Trading Time for Approximation

Michael Lampis

Université Paris Dauphine

MTA SZTAKI – Sep 21 2016
Motivation – Sub-Exponential Approximation

(50 years in a slide)
Motivation – Sub-Exponential Approximation

(50 years in a slide)

- Efficient = Poly-time ('60s)

Jack Edmonds Juris Hartmanis Richard Stearns
Motivation – Sub-Exponential Approximation

(50 years in a slide)

- Efficient = Poly-time ('60s)
- Everything is NP-hard!(*) ('70s)

Stephen Cook Richard Karp Garey & Johnson
Motivation – Sub-Exponential Approximation

(50 years in a slide)

- Efficient = Poly-time (’60s)
- Everything is NP-hard!* (*’70s)
- So, we should approximate (’80s)

David Johnson V. Vazirani Williamson&Shmoys
Motivation – Sub-Exponential Approximation

(50 years in a slide)

- Efficient = Poly-time ('60s)
- Everything is NP-hard!(*) ('70s)
- So, we should approximate ('80s)
- Everything is APX-hard!(*) ('90s)

Christos Papadimitriou Sanjeev Arora Johan Håstad
(50 years in a slide)

- Efficient = Poly-time ('60s)
- Everything is NP-hard!(*) ('70s)
- So, we should approximate ('80s)
- Everything is APX-hard!(*) ('90s)
- More than poly-time? Everything ETH-hard ('00s)
Motivation – Sub-Exponential Approximation

(50 years in a slide)

- Efficient = Poly-time ('60s)
- Everything is NP-hard!(*) ('70s)
- So, we should approximate ('80s)
- Everything is APX-hard!(*) ('90s)
- More than poly-time? Everything ETH-hard ('00s)

Bottom line:

- Most problems hard to solve exactly in $2^{o(n)}$ time
- Most problems hard to approximate in $n^{O(1)}$ time
- → Perhaps we can approximate in $2^{o(n)}$ time?
- More broadly:
 - Does a little extra time give much better approximation?
 - Is a good approximation much faster than solving exactly?
Dead on Arrival?

- Better than $3/2$ for TSP, $4/3$ for Max-3-DM, $7/8$ for Max-3-SAT, ... , in sub-exponential time?
Dead on Arrival?

- Better than $3/2$ for TSP, $4/3$ for Max-3-DM, $7/8$ for Max-3-SAT, \ldots, in sub-exponential time?

Probably won’t work

(at least for Max-3-SAT)
• Better than $3/2$ for TSP, $4/3$ for Max-3-DM, $7/8$ for Max-3-SAT, . . . , in sub-exponential time?

Almost-linear PCPs (Moshkovitz & Raz) and P-time hardness (Håstad) give tight inapproximability for Max-3-SAT even for $2^{n^{1-\varepsilon}}$ time.

(Credit: Dana Moshkovitz)
Dead on Arrival?

- Better than $3/2$ for TSP, $4/3$ for Max-3-DM, $7/8$ for Max-3-SAT, . . . , in sub-exponential time?

If this is the “normal” behavior of APX problems, what’s the point of sub-exponential approximation?

- Is this the “normal” behavior?
- What about problems outside APX?
 - Independent Set?
 - Set Cover?
- **What else** can we use the extra time for? (if anything)
Approximations for **Hard** Problems
Joint work with:

Edouard Bonnet

Vangelis Paschos

“Time-Approximation Trade-Offs for Inapproximable Problems”,
STACS ’16
Very Hard Problems

- Consider problems which are really hard to approximate in polynomial time.
- Does extra time at least help with these?
Very Hard Problems

- Consider problems which are really hard to approximate in polynomial time.
- Does extra time at least help with these?
- Example: Independent Set

Approximation ratio in poly time $n^{1-\epsilon}$

No $2^{o(n)}$ exact algorithm
Consider problems which are really hard to approximate in polynomial time.

Does extra time at least help with these?

