
Treewidth with a Quantifier Alternation Revisited
Michael Lampis1 and Valia Mitsou∗2

1 Université Paris-Dauphine, PSL Research University, CNRS, UMR 7243
LAMSADE, 75016, Paris, France, michail.lampis@dauphine.fr

2 Université de Lyon, LIRIS, CNRS, UMR 5205,
Université Lyon 1, 69622, Villeurbanne, Lyon, France, vmitsou@liris.cnrs.fr

Abstract
In this paper we take a closer look at the parameterized complexity of ∃∀SAT, the prototypical

complete problem of the class Σp2, the second level of the polynomial hierarchy. We provide a
number of tight fine-grained bounds on the complexity of this problem and its variants with
respect to the most important structural graph parameters. Specifically, we show the following
lower bounds (assuming the ETH):

It is impossible to decide ∃∀SAT in time less than double-exponential in the input formula’s
treewidth. More strongly, we establish the same bound with respect to the formula’s primal
vertex cover, a much more restrictive measure. This lower bound, which matches the perform-
ance of known algorithms, shows that the degeneration of the performance of treewidth-based
algorithms to a tower of exponentials already begins in problems with one quantifier altern-
ation.
For the more general ∃∀CSP problem over a non-boolean domain of size B, there is no
algorithm running in time 2Bo(vc) , where vc is the input’s primal vertex cover.
∃∀SAT is already NP-hard even when the input formula has constant modular treewidth (or
clique-width), indicating that dense graph parameters are less useful for problems in Σp2.
For the two weighted versions of ∃∀SAT recently introduced by de Haan and Szeider, called
∃k∀SAT and ∃∀kSAT, we give tight upper and lower bounds parameterized by treewidth (or
primal vertex cover) and the weight k. Interestingly, the complexity of these two problems
turns out to be quite different: one is double-exponential in treewidth, while the other is
double-exponential in k.

We complement the above negative results by showing a double-exponential FPT algorithm
for QBF parameterized by vertex cover, showing that for this parameter the complexity never
goes beyond double-exponential, for any number of quantifier alternations.

1998 ACM Subject Classification F.1.3 Complexity Measures and Classes, F.2.2 Nonnumerical
Algorithms and Problems, G.2.1 Combinatorics, G.2.2 Graph Theory

Keywords and phrases Treewidth, Exponential Time Hypothesis, Quantified SAT

Digital Object Identifier 10.4230/LIPIcs.xxx.yyy.p

1 Introduction

The main goal of this paper is to provide a fine-grained complexity analysis of ∃∀SAT, the
prototypical complete problem for the second level of the polynomial hierarchy, with respect
to the most important structural graph parameters, and especially treewidth.

∗ Valia Mitsou was supported by the ANR-14-CE25-0006 project of the French National Research Agency.

© Michael Lampis, and Valia Mitsou;
licensed under Creative Commons License CC-BY

Conference title on which this volume is based on.
Editors: Billy Editor, Bill Editors; pp. 1–12

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.xxx.yyy.p
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

2 Treewidth with a Quantifier Alternation Revisited

Treewidth, a graph parameter that roughly measures how tree-like a graph is, is one
of the central notions of parameterized complexity theory. Its popularity and success rest
largely on the fact that when a graph’s treewidth is small a very large variety of problems
which are normally intractable can be solved efficiently (often in linear time [3]). This success
has strongly motivated research that seeks to apply the ideas of treewidth to other domains,
such as satisfiability problems. This can be done by defining a graph that (partially) encodes
the structure of the input instance, and then using this graph’s structure to design efficient
algorithms. Much work has been devoted in this direction, and by now the complexity of
satisfiability and related constraint satisfaction problems (counting, maximization, etc.) is
well-understood not only with respect to treewidth, but also other related structural graph
parameters such as clique-width, modular treewidth, vertex cover, and others [8, 19, 21, 23,
25, 24].

Despite this success, one notable weakness of the treewidth approach is that its effect-
iveness rapidly deteriorates once one starts considering problems outside NP. Indeed, it has
long been known that as one considers problems that need more and more quantifier alterna-
tions to be expressed, the “hidden constants” in treewidth-based algorithms become towers
of exponentials [10, 16, 20] and for an unbounded number of alternations, even constant
treewidth does not help [1]. One response to this weakness has been the search for other
graph measures which are more robust in the face of alternating quantifiers [9, 11, 12, 15].
Our goal in this paper on the other hand is to more closely examine whether we can hope to
evade this deteriorating performance not necessarily by changing the graph parameter, but
by restricting ourselves to problems with only one quantifier alternation, that is, problems
in Σp2, the second level of the polynomial hierarchy.

