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Positive results

• Problem X is tractable.

Negative results

• Problem X is hard.

• An algorithmic meta-theorem is a statement of the form:

“All problems in a class C are tractable”

• Meta-theorems are great! (more in a second)

Main objective of today’s talk: barriers to meta-theorems:

“There exists a problem in class C that is hard”
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• Most famous meta-theorem: Courcelle’s theorem

All MSO-expressible properties are solvable in linear time on graphs
of bounded treewidth.

• Can we do better?

• More graphs?

• Wider classes of problems?

• Faster?

Faster than linear time?

This is the main question we are concerned with today.
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• Courcelle’s theorem:

There exists an algorithm which, given an MSO formula φ and a
graph G with treewidth w decides if G |= φ in time f(w, φ)|G|.

• But the function f is a tower of exponentials!

• Unfortunately, this is not Courcelle’s fault.

Thm: If G |= φ can be decided in f(w, φ)|G|c for elementary f then
P=NP. [Frick & Grohe ’04]

• In fact, Frick and Grohe’s lower bound applies to FO logic on trees!
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This is bad! Can we somehow escape the Frick and Grohe lower bound?

Recently, a series of meta-theorems that evade it give “better” parameter
dependence.

• For vertex cover, neighborhood diversity, max-leaf [L. ’10]

• For twin cover [Ganian ’11]

• For shrub-depth [Ganian et al. ’12]

• For tree-depth [Gajarský and Hliňený ’12]

Predominant idea: Removing isomorphic parts of the graph, when we
have too many

What’s next?
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• In this talk the pendulum swings again.

• Main goal: prove hardness results even
more devastating than Frick& Grohe.

• Motivation: If we know what we can’t
do, we might find things we can do.

Today: Three new hardness results.

• Threshold graphs

• Paths

• Bounded-height trees



An appetizer:

Threshold Graphs
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Theorem:

• MSO1 expressible properties can be decided in linear time on graphs
of bounded clique-width [Courcelle, Makowsky, Rotics ’00]

A graph has clique-width k if it can be constructed with the following
operations using ≤ k labels

• Introduce a new vertex with label i ∈ [k].

• Connect all vertices with label i to all vertices with label j.

• Rename all vertices with label i to label j.

• Take the disjoint union of two clique-width k graphs.
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Theorem:

• MSO1 expressible properties can be decided in linear time on graphs
of bounded clique-width [Courcelle, Makowsky, Rotics ’00]

An MSO1 formula φ may contain:

• ∃x, ∀x (quantifying over a graph’s vertices)

• ∃X, ∀X (quantifying over a set of vertices)

• Relation E(x, y) (edges), x = y

• Boolean connectives
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Theorem:

• MSO1 expressible properties can be decided in linear time on graphs
of bounded clique-width [Courcelle, Makowsky, Rotics ’00]

• Trees have clique-width 3.
Frick&Grohe → non-elementary dependence.

• Graphs with clique-width 1 are easy for MSO1.

What about clique-width 2?
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A graph is a threshold graph if it can be constructed with the following
operations:

• Add a new vertex and connect it to everything.

• Add a new vertex and connect it to nothing.

ujuj

Thm: Threshold graphs have clique-width 2.
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We use the following result of Frick& Grohe:

• There is no elementary-dependence model-checking algorithm for
FO logic on binary strings.

Input:

• String w, FO formula φ:

• ∃x, ∀x (x will correspond to a character in the string)

• Relation ≺ (x ≺ y if x comes before y in the string)

• Relation P1(x) (the character x is a 1)

• Boolean connectives

Example:

∀xP1(x) → ∃y¬P1(y) ∧ x ≺ y
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Given a string w we construct a threshold graph G

• w : 0 1 1 0. . .

• G : uuj uj ujj ujj uj. . .

Idea: union vertices represent the characters

union(x) := ∀y∀z(E(x, y) ∧ E(x, z) ∧ y 6= z) → E(y, z)

main(x) := union(x) ∧ (∃y¬union(y) ∧ ¬E(x, y))

This allows us to interpret ∃xψ(x) (in the string) to ∃x(main(x) ∧ ψI(x))
(in the graph).
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Interpretation continued:

• The ≺ relation can be expressed as

prec(x, y) := ∃z¬union(z) ∧ E(x, z) ∧ ¬E(y, z)

• The P1 relation can also be expressed in FO logic. . .

