjacent to u in G (and thus
d(u, v) = 2), as both u and v belong to the same label. A vertex u ∈ Vl ∩ Gt with label
l ∈ [1, cw] is satisfied by dl for node t, if dl(u) = 0, or either of the first two conditions 1)2)
above holds for u. Let U tl (dl) be the set of vertices of label l that are not satisfied by dl
for node t and DLr(t) be the set of all possible valid functions dl for given r, restricted to
the vertices of Gt for node t of clique-width expression TG, with disjoint sets dl−1(0). The
following lemma shows the equivalence between the two formulations.

I Lemma 27. A graph G = (V,E) admits a (k, r)-center if and only if it admits a valid
distance-labeling function dl : V → {0, . . . , r} with |dl−1(0)| = k.

Proof. To see why a valid function dl with |dl−1(0)| = k represents a solution to the (k, r)-
Center problem consider the following: first, given a (k, r)-center of G, let dl be the function
that assigns to each vertex v ∈ V a number equal to its distance from the closest center,
i.e. number 0 to the centers, 1 to their immediate neighbors and so on. This function is
valid as for every vertex u there always exists some neighbor v with dl(v) < dl(u), being the
neighbor that lies on the path between u and its closest center, while also |dl−1(0)| = k. On
the other hand, given such a valid function dl, the set dl−1(0) is indeed a (k, r)-center: we
have |dl−1(0)| = k and first, vertices in dl−1(1) must have a neighbor in the center-set, while
vertices in dl−1(2) are at distance at most 2 from some center. Then, for i ∈ [3, r], vertices u
in dl−1(i) either have a neighbor in dl−1(j) with j < i, or are at distance at most 2 from
some vertex in dl−1(j) with j ≤ i− 2, that by induction must in both cases be at distance at
most j from some center, making the distance between u and some vertex in dl−1(0) at most
i ≤ r. J

Table description: There is a table Dt associated with every node t of the clique-width
expression, while each table entry Dt[κ, s1, . . . , sw], with w ≤ cw, is indexed by a number
κ ∈ [0, k] and a w-sized tuple (s1, . . . , sw) of label-states, assigning a state sl = (vl, ul) to
each label l ∈ [1, w], where vl = minx∈Vl dl(x) ∈ [0, r] is the minimum number assigned to
any vertex x in label l, while ul ∈ {0, 1, 2} is the difference between vl and the minimum
number assigned by dl to any vertex y ∈ U tl (dl) that is not satisfied by dl for this node:
ul = 0 when miny∈Ut

l
(dl)(dl(y)− vl) = 0, ul = 1 when miny∈Ut

l
(dl)(dl(y)− vl) = 1 and ul = 2

when miny∈Ut
l
(dl)(dl(y)− vl) ≥ 2, or when U tl (dl) = ∅. Note that states (0, 0) and (r, 1) do

not signify any valid situation and are therefore not used.

There are thus 3r + 1 possible states for each label, each being a pair signifying the
minimum number assigned to any vertex in the label and whether the difference between
this and the minimum number of any vertex in the label that is not yet satisfied by dl is
either exactly 0,1, or greater than 1, with absence of unsatisfied vertices also considered
in the latter case. For a node t with w involved labels, each table entry Dt[κ, s1, . . . , sw]
contains the number |DLr(t)| of valid functions dl restricted to the vertices of Gt with disjoint
sets dl−1(0) and |dl−1(0)| = κ, such that for each label l ∈ [1, w], its state in the tuple
gives the conditions that must be satisfied for this label by any such function dl that is
to be counted in the entry’s value. In particular, we have ∀t ∈ T,Dt[κ, s1, . . . , sw] : {κ ∈
[0, k]} × {(1, 0), . . . , (r, 0), (0, 1), . . . , (r − 1, 1), (0, 2), . . . , (r, 2)}w 7→ N0, where w ∈ [1, cw].

The inductive computations of table entries for each type of node follows.
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Introduce node: For node t with operation i(l) and l ∈ [1, cw], we have:

Dt[κ, sl] :=


1, if vl = 0, ul = 2, κ = 1;
1, if vl 6= 0, ul = 0, κ = 0;
0, otherwise.

Join node: For node t with operation η(a, b), child node t− 1 and a, b ∈ [1, w], let Q(s′a =
(v′a, u′a), s′b = (v′b, u′b)) := {(sa = (va, ua), sb = (vb, ub))|[va = v′a ∧ vb = v′b] ∧ [((u′a =
2 ∧ va + ua > vb) ∨ (ua = u′a < 2 ∧ va + ua ≤ vb)) ∧ ((u′b = 2 ∧ vb + ub > va) ∨ (ub = u′b <

2 ∧ vb + ub ≤ va))]}. In words, Q(s′a, s′b) is the set of all pairs of label states (sa, sb), such
that if label a is joined with label b, their new states could be s′a, s′b, i.e. all pairs of states
where the v values remain the same for both a, b, as no new numbers are introduced within
any label by a join operation, yet some vertices may become satisfied through the addition
of new edges and thus the u values of their label might change to 2. We then have:

Dt[κ, s1, . . . , s
′
a, s
′
b, . . . , sw] :=

∑
(sa,sb)∈Q(s′a,s′b)

Dt−1[κ, s1, . . . , sa, sb, . . . , sw].

Rename node: For node t with operation ρ(w + 1, w) and child node t − 1 (we assume
without loss of generality that the last label is renamed into the one preceding it), let
M(s = (v, u)) := {(sa = (va, ua), sb = (vb, ub))|[v = min{va, vb}]∧ [[(u = 0)∧ ((va = v∧ua =
0∧vb ≥ v∧ub ≥ 0)∨ (vb = v∧ub = 0∧va ≥ v∧ua ≥ 0))]∨ [(u = 1)∧ ((va = v∧ua = 1∧vb =
v∧ub ≥ 1)∨ (va = v∧ua ≥ 1∧ vb = v∧ub = 1)∨ (va = v∧ua = 1∧ vb > v∧ub ≥ 0)∨ (vb =
v ∧ ub = 1 ∧ va > v ∧ ua ≥ 0) ∨ (va = v ∧ ua = 2 ∧ vb = v + 1 ∧ ub = 0) ∨ (vb = v ∧ ub =
2∧ va = v+ 1∧ua ≥ 0))]∨ [((u = 2)∧ (ua = ub = 2)∨ (v < va ∧ub = 2∧ ((va− v ≥ 2∧ua =
0)∨(va−v ≥ 1∧ua = 1)))∨(v < vb∧ua = 2∧((vb−v ≥ 2∧ub = 0)∨(vb−v ≥ 1∧ub = 1)))]]}.
In words, M(s) is the set of all pairs of labels (sa, sb) for two labels a, b, such that renaming
one into the other could produce state s for the resulting label, i.e. the pairs of states where
the resulting v value is the minimum of va, vb, while u comes from any of the appropriate
combinations of ua, ub for each case. We then have:

Dt[κ, s1, . . . , s
′
w] :=

∑
(sw,sw+1)∈M(s′w)

Dt−1[κ, s1, . . . , sw, sw+1].

Union node: For node t with operation Gt−1 ∪ Gt−2 and children nodes t − 1, t − 2, we
assume (again, without loss of generality) that all labels in [1, y ≤ w] are involved in t− 1
and all labels in [1, z ≤ w] are involved in t − 2, such that for some i ∈ [1, w], all labels
1 ≤ j ≤ i are involved in both nodes t− 1, t− 2, i.e. labels 1, . . . , i ≤ y, z ≤ w are common
to both preceding nodes. Also observe that for any resulting state s′j of label j, following
application of the union operation on two partial solutions where its states are sj and s̄j , the
pair (sj , s̄j) would be included in M(s′j), similarly to renaming j from one partial solution
with state sj to the same label from the other partial solution with state s̄j . We then have:

Dt[κ, s′1, . . . , s′i, . . . , sw] :=
∑

(sj ,s̄j)∈M(s′j),j∈[1,i]
κ1∈[0,κ]

(Dt−1[κ1, s1, . . . , si, . . . , sy]·

·Dt−2[κ− κ1, s̄1, . . . , s̄i, . . . , sz]).
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State changes: Since the number of entries involved in the above computation of a union
node’s table can be exponential in the clique-width of the graph (due to the number of
possible combinations of state pairs in the sum), in order to efficiently compute the tables of
union nodes we will use state changes: for a union node t we will first transform the tables
Dt−1, Dt−2 of its children into tables D∗t−1, D

∗
t−2 of a new type that employs a different

state representation, for which the union operation can be efficiently performed to produce
table D∗t , that we finally will transform back to table Dt, thus progressing with our dynamic
programming algorithm.

