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Abstract

In a recent paper Soleimanfallah and Yeo proposed a kernelization algorithm
for Vertex Cover which, for any fixed constant c, produces a kernel of order 2k−c
in polynomial time. In this paper we show how their techniques can be extended
to improve the produced kernel to order 2k − c log k, for any fixed constant c.
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1. Introduction

A vertex cover of a graph G(V,E) is a set S ⊆ V such that all edges of E
have at least one endpoint in S. The subject of this paper is the Vertex Cover
problem which can be posed as follows: given a graph G and an integer k, does
there exist a vertex cover of G with at most k vertices?

Vertex Cover is one of the most fundamental and widely studied graph-
theoretic problems in theoretical computer science: it was one of Karp’s original
21 NP-complete problems, it has received a lot of attention in the context of
approximation algorithms and it is one of the flagship problems of the parame-
terized complexity community.

Here we investigate the problem from the parameterized point of view, and
specifically from the point of view of kernelization algorithms. A kernelization
algorithm is a polynomial-time algorithm which, given an instance of the prob-
lem (G, k) constructs an equivalent instance (G′, k′) with k′ ≤ k and |G′| ≤ f(k)
for some function f . Informally, kernelization algorithms are meant to capture
the practical concept of data reduction and simplification rules and we would
like to design such algorithms with f(k) being as small as possible. We call
f(k) the size of the produced kernel. For more information on parameterized
complexity and kernelization algorithms see [7, 11].

For Vertex Cover an algorithm that produces a kernel of size 2k has long
been known (see [2]). It is strongly believed that this is asymptotically the best
possible: Chen et al. [1] show that if there exists a kernelization algorithm that
produces a kernel of size (2− ε)k which is also a subgraph of the original graph
then P=NP. Also, assuming the Unique Games Conjecture it is not possible
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to approximate Vertex Cover with a factor better than 2 in polynomial time
([8]). In related work it is shown that it is not possible to produce a kernel with
O(k2−ε) edges unless the polynomial hierarchy collapses [5].

The above motivate an investigation of possible kernelization algorithms that
would produce kernels of order 2k − g(k) for some function g(k) = o(k). It is
observed in [3] that a kernel of order 2k − 1 is possible and more recently this
was improved to a kernel of order 2k − c, for any fixed integer constant c by
Soleimanfallah and Yeo [13]. In this paper we continue this line of research,
obtaining a kernel of order 2k − c log k.

The work of Soleimanfallah and Yeo relies heavily on classical work by
Nemhauser and Trotter [10]. With that as a starting point Soleimanfallah and
Yeo reduce the problem to that of deciding the satisfiability of a collection of
roughly kc 2-SAT instances. This essentially places a limit on the best result
that can be achieved, since if c is some non-constant function of k, because
k can be Θ(n) in some instances, we would get an algorithm requiring super-
polynomial time.

Our main contribution here is to observe that rather than having to solve
kc instances of 2-SAT we can reduce the problem to that of deciding whether a
2-SAT formula can be made satisfiable by deleting at most c variables. Then,
rather than using the trivial algorithm of checking all sets of variables of size c
we rely on the seminal result of Razgon and O’Sullivan [12] to solve the problem
in O∗(15c)1. Thus, we obtain a polynomial-time algorithm not only when c is
a fixed-constant but also when c is Θ(log k).

2. Preliminaries

We will use G(V,E) to denote the undirected input graph, n to denote its
order and m to denote its size. If V ′ ⊆ V we will denote by G[V ′] the subgraph
of G induced by the vertices of V ′. We will write vc(G) to denote the size of a
minimum vertex cover of the graph G.

Our approach will follow steps very similar to Soleimanfallah and Yeo [13].
First, we need the following theorem which simplifies the graph by producing a
smaller instance induced by the vertices of a set V0.

Theorem 1. (Nemhauser and Trotter [10])
There is an O(m

√
n) time algorithm which given a graph G computes two

disjoint subsets of vertices of G, V0, V1, such that vc(G) = vc(G[V0]) + |V1| and
vc(G[V0]) ≥ |V0|/2.

Soleimanfallah and Yeo [13] also prove the following structural lemma:

Lemma 1. (Soleimanfallah and Yeo [13])
If G is a graph, V0, V1 as in Theorem 1 and M is a maximum matching of

G[V0] then vc(G[V0]) ≥ |V0| − |M |.

1Faster algorithms for this problem have recently been proposed ([4]), but for our purposes
here any singly-exponential FPT algorithm is sufficient
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We will also need to use the following result:

Theorem 2. (Razgon and O’Sullivan [12])
Given a 2-SAT formula φ on n variables there exists an algorithm that de-

cides if φ can be made satisfiable by deleting at most k clauses in time O(15k ·
nO(1)).

In fact, we will need a slight variation of this result: we will rely on an
algorithm of the same running time that decides if a 2-SAT formula can be
made satisfiable by deleting at most k variables. The fact that Theorem 2
implies the existence of such an algorithm was already observed by Marx and
Razgon [9]. We give the proof here for the sake of completeness.

Theorem 3. (Marx and Razgon [9])
Given a 2-SAT formula φ on n variables there exists an algorithm that de-

cides if φ can be made satisfiable by selecting a set of at most k variables and
deleting all the clauses that contain any of these variables, in time O(15k ·nO(1)).

Proof. Let x1, . . . , xn be the variables of φ. We construct a new formula φ′ as
follows: we start with φ and introduce n new variables y1, . . . , yn. We replace
every occurence of a literal ¬xi with the literal yi. Finally, we add to the formula
the clauses (¬xi ∨ ¬yi) for all i (call these the consistency clauses).