Thm: There is no elementary-dependence model-checking algorithm for
FO logic on threshold graphs.
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Recall some of the “good” graph classes we know

• Some are closed under complement (neighborhood diversity,
shrub-depth)

• Some are closed under union (tree-depth)

• None are closed under both operations. . .

Any class of graph closed under both operations
must∗ contain threshold graphs.
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Main question:

• Is there an elementary-dependence algorithm for MSO1 on paths?

Equivalent question:

• Is there an elementary-dependence algorithm for MSO1 on unary
strings?

Why?

• Do Frick and Grohe really need all trees?

• FO is easy on paths.

• MSO is hard on binary strings/colored paths.

• MSO for max-leaf is open!
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• MSO on paths = Regular language over unary alphabet

• FO is easy

• Reduction seems impossible. . .

“Normal” reduction:

• Start with n-variable 3-SAT

• Construct graph G with |G| = nc

• Construct formula φ with |φ| = log∗ n

• Prove YES instance ↔ G |= φ

Problem: New instance would be encodable with O(logn) bits. We are
making a sparse NP-hard language!
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• Motivation: reduction must construct exponential-size graph, so
should be allowed exponential time.
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Key idea: do not use P6=NP but EXP6=NEXP

• Motivation: reduction must construct exponential-size graph, so
should be allowed exponential time.

Plan:

• Start with an NEXP-complete problem and n bits of input.

• Construct a path on 2n
c

vertices.

• Construct a formula φ with |φ| = log∗ n.

• Prove YES instance ↔ G |= φ.

Elementary parameter dependence gives EXP=NEXP.

• Formula will be somewhat larger, but still small enough.
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• The basic obstacle (as in Frick and Grohe) is counting efficiently.

• Given two sets of elements S1, S2 with |S1| 6= |S2|, what is the
smallest MSO formula that can verify this?

• Example: For independent sets, q quantifiers work for size 2q.

Main goal:

• Increase counting power exponentially with each added quantifier.

• Frick and Grohe do this, but they are allowed to design their graphs.
We are (essentially) not!

Today: q quantifiers count up to size tow(Ω(log q)) on unary strings.
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Induction:

• We have a MSO formula eqL(P1, P2) which correctly compares sets
up to size L.

• The formula is only true for equal sets (independent of size).

Use this to compare larger sets economically.

First idea: division
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Given an ordered set of elements to compare with another, we first select
a subset of it.
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Induction:

• We have a MSO formula eqL(P1, P2) which correctly compares sets
up to size L.

• The formula is only true for equal sets (independent of size).

Use this to compare larger sets economically.

First idea: division

We can impose some structure: each “section” must have the same
length (≤ L). We do this on both sets.



Learning to count

Model Checking Lower Bounds 19 / 30

Induction:

• We have a MSO formula eqL(P1, P2) which correctly compares sets
up to size L.

• The formula is only true for equal sets (independent of size).

Use this to compare larger sets economically.

First idea: division

Now we need to count the number of sections. Select one representative
from each. Compare the two sets of representatives.
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This allows us to go from L to L2 with O(1) additional quantifiers (if done
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Induction:

• We have a MSO formula eqL(P1, P2) which correctly compares sets
up to size L.

• The formula is only true for equal sets (independent of size).

Use this to compare larger sets economically.

First idea: division

This allows us to go from L to L2 with O(1) additional quantifiers (if done
carefully).
Counting power: 22

q

. Not good enough, but we’re moving.
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• Bad: hard to count how many sections we have. Using induction not
good enough.

Idea: count in binary!
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• Good: a single set gives many sections.

• Bad: hard to count how many sections we have. Using induction not
good enough.

Idea: count in binary!

Select the same division into sections.
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• Good: a single set gives many sections.

• Bad: hard to count how many sections we have. Using induction not
good enough.

Idea: count in binary!

To count sections, select a subset that “writes” a binary number in each
section.
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• Good: a single set gives many sections.

• Bad: hard to count how many sections we have. Using induction not
good enough.

Idea: count in binary!

Demand that counting is correct for consecutive sections.

• Proof: hand-waving (but check the paper!)
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• Good: a single set gives many sections.

• Bad: hard to count how many sections we have. Using induction not
good enough.

Idea: count in binary!

We went from L to L2L using eqL O(1) times.
→ each level of exponentiation increases size by a constant factor.
→ can compare sets of size n with 2log

∗ n quantifiers.
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• We will also need exponentiation. expL(P1, P2) is true if |P2| = 2|P1|.



Are we done with the math?