Example: Independent Set

Simple r-approximation in $2^{n/r}$
Very Hard Problems

- Consider problems which are really hard to approximate in polynomial time.
- Does extra time at least help with these?
- Example: Independent Set

Randomly sample n/r vertices, find their Max IS
Very Hard Problems

- Consider problems which are **really hard** to approximate in polynomial time.
- Does extra time at least help with these?
- Example: Independent Set

Randomly sample n/r vertices, find their Max IS
Very Hard Problems

- Consider problems which are **really hard** to approximate in polynomial time.
- Does extra time at least help with these?
- Example: Independent Set

Randomly sample $\frac{n}{r}$ vertices, find their Max IS
Very Hard Problems

- Consider problems which are really hard to approximate in polynomial time.
- Does extra time at least help with these?
- Example: Independent Set

- Simple r-approximation in $2^{n/r}$
Consider problems which are really hard to approximate in polynomial time.

Does extra time at least help with these?

Example: Independent Set

For any $0 < r < \sqrt{n}$ there is no r-approximation for IS in time $2^{(n/r)^{1-\epsilon}}$.

[Chalermsook, Laekhanukit, Nanongkai] (FOCS’11)
Consider problems which are really hard to approximate in polynomial time.
Does extra time at least help with these?
Example: Independent Set

Proof idea: Reduce 3-SAT with \(n \) vars to IS with \(rn \) vertices.
Either \(\text{OPT} \approx rn \) or \(\text{OPT} \approx n \).
Very Hard Problems

- Consider problems which are really hard to approximate in polynomial time.
- Does extra time at least help with these?
- Example: Independent Set

Can we completely determine the trade-off curve for other problems?

- How much time do we need for r-approximation?
- What is the best approximation in time T?
Theorem: For any parameter $r > 0$, there is no r-approximation for Max Induced Path running in time $2^{o(n/r)}$.

Problem: Find maximum number of vertices that induce a path.
Theorem: For any parameter $r > 0$, there is no r-approximation for Max Induced Path running in time $2^{o(n/r)}$.

Reduction from 3-SAT
Theorem: For any parameter $r > 0$, there is no r-approximation for Max Induced Path running in time $2^{o(n/r)}$.

Reduction from 3-SAT
One node for every clause assignment
Extra edges for inconsistent assignments
Theorem: For any parameter $r > 0$, there is no r-approximation for Max Induced Path running in time $2^{o(n/r)}$.

Reduction from 3-SAT
One node for every clause assignment
Extra edges for inconsistent assignments
Consistent Global Assignment \rightarrow Induced Path
Theorem: For any parameter $r > 0$, there is no r-approximation for Max Induced Path running in time $2^{o(n/r)}$.
Theorem: For any parameter $r > 0$, there is no r-approximation for Max Induced Path running in time $2^{o(n/r)}$.

Take r copies
Assignment \rightarrow Induced Path
Size $= rn$
Otherwise $\leq n$
Graph size $= O(rn)$
Theorem: For any parameter \(r > 0 \), there is no \(r \)-approximation for Max Induced Path running in time \(2^{o(n/r)} \).

Theorem: For any parameter \(r > 0 \), there is an \(r \)-approximation for Max Induced Path running in time \(r^{O(n/r)} \).

Proof: Try out all subsets of size \(\leq r \).
Theorem: For any parameter $r > 0$, there is no r-approximation for Max Induced Path running in time $2^{o(n/r)}$.

Theorem: For any parameter $r > 0$, there is an r-approximation for Max Induced Path running in time $r^{O(n/r)}$.

Can we make these match?
Theorem: For any parameter $r > 0$, there is no r-approximation for Max Minimal VC running in time $2^{(n/r^2)^{1-\epsilon}}$.

Theorem: For any parameter $r > 0$, there is an r-approximation for Max Minimal VC running in time $2^{O(n/r^2)}$.
Theorem: For any parameter \(r > 0 \), there is no \(r \)-approximation for Max Minimal VC running in time \(2^{\frac{n}{r^2}} \).