Given the current state of the art, one would probably expect the typical Σp2-complete
problem to have double-exponential complexity when parameterized by treewidth, as a result
of the extra quantifier alternation, and indeed the best currently known algorithms typically
do have this complexity. Nevertheless, almost no concrete lower bounds are known showing
that natural problems in this class need a double-exponential dependence on treewidth. The
lower bounds given in [10, 16, 20] are either asymptotic or only give concrete tight bounds
for the odd levels of the polynomial hierarchy. Perhaps the only tight double-exponential
lower bound for the complexity of a Σp2-complete problem parameterized by treewidth is
given in [17], which proves such a result for Choosability. To the best of our knowledge
no such bounds are known for other concrete problems, and in particular, no such tight
bounds are known for perhaps the most basic problem in this class: ∃∀SAT.
Our contribution: Our main conceptual contribution is a simple direct reduction showing
that the complexity of ∃∀SAT when parameterized by the treewidth of the input formula has
to be double-exponential, unless the ETH is false (Theorem 1). This essentially matches the
running time of the best currently known algorithm [2]. Before this work similar bounds were
only known for satisfiability problems complete for odd levels of the polynomial hierarchy
[20], and thus this fills a natural hole in the literature. However, beyond advancing our
understanding of the complexity of quantified satisfiability, we believe the main value of this
result is in providing the first “textbook” example of a double-exponential lower bound for
treewidth. Unlike currently known lower bounds of somewhat similar flavor ([15, 17, 20]),
our result is a completely self-contained reduction that essentially does not need any gadgets.
Furthermore, because of the central role of ∃∀SAT in the class Σp2 we expect that our lower
bound may serve as a starting point to prove similar bounds for various other problems in
Σp2.

Building and extending on the above result we give a number of tight upper and lower

M. Lampis, and V. Mitsou 3

bounds on ∃∀SAT and related problems. Specifically, we observe that we are able to give
a similar double-exponential lower bound on the treewidth dependence for ∃∀3-SAT, and
that our reduction shows that ∃∀SAT is NP-hard even for formulas of constant modular
treewidth or clique-width (meaning that dense graph parameters are likely to be much less
useful for ∃∀SAT than they are for SAT). We also observe that the main lower bound for
∃∀SAT applies not only when the problem is parameterized by treewidth, but much more
strongly, when it is parameterized by vertex cover.

Finding this latter fact surprising, since most problems are significantly easier when para-
meterized by vertex cover than by treewidth, we investigate vertex cover as a parameter more
closely. We show that, despite matching closely the complexity of treewidth for ∃∀SAT, this
parameter is indeed much more algorithmically amenable in other ways: first, it allows a
double-exponential algorithm for QBF with any number of quantifier alternations (a prob-
lem PSPACE-complete for constant treewidth); and second, it allows a single-exponential
algorithm for ∃∀3-SAT. We note that QBF was already known to be FPT parameterized
by vertex cover [9] as a corollary of an algorithm for a much more general parameter (prefix
pathwidth), but since we concentrate on vertex cover we are able to give an algorithm that
is both faster and significantly simpler.

Having analyzed the complexity of ∃∀SAT with respect to some of the most important
graph parameters, we move towards two more recently introduced variations with special
interest for parameterized complexity: ∃k∀SAT and ∃∀kSAT. In these problems, introduced
in the works of de Haan and Szeider [6, 5, 7], one of the two quantifiers is weighted, that is,
we only consider assignments that set k out of its variables to true. Though both problems
are FPT parameterized by treewidth we show that their complexity is quite different: one
is double-exponential with respect to treewidth, while the other is double-exponential with
respect to k (and single-exponential in the treewidth). Both lower bounds match algorithms
that follow from simple adaptations of [2].

Finally, we consider a more general version of our problem: ∃∀CSP where variables are
no longer necessarily boolean. The question here is how the complexity of the problem
changes not only with respect to treewidth, but also with the size of the domain of a non-
boolean CSP. Once again we show a double-exponential bound that essentially matches the
performance of the best known algorithm.

2 Definitions and Preliminaries

2.1 Problem Definitions
We recall some standard definitions related to satisfiability problems: a literal is a boolean
variable, or its negation; a clause is a disjunction of literals; a term is a conjunction of
literals; a formula is in conjunctive normal form (CNF) if it is a conjunction of clauses; it is
in disjunctive normal form (DNF) if it is a disjunction of terms. We will sometimes overload
notation and view clauses and terms as sets of literals.

The main problem we study in this paper is ∃∀SAT, the prototypical complete problem
for the second level of the polynomial hierarchy [26]. In this problem we are given a quantified
formula of the form ∃x∀yφ(x,y), where x,y are disjoint tuples of boolean variables and φ
is a DNF formula. The question is to decide whether there exists an assignment to the
variables of x so that for all assignments to y, φ evaluates to True. We refer to x as the
existential variables and y as the universal variables. When all terms of φ have size at
most d we refer to this problem as ∃∀d-SAT. We also consider two weighted versions: in
∃k∀SAT we are asked if there exists an assignment that sets exactly k existential variables

4 Treewidth with a Quantifier Alternation Revisited

to True, such that for all assignments to y, φ evaluates to True; in ∃∀kSAT we are asked
if there exists any assignment to x such that for all assignments that set exactly k of the
variables of y to True, φ evaluates to True. A more general version of ∃∀SAT allows the
input formula to have any number of quantifiers, that is, we are given a formula of the form
∃x1∀x2∃x3 . . . Qxnφ(x1, x2, . . . , xn), where φ is in CNF, and are asked if it evaluates to True.
We call this problem QBF.