In particular, each entry of table D∗t [κ, s1, . . . , sw] of a node t for κ ∈ [0, k] and w ∈ [1, cw]
will be an aggregate of entries from Dt[κ, s1, . . . , sw], with its value equal to the sum of the
appropriate values of the original table. For label l, its state s∗l = (v∗l , u∗l ) in the new state
signification for table D∗t will correspond to all states where v∗l ≥ vl + i and u∗l ≥ ul − i
in the previous state signification for all (applicable) i ∈ {0, 1, 2}. Observe that these
correspondences exactly parallel the states described in the definition of set M(s∗l ) given
above for the computation of a rename node, i.e. all states that could combine to produce
the resulting state s∗.

First, let D′t be a copy of table Dt. The transformation then works in two stages, of w
steps each, label-wise: we first produce the intermediate table D′t from Dt and then table
D∗t from D′t. For table D′t we require that all entries D′t[κ, s′1, . . . , s′w] contain the sum of all
entries of Dt where s′l = (v′l ≥ vl, u′l = ul) and all other label-states and κ are fixed: at step
l, we first add the entry where sl = (r, 0) to the entry where sl = (r − 1, 0) and then the
entry with sl = (r − 2, 0) to the previous result and so on until sl = (1, 0). We then repeat
this process for u = 1 from sl = (r − 1, 1) until sl = (0, 1) and then for u = 2 from sl = (r, 2)
until sl = (0, 2). We then proceed to the next label until table D′t is computed.

For the next stage, we initialize D∗t as a copy of D′t and also work on w steps, again
label-wise, fixing all other label-states and κ: at step l, we first add the entries where
sl = (vl, 1) and sl = (vl, 2) from D′t to entries where sl = (vl, 0) from D∗t , for each vl from
r − 1 to 1, in turn (and only the one with sl = (r, 2) from D′t for the one where sl = (r, 0)
from D∗t ). We then add the entries where sl = (vl + 1, 0) and sl = (vl, 2) from D′t to entries
where sl = (vl, 1) from D∗t , for each vl from r to 0, in turn. Finally, we add the entries where
sl = (vl + 1, 1) and the entries where sl = (vl + 2, 0) from D′t to entries where sl = (vl, 2)
from D∗t , for each vl from r to 0, in turn. We then proceed to the next step for the following
label until table D∗t is computed. See Figure 9 for an illustration of the relationships between
states/entries of these tables.

v
u

0

1

2

0 r v
u

0

1

2

0 r

D′t D∗t

Figure 9 A conceptual representation of the relationships between states/entries to be added
for the computation of the alternative table types D′, D∗. Arrows imply the transfer of values
(addition), black endpoints indicate corresponding entries from a previous table type and white
endpoints indicate previously computed entries in the same table.
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Note that the above procedure is fully reversible,2 as for each label l, entries where
sl = (r, 2) are the same in all tables Dt, D

′
t, D

∗
t and thus, to obtain D′t from D∗t we again

work label-wise, fixing all other label-states and κ: at step l, we first compute the entry of D′t
where sl = (r, 0), by subtracting from its value the value of the entry where sl = (r, 2) and we
then do the same for the entry where sl = (r− 1, 2), moving to sl = (r− 1, 1) by subtracting
the ones where sl = (r − 1, 2) and sl = (r, 0), then to sl = (r − 1, 0) by subtracting the ones
where sl = (r − 1, 1) and sl = (r − 1, 2) and so on, for each vl from r − 1 to 0, in turn. After
all w steps we have obtained table D′t and from this we can similarly obtain table Dt, as
again, for each label l the entries where sl = (r, 0), (r − 1, 1), (r, 2) are the same: at step l,
we compute the entries where sl = (vl, i) by subtracting from the corresponding entries of
D′t all entries where sl = (vl + 1, i), for vl from r − 1 to 0 and i ∈ {0, 1, 2} in turn. For both
transformations and directions, we perform at most two additions/subtractions per entry for
κ · (3r + 1)cw entries, for each step l ∈ [1, w ≤ cw].

Thus we can compute table D∗t by simply multiplying the values of the two correspond-
ing entries from D∗t−1, D

∗
t−2, as they now contain all required information for this state

representation, with the inverse transformation of the result giving table Dt:

D∗t [κ, s1, . . . , sw] :=
κ1=κ∑
κ1=0

D∗t−1[κ1, s1, . . . , sw] ·D∗t−2[κ− κ1, s1, . . . , sw].

Fore-tracking: As is already apparent, our algorithm actually solves the counting version of
(k, r)-Center, by reading the values of entries from table Dz of the final node z, where all
labels l are of state sl = (vl, ul = 2). Now, as already noted, these states actually correspond
to both situations where either all unsatisfied vertices in the label are of number ≥ 2 than the
label’s v value, or where there are no unsatisfied vertices in the label for this dl. To ensure
our algorithm only counts valid functions dl, we employ a “fore-tracking” policy: whenever
some entry is being computed for the table of some rename or union node t, where some
label l has state sl = (vl, ul = 2), we establish whether condition 3) given in the definition of
a valid function dl is also satisfied by all counted functions dl for all vertices in l, by verifying
that some join operation η(l,m) is applied between l and another label m in some subsequent
node t′ of the clique-width expression (even after l is potentially renamed to some other
label). If such a join operation is indeed to be applied (and the label-set is live), there will be
a vertex w ∈ Vm that is adjacent to all vertices u, v ∈ Vl in the final graph G and as ul = 2,
there must also be some vertex v ∈ Vl with dl(v) ≤ dl(u)− 2, for any unsatisfied vertex u.
Since it will be d(u, v) = 2, all such vertices u will be satisfied in G for all such dl, that will
in fact be valid.

On the other hand, in the absence of such a join operation and the case where t is a
rename node, we consider the definition of set M(s) above, where there are three options for
a resulting state sl = (vl, ul) with ul = 2 from two preceding states sa = (va, ua), sb = (vb, ub)
(corresponding to the last bracket of clauses in the set’s definition): we must have either
ua = ub = 2, i.e. that both states have a difference of at least 2 between the minimum number
of any vertex and the minimum of any unsatisfied vertex, or vl < va and ub = 2, while either
va − vl ≥ 2 and ua = 0, or va − vl ≥ 1 and ua = 1 (or vice-versa), i.e. that one label must
have state (> vl, 0) and the other can have any state from (≥ vl + 2, 0) or (≥ vl + 1, 1), their

2 This is the reason for counting the number of solutions for each κ, instead of finding the minimum κ for
which at least one solution exists: there is no additive inverse operation for the min-sum semiring, yet
the sum-product ring is indeed equipped with subtraction.
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combined numbers giving (vl, 2). Now, if no join operation follows the rename node t for
this label, we simply disregard any options in the above computation (from the last two)
that consider states where one of the preceding labels a, b had ua, ub < 2.

Similarly, for a union node t we consider the state changes given above: if no join
node follows t for this label, we simply disregard the additions (and subsequently their
corresponding subtractions) for this label in the table’s transformation from D′t to D∗t in
step l, where entries with sl = (vl + 1, 1) and sl = (vl + 2, 0) from D′t are added to entries
with sl = (vl, 2) from D∗t and keep all such entries as they are (direct copies from D′t). In
this way, as any state where u = 2 for some label must be “the direct result” of some join
operation (validating condition 1), or there will be some subsequent join operation satisfying
all vertices of number ≥ 2 than the minimum (condition 2), no non-valid functions dl for
which unsatisfied vertices are infused in the label producing some “false” state where u = 2
can be counted, as these vertices are not to be satisfied by some following join node (3).