Model Checking Lower Bounds 21 / 30

Using eqL it’s easy to do comparisons, div, mod, . . .

• We will also need exponentiation. expL(P1, P2) is true if |P2| = 2|P1|.
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are doubled.
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Using eqL it’s easy to do comparisons, div, mod, . . .

• We will also need exponentiation. expL(P1, P2) is true if |P2| = 2|P1|.

Idea: Find a set in P2 with size |P1|+1. Ensure that consecutive distances
are doubled.

DONE!

The hard part is over!
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• Machine runs in T = 2n
c

time. Input (read as binary number) is
I ≤ 2n.

• Construct a path of length T 2(2I + 1).

• Construct a φ that simulates the machine on the path.



Putting things together

Model Checking Lower Bounds 22 / 30

• Reduction from NEXP Turing machine acceptance with n input bits.

• Machine runs in T = 2n
c

time. Input (read as binary number) is
I ≤ 2n.

• Construct a path of length T 2(2I + 1).

• Construct a φ that simulates the machine on the path.

The last one is the tricky part. But we now have the right tools.

• Locate a set of length T 2. Divide it into sections of size T . These will
represent snapshots of the machine’s tape.

• Locate a set of length I. Use exp to “read” input bits from it.

• Guess the contents of the tape.

• Check that the computation is correct and accepting.
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Unless EXP=NEXP:

• Max-leaf is hard

• Graph classes closed under edge sub-divisions are hard

• Graph classes closed under induced subgraphs with unbounded
(dense)∗ diameter are hard

• MSO2 for cliques is very hard! (not in XP)

The last one was already known. But “easier” proof using that eqL has
constant size on cliques with MSO2.



Dessert:

Trees of bounded height
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This class of graphs is important for two recent meta-theorems:

• Shrub-depth in “When trees grow low: Shrubs and fast MSO1”
[Ganian et al. MFCS ’12]

• Tree-depth in “Faster deciding MSO properties of trees of fixed
height, and some consequences” [Gajarský and Hliňený FSTTCS
’12]

In both cases the main tool is the following:

MSO model-checking for q quantifiers on trees of height h colored with
t colors can be done in exp(h+1)(O(q(t+ q)) time.
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Goal: prove that h+ 1 levels of exponentiation are exactly necessary.

• Start from an n-variable 3-SAT instance.

• Construct a tree of height h. Use t = log(h)(n) colors.

• Construct a formula with q = O(h) quantifiers.

• Prove equivalence between instances.
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Goal: prove that h+ 1 levels of exponentiation are exactly necessary.

• Start from an n-variable 3-SAT instance.

• Construct a tree of height h. Use t = log(h)(n) colors.

• Construct a formula with q = O(h) quantifiers.

• Prove equivalence between instances.

Argument: an algorithm running in exp(h+1)(o(t)) would run in 2o(n) here,
disproving ETH.
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Fix h. The main problem is again to count efficiently.

• We have log(h)(n) colors available. These can represent numbers up
to log(h−1)(n) with a single vertex (and comparisons are
propositional!).
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Fix h. The main problem is again to count efficiently.

• We have log(h)(n) colors available. These can represent numbers up
to log(h−1)(n) with a single vertex (and comparisons are
propositional!).

• Assuming we can do numbers up to L with trees of height i. We do
numbers up to 2L with trees of height i+ 1 (Frick& Grohe).



The rest is easy
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• Construct a tree of height h− 1 for each variable, encoding its index.

• Construct a tree of height h− 1 for each clauses, encoding the
indices of its three literals.

• Add a root.

• Express satisfiability with a constant quantifier-depth formula.

Essential idea: we are using the proof of Frick and Grohe for h levels.
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• Construct a tree of height h− 1 for each variable, encoding its index.

• Construct a tree of height h− 1 for each clauses, encoding the
indices of its three literals.

• Add a root.

• Express satisfiability with a constant quantifier-depth formula.

Essential idea: we are using the proof of Frick and Grohe for h levels.

Thm: There is no exp(h+1)(o(t)) algorithm for MSO logic on t-colored
trees of height h unless the ETH is false.
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• Three natural barriers to future improvements.

• Paths are probably the toughest to work around.

Future work

• (Uncolored) tree-depth?

• Height of tower for paths?
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• Three natural barriers to future improvements.

• Paths are probably the toughest to work around.

Future work

• (Uncolored) tree-depth?

• Height of tower for paths?

• Other logics?!?



Thank you!
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