Model Checking Lower Bounds for Simple Graphs

Michael Lampis
KTH Royal Institute of Technology

March 11, 2013
Algorithmic Meta-Theorems

Positive results
- Problem X is **tractable**.

Negative results
- Problem X is **hard**.
Algorithmic Meta-Theorems

Positive results

• Problem X is **tractable**.

Negative results

• Problem X is **hard**.

• An algorithmic meta-theorem is a statement of the form: “All problems in a class C are **tractable**”
Algorithmic Meta-Theorems

Positive results

- Problem X is \textit{tractable}.

Negative results

- Problem X is \textit{hard}.

- An algorithmic meta-theorem is a statement of the form: “All problems in a class C are \textit{tractable}”

- Meta-theorems are great! (more in a second)
Algorithmic Meta-Theorems

Positive results

- Problem X is tractable.

Negative results

- Problem X is hard.

- An algorithmic meta-theorem is a statement of the form: “All problems in a class C are tractable”

- Meta-theorems are great! (more in a second)

Main objective of today’s talk: barriers to meta-theorems:

“There exists a problem in class C that is hard”
Good news so far

- Most famous meta-theorem: Courcelle’s theorem
 All MSO-expressible properties are solvable in linear time on graphs of bounded treewidth.
Good news so far

• Most famous meta-theorem: Courcelle’s theorem
 All MSO-expressible properties are solvable in linear time on graphs of bounded treewidth.

• Can we do better?
Good news so far

- Most famous meta-theorem: Courcelle’s theorem
 All MSO-expressible properties are solvable in linear time on graphs of bounded treewidth.

- Can we do better?
 - More graphs?
 - Wider classes of problems?
 - Faster?
Most famous meta-theorem: Courcelle’s theorem

All MSO-expressible properties are solvable in linear time on graphs of bounded treewidth.

Can we do better?

- More graphs?
- Wider classes of problems?
- Faster?

Meta-theorems for clique-width, local treewidth,…
Good news so far

- Most famous meta-theorem: Courcelle's theorem
 All MSO-expressible properties are solvable in linear time on graphs of bounded treewidth.

- Can we do better?
 - More graphs?
 - Wider classes of problems?
 - Faster?

 This can be extended to optimization versions of MSO.
Good news so far

- Most famous meta-theorem: Courcelle’s theorem
 All MSO-expressible properties are solvable in linear time on graphs of bounded treewidth.
- Can we do better?
 - More graphs? ✓
 - Wider classes of problems? ✓
 - Faster? ?
Good news so far

- Most famous meta-theorem: Courcelle’s theorem
 All MSO-expressible properties are solvable in linear time on graphs of bounded treewidth.

- Can we do better?
 - More graphs? ✓
 - Wider classes of problems? ✓
 - Faster? ?

Faster than linear time?
Good news so far

- Most famous meta-theorem: Courcelle’s theorem
 All MSO-expressible properties are solvable in linear time on graphs of bounded treewidth.

- Can we do better?
 - More graphs?
 - Wider classes of problems?
 - Faster?

 Faster than linear time?

This is the main question we are concerned with today.
Courcelle’s theorem:

There exists an algorithm which, given an MSO formula ϕ and a graph G with treewidth w decides if $G \models \phi$ in time $f(w, \phi)|G|$.
Some bad news

- Courcelle’s theorem:
 There exists an algorithm which, given an MSO formula ϕ and a graph G with treewidth w decides if $G \models \phi$ in time $f(w, \phi)|G|$.

- But the function f is a tower of exponentials!
Some bad news

- Courcelle’s theorem:
 There exists an algorithm which, given an MSO formula ϕ and a graph G with treewidth w decides if $G \models \phi$ in time $f(w, \phi)|G|$.

- But the function f is a tower of exponentials!

- Unfortunately, this is not Courcelle’s fault.
 Thm: If $G \models \phi$ can be decided in $f(w, \phi)|G|^c$ for elementary f then $P=NP$. [Frick & Grohe ’04]
Some bad news

- Courcelle’s theorem:

 There exists an algorithm which, given an MSO formula ϕ and a graph G with treewidth w decides if $G \models \phi$ in time $f(w, \phi)|G|$.

- But the function f is a tower of exponentials!

- Unfortunately, this is not Courcelle’s fault.