Correctness: To show correctness of our algorithm we need to establish that for every
node t ∈ TG, each table entry Dt[κ, s1, . . . , sw] contains the number of partial solutions to
the sub-problem restricted to the graph Gt, i.e. the number of valid functions dl ∈ DLr(t)
with |dl−1(0)| = κ (and disjoint sets dl−1(0)), such that for each label l ∈ [1, w] (being
the labels involved in t) the conditions imposed by its state sl = (vl, ul) are satisfied by
all such dl, i.e. minx∈Vl dl(x) = vl and miny∈Ut

l
(dl)(dl(y) − vl) = 0, 1 when ul = 0, 1, while

miny∈Ut
l
(dl)(dl(y)− vl) ≥ 2, or U tl (dl) = ∅ when ul = 2. That is:

∀t ∈ TG, w ∈ [1, cw],∀(κ, s1, . . . , sw) ∈ (7)
∈ {κ ∈ [0, k]} × {(1, 0), . . . , (r, 0), (0, 1), . . . , (r − 1, 1), (0, 2), . . . , (r, 2)}w : (8){
Dt[κ, s1, . . . , sw] = |DLr(t)| : ∀dl ∈ DLr(t),∀l ∈ [1, w] : (9){
(min
x∈Vl

dl(x) = vl)∧ (10)

∧
[
(ul = 0 ∧ min

y∈Ut
l
(dl)

(dl(y)− vl) = 0)∨ (11)

∨(ul = 1 ∧ min
y∈Ut

l
(dl)

(dl(y)− vl) = 1)∨ (12)

∨(ul = 2 ∧
(

min
y∈Ut

l
(dl)

(dl(y)− vl) ≥ 2 ∨ U tl (dl) = ∅
)]}
∧ (13)

∧{|dl−1(0)| = κ}
}
. (14)

This is shown by induction on the nodes t ∈ TG:

Introduce nodes: This is the base case of our induction. For node t with operation i(l)
and l ∈ [1, cw], all entries are properly initialized as there is one function dl that includes
the introduced vertex in the center-set and one that does not, thus |DLr(t)| = 1 for
sl = (0, 2), κ = 1 and sl = (> 0, 0), κ = 0, while for any other configuration DLr(t) = ∅.
In the following cases, we assume (our induction hypothesis) that all entries of Dt−1 (and
Dt−2 for union nodes) satisfy the above statement (7-14).
Join nodes: For node t with operation η(a, b) and a, b ∈ [1, w], all edges are added
between vertices of labels a and b. Thus for each entry Dt[κ, s1, . . . , s

′
a, s
′
b, . . . , sw], all

valid functions dl counted in the entries of the previous table Dt−1[κ, s1, . . . , sa, sb, . . . , sw]
remain valid if v′a = va, v

′
b = vb (10) and u′a = ua, u

′
b = ub (11-13), while for all entries in

Dt where v′a = va, v
′
b = vb and u′a = 2 (resp. u′b = 2), all functions counted for entries of
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Dt−1 where va + ua > vb (resp. vb + ub > va), are valid as well (13), since in the resulting
graph Gt of node t, vertices in a (resp. b) can become satisfied by the addition of such
edges (and validation of condition 1). This is precisely the definition of set Q(s′a, s′b).
Rename nodes: For node t with operation ρ(w + 1, w), all vertices of label w + 1 will
now be included in label w. Thus for each entry Dt[κ, s1, . . . , s

′
w], we require all valid

functions dl counted in the entries of the previous table Dt−1[κ, s1, . . . , sw, sw+1], where
states sw, sw+1 describe the possible situations for labels w,w + 1 that could combine to
give the new state s′w for label w: first, value v′w denotes the minimum allowed number
in any vertex that was previously in w or w + 1, yet at least one of these labels must
have had some vertex with exactly this number and thus v′w = min{vw, vw+1} (10). Next,
value u′w denotes whether the difference between this number and the minimum number
of any unsatisfied vertex is 0,1, or greater (if any) and the possible combinations of states
sw, sw+1 are fully described in the definition of set M(s′w): for u′w to be 0 we must have
vw = v′w and uw = 0, while vw+1 ≥ vw and uw+1 ≥ 0 (or vice-versa), i.e. at least one of
uw, uw+1 must be 0 with its corresponding value vw, vw+1 being the minimum, while the
state of the other can have any at least equal values, as only the minimum is retained
(11). For u′w to be 1 we must have either vw = v′w and uw = 1, while also vw+1 = v′w and
uw+1 ≥ 1, or vw = v′w and uw = 1, while vw+1 > v′w and uw+1 ≥ 0 (or vice-versa), i.e.
one label must have the same target state, while the other must also have the same v
with a u greater than 1, or a greater v and any u so as not to make u′w smaller than the
target 1 (12). Finally, for u′w to be 2 we must have either uw = uw+1 = 2, i.e. that both
states have a difference of at least 2 between the minimum number of any vertex and the
minimum of any unsatisfied vertex, or v′w < vw and uw+1 = 2, while either vw − v′w ≥ 2
and uw = 0, or vw − v′w ≥ 1 and uw = 1 (or vice-versa), i.e. that one label must have
state (> v′w, 0) and the other can have any state from (≥ v′w + 2, 0) or (≥ v′w + 1, 1), their
combined numbers inducing (v′w, 2) (13).
Union nodes: For node t with operation Gt−1 ∪Gt−2 and children nodes t− 1, t− 2, the
resulting graph Gt is the disjoint union of graphs Gt−1, Gt−2, where all common labels
j ∈ [1, i] involved in both t−1, t−2 will now include all vertices that were included in label j
in one of the previous graphs, while nothing changes for all other labels. This can be seen to
be similar to the result of a rename operation between the label j from graph Gt−1 and the
same label from Gt−2. Thus for each entry Dt[κ, s′1, . . . , s′i, . . . , sw], we require the product
of the numbers of all valid functions dl counted in entries Dt−1[κ1, s1, . . . , si, . . . , sy] for
t− 1 and those counted in entries Dt−2[κ− κ1, s̄1, . . . , s̄i, . . . , sz] for t− 2, summed over
all possible combinations of states sj , s̄j that belong to some pair in M(s′j) for every
j ∈ [1, i], as well as over all values of κ1 from 0 to κ, since the number of valid functions
in Gt respecting the conditions of the target entry is equal to a number of valid functions
in Gt−1 (counted in entries of the first type) for each valid function that complements
each of them in Gt−2 (counted in entries of the second type): the sizes of dl−1(0) always
add up to κ (14), while the states sj , s̄j of all common labels j in any pair of entries from
Dt−1, Dt−2 would result in the desired target state sj for the same label in the entry
from Dt in question, as they belong in the set M(s′j) (10-13).

Theorem 3. Given graph G, along with k, r ∈ N+ and clique-width expression TG of clique-
width cw for G, there exists an algorithm to solve the counting version of the (k, r)-Center
problem in O∗((3r + 1)cw) time.

Proof. Correctness of the dynamic programming algorithm is given above, while for the
final computation at the root z of TG, all entries Dz[k, s1, . . . , sw] with ul = 2,∀l ∈ [1, w]
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and w ∈ [1, cw] can be considered for identification of the number of valid functions dl, or
(k, r)-centers of graph Gt = G. For the decision version of the problem, the algorithm can
output YES if any of these entries’ value is > 0 and NO otherwise.

For the algorithm’s complexity, there are at most k(3r + 1)cw entries in each table Dt

of any node t and any entry of the O(n · cw2) join/rename nodes can be computed in O(r)
time, while for the O(n) union nodes, table transformations require O∗(k · cw · (3r + 1)cw)
time and any entry of the transformed tables can be computed in O(k) time. J

B.3 From Section 4, Vertex Cover, Feedback Vertex Set and
Tree-depth

Construction: Given an instance [G = (V,E), k] of k-Multicolored Independent Set,
we will construct an instance [G′ = (V ′, E′), k] of edge-weighted (k, r)-Center, where r = 3n.
First, for every set Vi ⊆ V , we create a set Pi ⊆ V ′ of n vertices pil,∀l ∈ [1, n], ∀i ∈ [1, k]
(that directly correspond to the vertices of Vi) and two guard vertices g1

i , g
2
i , attaching them

to all vertices in Pi by edges of weight r = 3n. Next, for each i ∈ [1, k], we create another
pair of vertices ai, bi and connect ai to each vertex pil by an edge of weight n+ l, while bi
is connected to each vertex pil by an edge of weight 2n − l + 1. Now each Pi contains all
vertices ai, bi, g1

i , g
2
i and each pil,∀l ∈ [1, n].