We will also consider the more general ∃∀CSP problem. Here we are given a CSP
instance again involving two tuples of variables x,y, which can now take values from some
finite domain Σ. Furthermore, we are given a set of constraints: a constraint of arity r

involves r variables from x ∪ y, and we are given a list of assignments that satisfy the
constraint, that is, a subset of Σr which determines which combinations of assignments to
the involved variable satisfy the constraint. We say that an ∃∀CSP instance is a Yes instance
if there exists an assignment to x such that for all assignments to the variables of y at least
one constraint is satisfied.

2.2 Graph Parameters

Given a propositional formula φ we consider two types of graphs associated with it. The
primal graph, denoted Gp(φ) contains a vertex for each variable of φ; two vertices of Gp(φ)
are connected if and only if the corresponding variables of φ appear in a constraint together.
The incidence graph, denoted Gi(φ) contains a vertex for each variable and for each con-
straint of φ; two vertices of Gi(φ) are connected if the corresponding variable appears in the
corresponding constraint.

In this paper we study various structural restrictions on formulas by considering graph
parameters restricting the structure of Gi(φ) or Gp(φ). The parameters we consider are
the treewidth of Gi(φ) and Gp(φ) denoted twi(φ) and twp(φ) respectively; the vertex cover
of Gp(φ), denoted vc(φ); and the modular treewidth and clique-width of Gi(φ), denoted
mtw(φ) and cw(φ) respectively. We refer the reader to standard textbooks for the definitions
of treewidth, clique-width and vertex cover [4]. Modular treewidth is the treewidth of a graph
after contracting all vertices that share the same neighborhood into single vertices [22]. We
recall the following well-known relationships between these parameters. For all formulas φ we
have vc(φ) ≥ twp(φ) ≥ twi(φ) ≥ mtw(φ). Because of this inequality, hardness results which
apply for vertex cover automatically carry over to the other (more general) parameters, while
algorithmic results which apply to modular treewidth also apply to the other (less general)
parameters. We recall that it is also known that cw(φ) is bounded by some function of
mtw(φ).

2.3 Binary Representations

Let x be a tuple of variables, and i be an integer such that i < 2|x|. We define the function
B(i,x) which produces a set of literals, that is, a set which contains for each variable
of x either the variable itself or its negation. Negations will be added according to the
binary representation of i. More formally, if x = (x1, x2, . . . , xn) we define inductively
B(i, x) = B(bi/2c,x \ {xn}) ∪ ln, where ln = xn if i is even, and ln = ¬xn otherwise. For
the base case (n = 0) we set B(0, ∅) = ∅.

M. Lampis, and V. Mitsou 5

3 Tight Bounds for ∃∀SAT

In this section we consider the complexity of the prototypical Σp2-complete problem ∃∀SAT.
Our first result is a fine-grained lower bound which states that any algorithm for ∃∀SAT must
either use time exponential in the number of variables of the formula, or run in time double-
exponential in the input formula’s primal vertex cover (assuming the ETH). This result is
obtained through a direct reduction from an n-variable instance of 3-SAT that produces an
instance of ∃∀SAT with roughly the same number of variables, but vertex cover O(logn).
In other words, our reduction trades the additional complexity of the problem (caused by
the extra level of quantification), to encode the formula in such a way that its structure is
significantly simplified. We note that this lower bound is tight, not only for vertex cover,
but even for much more general parameters, such as treewidth, for which double-exponential
algorithms for ∃∀SAT are known [2].

We then go on to give a second version of the same reduction that gives a similar running-
time bound for ∃∀3-SAT parameterized by the input formula’s primal treewidth. Here we
use a standard trick to reduce the size of all terms to 3; the non-trivial part is to prove that
this does not significantly increase the primal treewidth of the instance. Interestingly, the
lower bound for ∃∀3-SAT does not apply for primal vertex cover. As we show in Section
4 there is a good reason for this, as ∃∀3-SAT is solvable in single-exponential time for this
parameter.

We also observe that our main reduction produces instances with constant modular
treewidth (and hence clique-width), indicating that these two dense parameters (for which
SAT is in XP) are unlikely to be of help with satisfiability problems in Σp2.

I Theorem 1. There is no algorithm which, given an ∃∀SAT instance φ with n variables,
can decide if φ is True in time 22o(vc(φ))2o(n), unless the ETH is false.

Proof. We consider an instance of 3-SAT ψ with n variables and m clauses. Recall that the
ETH states that there is no 2o(n+m) algorithm that decides 3-SAT[13, 14]. We will construct
a quantified DNF formula ∃x∀yφ(x,y), whose primal vertex cover will be O(logn).

Let x = {x1, . . . , xn} be the set of variables of ψ. We retain the same variables as
the existential variables of φ, and we introduce logm universally quantified variables y =
(y1, . . . , ylogm). We assume here without loss of generality that m is a power of 2, otherwise
some clauses of ψ can be repeated.

Suppose that the clauses of ψ are numbered C0, C1, . . . , Cm−1. Let Ci be a clause of
ψ of length l ≤ 3. We construct l terms in φ as follows: each term contains one distinct
literal of Ci, and all the literals of B(i,y) (the binary encoding defined in Section 2.3). This
completes the construction.