Theorem: For any parameter \(r > 0 \), there is an \(r \)-approximation for Max Minimal VC running in time \(2^{O(n/r^2)} \).
Summary for hard problems

- Extra time can buy us much better approximation!
 - But only for really hard problems.
- We can completely determine the optimal trade-off!
 - But only for really hard problems.
- Can the extra time buy us anything else?
Trading Time for Generality
Joint work with:

Dimitris Fotakis
Vangelis Paschos

“Sub-Exponential Approximation Schemes for CSPs: from Dense to Almost-Sparse”, STACS ’16
An island of Tractability

• We **cannot** get better than $7/8$ for Max-3-SAT in sub-exp time (under ETH).
• We will therefore try to get something else:

An island of tractability:

• Max-k-CSP admits a PTAS (a $(1 - \epsilon)$-approximation for all $\epsilon > 0$) for **dense** instances
• (Arora, Karger, Karpinski '99), (de la Vega '96)
An island of Tractability

- We **cannot** get better than 7/8 for Max-3-SAT in sub-exp time (under ETH).
- We will therefore try to get something else:

An island of tractability:

- Max-k-CSP admits a PTAS (a \((1 - \epsilon)\)-approximation for all \(\epsilon > 0\)) for **dense** instances
- (Arora, Karger, Karpinski ’99), (de la Vega ’96)
An island of Tractability

- We **cannot** get better than 7/8 for Max-3-SAT in sub-exp time (under ETH).
- We will therefore try to get something else:

An island of tractability:

- Max-k-CSP admits a PTAS (a $(1 - \epsilon)$-approximation for all $\epsilon > 0$) for **dense** instances
- (Arora, Karger, Karpinski ’99), (de la Vega ’96)

Strategy: We use our extra time to extend this island of tractability.
Basic scheme (Max Cut)

We are given a dense graph for which we want to find a large cut.
Randomly select a “sample” of its vertices
Basic scheme (Max Cut)

Guess their correct partition
For every vertex outside the sample, examine its neighbors in the sample
Basic scheme (Max Cut)

Greedily set its value depending on this neighborhood
Basic scheme (Max Cut)

- The sample we select has size $O(\log n)$ (hidden constants depend on degree and ϵ)
- \rightarrow running time $n^{O(1)}$ (will try all partitions of sample)
Basic scheme (Max Cut)

- The sample we select has size $O(\log n)$ (hidden constants depend on degree and ϵ)
- \(\Rightarrow\) running time $n^{O(1)}$ (will try all partitions of sample)

Why this works (intuitively):
- Because graph is dense \(\Rightarrow\) every vertex outside sample S has many neighbors in S
- \(\Rightarrow\) examining $N(u) \cap S$ is (whp) a good representation of $N(u)$ in the optimal solution
- If a vertex in $V \setminus S$ has $>> 50\%$ of its neighbors on one side in the optimal solution, it will (whp) have $>> 50\%$ of its neighbors on that side in S

(de la Vega ’96)
Sub-exponential Extension (Max Cut)

Summary of algorithm:

- Estimate the neighborhood partitions using a sample
 - How can we do this if a graph is sparse?
- The rest works as previously...
Sub-exponential Extension (Max Cut)

Summary of algorithm:
- Estimate the neighborhood partitions using a sample
 - How can we do this if a graph is sparse?
- The rest works as previously...

Main idea: **Use larger sample**
Summary of algorithm:
- Estimate the neighborhood partitions using a sample
 - How can we do this if a graph is sparse?
- The rest works as previously...

Main idea: **Use larger sample**
- Suppose graph has average degree $\Delta = n^\delta$
- We sample $\frac{n \log n}{\Delta} = n^{1-\delta} \log n$ vertices
- Running time: $\approx 2^{n^{1-\delta}}$
Sub-exponential Extension (Max Cut)

Summary of algorithm:
- Estimate the neighborhood partitions using a sample
 - How can we do this if a graph is sparse?
- The rest works as previously...