Finally, for each edge e ∈ E with endpoints in Vi1 , Vi2 and i1 6= i2 (not part of a clique),
we create a vertex ue that we connect to vertices ai1 , bi1 and ai2 , bi2 . We set the weights of
these edges as follows: suppose that e connects the j1-th vertex of Vi1 to the j2-th vertex
of Vi2 . Then we set w(ue, ai1) = 2n− j1 + 1, w(ue, bi1) = n+ j1, w(ue, ai2) = 2n− j2 + 1,
w(ue, bi2) = n+ j2.

P1 Pi Pk
g1i g2i

ai bi

pin

pi1

ue

3n 3n

n+ 1

2n

n+ l

n+ 1

2n
2n− l + 1

n+ l2n− l + 1

Figure 10 A general picture of graph G′. The circled vertex is pi
l , while dotted lines match edges

to weights.

I Lemma 28. If G has a k-multicolored independent set, then G′ has a (k, 3n)-center.

Proof. Let I ⊆ V be a multicolored independent set in G of size k and vili denote the vertex
selected from each Vi, or I := {v1

l1
, . . . , vili , . . . , v

k
lk
}. Let S ⊆ V ′ be the set of vertices pili

in G′ that correspond to each vili . We claim S is a (k, r)-center of G′: since one vertex is
selected from each Pi in G′, all the guards g1

i , g
2
i and vertices ai, bi are within distance r = 3n

from selected vertex pili for some li ∈ [1, n] and every i ∈ [1, k]. For vertices ue, observe that
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selected vertex pili is at distance n+ li + 2n− li + 1 = 3n+ 1 from ue, through either ai or bi,
if its corresponding vertex in G is an endpoint of e, or e = (vili , w) for some w ∈ V \ Vi. As I
is an independent set of G, however, there can be no edge between any two selected vertices
vili , v

j
lj
∈ I with i 6= j and thus, we know that for every ue at least one of the vertices pili , p

j
lj

selected for S from the two components Pi, Pj to which ue is connected will not be one of
the vertices corresponding to the endpoints of edge e, or e 6= (vili , v

j
lj

). Let e := (vix, vjy), with
x 6= li and/or y 6= lj . Assuming without loss of generality that x 6= li is the case, we have
that the distances from ue to pili are n+ li + 2n − x+ 1 via ai and 2n − li + n+ x via bi.
If x > li then distance via ai is 3n + 1 + li − x ≤ 3n, while if x < li the distance via bi is
3n+ x− li < 3n. J

I Lemma 29. If G′ has a (k, 3n)-center, then G has a k-multicolored independent set.

Proof. Let S ⊆ V ′ be the (k, 3n)-center in G′. As |S| = k and all guard vertices g1
i , g

2
i ,∀i ∈

[1, k] must be within distance 3n from some selected vertex, set S must contain exactly one
vertex from each Pi, or S = {p1

l1
, . . . , pklk} for some li ∈ [1, n] for each i ∈ [1, k]. We let I ⊆ V

be the set of vertices vili ∈ Vi, i ∈ [1, k] that correspond to each pili and claim that I is an
independent set in G: suppose there is an edge e = (vili , v

j
lj

) ∈ E, i 6= j and vili , v
j
lj
∈ I. Then

there must be a vertex ue ∈ G′ with edges to ai, bi ∈ Pi and aj , bj ∈ Pj , where we have
pili , p

j
lj
∈ S. The distance from ue to pili is 2n− li + 1 + n+ li > 3n, via either ai or bi, while

the distance from ue to pjlj is also 2n− lj + 1 + n+ lj > 3n, via either aj , bj , meaning ue is
not covered by S, giving a contradiction. J

Theorem 4. The weighted (k, r)-Center problem is W[1]-hard parameterized by vc + k.
Furthermore, if there is an algorithm for weighted (k, r)-Center running in time no(vc+k)

then the ETH is false.

Proof. Observe that the set Q ⊂ V ′ that includes all guard vertices g1
i , g

2
i and ai, bi,

∀i ∈ [1, k], is a minimum vertex cover of G′, as all edges have exactly one endpoint in Q.
This means vc(G′) ≤ 4k. In addition, parameter k remains the same in both the instances
of k-Multicolored Independent Set and (k, r)-Center. Thus, the construction along
with lemmas 28 and 29, indeed imply the statement. J

Corollary 5. The (k, r)-Center problem is W[1]-hard when parameterized by fvs + k.
Furthermore, if there is an algorithm for weighted (k, r)-Center running in time no(fvs+k),
then the ETH is false.

Proof. We use the same reduction as in Theorem 4, except that we replace all weighted edges
by unweighted paths through new vertices in such a way that distances between original
vertices are preserved. It is not hard to see that any set that was a vertex cover of the
previous graph is a feedback vertex set of the new graph, hence fvs = O(k). Lemma 28 goes
through unchanged, while for Lemma 29 it suffices to observe that, because of the guard
vertices, no valid solution can be using one of the new vertices as a center. J

Theorem 6. Given graph G, along with k, r ∈ N+ and a vertex cover of size vc of G, there
exists an algorithm solving unweighted (k, r)-Center in O∗(5vc) time.

Proof. Let C be the given vertex cover of G and I = V \C be the remaining independent set.
We assume without loss of generality that the graph is connected (otherwise each component
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can be handled separately). We also assume that r ≥ 2, otherwise the problem reduces to
Dominating Set which is already known to be solvable faster than O∗(5vc).

Let K be some (unknown) optimal solution. Our algorithm first guesses a partition of
C into three sets C = S ∪R ∪Q such that S = K ∩ C, Q contains the vertices of C which
are at distance exactly r from K, and R the rest (which are at distance < r from K). Our
algorithm first guesses this partition by trying out all 3vc possibilities.

Suppose we are given a partition C = S ∪R ∪Q as above. We would like to check if this
is the correct partition and then find a set Z ⊆ I such that S ∪ I is an optimal solution.
First, we verify that all vertices of Q are at distance ≥ r from S (otherwise we already know
this is not a correct partition). Second, we check if there exists v ∈ I such that N(v) ⊆ Q.
In such a case, we again know that this is not a correct partition, since such a v would need
to be included in K, which would imply that its neighbors in Q are at distance < r from K.
We can therefore assume that all vertices in I have some neighbor in S ∪R.

We now formulate an instance of Set Cover as follows: the universe contains all vertices
of R ∪Q which are not already covered, that is, all vertices of R which are at distance ≥ r
from S and all vertices of Q which are at distance > r from S. We construct a set for each
vertex of v ∈ I and we place in it all vertices u ∈ R such that d(v, u) < r and all vertices
u ∈ Q such that d(v, u) ≤ r. We solve this Set Cover instance in time O∗(2|R∪Q|) using
dynamic programming, and this gives us a set Z ⊆ I. We output S ∪ Z as a solution to
(k, r)-Center. We observe that this is always a valid solution because by construction all
vertices of R are at distance < r from S ∪Z, and all vertices of I have a neighbor in S ∪R. If
we started with the correct partition of C into S,R,Q then this solution is optimal because
K ∩ I must give a feasible set cover of the instance we constructed.

To analyze the running time, observe that if |S| = i, then the algorithm goes through 2vc−i
possible partitions of C \ S into R,Q, and then for each partition spends 2vc−inO(1) to solve
Set Cover. Hence, the algorithm runs in time

∑vc
i=0
(
vc
i

)
4vc−inO(1) =

∑vc
i=0
(vc
i

)
4inO(1) =

5vcnO(1). J

We next consider the un-weighted version of (k, r)-Center parameterized by td. We
begin with a simple upper bound argument and then make use of the following known fact
on tree-depth, while the algorithm then follows from the dynamic programming procedure of
[10] and the relationship between r, td and tw:

I Lemma 30. For any graph G = (V,E) we have d(G) ≤ 2td+1 − 2, where d(G) denotes the
graph’s diameter.

Proof. We use the following equivalent inductive definition of tree-depth: td(K1) = 0 while
for any other graph G = (V,E) we set td(G) = 1 + minu∈V td(G \ u) if G is connected, and
td(G) = maxC td(G[C]) if G is disconnected, where the maximum ranges over all connected
components of G.