To see the correctness of the reduction, suppose that ψ is satisfiable. We take a satisfying
assignment and use the same values for the x variables in φ. Now, for any assignment of
the y variables there will be an i such that all the literals in B(i,y) are true. Consider
the terms we added representing the clause Ci. One of them contains a true literal from
the original clause, so it is a satisfied term. For the other direction, if ∃x∀yφ(x,y) is true,
we use the same assignment for x in ψ. If some clause Ci of ψ is not satisfied, this would
imply that setting y to the assignment that agrees with B(i,y) would also make φ false, a
contradiction.

Observe that the primal graph of the formula φ becomes an independent set if we remove
the logm vertices corresponding to the variables of y. Thus, vc(φ) = O(logm) = O(logn).
Furthermore, the size of φ is linear in the size of ψ. Thus, if there exists an algorithm which

6 Treewidth with a Quantifier Alternation Revisited

can solve ∃∀SAT in time 22o(vc(φ))2o(|φ|) then, with the above reduction, this implies a 2o(n)

algorithm for 3-SAT. J

I Corollary 2. ∃∀SAT is NP-hard when restricted to instances with incidence graphs of
constant modular treewidth or clique-width.

Proof. We observe that in the incidence graph of the instances of Theorem 1 the universal
variables form a class of false twins. Contracting them to a single vertex results in a graph
with constant treewidth. J

I Theorem 3. There is no algorithm which, given an ∃∀3-SAT instance φ with n variables
can decide if φ is True in time 22o(twp(φ))2o(n), unless the ETH is false.

Proof. We build on the proof of Theorem 1. Recall that in that reduction we started from a
3-SAT instance ψ with n variables andm clauses and constructed an ∃∀SAT instance φ with
n existential variables, logm universal variables, such that all terms contain all universal
variables and exactly one existential variable. We will edit this instance to make the size
of each term at most 3, without affecting the value of φ and without increasing its primal
treewidth.

We perform the following modification: as long as there exists a term t of φ with size
greater than 3, we introduce to φ a new universally quantified variable z, remove t from φ

and replace it with two new terms. The first contains z and two of the literals of t, while
the second contains ¬z and the remaining literals of t. We repeat this until all terms have
size at most 3. It is not hard to see that this transformation does not affect the answer
(we performed the standard reduction from SAT to 3-SAT). Furthermore, it is not hard to
perform this transformation in such a way that every term of the resulting instance contains
at most 2 of the new z variables, or at most one existential variable and one z variable.

Let us now examine the primal treewidth of the modified instance. As previously, we
remove all the logm universal variables of φ. What remains is made up of the existential
variables and the universal z variables added while breaking up large terms. We observe
however, that all vertices corresponding to z variables have degree at most 2, because each
appears in only two terms, and each term may only contain either at most one other z
variable or one existential variable. Furthermore, among the z variables introduced while
breaking up a term t, there must now exist one with degree one, since one of them appears
in the same term as an existential variable. We now use the fact that deleting a leaf does not
change the value of a graph’s treewidth, and applying this rule repeatedly we can eventually
delete all the z variables. This only leaves the existential variables in the primal graph, and
these form an independent set. J

4 Algorithms

One surprising aspect of the lower bound given in Theorem 1 is that, if one takes into
account known double-exponential algorithms for ∃∀SAT parameterized by treewidth [2],
it indicates that ∃∀SAT has the same complexity parameterized by incidence treewidth,
primal treewidth, or primal vertex cover. This is unexpected, because primal vertex cover is
a significantly more restrictive measure than treewidth, and hence we would expect things
to be significantly easier for this parameter. One indication in this direction is given by the
fact that the lower bound for ∃∀3-SAT given in Theorem 3 does not apply to vertex cover.

In this section we give two algorithmic results that confirm that vertex cover is indeed
a much more algorithmically amenable parameter. We first show in Theorem 4 that the

M. Lampis, and V. Mitsou 7

complexity of QBF is double-exponential in the formula’s vertex cover for any number of
quantifier alternations. This is in sharp contrast with the case of treewidth, where it is
known that (under the ETH) the complexity of solving QBF rapidly degenerates into a
tower of exponentials as the number of quantifier alternations increases [20]. Second, we
show that there is a good reason why Theorem 3 cannot be extended to vertex cover, as the
complexity of ∃∀d-SAT for any fixed d is “only” single-exponential in the input formula’s
vertex cover raised to the d-th power.

Both of the algorithms we give are quite simple, and rely on the standard branching
procedure which can decide QBF in exponential time (hence both algorithms only need
polynomial space), together with the elementary observation that when working with a
CNF formula we can always discard a clause that is a proper superset of another clause
(or a term that is a superset of another term for DNFs). The key idea in both cases is to
measure progress as a function of the number of clauses the formula contains that use only
variables from the vertex cover. Let us also recall that the fixed-parameter tractability of
QBF parameterized by vertex cover was already shown in [9] as a corollary of a more general
algorithm using the notion of prefix pathwidth. However, the algorithm following from these
results is triple-exponential in the input formula’s vertex cover [18], while here we give an
algorithm which is much simpler and whose running time is optimal (under Theorem 1).

I Theorem 4. There is an algorithm that, given a QBF instance φ, decides φ in time
O∗(22O(vc(φ))).