 Thm: If $G \models \phi$ can be decided in $f(w, \phi)|G|^c$ for elementary f then P=NP. [Frick & Grohe ’04]

- In fact, Frick and Grohe’s lower bound applies to FO logic on trees!
There is still hope

This is bad! Can we somehow escape the Frick and Grohe lower bound?
There is still hope

This is bad! Can we somehow escape the Frick and Grohe lower bound?
This is bad! Can we somehow escape the Frick and Grohe lower bound? Recently, a series of meta-theorems that evade it give “better” parameter dependence.

- For vertex cover, neighborhood diversity, \textit{max-leaf} [L. ’10]
- For twin cover [Ganian ’11]
- For shrub-depth [Ganian et al. ’12]
- For tree-depth [Gajarský and Hliňený ’12]
There is still hope

This is bad! Can we somehow escape the Frick and Grohe lower bound? Recently, a series of meta-theorems that evade it give “better” parameter dependence.

- For vertex cover, neighborhood diversity, max-leaf [L. ’10]
- For twin cover [Ganian ’11]
- For shrub-depth [Ganian et al. ’12]
- For tree-depth [Gajarský and Hliňený ’12]

Predominant idea: Removing isomorphic parts of the graph, when we have too many
This is bad! Can we somehow escape the Frick and Grohe lower bound? Recently, a series of meta-theorems that evade it give “better” parameter dependence.

- For vertex cover, neighborhood diversity, max-leaf [L. ’10]
- For twin cover [Ganian ’11]
- For shrub-depth [Ganian et al. ’12]
- For tree-depth [Gajarský and Hliňený ’12]

Predominant idea: Removing isomorphic parts of the graph, when we have too many

What’s next?
Let’s destroy all hope!

• In this talk the pendulum swings again.

• Main goal: prove hardness results even more devastating than Frick & Grohe.

• Motivation: If we know what we can’t do, we might find things we can do.
Let’s destroy all hope!

- In this talk the pendulum swings again.
- Main goal: prove hardness results even more devastating than Frick & Grohe.
- Motivation: If we know what we can’t do, we might find things we can do.

Today: Three new hardness results.

- Threshold graphs
- Paths
- Bounded-height trees
An appetizer:

Threshold Graphs
Theorem:

- MSO₁ expressible properties can be decided in linear time on graphs of bounded clique-width [Courcelle, Makowsky, Rotics ’00]
Theorem:

- MSO\textsubscript{1} expressible properties can be decided in linear time on graphs of bounded clique-width [Courcelle, Makowsky, Rotics ’00]

A graph has clique-width \(k\) if it can be constructed with the following operations using \(\leq k\) labels:

- Introduce a new vertex with label \(i \in [k]\).
- Connect all vertices with label \(i\) to all vertices with label \(j\).
- Rename all vertices with label \(i\) to label \(j\).
- Take the disjoint union of two clique-width \(k\) graphs.
Theorem:

- MSO$_1$ expressible properties can be decided in linear time on graphs of bounded clique-width [Courcelle, Makowsky, Rotics ’00]

An MSO$_1$ formula ϕ may contain:

- $\exists x, \forall x$ (quantifying over a graph’s vertices)
- $\exists X, \forall X$ (quantifying over a set of vertices)
- Relation $E(x, y)$ (edges), $x = y$
- Boolean connectives
Theorem:

- MSO$_1$ expressible properties can be decided in linear time on graphs of bounded clique-width [Courcelle, Makowsky, Rotics ’00]

- Trees have clique-width 3. Frick&Grohe \(\rightarrow\) non-elementary dependence.

- Graphs with clique-width 1 are easy for MSO$_1$.

What about clique-width 2?
Threshold Graphs

A graph is a threshold graph if it can be constructed with the following operations:

- Add a new vertex and connect it to everything.
- Add a new vertex and connect it to nothing.
Threshold Graphs

A graph is a threshold graph if it can be constructed with the following operations:

- Add a new vertex and connect it to everything.
- Add a new vertex and connect it to nothing.

\[
\begin{align*}
\text{Add a new vertex and connect it to everything.} \\
\text{Add a new vertex and connect it to nothing.}
\end{align*}
\]
A graph is a threshold graph if it can be constructed with the following operations:

- Add a new vertex and connect it to everything.
- Add a new vertex and connect it to nothing.

\[uj \]
A graph is a threshold graph if it can be constructed with the following operations:

- Add a new vertex and connect it to everything.
- Add a new vertex and connect it to nothing.
A graph is a threshold graph if it can be constructed with the following operations:

- Add a new vertex and connect it to everything.
- Add a new vertex and connect it to nothing.
A graph is a threshold graph if it can be constructed with the following operations:

- Add a new vertex and connect it to everything.
- Add a new vertex and connect it to nothing.