We prove the claim by induction. The inequality is true for K1, whose diameter is 0. For
the inductive step, the interesting case is when G = (V,E) is connected, since otherwise
we can assume that the claim has been shown for each connected component and we are
done. Let u ∈ V be such that td(G) = 1 + td(G \ u). Consider two vertices v1, v2 ∈ V \ {u}
which are at maximum distance in G. If v1, v2 are in the same connected component of
G′ := G \ u, then dG(v1, v2) ≤ dG′(v1, v2) ≤ d(G′) ≤ 2td(G′)+1 − 2 ≤ 2td(G)+1 − 2, where we
have used the inductive hypothesis on G′. So, suppose that v1, v2 are in different connected
components of G′. It must be the case that u has a neighbor in the component of v1
(call it v′1) and in the component of v2 (call it v′2), because G is connected. We have
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dG(v1, v2) ≤ dG(v1, v
′
1) + 2 + dG(v2, v

′
2) ≤ dG′(v1, v

′
1) + 2 + dG′(v2, v

′
2) ≤ 2d(G′) + 2 ≤

2 · 2td(G′)+1 − 2 = 2td(G)+1 − 2. J

Theorem 7. Unweighted (k, r)-Center can be solved in time O∗(2O(td2)).

Proof. The main observation is that we can assume that r ≤ d(G), because otherwise the
problem is trivial. Hence, by Lemma 30 we have r ≤ 2td+1. We can now rely on Lemma 18
to get tw ≤ td, and the algorithm of [10] which runs in time O∗((2r+ 1)tw) gives the desired
running time. J

The remainder of this section is devoted to the ETH-based lower bound for tree-depth.

Construction: Given an instance φ of 3-SAT on n variables and m clauses, where we can
assume that m = O(n) (by the Sparsification Lemma, see [26]), we will create an instance
[G = (V,E), k] of the unweighted (k, r)-Center problem, where k =

√
n and r = 3 · c

√
n for

an appropriate constant c. (To simplify notation, we assume without loss of generality that√
n is an integer).
We first group the clauses of φ into

√
n equal-sized groups F1, . . . , F√n. As a result, each

group involves O(
√
n) variables, so there are 2O(

√
n) possible assignments to the variables of

each group. Select c appropriately so that each group Fi has at most c
√
n possible partial

assignments φij for the variables of clauses in Fi.
We then create for each i ∈ {1, . . . , n}, a set Pi of at most c

√
n vertices pi1, . . . , pic√n , such

that each vertex of Pi represents a partial assignment to the variables of Fi that satisfies all
clauses of Fi. We add two guard vertices g1

i , g
2
i , attaching them to all vertices of Pi by paths

of length r = 3 · c
√
n. Next, for each i ∈ {1, . . . ,

√
n}, we create another pair of vertices ai, bi,

connecting ai to each vertex pil by a path of length c
√
n + l, while bi is connected to each

vertex pil by a path of length 2 · c
√
n − l + 1. Now each Pi contains all vertices ai, bi, g1

i , g
2
i

and each pil,∀l ∈ {1, . . . , c
√
n}.

Finally, for any two conflicting partial assignments φil, φjo, with l, o ∈ {1, c
√
n} and

i, j ∈ {1,
√
n}, i.e. two partial assignments that assign conflicting values to at least one

variable, we create a vertex ui,jl,o that we connect to vertices ai, bi and aj , bj : if pil ∈ Pi is the
vertex corresponding to φil and pjo ∈ Pj is the vertex corresponding to φjo, then vertex ui,jl,o
is connected to ai by a path of length 2 · c

√
n − l + 1 and to bi by a path of length c

√
n + l,

as well as to aj by a path of length 2 · c
√
n − o+ 1 and bj by a path of length c

√
n + o. See

Figure 11 for an illustration.

I Lemma 31. If φ has a satisfying assignment, then there exists a (k, r)-center in G of size
k =
√
n and r = 3 · c

√
n.

Proof. Consider the satisfying assignment for φ and let φili , with li ∈ {1, . . . , c
√
n} and

i ∈ {1, . . . ,
√
n}, be the restriction of that assignment for all variables appearing in clauses of

group Fi. We claim the set K, consisting of all vertices pili corresponding to φili , is a (k, r)-
center for G with k =

√
n and r = 3·c

√
n. Since one vertex is selected from each Pi in G, all the

guards g1
i , g

2
i and vertices ai, bi are within distance 3·c

√
n from selected vertex pili . For vertices

ui,jli,lj , observe that selected vertex pili is at distance c
√
n+ li+2 ·c

√
n− li+1 = 3 ·c

√
n+1 from

ui,jli,lj , through either ai or bi, while vertex pjlj is at distance c
√
n+lj+2·c

√
n−lj+1 = 3·c

√
n+1

from ui,jli,lj , through either aj or bj , only if the corresponding partial assignments φili and φ
j
lj

are conflicting. As φili , φ
j
lj
are parts of a satisfying assignment for φ, however, this will not be

the case and at least one path from ui,jli,lj to either pili , or p
j
lj
, will be of length ≤ 3 · c

√
n. J
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n
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ai bi
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3 · c
√
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3 · c
√
n

c
√
n + 1

2 · c
√
n

c
√
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c
√
n + 1

2 · c
√
n

2 · c
√
n − l + 1

c
√
n + l2 · c

√
n − l + 1

Figure 11 A general picture of graph G. Note all straight lines denote paths of length equal to
the number shown by dotted lines, while the circled vertex is pi

l.

I Lemma 32. If there exists a (k, r)-center in G of size k =
√
n and r = 3 · c

√
n, then φ has

a satisfying assignment.

Proof. Let K ⊂ V be the (k, r)-center in G, with r = 3 · c
√
n and k =

√
n. As |K| = k =

√
n

and all guard vertices g1
i , g

2
i ,∀i ∈ {1, . . . ,

√
n}, must be within distance at most 3 · c

√
n from

some vertex selected in K, the set K must contain exactly one vertex from each Pi, or
K = {p1

l1
, . . . , p

√
n

l√n
}, for some li ∈ {1, . . . , c

√
n} and for each i ∈ {1, . . . ,

√
n}. We set the

assignment for φ to consist of all partial assignments φili , with i ∈ {1, . . . ,
√
n}, corresponding

to vertices pili ∈ K and claim that this is a valid assignment that satisfies φ. It is not hard to
see that, if the assignment is valid, then it satisfies the clause, as we have only listed partial
assignments that satisfy all clauses of each group. To see that the assignment does not assign
conflicting values to any variable, suppose for contradiction that there are two conflicting
partial assignments φili , φ

j
lj

and a vertex ui,jli,lj ∈ G with paths to ai, bi ∈ Pi and aj , bj ∈ Pj ,
where we have pili , p

j
lj
∈ K. The distance from ui,jli,lj to p

i
li
is 2 ·c

√
n− li+1+c

√
n+ li > 3 ·c

√
n,

via either ai or bi, while its distance to pjlj is also 2 · c
√
n − lj + 1 + c

√
n + lj > 3 · c

√
n, via

either aj , bj , meaning ui,jli,lj is not covered by K, giving a contradiction. J

I Lemma 33. The tree-depth of G is 4
√
n+ dlog(3 · c

√
n)e+ 1 = O(

√
n).

Proof. Again we use the definition of tree-depth used in Lemma 30. Consider the graph G
after removal of all guard vertices g1

i , g
2
i and all ai, bi,∀i ∈ [1,

√
n]. The graph now consists

of a number of sub-divided stars, centered either on some vertex ui,jl,o, or some pil, while the
maximum distance from each such center to a leaf vertex in the star is 3 · c

√
n − 1, for a

path connecting pil to a guard g1
i , g

2
i , omitting the final edge due to removal of g1

i , g
2
i . The

claim follows since paths of length n have treedepth exactly dlog(n+ 1)e (this can be shown
by repeatedly removing the middle vertex of a path). By the definition of treedepth, after
removal of 4

√
n vertices from G, the maximum treedepth of each resulting disconnected

component is dlog(3 · c
√
n)e = d

√
n · log(c) + log(3)e. J

Theorem 8. If (k, r)-Center can be solved in 2o(td2) · nO(1) time, then 3-SAT can be
solved in 2o(n) time.
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Proof. Suppose there is an algorithm for the (k, r)-Center problem with running time
2o(td2). Given an instance φ of 3-SAT, we use the above construction to create an instance
[G, k, r] of (k, r)-Center, with k =

√
n and r = 3 · c

√
n, in time O(

√
n · c

√
n + c2

√
n). As, by

Lemma 33, we have td(G) = O(
√
n), using the supposed algorithm for (k, r)-Center, we

can decide whether φ has a satisfying assignment in time 2o(td2) · nO(1) = 2o(n). J

B.4 From Section 5, Treewidth: FPT approximation scheme
Lemma 9. An edge-weighted graph G = (V,E) admits a (k, r)-center if and only if it admits
a valid distance-labeling function dl : V → {0, . . . , r} with cost k.