Proof. We run the standard branching algorithm for quantified boolean formulas, where we
branch on the variables of φ in the order that they appear quantified. We prove that the
branching depth can be bounded by 3k + k, where k is the size of the primal vertex cover.
We assume that we are given an optimal vertex cover of the primal graph (otherwise, we
can find one in time 2k).

Let V be the set of variables and S ⊆ V be the variables corresponding to a vertex cover
of the primal graph (|S| = k). Let further C ′ be a set containing all possible clauses that
can be constructed using only variables from S. We observe that |C ′| ≤ 3k, as each variable
might appear positive, negative, or not appear in such a clause.

The essential reason that the standard branching algorithm works is that branching on
a variable x either decreases the size of the vertex cover (if x ∈ S) or adds to the formula
clauses of C ′ which are not already there. Indeed, since each clause of φ is represented by
a clique in the primal graph, for every clause c of φ there can be at most one variable that
doesn’t belong in S, so branching on a variable that doesn’t belong in S creates clauses in
C ′. The key observation now is that we should only branch on a variable x 6∈ S if it is going
to create clauses of C ′ that do not already belong in φ:
I Observation 1. If c, c′ are clauses that both belong in φ and c ⊇ c′, then the formula φ′
created by deleting c from φ is equivalent to φ.

Let us now describe the algorithm more formally. Let our quantified formula be φ =
Q1x1Q2x2 . . . Qnxnψ, where Qi is the ith quantifier. We define φT = φ[x1 = T] and φF =
φ[x1 = F]. In order to evaluate φ we shall first evaluate at least one of φT , φF (recursively)
and take their disjunction if Q1 = ∃ or conjunction if Q1 = ∀. We consider the following
cases.

If x1 appears only positive (resp. negative) in ψ then there is no need to branch on x1
as setting it to the suitable truth value depending on whether Q1 is existential or universal
simplifies the formula: if Q1 = ∃ then φ ≡ φT (resp. φ ≡ φF), whereas if Q1 = ∀ then
φ ≡ φF (resp. φ ≡ φT).

8 Treewidth with a Quantifier Alternation Revisited

On the other hand, if x1 appears both positive and negative, we argue that we only
branch if x1 ∈ S or if doing so creates at least one clause c′ of C ′ that doesn’t already
belong in ψ. It is clear that the branching depth should be bounded by 3k + k.

Let us describe the branching for Q1 = ∃ (the case Q1 = ∀ is similar). Step 1 is to
remove all the clauses c ∈ ψ which are supersets of some other clause c′ ∈ ψ (we can do this
because of Observation 1). Now, if x1 appears positive (resp. negative) in some clause c of
ψ, setting x1 = T (resp. x1 = F) makes c true. In this case c doesn’t appear in φT (resp.
φF) at all. If x1 appears negative (resp. positive) in c and we set x1 = T (resp. x1 = F),
then c is replaced in φT (resp. φF) by an equivalent clause c′, where c = c′ ∨ (¬)x.

Observe that none of φT , φF contains x1, so if x1 ∈ S then the primal vertex cover of ψ
is decreased by one. If x1 6∈ S, both branches φT , φF contain at least one positive and one
negative appearance of x1, thus they should each contain at least one clause c′ ∈ C ′ \ ψ (if
c = (¬)x1 ∨ c′ for some c′ ∈ C ′ ∩ ψ then Step 1 removes c from ψ).

Since the branching depth is 3k + k, the algorithm will run in time O∗(23k+k). J

I Theorem 5. For all fixed d ≥ 3 there exists an algorithm that decides an input ∃∀d-SAT
formula φ in time O∗(2O(vc(φ)d)).

Proof. The proof uses similar arguments as the proof of Theorem 4. There are two important
observations that need to be added: first, during the course of the execution of the standard
branching algorithm we never increase the size of any clause. Hence, if we started with an
instance of ∃∀d-SAT, we always maintain an instance of ∃∀d-SAT. Second, the set C ′ that
contains all terms that only use variables from the vertex cover now has size at most O(kd),
where k = vc(φ). To see this, observe that there are at most 2d

(
k
d

)
clauses of size exactly d

that use only variables from the vertex cover. Hence, whenever the algorithm is forced to
branch, it either decreases the vertex cover or increases the number of terms from C ′ in the
formula, giving the promised running time. J

5 Tight Bounds for Weighted Problems

In this section we consider two variations of ∃∀SAT that have recently attracted attention
in the parameterized complexity community: ∃k∀SAT and ∃∀kSAT. Our main results are
ETH-based lower bounds which provide evidence that the complexity of these two problems
is quite different.

We first consider ∃k∀SAT. This is a problem that easily admits an algorithm running in
time nk2O(twi(φ)): one could simply guess a weight k assignment for the existential variables
and then solve the remaining (single-quantifier) instance with standard algorithms. The
problem also admits an algorithm running in time (roughly) 22twi(φ) , simply by adapting the
algorithms given in [2] to only consider existential assignments of weight k. Our first result
is that neither of these algorithms can be significantly improved: any algorithm that runs
in time no(k) must have complexity double-exponential in treewidth (in fact, more strongly,
double-exponential in primal vertex cover). We also extend this result to ∃k∀3-SAT, as in
Section 3.