Thm: Threshold graphs have clique-width 2.
We use the following result of Frick& Grohe:

- There is no elementary-dependence model-checking algorithm for FO logic on binary strings.
We use the following result of Frick& Grohe:

- There is no elementary-dependence model-checking algorithm for FO logic on binary strings.

Input:

- String w, FO formula ϕ:
 - $\exists x, \forall x$ (x will correspond to a character in the string)
 - Relation \prec ($x \prec y$ if x comes before y in the string)
 - Relation $P_1(x)$ (the character x is a 1)
 - Boolean connectives
Hardness for threshold graphs

We use the following result of Frick& Grohe:

- There is no elementary-dependence model-checking algorithm for FO logic on binary strings.

Input:

- String w, FO formula ϕ:
 - $\exists x, \forall x$ (x will correspond to a character in the string)
 - Relation \prec ($x \prec y$ if x comes before y in the string)
 - Relation $P_1(x)$ (the character x is a 1)
 - Boolean connectives

Example:

$$\forall x P_1(x) \rightarrow \exists y \neg P_1(y) \land x \prec y$$
Hardness for threshold graphs

Given a string \(w \) we construct a threshold graph \(G \)

- \(w : \)
- \(G : uuj \)
Given a string w we construct a threshold graph G

- $w : 0$
- $G : uu_j u_j$
Given a string w we construct a threshold graph G

- $w: \quad 0 \quad 1$
- $G: \quad uuj \quad uj \quad ujj$
Hardness for threshold graphs

Given a string w we construct a threshold graph G

- $w : 0\ 1\ 1$
- $G : uujujujjujj$
Hardness for threshold graphs

Given a string w we construct a threshold graph G

- $w : \quad 0 \quad 1 \quad 1 \quad 0 \ldots$
- $G : \quad uujuj \quad ujj \quad ujj \quad uj \ldots$
Given a string w we construct a threshold graph G

- $w: \quad 0 \ 1 \ 1 \ 0 \ldots$
- $G: \quad uu \ uj \ ujj \ ujj \ uj \ldots$

Idea: union vertices represent the characters

\[
\text{union}(x) \ := \ \forall y \forall z \left(E(x, y) \land E(x, z) \land y \neq z \right) \rightarrow E(y, z)
\]
\[
\text{main}(x) \ := \ \text{union}(x) \land (\exists y \neg \text{union}(y) \land \neg E(x, y))
\]
Given a string \(w \) we construct a threshold graph \(G \)

- \(w : \) 0 1 1 0…
- \(G : uujujujjujjujjujj… \)

Idea: union vertices represent the characters

\[
\begin{align*}
\text{union}(x) & \ := \ \forall y \forall z (E(x, y) \land E(x, z) \land y \neq z) \rightarrow E(y, z) \\
\text{main}(x) & \ := \ \text{union}(x) \land (\exists y \neg \text{union}(y) \land \neg E(x, y))
\end{align*}
\]

This allows us to interpret \(\exists x \psi(x) \) (in the string) to \(\exists x (\text{main}(x) \land \psi^I(x)) \) (in the graph).
Interpretation continued:

- The \(\prec \) relation can be expressed as

\[
prec(x, y) := \exists z \neg \text{union}(z) \land E(x, z) \land \neg E(y, z)
\]
Interpretation continued:

- The \prec relation can be expressed as

$$ prec(x, y) := \exists z \neg \text{union}(z) \land E(x, z) \land \neg E(y, z) $$

- The P_1 relation can also be expressed in FO logic...
Interpretation continued:

- The \(\prec \) relation can be expressed as

\[
prec(x, y) := \exists z \neg \text{union}(z) \land E(x, z) \land \neg E(y, z)
\]

- The \(P_1 \) relation can also be expressed in FO logic...