Proof. For one direction, if there is a (k, r)-center K, we construct a function dl by assigning
as value to each vertex v ∈ V the distance from the closest vertex of K to v. This function
is valid and has a cost of |K| = k. For the converse direction, if such a function exists, we
set K = dl−1(0). It is now not hard to verify that all vertices v are at distance at most dl(v)
from a vertex of K. J

Exact-algorithm: We formulate an exact algorithm which, given an edge-weighted graph
G = (V,E), finds the minimum cost of a distance-labeling function for G. By Lemma 9, this
is equivalent to (k, r)-Center.

Theorem 10. There is an algorithm which, given an edge-weighted graph G = (V,E) and
r ∈ N+, computes the minimum cost of any valid distance labeling of G in time O∗(rO(tw)).

Proof. The algorithm uses standard techniques, so we sketch some of the details. The
idea is that for any bag Bt of a tree decomposition of G we maintain a table Dt :
((Bt → {0, . . . , r})× (Bt → {0, 1})) → {0, . . . , n} ∪ {∞}. Let B↓t denote the vertices of
G contained in bags in the sub-tree rooted at Bt. Then, the meaning of Dt is that for each
distance labeling dlt : Bt → {0, . . . , r} of the vertices of Bt and for each subset S ⊆ B it
contains the minimum cost of any distance labeling of G[B↓t ] which satisfies all vertices of
B↓t , except perhaps those of Bt \ S, and which agrees with dlt on Bt.

Using this table we can now formulate a DP algorithm as follows:

For a Leaf node Bt that only contains a single vertex u, we set Dt(dl, {u}) = 1, if dl(u) = 0
and Dt(dl, {u}) =∞, otherwise. We set Dt(dl, ∅) = 0 for any other distance labeling of
u.
For a Forget node Bt that forgets a vertex u and has a child node Bt′ , we set Dt(dl, S) =
mindl′ Dt′(dl′, S ∪ {u}), where the minimum ranges over all labeling functions dl′ on B′t
that agree with dl on Bt = Bt′ \ {u}. In other words, we only retain partial solutions
which have already satisfied the vertex u that we forget.
For an Introduce node Bt that introduces a vertex u and has a child node Bt′ (so
Bt = Bt′ ∪ {u}), we consider every labeling dl′ of Bt′ and every S′ ⊆ Bt′ such that
Dt′(dl′, S′) 6= ∞. For each such dl′, S′, and for each i ∈ {0, . . . , r}, we construct a dl
function for Bt which agrees with dl′ on Bt′ and sets dl(u) = i. We compute S to
be the set that contains S′ as well as all vertices of Bt′ satisfied by dl(u), and u if it
is satisfied by a vertex of Bt′ or dl(u) = 0. More precisely, we add v ∈ Bt′ to S if
dl(v) ≥ dl(u) + w((u, v)), and we add u to S if dl(u) = 0, or if there exists v ∈ Bt′ for
which dl(u) ≥ dl(v) + w((v, u)). We set Dt(dl, S) = Dt′(dl′, S′) + 1 if dl(u) = 0, and
Dt(dl, S) = Dt′(dl′, S′) + 1 otherwise. All other entries of Dt are set to ∞.
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For a Join node Bt with two children Bt1 , Bt2 , for each labeling function dl on Bt and
each S ⊆ Bt we set Dt(dl, S) = minS1⊆S Dt1(dl, S1) + Dt2(dl, S \ S1) − |dl−1(0) ∩ Bt|.
Note that we subtract |dl−1(0) ∩Bt| to avoid double-counting the vertices of Bt.

J

Lemma 11. Let G = (V,E) be an edge-weighted graph, T a tree decomposition of G, and
u, v ∈ V two vertices that appear together in a bag of T . Let G′ be the graph obtained from
G by adding (u, v) to E (if it does not already exist) and setting w((u, v)) = dG(u, v). Then
T is a valid decomposition of G′, and ∀k, r, G′ admits a (k, r)-center if and only if G does.

Proof. To see that G′ admits a (k, r)-center if and only if G does, observe that adding the
weighted edge (u, v) did not change the distances between any two vertices. To see that T
remains a valid decomposition we recall that u, v appear together in a bag of T . J

Lemma 12. If for a weighted graph G = (V,E) and any k, r, δ, ε > 0, there exists a valid
δ-labeling function with cost k, then there exists a (k, (1 + ε)2r)-center for G.

Proof. Again we set K = dl−1
δ (0), where dlδ is a valid δ-labeling function. Recall that dlδ

assigns value (1 + δ)i, for i ∈ N to all vertices of V \K. We prove by induction on i, that a
vertex u for which dlδ(u) = (1 + δ)i is at distance at most (1 + ε)dlδ(u) from K. First, if
dlδ(u) = (1 + δ) and u is satisfied, then u has a neighbor v with dlδ(u) ≥ dlδ(v) + w((v,u))

1+ε .
Because w((v, u)) > 0, we must have v ∈ K, so we conclude that d(K,u) ≤ (1 + ε)dlδ(u).
Similarly, if we have dlδ(u) = (1 + δ)i+1 and u is satisfied, there must exist v ∈ N(u) with
dlδ(u) ≥ dlδ(v) + w((v,u))

1+ε , so dlδ(v) ≤ (1 + δ)i. By the inductive hypothesis, it is d(K, v) ≤
(1 + ε)dlδ(v). So d(K,u) ≤ w((v, u)) + d(K, v) ≤ (1 + ε)

(
dlδ(v) + w((v,u))

1+ε

)
≤ (1 + ε)dlδ(u).

Since for all u ∈ V we have dlδ(u) ≤ (1 + ε)r, all vertices are at distance at most (1 + ε)2r

from K. J

Theorem 13. There is an algorithm which, given a weighted instance of (k, r)-Center,
[G = (V,E), k, r], a tree decomposition of G of width tw and a parameter ε > 0, runs in time
O∗((tw/ε)O(tw)) and either returns a (k, (1 + ε))-center of G, or correctly concludes that G
has no (k, r)-center.

Proof. Our algorithm will follow along the same lines as the algorithm of Theorem 10, with the
major difference that the labeling functions we consider are δ-labeling functions, for a value of δ
that we define further below. More precisely, if Σr := {0}∪{(1+δ)i | i ∈ N, (1+δ)i ≤ (1+ε)r},
then for each bag Bt of T we define a table as a function Dδ

t : ((Bt → Σr)× (Bt → {0, 1}))→
{0, . . . , n} ∪ {∞}. Let B↓t denote the vertices of G contained in bags in the sub-tree rooted
at Bt. The meaning of Dδ

t here is similar to that of Dt in the algorithm of Theorem 10.
For each δ-distance labeling dlδ : Bt → Σr, and for each S ⊆ Bt, Dδ

t tells us what is the
minimum cost of any δ-distance labeling of B↓t which satisfies all vertices B↓t , except perhaps
those of Bt \ S, and which agrees with dlδ on Bt.

Before we proceed, we pre-process the input using the result of [7]: There is an algorithm
which, given a tree decomposition of width w of a graph on n nodes, produces a decomposition
of the same graph with width at most 3w + 2 and height O(logn) in polynomial time and
Lemma 11. In particular, we construct a tree decomposition T ′ of width at most 3tw + 2
and height at most H ≤ c logn for some constant c, and then for any two vertices u, v which
appear together in a bag of T ′, we add the edge (u, v) to G, as in Lemma 11. We define the
height of a bag Bt of the decomposition recursively as follows: the height of a Leaf bag is 1,
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for any other bag Bt its height is 1 plus the maximum of the heights of its children. Clearly,
under this definition the root bag has height H and all other bags have height < H. We
now set δ = ε

2H = Θ
(

ε
logn

)
. Observe that because of this setting we have for all h ≤ H

that (1 + δ)h ≤ (1 + ε
2H )H ≤ eε/2 ≤ (1 + ε) for sufficiently small ε (e.g. it suffices to assume

without loss of generality ε < 1/4). Our goal will be to return a (k, (1 + ε)2r)-center, if a
(k, r)-center exists by producing a δ-labeling and invoking Lemma 12. The approximation
ratio can then be brought down to (1 + ε) by adjusting ε appropriately.