We then move on to ∃∀kSAT. For this problem it is possible to adapt the algorithm
of [2] to run in time (roughly) 2twi(φ)k . Informally, the reason for this is that the double-
exponential running time in the algorithm of [2] comes from the need to consider all subsets
of all possible assignments to universal variables in a bag. Here we only need to worry about
assignments of weight (at most) k, hence there are at most

(
twi(φ)
k

)
of them to consider. We

prove that obtaining a running time better than this would contradict the ETH, again even in

M. Lampis, and V. Mitsou 9

the case of vertex cover. Interestingly, we note that it is not immediate here to obtain similar
bounds for ∃∀k3-SAT, because the standard method to break down terms by introducing
universal variables does notnecessarily preserve the weight of universal assignments.

I Theorem 6. There is no algorithm which, given an ∃k∀SAT instance φ, can decide if φ
is True in time 22o(vc(φ)) |φ|o(k), unless the ETH is false.

Proof. We begin with a 3-SAT instance ψ with n variables and m clauses, and we first
explain how to produce from this an equivalent ∃kSAT instance ψ′ with k2n/k variables
and m + k clauses, for any k. We partition the variables x into k sets x1,x2, . . . ,xk of
n/k variables each (suppose without loss of generality that k divides n). Now, for each
i ∈ {1, . . . , k}, for each assignment of truth values to the variables of xi we construct a
variable that will appear in ψ′. Call the set of such variables x′, and we have |x′| = k2n/k.
For every clause Ci of ψ we construct a clause C ′i of ψ′ which contains all the variables of
x′ that agree with at least one of the literals of Ci. Finally, for each i ∈ {1, . . . , k} we add
a clause that contains all the variables that represent an assignment of xi. This completes
the construction, and we observe that ψ′ has m + k clauses in total. It is not hard to see
how a satisfying assignment of ψ can be transformed into a satisfying assignment of ψ′ that
sets exactly k variables to true: for each xi we set to true the unique variable of x′ that
represents its partial assignment, and set all other variables of x′ to false. The m clauses
that were constructed from clauses of ψ are satisfied, because we started with a satisfying
assignment of ψ, while the k remaining clauses are satisfied by definition. For the other
direction, suppose that we have a satisfying assignment to ψ′ which sets exactly k of the
x′ variables to True. The k additional clauses ensure that any satisfying assignment to ψ′
that sets at most k variables to true must select exactly one partial assignment for each
xi. We can therefore obtain an assignment to the variables of ψ from a weight-k satisfying
assignment to ψ′, and it is not hard to see that this assignment will satisfy ψ.

We now apply the construction of Theorem 1 to the weighted formula ψ′. Namely, we
introduce a set y of log(m + k) universal variables (assume without loss of generality that
m + k is a power of two), and construct for each clause C ′i of ψ′, for each of its literals lj
a term that contains lj and the literals of B(i,y). This completes the construction of the
∃k∀SAT instance φ. As in Theorem 1, there exists a satisfying assignment of weight k for
ψ′ if and only if the same assignment to the existential variables of φ makes the formular
true for all assignments to the universal variables.

We observe that, if the original 3-SAT formula had n variables, then |φ| = 2O(n/k) and
vc(φ) = O(logn). Thus, if there was an algorithm running in 22o(vc(|φ|) |φ|o(k) for ∃k∀SAT,
then this would give a 2o(n) algorithm for 3-SAT. J

I Corollary 7. There is no algorithm which, given an ∃k∀3-SAT instance φ, can decide if
φ is True in time 22o(twp(φ)) |φ|o(k), unless the ETH is false.

Proof. The proof is identical to that of Theorem 3, except we start with an instance pro-
duced by the reduction of Theorem 6. In particular, we again introduce a new universal
variable for each term of size larger than 3 and use it to break it down into two terms. The
arguments that we used to bound the primal treewidth in Theorem 3 also apply here. J

I Theorem 8. There is no algorithm which, given an ∃∀kSAT instance φ with n variables,
can decide if φ is True in time 2vc(φ)o(k)2o(n), unless the ETH is false.

Proof. We begin with a 3-SAT formula ψ with n variables and m clauses. Our aim is to
construct an ∃∀kSAT formula φ with vc(φ) = mO(1/k) and |φ| = O(n+m). Let M = m1/k,
and we assume without loss of generality that M is an integer.

10 Treewidth with a Quantifier Alternation Revisited

We construct φ as follows: let x be the set of variables of ψ; we retain these as the
existential variables of φ. We also introduce k disjoint sets of universal variables, each
of which contains exactly M distinct variables. We label these variables yj1,j2 , with j1 ∈
{0, . . . , k − 1} and j2 ∈ {0, . . . ,M − 1}.

Suppose that the clauses of ψ are numbered C0, . . . , Cm−1. For each clause Ci we do the
following: for each of its literals l we construct a term in φ that contains l. Consider now
the integer i written in base M ; this representation of i contains k digits, each between 0
and M − 1. We add to the term that contains l all variables yj1,j2 such that the j1-th digit
of i written in base M is j2. We repeat this process for all literals of Ci, and clauses of ψ.