Thm: There is no elementary-dependence model-checking algorithm for FO logic on threshold graphs.
Recall some of the “good” graph classes we know

- Some are closed under complement (neighborhood diversity, shrub-depth)
- Some are closed under union (tree-depth)
Recall some of the “good” graph classes we know

- Some are closed under complement (neighborhood diversity, shrub-depth)
- Some are closed under union (tree-depth)
- None are closed under both operations...

Any class of graph closed under both operations must* contain threshold graphs.
Main course:

Paths
Why paths?

Main question:

- Is there an elementary-dependence algorithm for MSO$_1$ on paths?
Why paths?

Main question:
- Is there an elementary-dependence algorithm for MSO$_1$ on paths?

Equivalent question:
- Is there an elementary-dependence algorithm for MSO$_1$ on unary strings?
Why paths?

Main question:

- Is there an elementary-dependence algorithm for MSO\(_1\) on paths?

Equivalent question:

- Is there an elementary-dependence algorithm for MSO\(_1\) on unary strings?

Why?

- Do Frick and Grohe really need all trees?
- FO is easy on paths.
- MSO is hard on binary strings/colored paths.
Why paths?

Main question:

- Is there an elementary-dependence algorithm for MSO\textsubscript{1} on paths?

Equivalent question:

- Is there an elementary-dependence algorithm for MSO\textsubscript{1} on unary strings?

Why?

- Do Frick and Grohe really need all trees?
- FO is easy on paths.
- MSO is hard on binary strings/colored paths.
- MSO for max-leaf is open!
Why would this be easy?

- MSO on paths = Regular language over unary alphabet
- FO is easy
Why would this be easy?

- MSO on paths = Regular language over unary alphabet
- FO is easy
- Reduction seems impossible...

“Normal” reduction:

- Start with n-variable 3-SAT
- Construct graph G with $|G| = n^c$
- Construct formula ϕ with $|\phi| = \log^* n$
- Prove YES instance $\leftrightarrow G \models \phi$

Problem: New instance would be encodable with $O(\log n)$ bits. We are making a sparse NP-hard language!
How the reduction can work

Key idea: do not use $P \neq NP$ but $EXP \neq NEXP$

- Motivation: reduction must construct exponential-size graph, so should be allowed exponential time.
Key idea: do not use $P \neq NP$ but $EXP \neq NEXP$

- Motivation: reduction must construct exponential-size graph, so should be allowed exponential time.

Plan:

- Start with an $NEXP$-complete problem and n bits of input.
- Construct a path on 2^{n^c} vertices.
- Construct a formula ϕ with $|\phi| = \log^* n$.
- Prove YES instance $\leftrightarrow G \models \phi$.

Elementary parameter dependence gives $EXP=\text{NEXP}$.
How the reduction can work

Key idea: do not use $P \neq NP$ but $EXP \neq NEXP$

- Motivation: reduction must construct exponential-size graph, so should be allowed exponential time.

Plan:

- Start with an NEXP-complete problem and n bits of input.
- Construct a path on 2^{nc} vertices.
- Construct a formula ϕ with $|\phi| = \log^* n$.
- Prove YES instance $\leftrightarrow G \models \phi$.

Elementary parameter dependence gives $EXP = NEXP$.

- Formula will be somewhat larger, but still small enough.
The basic obstacle (as in Frick and Grohe) is counting efficiently.

Given two sets of elements S_1, S_2 with $|S_1| \neq |S_2|$, what is the smallest MSO formula that can verify this?
The basic obstacle (as in Frick and Grohe) is counting efficiently.

Given two sets of elements S_1, S_2 with $|S_1| \neq |S_2|$, what is the smallest MSO formula that can verify this?

Example: For independent sets, q quantifiers work for size 2^q.

Main goal:

- Increase counting power exponentially with each added quantifier.
- Frick and Grohe do this, but they are allowed to design their graphs. We are (essentially) not!
The basic obstacle (as in Frick and Grohe) is counting efficiently.

Given two sets of elements S_1, S_2 with $|S_1| \neq |S_2|$, what is the smallest MSO formula that can verify this?

Example: For independent sets, q quantifiers work for size 2^q.

Main goal:

- Increase counting power exponentially with each added quantifier.
- Frick and Grohe do this, but they are allowed to design their graphs. We are (essentially) not!