Our algorithm now follows the algorithm of Theorem 10, with the only difference that the
satisfaction of a vertex follows the definition of ε-satisfaction (that is, we effectively divide
edge weights by (1 + ε)). Specifically, we have the following:

For a Leaf node Bt that only contains a single vertex u, we set Dδ
t (dlδ, {u}) = 1, if

dlδ(u) = 0 and Dδ
t (dlδ, {u}) =∞, otherwise. We set Dδ

t (dlδ, ∅) = 0 for any other distance
labeling of u.
For a Forget node Bt that forgets a vertex u and has a child node Bt′ , we set Dδ

t (dlδ, S) =
mindl′

δ
Dδ
t′(dl

′
δ, S ∪ {u}) where the minimum ranges over all labeling functions dl′δ on B′t

that agree with dlδ on Bt = Bt′ \ {u}. In other words, we only retain partial solutions
which have already satisfied the vertex u that we forget.
For an Introduce node Bt that introduces a vertex u and has a child node Bt′ (so
Bt = Bt′ ∪ {u}), we consider every labeling dl′δ of Bt′ and every S′ ⊆ Bt′ such that
Dδ
t′(dl

′
δ, S
′) 6=∞. For each such dl′δ, S′, and for each i ∈ Σr we construct a dlδ function

for Bt which agrees with dl′δ on Bt′ and sets dlδ(u) = i. We compute S to be the set that
contains S′ as well as all vertices of Bt′ satisfied by dl(u), and u if it is satisfied by a vertex
of Bt′ or dlδ(u) = 0. More precisely, we add v ∈ Bt′ in S if dlδ(v) ≥ dlδ(u) + w((u,v))

1+ε , and
we add u to S if dlδ(u) = 0, or if there exists v ∈ Bt′ for which dlδ(u) ≥ dlδ(v) + w((v,u))

1+ε .
We set Dδ

t (dlδ, S) = Dδ
t′(dl

′
δ, S
′)+1 if dl(u) = 0, and Dδ

t (dl, S) = Dδ
t′(dl

′, S′)+1 otherwise.
All other entries of Dt are set to ∞.
For a Join node Bt with two children Bt1 , Bt2 , for each labeling function dlδ on Bt and each
S ⊆ Bt, we setDt(dlδ, S) = minS1,S2⊆S:S1∪S2=S Dt1(dlδ, S1)+Dt2(dlδ, S2)−|dl−1

δ (0)∩Bt|.

To establish correctness of the above algorithm we proceed in two directions. First, we
show that for any bag Bt we have Dδ

t (dlδ, S) ≤ i, if and only if there exists a δ-labeling of
B↓t which satisfies all vertices of B↓t , except perhaps those of Bt \ S, and has cost i. This can
be shown by a standard inductive argument: the statement is clearly true on Leaf bags, and
it can be shown to be true on other bags if we assume it to be true on their children. As a
result, by examining the table of the root bag at the end of the algorithm’s execution, we
can correctly compute the minimum cost of a valid δ-labeling. If that cost is at most k, by
Lemma 12 we obtain a (k, (1 + ε)2r)-center of G.

It is now more interesting to establish the converse direction: we would like to show that
if a (k, r)-center exists then there exists a δ-labeling of G, which will therefore be found by
the algorithm. The reason that this direction is more difficult is that the converse of Lemma
12 does not hold for any δ; indeed if δ is too small it could be the case that a (k, r)-center
exists, but the graph does not admit a δ-labeling. We will thus need to prove that the δ we
have selected is sufficient. In the remainder, suppose there exists a dl : V → {0, . . . , r} which
encodes a (k, r)-center of G.

We will establish by induction the following property: for any bag Bt of the decomposition
such that the height of Bt is h, let dlt denote the restriction of dl to Bt and S the vertices of
Bt which are satisfied in G[B↓t ] by dl. We will show that there always exists dlδ : Bt → Σr,
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Sδ ⊇ S such that Dδ
t (dlδ, Sδ) ≤ |dl−1(0) ∩B↓t | and for all u ∈ Bt we have dl(u)

(1+δ)h ≤ dlδ(u) ≤
(1 + δ)hdl(u).

We observe that the property holds for Leaf bags Bt = {u}, because the algorithm
considers both the case where u ∈ K (in which dl(u) = dlδ(u) = 0), as well as every
possible labeling of u with an integer power of (1 + δ), hence it considers a labeling such that
dl(u), dlδ(u) are at most a multiplicative factor (1+δ) apart. The property can easily be shown
inductively for Forget and Join bags, if we assume the property for their children, because
whenever dlδ(u) ∈ [ dl(u)

(1+δ)h , (1 + δ)hdl(u)], this implies dlδ(u) ∈ [ dl(u)
(1+δ)h+1 , (1 + δ)h+1dl(u)].

Hence, the interesting case is Introduce bags.
Consider an Introduce bag Bt with child Bt′ , so that Bt = Bt′ ∪ {u}. Let S ⊆ Bt be the

set of vertices satisfied by dl in G[B↓t ], and similarly, let S′ ⊆ Bt′ be the corresponding set in
Bt′ . Clearly, S′ ⊆ S. We now claim that at least one of the following three must be true: (i)
dl(u) = 0, (ii) S = S′ ∪ {u}, (iii) u 6∈ S. To see this, suppose for contradiction that dl(u) 6= 0
and S contains all of S′, u and some vertex v1 ∈ Bt \ S′. Then dl(v1) ≥ dl(u) + w((u, v1)),
because v1 ∈ S but v1 6∈ S′. Furthermore, there exists v2 ∈ Bt′ such that dl(u) ≥ dl(v2) +
w((v2, u)), because u ∈ S and dl(u) 6= 0. Hence, dl(v1) ≥ dl(v2) + w((v2, u)) + w((u, v1)) ≥
dl(v2) + w((v2, v1)), where the last inequality follows because we have used Lemma 11 to
take the metric closure of Bt′ . But the last inequality implies v1 ∈ S′, contradiction.

We therefore need to establish that, for each of the three cases above, the algorithm will
produce an entry Dδ

t (dlδ, Sδ) with S ⊆ Sδ and dlδ(u) which is at most a factor of (1 + δ)h
apart from dl(u). Assume by the inductive hypothesis that Dδ

t′(dl
′
δ, S
′
δ) ≤ i, for some S′δ ⊇ S′,

dl′δ which has ∀v ∈ Bt′ , dl′δ(v) ∈ [ dl(u)
(1+δ)h−1 , (1 + δ)h−1dl(u)], and for i = |dl−1(0) ∩B↓t′ |.

We have:

(i) If dl(u) = 0, the algorithm will consider a dlδ which sets dlδ(u) = 0 and agrees with dl′δ
on Bt′ . From the entry Dδ

t′(dl
′
δ, S
′
δ) ≤ i it will construct an entry Dt(dlδ, Sδ) ≤ i + 1,

with S ⊆ Sδ, because for each v ∈ S \ S′, we have dl(v) ≥ w((u, v)), therefore, dlδ(v) ≥
dl(v)

(1+δ)h−1 ≥ w((u,v))
1+ε , where we have used the fact that (1 + δ)h ≤ 1 + ε.

(ii) Here we assume dl(u) 6= 0 and u ∈ S. There exists therefore v ∈ Bt′ with dl(u) ≥
dl(v) + w((v, u)). Let r := (1 + δ)h−1dl(u). The algorithm will consider the function
dlδ which agrees with dl′δ on Bt′ and sets dlδ(u) = (1 + δ)dlog(1+δ) re. We have dlδ(u) ≥
(1 + δ)h−1dl(u) ≥ (1 + δ)h−1(dl(v) + w((v, u)) ≥ dlδ(v) + w((v,u))

1+ε , thus the algorithm
will (correctly) add u to S′δ to obtain Sδ ⊇ S. Furthermore, (1 + δ)h−1dl(u) ≤ dlδ(u) ≤
(1 + δ)hdl(u).