To complete the construction, we add to ψ k additional terms: for each j1 ∈ {0, . . . , k−1}
we add the term (∧M−1

j2=0¬yj1,j2).
Let us now argue for the correctness of the reduction. If ψ has a satisfying assignment, we

use the same assignment to the existential variables of φ. We claim that any assignment of
weight k to the universal variables must make a term true. To see this, observe that because
of the k additional terms, we can assume that the assignment to the universal variables sets
for each j1 ∈ {0, . . . , k − 1} exactly one j2 ∈ {0, . . . ,M − 1} with yj1,j2 = 1. Consider now
any assignment to the universal variables with this property. We can now find an integer
i with the following property: when i is written in base M , for all j1 ∈ {0, . . . , k − 1}, if
the j1-th digit of i has value j2, then the assignment has set yj1,j2 = 1. The terms we
constructed for clause Ci have all their universal variables set to true, and each contains
one literal from Ci, hence at least one of these terms is true. It is not hard to see that the
converse direction follows with a similar reasoning.

For the running time bound, we note that the primal graph of φ becomes an independent
set if we remove the km1/k universal variables, hence vc(φ) = O(m1/k) and the lower bound
follows. J

6 Non-binary ∃∀CSP

In this section we consider the more general ∃∀CSP problem. The difference between this
problem and ∃∀SAT is that in ∃∀CSP the variables don’t necessarily have a boolean domain,
but may take values from some finite set Σ. As a result, that size of Σ must be factored
into the complexity. The algorithm of [2] runs in time (roughly) 2|Σ|twi(I) , for an ∃∀CSP
instance I, because it considers all possible subsets of all possible |Σ|twi(I) assignments to
the variables of a bag. In other words, the second exponent is linear in tw(I) log |Σ|. Our
main result is that this dependence is optimal, even for the more restricted case of vertex
cover, unless the ETH is false.

I Theorem 9. There is no algorithm which, given an ∃∀CSP instance I with n variables
and domain Σ, can decide if I is a Yes instance in time 2|Σ|o(vc(I)) |Σ|o(n), unless the ETH
is false.

Proof. We give a reduction in two steps, beginning from a 3-SAT formula ψ. First, we
construct from ψ a CSP instance I1 with alphabet Σ, and show that this instance cannot
be solved in time |Σ|o(n), where n is the number of variables of I1. We then construct from
I1 an instance I2 of ∃∀CSP for which we obtain the promised lower bound.

Suppose that ψ has n1 variables and m1 clauses. We partition its clauses into n =
dm1/ log7 |Σ|e groups, each containing at most log7 |Σ| clauses. For each one of these groups
we construct a variable in I1. Consider now a group of clauses and list all assignments of
the variables that appear in this group and satisfy all clauses of the group. There are at

M. Lampis, and V. Mitsou 11

most 7log7 |Σ| such assignments, since each clause has size at most three, and therefore at
most 7 satisfying assignments. As a result, we can make an injective mapping to values in
the domain Σ for the variable that represents this group of clauses in I1, from the set of
partial assignments that satisfy all the clauses. We now add some constraints to our CSP
instance to ensure that the assignment to ψ must be consistent. In particular, let x1, x2 be
two variables of I that represents groups of clauses of ψ that share some variables. We add a
constraint to I which only allows the variables x1, x2 to receive a pair of values from Σ such
that the corresponding partial assignments to the variables of ψ is consistent and satisfies
all the clauses of the two groups. This completes the construction. Since the new instance
has n = O(m1/ log |Σ|) variables, if there was an algorithm solving CSP in time |Σ|o(n) the
ETH would be false.

Let us now use I1 to produce an instance I2 of ∃∀CSP. We note that I1 has n variables
and therefore, since all constraints have arity two, at most m = O(n2) constraints. We
retain all variables of I1 as existential variables, and introduce a set of dlog(m|Σ|2)/ log |Σ|e
universal variables y. The main observation now is that the total number of distinct as-
signments to y is at least m|Σ|2. We can therefore define an injective mapping which, given
a constraint of I1 and an assignment to the variables of this constraint that falsifies the
constraint, produces an assignment to the variables of y. We now define the constraints of
I2 as follows: let x1, x2 be two variables involved in a constraint C of I1 and let (v1, v2) be
an assignment to x1, x2 that is not allowed by the constraint. Let v be the assignment to v
to which we have mapped the constraint C and its falsifying assignment (v1, v2). We add to
I2 the two following constraints: (x1 6= v1 ∧ y = v) and (x2 6= v2 ∧ y = v). We perform this
step for every falsifying assignment of every constraint. To complete the construction, for
every assignment v to y that is not mapped to, we add the constraint (y = v). We finally
note that, because every constraint involves at most dlog(m|Σ|2)/ log |Σ|e+ 1 variables, all
constraints can be explicitly described in polynomial time by listing all of their at most
O(m|Σ|2) satisfying assignments.

Let us now argue for correctness. If there is a satisfying assignment to I1, we select the
same assignment for the existential variables of I2. If the universal variables receive some
assignment that is not mapped to by a constraint of I1, then the new instance has a satisfied
constraint, because of the constraints of the form (y = v). Otherwise, the assignment to y
corresponds to a falsifying assignment (v1, v2) to a constraint C of I1. However, since we
started with a satisfying assignment to I1, either x1 6= v1 or x2 6= v2, so again at least one
constraint is satisfied. It is not hard to see that the converse direction follows with similar
arguments.