Main idea: **Use larger sample**
- Suppose graph has average degree $\Delta = n^\delta$
- We sample $\frac{n \log n}{\Delta} = n^{1-\delta} \log n$ vertices
- Running time: $\approx 2^{n^{1-\delta}}$
- Can be extended to Max-k-CSP!
- If $n^{k-1+\delta}$ clauses $\rightarrow 2^{n^{1-\delta}}$ time
Trading Time for Approximation

Complexity/Density trade-off for Max-\(k\)-CSP

- Time as a function of Density
 - \(2^n\) for poly(n)
 - \(n^{k-1}\) to \(n^k\)

Summary – with a picture
Possible Improvements? Faster? More general?
Both are tight! (under ETH)
Parameterized Approximation
General Approach

- Parameterized Complexity == Trading Time for Generality
- General question: What is the best trade-off curve?
 - $n^k \text{ vs. } 2^k$
General Approach

- Parameterized Complexity == Trading Time for Generality
- General question: What is the best trade-off curve?
 - n^k vs. 2^k

Does the trade-off curve become (much) better if we allow $(1 + \epsilon)$ error?
Win/Win – Max-SAT

Joint work with:

Holger Dell
Eunjung Kim
Valia Mitsou
Tobias Moemke

“Complexity and Approximability of Parameterized Max-CSPs”,
IPEC ’15

Trading Time for Approximation
Problem: Max-SAT with structural graph parameters

- Solvable in 2^k for treewidth
- Needs n^k for clique-width
- (APX-hard in general)
- **Goal**: Faster algorithm for more general case (clique-width), for $(1 + \epsilon)$-approximation error.
Algorithmic Strategy: **Win/Win**
Algorithmic Strategy: **Win/Win**

- If (almost) all clauses large \rightarrow **Easy**!
 - Set everything randomly.
Algorithmic Strategy: **Win/Win**

- If (almost) all clauses large \rightarrow **Easy**!
- If (almost) all clauses small \rightarrow **Easy**!
 - Instance has small treewidth.
Algorithmic Strategy: **Win/Win**

- If (almost) all clauses large → **Easy!**
- If (almost) all clauses small → **Easy!**
- If many large and many small → Reduce to previous cases
 - There exists variable appearing overwhelmingly in large clauses.
 - Set it randomly, repeat.
Algorithmic Strategy: **Win/Win**

- If (almost) all clauses large \rightarrow **Easy!**
- If (almost) all clauses small \rightarrow **Easy!**
- If many large and many small \rightarrow Reduce to previous cases

- Bottleneck: FPT algorithm for treewidth (small clause case)
- $(1 + \epsilon)$-approximation
- Running time: $2^{O(k)}$, where constant depends on ϵ
- **Contrast**: Exact algorithm needs n^k.
Joint work with:

Julien Lesca Florian Sikora
FPT Rounding – Ordered Weighted Assignment

- n agents
- n items
- Each agent has different utility for each item
- Maximize **Social Welfare** (not necessarily sum)
FPT Rounding – Ordered Weighted Assignment

- \(n \) agents
- \(n \) items
- Each agent has different utility for each item
- Maximize **Social Welfare** (not necessarily sum)
FPT Rounding – Ordered Weighted Assignment

- n agents
- n items
- Each agent has different utility for each item
- Maximize **Social Welfare** (not necessarily sum)
Usual objective: Maximize sum of utilities
- Maximum Matching (∈ P)
Usual objective: Maximize sum of utilities
- Maximum Matching \((\in P) \)

More equitable objective: Maximize min utility
- Guess min utility, Perfect Matching \((\in P) \)
• Usual objective: Maximize sum of utilities
 - Maximum Matching (∈ P)
• More equitable objective: Maximize min utility
 - Guess min utility, Perfect Matching (∈ P)

Something between the two extremes?
Objective: Maximize the total utility of the bottom 50% of agents

- Strikes a balance between two extremes
Objective: Maximize the total utility of the bottom 50% of agents

- Strikes a balance between two extremes
- Solvable in P
 - Guess max utility in bottom 50%
 - Reduce higher utilities
 - Maximum matching
Objective: Maximize the total utility according to **social priorities**

<table>
<thead>
<tr>
<th>Position</th>
<th>0-20%</th>
<th>20-40%</th>
<th>40-60%</th>
<th>60-80%</th>
<th>80-100%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Weight</td>
<td>14</td>
<td>12</td>
<td>7</td>
<td>5</td>
<td>1</td>
</tr>
</tbody>
</table>

- Algorithm for k groups
 - Guess max utility in each group
 - Adjust utilities
 - Maximum matching