Today: q quantifiers count up to size $tow(\Omega(\log q))$ on unary strings.
Induction:

- We have a MSO formula $eq_L(P_1, P_2)$ which correctly compares sets up to size L.

- The formula is only true for equal sets (independent of size).

Use this to compare larger sets economically.

First idea: division
Induction:

- We have a MSO formula $eq_L(P_1, P_2)$ which correctly compares sets up to size L.
- The formula is only true for equal sets (independent of size).

Use this to compare larger sets economically.

First idea: division

Given an ordered set of elements to compare with another, we first select a subset of it.
Learning to count

Induction:

- We have a MSO formula $eq_L(P_1, P_2)$ which correctly compares sets up to size L.
- The formula is only true for equal sets (independent of size).

Use this to compare larger sets economically.

First idea: division

We can impose some structure: each “section” must have the same length ($\leq L$). We do this on both sets.
Learning to count

Induction:

- We have a MSO formula $eq_L(P_1, P_2)$ which correctly compares sets up to size L.
- The formula is only true for equal sets (independent of size).

Use this to compare larger sets economically.

First idea: division

Now we need to count the number of sections. Select one representative from each. Compare the two sets of representatives.
Learning to count

Induction:

- We have a MSO formula $eq_L(P_1, P_2)$ which correctly compares sets up to size L.
- The formula is only true for equal sets (independent of size).

Use this to compare larger sets economically.

First idea: division

This allows us to go from L to L^2 with $O(1)$ additional quantifiers (if done carefully).
Induction:

- We have a MSO formula $eq_L(P_1, P_2)$ which correctly compares sets up to size L.

- The formula is only true for equal sets (independent of size).

Use this to compare larger sets economically.

First idea: division

This allows us to go from L to L^2 with $O(1)$ additional quantifiers (if done carefully).

Counting power: 2^{2^q}. Not good enough, but we’re moving.
Learning to count better

- Good: a single set gives many sections.
- Bad: hard to count how many sections we have. Using induction not good enough.

Idea: count in binary!
Learning to count better

- Good: a single set gives many sections.
- Bad: hard to count how many sections we have. Using induction not good enough.

Idea: count in binary!

Select the same division into sections.
Good: a single set gives many sections.

Bad: hard to count how many sections we have. Using induction not good enough.

Idea: count in binary!

To count sections, select a subset that “writes” a binary number in each section.
Learning to count better

- Good: a single set gives many sections.
- Bad: hard to count how many sections we have. Using induction not good enough.

Idea: count in binary!

Demand that counting is correct for consecutive sections.

- Proof: hand-waving (but check the paper!)
Learning to count better

- Good: a single set gives many sections.
- Bad: hard to count how many sections we have. Using induction not good enough.

Idea: count in binary!

We went from L to $L2^L$ using $eq_L O(1)$ times.
→ each level of exponentiation increases size by a constant factor.
→ can compare sets of size n with $2^{\log^* n}$ quantifiers.
Are we done with the math?

Using eq_L it’s easy to do comparisons, div, mod, . . .

- We will also need exponentiation. $exp_L(P_1, P_2)$ is true if $|P_2| = 2^{P_1}$.
Using eq_L it’s easy to do comparisons, div, mod, ...

- We will also need exponentiation. $exp_L(P_1, P_2)$ is true if $|P_2| = 2|P_1|$.

Idea: Find a set in P_2 with size $|P_1| + 1$. Ensure that consecutive distances are doubled.

DONE!
Are we done with the math?

Using eq_L it’s easy to do comparisons, div, mod, . . .

- We will also need exponentiation. $exp_L(P_1, P_2)$ is true if $|P_2| = 2|P_1|$.

Idea: Find a set in P_2 with size $|P_1| + 1$. Ensure that consecutive distances are doubled.

DONE!

The hard part is over!
Putting things together

- Reduction from NEXP Turing machine acceptance with n input bits.
- Machine runs in $T = 2^{nc}$ time. Input (read as binary number) is $I \leq 2^n$.
- Construct a path of length $T^2(2I + 1)$.
- Construct a ϕ that simulates the machine on the path.
Putting things together

- Reduction from NEXP Turing machine acceptance with \(n \) input bits.
- Machine runs in \(T = 2^{n^c} \) time. Input (read as binary number) is \(I \leq 2^n \).
- Construct a path of length \(T^2(2I + 1) \).
- Construct a \(\phi \) that simulates the machine on the path.