For the running time lower bound, we note that the primal graph of I2 has vertex cover
at most |y| = O(logm/ log |Σ|), from which the bound follows. J

References

1 A. Atserias and S. Oliva. Bounded-width QBF is pspace-complete. J. Comput. Syst. Sci.,
80(7):1415–1429, 2014.

2 H. Chen. Quantified constraint satisfaction and bounded treewidth. In ECAI, pages 161–
165. IOS Press, 2004.

3 B. Courcelle. The monadic second-order logic of graphs. i. recognizable sets of finite graphs.
Inf. Comput., 85(1):12–75, 1990.

4 M. Cygan, F. V. Fomin, L. Kowalik, D. Lokshtanov, D. Marx, M. Pilipczuk, M. Pilipczuk,
and S. Saurabh. Parameterized Algorithms. Springer, 2015.

12 Treewidth with a Quantifier Alternation Revisited

5 R. de Haan and S. Szeider. Compendium of parameterized problems at higher levels of
the polynomial hierarchy. Electronic Colloquium on Computational Complexity (ECCC),
21:143, 2014.

6 R. de Haan and S. Szeider. Fixed-parameter tractable reductions to SAT. In SAT, volume
8561 of Lecture Notes in Computer Science, pages 85–102. Springer, 2014.

7 R. de Haan and S. Szeider. Parameterized complexity classes beyond para-np. J. Comput.
Syst. Sci., 87:16–57, 2017.

8 H. Dell, E. J. Kim, M. Lampis, V. Mitsou, and T. Mömke. Complexity and approximability
of parameterized max-csps. In IPEC, volume 43 of LIPIcs, pages 294–306. Schloss Dagstuhl
- Leibniz-Zentrum fuer Informatik, 2015.

9 E. Eiben, R. Ganian, and S. Ordyniak. Using decomposition-parameters for QBF: mind
the prefix! In AAAI, pages 964–970. AAAI Press, 2016.

10 M. Frick and M. Grohe. The complexity of first-order and monadic second-order logic
revisited. Ann. Pure Appl. Logic, 130(1-3):3–31, 2004.

11 R. Ganian. Twin-cover: Beyond vertex cover in parameterized algorithmics. In IPEC,
volume 7112 of Lecture Notes in Computer Science, pages 259–271. Springer, 2011.

12 R. Ganian, P. Hlinený, J. Nesetril, J. Obdrzálek, P. O. de Mendez, and R. Ramadurai.
When trees grow low: Shrubs and fast MSO1. In MFCS, volume 7464 of Lecture Notes in
Computer Science, pages 419–430. Springer, 2012.

13 R. Impagliazzo and R. Paturi. On the complexity of k-sat. J. Comput. Syst. Sci., 62(2):367–
375, 2001.

14 R. Impagliazzo, R. Paturi, and F. Zane. Which problems have strongly exponential com-
plexity? J. Comput. Syst. Sci., 63(4):512–530, 2001.

15 M. Lampis. Algorithmic meta-theorems for restrictions of treewidth. Algorithmica,
64(1):19–37, 2012.

16 M. Lampis. Model checking lower bounds for simple graphs. Logical Methods in Computer
Science, 10(1), 2014.

17 D. Marx and V. Mitsou. Double-exponential and triple-exponential bounds for choosability
problems parameterized by treewidth. In ICALP, volume 55 of LIPIcs, pages 28:1–28:15.
Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik, 2016.

18 S. Ordyniak. Private communication, 2017.
19 S. Ordyniak, D. Paulusma, and S. Szeider. Satisfiability of acyclic and almost acyclic CNF

formulas. Theor. Comput. Sci., 481:85–99, 2013.
20 G. Pan and M. Y. Vardi. Fixed-parameter hierarchies inside PSPACE. In LICS, pages

27–36. IEEE Computer Society, 2006.
21 D. Paulusma, F. Slivovsky, and S. Szeider. Model counting for CNF formulas of bounded

modular treewidth. Algorithmica, 76(1):168–194, 2016.
22 D. Paulusma, F. Slivovsky, and S. Szeider. Model counting for CNF formulas of bounded

modular treewidth. Algorithmica, 76(1):168–194, 2016.
23 S. H. Sæther, J. A. Telle, and M. Vatshelle. Solving #sat and MAXSAT by dynamic

programming. J. Artif. Intell. Res., 54:59–82, 2015.
24 M. Samer and S. Szeider. Algorithms for propositional model counting. J. Discrete Al-

gorithms, 8(1):50–64, 2010.
25 M. Samer and S. Szeider. Constraint satisfaction with bounded treewidth revisited. J.

Comput. Syst. Sci., 76(2):103–114, 2010.
26 L. J. Stockmeyer. The polynomial-time hierarchy. Theor. Comput. Sci., 3(1):1–22, 1976.

	Introduction
	Definitions and Preliminaries
	Problem Definitions
	Graph Parameters
	Binary Representations

	Tight Bounds for SAT
	Algorithms
	Tight Bounds for Weighted Problems
	Non-binary CSP