- Time complexity: n^{2k}
- Optimal! (no $n^{o(k)}$)
Basic idea: “Round down” large utilities to decrease search space

- Suppose all utilities $n^{O(1)}$ (wlog)
- Replace each value u_{ij} with

\[
(1 + \epsilon)^{\left\lfloor \log_{1+\epsilon} u_{ij} \right\rfloor}
\]
Basic idea: “Round down” large utilities to decrease search space

- Suppose all utilities $n^{O(1)}$ (wlog)
- Replace each value u_{ij} with

$$(1 + \epsilon)^{\lfloor \log_{1+\epsilon} u_{ij} \rfloor}$$

- No value distorted by more than a $(1 + \epsilon)$ factor!
- Now only $\log_{1+\epsilon} n$ possible values to guess
Basic idea: “Round down” large utilities to decrease search space

- Suppose all utilities $n^{O(1)}$ (wlog)
- Replace each value u_{ij} with

 $\left(1 + \epsilon\right)^{\lceil \log_{1+\epsilon} u_{ij} \rceil}$

- No value distorted by more than a $(1 + \epsilon)$ factor!
- Now only $\log_{1+\epsilon} n$ possible values to guess

- Running time: $O((\log n)^k \cdot \text{poly}(n))$
- $(1 + \epsilon)$-approximation!

- (Reminder:) Exact algorithm needs n^{2k}
Joint work with:

Eric Angel
Evripidis Bampis
Bruno Escoffier

“Parameterized Power Vertex Cover”,
WG ’16
Vertex Cover: Select vertices that touch all edges
Vertex Cover: Select vertices that touch all edges
Power: Some edges **demand more power** to be covered
Power: Some edges **demand more power** to be covered
Power: Some edges demand more power to be covered
Power Vertex Cover: Must decide which vertices get power

... and how much
Power Vertex Cover: Must decide which vertices get power
... and how much
Formal Definition:

\[
\min \sum p(v) \\
\max\{p(u), p(v)\} \geq d((u, v)) \quad \forall (u, v) \in E
\]
Motivation

- Applications to communication networks
Motivation

- Applications to communication networks ??
Motivation

- Applications to communication networks ??
- Interesting Generalization of Vertex Cover
 - Note: added **non-linear** constraint
 \[
 \max \{p(u), p(v)\} \geq d((u, v)) \quad \forall (u, v) \in E
 \]
 - Compare: \(p(u) + p(v) \geq d((u, v)) \)
 - Is this problem really different/harder from Vertex Cover?
 - Admits 2 approximation
 - In P for bipartite graphs [Angel et al. ISAAC ’15]
• Applications to communication networks ??
• Interesting Generalization of Vertex Cover
 • Note: added non-linear constraint
 \[\max\{p(u), p(v)\} \geq d((u, v)) \quad \forall (u, v) \in E \]
 • Compare: \[p(u) + p(v) \geq d((u, v)) \]
• Is this problem really different/harder from Vertex Cover?
 • Admits 2 approximation
 • In P for bipartite graphs [Angel et al. ISAAC ’15]
• What about Parameterized algorithms?
 • Vertex Cover is flagship problem
 • Compare: Weighted VC, Capacitated VC, Connected VC, …
We show hardness for treewidth \(n^t \) lower bound.

Consider the class \text{Trivial} + \(t \) vertices, result still holds.
Theorem: There is no $n^{o(t)}$ algorithm for PVC (under ETH)
Theorem: There is no $n^{o(t)}$ algorithm for PVC (under ETH)
Proof: Reduction from Multi-Colored Clique
Theorem: There is no $n^{o(t)}$ algorithm for PVC (under ETH)

Proof: Reduction from Multi-Colored Clique
Theorem: There is no $n^{o(t)}$ algorithm for PVC (under ETH)

Proof: Reduction from Multi-Colored Clique

The only thing that matters is the power level of just k vertices!
Treewidth doesn’t work!
Treewidth doesn’t work!

Actually it’s not so bad...
Easy **Exact** Algorithms

- $(\Delta + 1)^{tw} n$ time
- $(M + 1)^{tw} n$ time (M=maximum weight)

Main observation: Each vertex has limited number of reasonable power values.