(iii) Here the interesting case is if S \ S′ 6= ∅. Consider a v ∈ S \ S′. We have dl(v) ≥
dl(u) + w((u, v)), since v ∈ S \ S′. Let r := dl(u)

(1+δ)h . The algorithm will consider the
dlδ which agrees with dl′δ on Bt′ and sets dlδ(u) = (1 + δ)dlog(1+δ) re. We have dlδ(v) ≥

dl(v)
(1+δ)h−1 ≥ dl(u)

(1+δ)h−1 + w((u,v))
1+ε ≥ dlδ(u) + w((u,v))

1+ε . Hence, the algorithm will extend S′δ by
adding to it all elements of S\S′. Furthermore, (1+δ)−h+1dl(u) ≥ dlδ(u) ≥ (1+δ)−hdl(u).

We can therefore conclude that whenever a (k, r)-center exists, we will be able to recover
from the root bag of the algorithm’s DP table a (k, (1 + ε)2r)-center with the same or lower
cost. In particular, by the property we established above, if Br is the root bag, there exists
dlδ such that Dδ

r(dlδ, Br) ≤ k, and for all u ∈ Br we have dlδ(u) ≤ (1 + δ)Hdl(u) ≤ (1 + ε)r.
Finally, let us consider the algorithm’s running time. Observe that |Σr| = O(log(1+δ r) =

O( log r
log(1+δ) ) = O( log r

δ ), where we have used that fact that ln(1 + δ) ≈ δ for sufficiently small
δ (that is, sufficiently large n). By recalling that δ = Θ(logn/ε) we get a running time of
O(logn/ε)O(tw), which implies the promised running time by Lemma 17. J
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B.5 From Section 6, Clique-width revisited
Lemma 14. There exists a polynomial algorithm which, for any ε > 0, given an instance
I = [G,w, k, r] of (k, r)-Center, with weight function w : V → N, produces an instance
I ′ = [G,w′, k, r′] on the same graph with weight function w′ : V → N+, such that we have the
following: for any ρ ≥ 1, any (k, ρr′)-center of I ′ is a (k, ρr)-center of I; any (k, ρr)-center
of I is a (k, (1 + ε)ρr′)-center of I ′.

Proof. We define a scaling factor B := n
ε . We set w′((u, v)) = B · w((u, v)) + 1, for all

(u, v) ∈ E. We set r′ = B ·r. Suppose that we have a (k, ρr)-center K for w. We use the same
solution for w′ and the maximum distance from K to any vertex is at most Bρr+n = ρr′+n.
However, n ≤ εr′, hence this solution has maximum distance at most (1 + ε)ρr′. For the
converse direction, suppose that we have a solution for the function w′ with maximum
distance ρr′. We use the same solution and now the cost is at most ρr′/B ≤ ρr, since
w((u, v)) ≤ w′((u, v))/B. J

Lemma 15. Given a (k, r)-Center instance G = (V,E) along with a clique-width expression
T for G on cw labels, we can in polynomial time obtain a (k, r)-Center instance G′ = (V ′, E′)
with V ⊆ V ′, and a tree decomposition of G′ of width tw = O(cw), with the following property:
for all k, r, G has a (k, r)-center if and only if G′ has a (k, r)-center.

Proof. Suppose we are given a clique-width expression of G, represented as a binary tree T ,
using cw labels. We will first construct a new clique-width expression T ′, using cw + 3 labels
in a way that preserves all (k, r)-centers. The end result will be that T ′ does not contain
any join operations involving large label-sets. We will use this property to construct a tree
decomposition of the resulting graph.

Let c be an appropriate small constant (for concreteness, let c = 10). We will say that
a label l ∈ {1, . . . , cw} is big in a node x ∈ T , if the graph described by the sub-expression
rooted at x has at least c vertices with label l. We say that l is newly big in x ∈ T , if l is big
in x but it is not big in any of the children of x in T . Finally, we say that l is active inside
(respectively active outside) in x ∈ T if l is newly big in x and, furthermore, there exists an
arc e ∈ E that is not yet present in x, whose head (respectively tail) is incident on a vertex
with label l in x. In other words, a label is active (inside or outside) in a sub-expression, if
it contains many vertices and there is a join operation (of the respective direction) that is
applied to its vertices somewhere higher in T .

Suppose that the nodes of T are ordered in some arbitrary way, so that a child is ordered
before its parent. Our transformation is the following: as long as there exists l ∈ {1, . . . , cw}
and x ∈ T such that l is active (inside or outside) in x, we select the first such x in the
ordering and let l be an active label in x. We insert directly above x in T the following
operations: if l is active inside we introduce a vertex s with label cw + 1, and if l is active
outside we introduce a vertex t with label cw + 2; we then add the operations η(cw + 1, l, 0),
η(l, cw + 2, 0), followed by the rename operations ρ(l, cw + 3), ρ(cw + 1, l), ρ(cw + 2, l). In
words, this transformation (potentially) adds a “source” s, or a “sink” t to the graph (or
both), gives a junk label cw + 3 to all vertices that previously had label l in x, and uses s, t
as the new representatives of this class of vertices. We repeat this process until no x ∈ T
contains an active label; this finishes in polynomial time because once we eliminate all active
labels from a node x, we do not re-visit it. If the original instance had a set of irrelevant
vertices I ⊆ V , we construct a set of irrelevant vertices I ′ for G′ by adding to I all the s, t
vertices created in the above procedure.
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Let us first argue that any (k, r)-center of the original instance can be transformed into
a (k, r)-center of the new instance. Consider one step of the above procedure applied on a
node x ∈ T . The main observation is that such a step does not change the distance between
any two vertices u, v ∈ V in the final graph. Suppose u has label l in x. Any edge incident
on u in G that was removed as a result of this operation does not yet appear in x and hence
can be replaced by a path of the same cost through s or t. Similarly, any u, v path in the
new graph that uses s or t in the new graph, must also use an edge (that is not present in x)
which was removed by the operation. Such a path can be replaced by this edge in G.

As a result of the above argument, all distances between vertices of V are preserved after
the end of the procedure. Since all vertices of V ′ \ V are irrelevant in G′, any (k, r)-center of
G is also a (k, r)-center of G′ and vice-versa, as any solution can ignore these vertices and
no solution can contain any of them.

To see that G′ has small treewidth, observe that we now have a clique-width expression
for G′ that uses cw+ 3 labels and has the following property: for any join operation η(a, b, w)
applied on a node x, there are at most 2c vertices with labels a or b in x. To see this, observe
that this operation is either an operation that was originally in T , or an operation added
during the transformation procedure. In the former case, neither label is big in x, otherwise,
there would be a descendant of x where a label is active, and we would have applied the
operation. In the latter case, there is a single vertex with label b, and a was newly active,
hence it cannot contain more than 2c− 2 vertices (if it was the result of a rename or union
operation on two previously small label-sets).

We can therefore construct a tree decomposition of G′ by taking its clique-width expression
T ′ and making a bag for each of its nodes. For the bag Bx that corresponds to node x of
T ′, we find all labels l ∈ {1, . . . , cw + 3} which are small in x (that is, there are at most 2c
vertices of this label) and place all vertices with that label in x in Bx. This is a valid tree
decomposition because: (i) as argued above all join operations involve two small label-sets,
hence any edge of the graph is contained in some bag, (ii) if u ∈ Bx but u 6∈ By, for By being
the parent of Bx, we know that u also does not appear in any ancestor of By, because once
a vertex is part of a large label, it remains so and it does not appear in the other child of
By (if it exists), or its descendants, because if By has two children it must correspond to
a disjoint union operation in T ′. To complete the proof we observe that we have placed at
most 2c(cw + 3) vertices in each bag. J

Theorem 16. Given graph G = (V,E), along with k, r ∈ N+, clique-width expression T

for G on cw labels and error parameter ε > 0, there exists an algorithm that runs in time
O∗((cw/ε)O(cw)) and either produces a (k, (1 + ε)r)-center, or correctly concludes that no
(k, r)-center exists.

Proof. Given the (k, r)-Center instance, we use Lemma 15 to obtain an instance G′ and
its tree decomposition of width O(cw). We then invoke Lemma 14 to make all edge weights
strictly positive, and then use the algorithm of Section 5. We remark that this algorithm can
be easily adjusted to handle the more general case of the problem where some vertices are
irrelevant: we simply need to modify the computation on Forget nodes to allow the algorithm
to retain a solution that has not satisfied a vertex u if u is irrelevant and the computation on
Introduce nodes to disregard a solution that considers u for inclusion in the center-set. J
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