The last one is the tricky part. But we now have the right tools.

- Locate a set of length \(T^2 \). Divide it into sections of size \(T \). These will represent snapshots of the machine’s tape.
- Locate a set of length \(I \). Use \(exp \) to “read” input bits from it.
- Guess the contents of the tape.
- Check that the computation is correct and accepting.
Consequences

Unless \(\text{EXP}=\text{NEXP} \):

- Max-leaf is hard
Consequences

Unless $\text{EXP} = \text{NEXP}$:

- Max-leaf is hard
- Graph classes closed under edge sub-divisions are hard
Unless EXP=\text{NEXP}:

- Max-leaf is hard
- Graph classes closed under edge sub-divisions are hard
- Graph classes closed under induced subgraphs with unbounded (dense)* diameter are hard
Consequences

Unless \(\text{EXP} = \text{NEXP} \):

- Max-leaf is hard
- Graph classes closed under edge sub-divisions are hard
- Graph classes closed under induced subgraphs with unbounded (dense)* diameter are hard
- \(\text{MSO}_2 \) for cliques is very hard! (not in XP)

The last one was already known. But “easier” proof using that \(\text{eqL} \) has constant size on cliques with \(\text{MSO}_2 \).
Dessert:

Trees of bounded height
Why trees of bounded height?

This class of graphs is important for two recent meta-theorems:

- Shrub-depth in “When trees grow low: Shrubs and fast MSO_1” [Ganian et al. MFCS ’12]
- Tree-depth in “Faster deciding MSO properties of trees of fixed height, and some consequences” [Gajarský and Hliňený FSTTCS ’12]

In both cases the main tool is the following:

MSO model-checking for q quantifiers on trees of height h colored with t colors can be done in $\exp^{(h+1)}(O(q(t + q)))$ time.
Goal: prove that $h + 1$ levels of exponentiation are exactly necessary.

- Start from an n-variable 3-SAT instance.
- Construct a tree of height h. Use $t = \log^{(h)}(n)$ colors.
- Construct a formula with $q = O(h)$ quantifiers.
- Prove equivalence between instances.
Goal: prove that $h + 1$ levels of exponentiation are exactly necessary.

- Start from an n-variable 3-SAT instance.
- Construct a tree of height h. Use $t = \log^{(h)}(n)$ colors.
- Construct a formula with $q = O(h)$ quantifiers.
- Prove equivalence between instances.

Argument: an algorithm running in $\exp^{(h+1)}(o(t))$ would run in $2^{o(n)}$ here, disproving ETH.
Let’s count some more!

Fix h. The main problem is again to count efficiently.

- We have $\log^h(n)$ colors available. These can represent numbers up to $\log^{h-1}(n)$ with a single vertex (and comparisons are propositional!).
Let’s count some more!

Fix h. The main problem is again to count efficiently.

- We have $\log^h(n)$ colors available. These can represent numbers up to $\log^{h-1}(n)$ with a single vertex (and comparisons are propositional!).

- Assuming we can do numbers up to L with trees of height i. We do numbers up to 2^L with trees of height $i + 1$ (Frick & Grohe).
The rest is easy

- Construct a tree of height $h - 1$ for each variable, encoding its index.
- Construct a tree of height $h - 1$ for each clauses, encoding the indices of its three literals.
- Add a root.
- Express satisfiability with a constant quantifier-depth formula.

Essential idea: we are using the proof of Frick and Grohe for h levels.
The rest is easy

- Construct a tree of height $h - 1$ for each variable, encoding its index.
- Construct a tree of height $h - 1$ for each clauses, encoding the indices of its three literals.
- Add a root.
- Express satisfiability with a constant quantifier-depth formula.

Essential idea: we are using the proof of Frick and Grohe for h levels.

Thm: There is no $\exp^{(h+1)(o(t))}$ algorithm for MSO logic on t-colored trees of height h unless the ETH is false.
Conclusions - Open problems

- Three natural barriers to future improvements.
- Paths are probably the toughest to work around.

Future work

- (Uncolored) tree-depth?
- Height of tower for paths?
Conclusions - Open problems

- Three natural barriers to future improvements.
- Paths are probably the toughest to work around.

Future work

- (Uncolored) tree-depth?
- Height of tower for paths?
- Other logics?!?
Thank you!