(These running times are optimal)
Easy **Exact** Algorithms

- \((\Delta + 1)^{tw} n\) time
- \((M + 1)^{tw} n\) time \((M=\text{maximum weight})\)

Main observation: Each vertex has limited number of reasonable power values.

(These running times are optimal)

Can we do better?
FPT Approximation Scheme

- $(M + 1)^{tw} n$ time to solve exactly
FPT **Approximation** Scheme

- \((M + 1)^{tw}n\) time to solve exactly
- Main idea: **Rounding**
 - Instead of power value \(p\) for each vertex store \([\log_{1+\epsilon}(p)]\)
 - At most \(\log M / \log(1 + \epsilon)\) possible values
 - At most a \((1 + \epsilon)\) factor from correct value
 - If \(M = n^{O(1)}\) running time \((\log n / \epsilon)^{tw}\)
 - (If not, easy: think Knapsack)
FPT Approximation Scheme

- \((M + 1)^{tw} n\) time to solve exactly
- Main idea: Rounding
 - Instead of power value \(p\) for each vertex store \([\log_{1+\epsilon}(p)]\)
 - At most \(\log M/\log(1 + \epsilon)\) possible values
 - At most a \((1 + \epsilon)\) factor from correct value
 - If \(M = n^{O(1)}\) running time \((\log n/\epsilon)^{tw}\)
 - (If not, easy: think Knapsack)

Bottom line: Fast FPT algorithm for W-hard problem, only \((1 + \epsilon)\) error!
(This is part of a more general technique [L. ICALP ’14])
Huge but Soft Lower Bounds
Joint work with:

Dimitris Fotakis

Vangelis Paschos
Temporal Spanning Trees

Input: T copies of the same graph, with different edge weights
Output: T spanning trees
Objective: Min weight cost + buying cost
Temporal Spanning Trees

Input: T copies of the same graph, with different edge weights
Output: T spanning trees
Objective: Min weight cost + buying cost

Example: $T = 3$, buy = 1
Temporal Spanning Trees

Input: T copies of the same graph, with different edge weights
Output: T spanning trees
Objective: Min weight cost + buying cost

Example: $T = 3$, buy = 1
Temporal Spanning Trees

Input: T copies of the same graph, with different edge weights
Output: T spanning trees
Objective: Min weight cost + buying cost

Example: $T = 3$, buy = 1
Cost = 8

Trading Time for Approximation
Temporal Spanning Trees

Input: \(T \) copies of the same graph, with different edge weights
Output: \(T \) spanning trees
Objective: Min weight cost + buying cost

Example: \(T = 3 \), buy = 1
Cost = 8 + 8 + 1
Temporal Spanning Trees

Input: \(T \) copies of the same graph, with different edge weights
Output: \(T \) spanning trees
Objective: Min weight cost + buying cost

Example: \(T = 3 \), buy = 1
Cost = 8 + 8 + 1 + 8 + 1 = 26
Temporal Spanning Trees

Input: \(T \) copies of the same graph, with different edge weights
Output: \(T \) spanning trees
Objective: Min weight cost + buying cost

Example: \(T = 3 \), buy = 1
Cost = 8 + 10 + 0 + 8 + 0 = 26
Temporal Spanning Trees

Input: T copies of the same graph, with different edge weights
Output: T spanning trees
Objective: Min weight cost + buying cost

Example: $T = 3$, buy = 1
Cost = $8 + 10 + 0 + 8 + 0 = 26$

- In P when buy = 0
- In P when buy = ∞
Temporal Spanning Tree – APX-hardness

APX-hardness
Gadget that implements NAND constraint
Choices represented by “internal” edges used
Temporal Spanning Tree – APX-hardness

APX-hardness
Gadget that implements NAND constraint
Choices represented by “internal” edges used
Both used (BAD)
Temporal Spanning Tree – APX-hardness

APX-hardness
Gadget that implements NAND constraint
Choices represented by “internal” edges used
One used (Good)
Temporal Spanning Tree – APX-hardness

APX-hardness
Gadget that implements NAND constraint
Choices represented by “internal” edges used
None used (Good)
Temporal Spanning Tree – APX-hardness