We claim that φ can be made satisfiable by deleting k variables iff φ′ can be
made satisfiable by deleting k clauses. If φ can be made satisfiable by deleting
some variables, for each such variable xi we delete the clause (¬xi ∨ ¬yi) from
φ′ and set both xi and yi to true, satisfying all the clauses where xi appears in
φ. For the remaining variables we use in φ′ the same assignment as in φ and
φ′ is satisfied. If φ′ can be made satisfiable by deleting k clauses, then it can
be made satisfiable by deleting k of the added consistency clauses. To see this,
suppose that φ′ is made satisfiable by deleting one of the other clauses. Surely,
both of its variables are set to false (otherwise the clause need not be deleted).
We set one of them to true and delete its corresponding consistency clause. This
cannot affect any of the other clauses, since all variables appear positively in
them, and it cannot affect any other consistency clauses since they all contain
different variables.

3. A Kernel of Order 2k − c log k

Here we give a proof of the improved kernel. This proof follows an outline
similar to the proof of the main result of Soleimanfallah and Yeo [13] (in fact we
try to use the same notation as much as possible), except that the final reduction
is to Almost 2-SAT, rather than a large number of instances of 2-SAT.

Theorem 4. For all c > 0 there exists a polynomial time algorithm that reduces
any instance (G, k) of vertex cover to an instance of order 2k − c log k.
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Proof. First, apply the algorithm of Theorem 1 to the input graph to produce
the two sets V0, V1. Set k′ = k−|V1|. It now follows that the instance (G[V0], k′)
has the same answer as the original instance. If |V0| ≤ 2k′−c log k′ ≤ 2k−c log k
then we have a kernel and we are done. So, in the remainder we will show that
if |V0| > 2k′ − c log k′ then we can compute the correct answer in polynomial
time. Since vc[G∗] ≥ |V0|/2 we may also assume that |V0| ≤ 2k′, otherwise we
can reject immediately.

We will use G∗ to denote G[V0] and let M = {u1v1, u2v2, . . . , u|M |v|M |} be
a maximum matching of G∗ (such a matching M can be found in polynomial
time [6]). By Lemma 1 we have that vc(G∗) ≥ |V0| − |M |. Thus, if |M | ≤
|V0|−c log k′

2 then vc(G∗) ≥ |V0|+c log k′
2 . Because |V0| > 2k′ − c log k′ this means

that vc(G∗) > k′. So if |M | ≤ |V0|−c log k′
2 we can immediately reject. Thus,

from now on, we assume that |M | > |V0|−c log k′
2 . We may also assume that

|M | ≤ k′, because otherwise we can again reject. Let X = {x1, . . . , x|X|} be the
set of vertices not matched by M .

We will now construct a 2-SAT formula. It will consist of variables of two
kinds, call them zi and yi. The informal meaning of the variables zi will be
to encode which of the two endpoints of an edge of M is included in a vertex
cover, while the variables yi will encode whether a vertex of X is included in
the vertex cover.

The construction is as follows: for each edge uivi ∈ M we define a variable
zi and for each vertex xi ∈ X we define a variable yi. For each edge of G∗

connecting ui to vj we construct the clause (zi ∨ ¬zj). For each edge of the
form uiuj we construct the clause (zi ∨ zj) and for each edge of the form vivj
we construct the clause (¬zi ∨ ¬zj). Finally, for each edge of the form xiuj we
construct the clause (yi ∨ zj) and for each edge of the form xivj we construct
the clause (yi ∨ ¬zj). We also add to the formula, for each vertex xi ∈ X the
clause (¬yi). This completes the construction; observe that we have added a
clause for each non-matching edge of G∗, since there are no edges connecting
two vertices of X (this would contradict the maximality of M).

It is not hard to see that the 2-SAT formula we have constructed is satisfiable
iff there exists a vertex cover of size |M |. Furthermore, we will show a stronger
connection: G∗ has a vertex cover of size |M |+ l if there exist l variables in our
formula such that deleting all the clauses which contain them makes the formula
satisfiable. To see this, suppose that there exists a vertex cover of size |M |+ l
and that it contains l1 vertices of X and both of the endpoints of l2 of the edges
of M (clearly l = l1 + l2). We simply remove the l variables that correspond
to these edges and vertices from the formula. We then set all the remaining yi
variables to false and give values to the zi variables according to the informal
meaning we described. This satisfies the formula, and it is not hard to see
that the converse direction follows from a similar argument. More specifically,
suppose that there exists a satisfying assignment for the formula after deleting
l variables. We construct a vertex cover as follows: for each variable yi that was
deleted we include the corresponding vertex xi in the cover; for each variable zi
that was deleted we include both ui and vi in the cover; finally for each of the
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non-deleted variables zi we include in the cover either ui or vi, depending on
whether zi is set to true or false in the satisfying assignment respectively.

Since |V0| > 2k′ − c log k′ and |M | > |V0|−c log k′
2 we have |M | > k′ − c log k′

therefore k′−|M | < c log k′. Using the above reduction, we set l = k′−|M | and
ask if the produced formula can be made satisfiable by removing l variables.
The algorithm of Theorem 3 gives an answer in O∗(15l) = k′O(c), which is
polynomial time for every fixed constant c. The 2-SAT algorithm will accept iff
there is a vertex cover of size at most |M |+ l = k′.
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