APX-hardness
Gadget that implements NAND constraint
Choices represented by “internal” edges used
Goal: Replace edges from r with temporary cheap edges
Do this as much as possible
Temporal Spanning Tree – APX-hardness

APX-hardness
Gadget that implements NAND constraint
Choices represented by “internal” edges used
Goal: Replace edges from \(r \) with *temporary* cheap edges
Do this as much as possible
OK for no internal edges
Temporal Spanning Tree – APX-hardness

APX-hardness
Gadget that implements NAND constraint
Choices represented by “internal” edges used
Goal: Replace edges from \(r \) with temporary cheap edges
Do this as much as possible
OK for one internal edge
Temporal Spanning Tree – APX-hardness

APX-hardness
Gadget that implements NAND constraint
Choices represented by “internal” edges used
Goal: Replace edges from r with temporary cheap edges
Do this as much as possible
Temporal Spanning Tree – APX-hardness

APX-hardness
Gadget that implements NAND constraint
Choices represented by “internal” edges used
Goal: Replace edges from r with temporary cheap edges
Do this as much as possible
Not OK for two internal edges!
APX-hardness
Gadget that implements NAND constraint
Choices represented by “internal” edges used
Goal: Replace edges from \(r \) with *temporary* cheap edges
Do this as much as possible
Not OK for two internal edges!
Temporal Spanning Tree – APX-hardness

APX-hardness

- Reduction from Independent Set
 - One “internal edge” for each vertex
 - One “testing phase” (NAND) for each edge
- Can make $T = O(1)$ by testing in parallel
- Reduction is linear

Theorem: There is no Approximation Scheme for TST in time $2^{n^{1-\delta}}$ (under ETH) even for constant rounds.
Temporal Spanning Tree – APX-hardness

APX-hardness

- Reduction from Independent Set
 - One “internal edge” for each vertex
 - One “testing phase” (NAND) for each edge
- Can make $T = O(1)$ by testing in parallel
- Reduction is linear

Theorem: There is no Approximation Scheme for TST in time $2^{n^{1-\delta}}$ (under ETH) even for constant rounds.

- For $T = 2$?
- Constant factor approximation algorithm?
No talk is complete without a picture of a reduction that nobody understands (Daniel Marx)
Temporal Spanning Tree – Super-Exponential Lower Bound

- Represent an n-var 3-SAT formula
- Edges used on right encode $\log n$ bits
- NAND gadget catches inconsistent assignments
- Total order: $O(n / \log n)$
• Represent an n-var 3-SAT formula
• Edges used on right encode $\log n$ bits
• NAND gadget catches inconsistent assignments
• Total order: $O(n / \log n)$
Temporal Spanning Tree – Super-Exponential Lower Bound

- Represent an n-var 3-SAT formula
- Edges used on right encode $\log n$ bits
- NAND gadget catches inconsistent assignments
- Total order: $O(n/\log n)$
- Represent an n-var 3-SAT formula
- Edges used on the right encode $\log n$ bits
- NAND gadget catches inconsistent assignments
- Total order: $O(n / \log n)$
• Represent an n-variable 3-SAT formula
• Edges used on the right encode $\log n$ bits
• NAND gadget catches inconsistent assignments
• Total order: $O(n/\log n)$
Temporal Spanning Tree – Super-Exponential Lower Bound

- Reduction 3-SAT \rightarrow TST
 - Formula with n vars
 - New graph has $n / \log n$ vertices
 - If $n^{o(n)}$ alg for TST...
 - ... then $2^{o(n)}$ alg for 3-SAT
- TST needs **super-exponential** time (n^n) to be solved! (under ETH)
- $n^n T$ algorithm is easy... (DP, list all spanning trees)
Temporal Spanning Tree – Super-Exponential Lower Bound

- Reduction 3-SAT → TST
 - Formula with \(n \) vars
 - New graph has \(n/\log n \) vertices
 - If \(n^{o(n)} \) alg for TST...
 - ... then \(2^{o(n)} \) alg for 3-SAT

- TST needs super-exponential time \((n^n) \) to be solved! (under ETH)
- \(n^nT \) algorithm is easy... (DP, list all spanning trees)

What does this have to do with anything?
Temporal Spanning Tree – Few Rounds

- TST needs n^n time to solve exactly.
- Can we do c^n if $T = O(1)$?
Temporal Spanning Tree – Few Rounds

- TST needs n^n time to solve exactly.
- Can we do c^n if $T = O(1)$?

The Cut&Count method
Temporal Spanning Tree – Few Rounds

- TST needs n^n time to solve exactly.
- Can we do c^n if $T = O(1)$?

The Cut&Count method

Consider the set of STs of weight c
Temporal Spanning Tree – Few Rounds

- TST needs n^n time to solve exactly.
- Can we do c^n if $T = O(1)$?

The Cut&Count method

Consider the set of STs of weight c
Is this set empty?
Temporal Spanning Tree – Few Rounds

- TST needs n^n time to solve exactly.
- Can we do c^n if $T = O(1)$?

The Cut&Count method

Consider the set of STs of weight c
Is this set empty?
We will decide by determining its parity!!!
• TST needs n^n time to solve exactly.
• Can we do c^n if $T = O(1)$?

The Cut&Count method
Two problems:
• Determining the parity is potentially harder
• What if the # of solutions is even?
Temporal Spanning Tree – Few Rounds

- TST needs n^n time to solve exactly.
- Can we do c^n if $T = O(1)$?

The Cut&Count method
Two problems:
- Determining the parity is potentially harder
- What if the # of solutions is even?
- Bad solutions cancel out! \rightarrow we can do this in c^n.
- Isolation Lemma \rightarrow minimum solution is unique whp.
Temporal Spanning Tree – Few Rounds

- TST needs n^n time to solve exactly.
- Can we do c^n if $T = O(1)$?

The Cut&Count method

- We can determine the size of bigger set in 2^n time (DP)
Temporal Spanning Tree – Few Rounds

- TST needs n^n time to solve exactly.
- Can we do c^n if $T = O(1)$?

The Cut&Count method

- We can determine the size of bigger set in 2^n time (DP)
- If blue area has even size → Done!

Trading Time for Approximation
• TST needs n^n time to solve exactly.
• Can we do c^n if $T = O(1)$?

The Cut&Count method

We can determine the size of bigger set in 2^n time (DP)
• Construct a new set:
 • Every subgraph appears one time for each cut of the graph it respects.
 • Good subgraphs only respect one cut! (the trivial one)
Temporal Spanning Tree – An Approximation Scheme

- TST is APX-hard for time $2^{n^{1-\delta}}$.
- TST needs n^n time to solve exactly.
- Can we $(1 + \epsilon)$-approximate in single-exponential time? (c^n)
Temporal Spanning Tree – An Approximation Scheme

- TST is APX-hard for time $2^{n^{1-\delta}}$.
- TST needs n^n time to solve exactly.
- Can we $(1 + \epsilon)$-approximate in single-exponential time? (c^n)

- If $T = O(1)$ Yes! (previous slide)
- Otherwise, divide T into blocks of size $1/\epsilon$
- Solve each optimally
 - Added buying cost is at most ϵOPT
 - $(1 + \epsilon)$-approximation in time $2^{O(n/\epsilon)}$.
- Is this trade-off optimal??
At least constant inapproximability in $2^{o(n)}$ time.

Any $(1 + \epsilon)$ approximation in $2^{n/\epsilon}$ time.

n^n time (tight) to solve exactly.
Temporal Spanning Tree – Summary

- At least constant inapproximability in $2^o(n)$ time.
- Any $(1 + \epsilon)$ approximation in $2^{n/\epsilon}$ time.
- n^n time (tight) to solve exactly.

Approximation helps for fighting huge but soft lower bounds.
Conclusions

- Time doesn’t buy approximation
 - Except for very hard problems...
- Time buys generality
 - Time vs. Generality vs. Approximation trade-offs?
 - A 3-D theory of approximation??
- Use approximation to fight ETH/SETH lower bounds?
 - Double-exponential bounds? (see Valia’s talk tomorrow)
 - SETH bounds? E.g. \((2 - \epsilon)^{tw}\) for VC?