
Model Checking Lower Bounds for
Simple Graphs

Michael Lampis
KTH Royal Institute of Technology

March 11, 2013

Algorithmic Meta-Theorems

Model Checking Lower Bounds 2 / 30

Positive results

• Problem X is tractable.

Negative results

• Problem X is hard.

Algorithmic Meta-Theorems

Model Checking Lower Bounds 2 / 30

Positive results

• Problem X is tractable.

Negative results

• Problem X is hard.

• An algorithmic meta-theorem is a statement of the form:

“All problems in a class C are tractable”

Algorithmic Meta-Theorems

Model Checking Lower Bounds 2 / 30

Positive results

• Problem X is tractable.

Negative results

• Problem X is hard.

• An algorithmic meta-theorem is a statement of the form:

“All problems in a class C are tractable”

• Meta-theorems are great! (more in a second)

Algorithmic Meta-Theorems

Model Checking Lower Bounds 2 / 30

Positive results

• Problem X is tractable.

Negative results

• Problem X is hard.

• An algorithmic meta-theorem is a statement of the form:

“All problems in a class C are tractable”

• Meta-theorems are great! (more in a second)

Main objective of today’s talk: barriers to meta-theorems:

“There exists a problem in class C that is hard”

Good news so far

Model Checking Lower Bounds 3 / 30

• Most famous meta-theorem: Courcelle’s theorem

All MSO-expressible properties are solvable in linear time on graphs
of bounded treewidth.

Good news so far

Model Checking Lower Bounds 3 / 30

• Most famous meta-theorem: Courcelle’s theorem

All MSO-expressible properties are solvable in linear time on graphs
of bounded treewidth.

• Can we do better?

Good news so far

Model Checking Lower Bounds 3 / 30

• Most famous meta-theorem: Courcelle’s theorem

All MSO-expressible properties are solvable in linear time on graphs
of bounded treewidth.

• Can we do better?

• More graphs?

• Wider classes of problems?

• Faster?

Good news so far

Model Checking Lower Bounds 3 / 30

• Most famous meta-theorem: Courcelle’s theorem

All MSO-expressible properties are solvable in linear time on graphs
of bounded treewidth.

• Can we do better?

• More graphs?

• Wider classes of problems?

• Faster?

Meta-theorems for clique-width, local treewidth,. . .

Good news so far

Model Checking Lower Bounds 3 / 30

• Most famous meta-theorem: Courcelle’s theorem

All MSO-expressible properties are solvable in linear time on graphs
of bounded treewidth.

• Can we do better?

• More graphs?

• Wider classes of problems?

• Faster?

This can be extended to optimization versions of MSO.

Good news so far

Model Checking Lower Bounds 3 / 30

• Most famous meta-theorem: Courcelle’s theorem

All MSO-expressible properties are solvable in linear time on graphs
of bounded treewidth.

• Can we do better?

• More graphs?

• Wider classes of problems?

• Faster?

Good news so far

Model Checking Lower Bounds 3 / 30

• Most famous meta-theorem: Courcelle’s theorem

All MSO-expressible properties are solvable in linear time on graphs
of bounded treewidth.

• Can we do better?

• More graphs?

• Wider classes of problems?

• Faster?

Faster than linear time?

Good news so far

Model Checking Lower Bounds 3 / 30

• Most famous meta-theorem: Courcelle’s theorem

All MSO-expressible properties are solvable in linear time on graphs
of bounded treewidth.

• Can we do better?

• More graphs?

• Wider classes of problems?

• Faster?

Faster than linear time?

This is the main question we are concerned with today.

Some bad news

Model Checking Lower Bounds 4 / 30

• Courcelle’s theorem:

There exists an algorithm which, given an MSO formula φ and a
graph G with treewidth w decides if G |= φ in time f(w, φ)|G|.

Some bad news

Model Checking Lower Bounds 4 / 30

• Courcelle’s theorem:

There exists an algorithm which, given an MSO formula φ and a
graph G with treewidth w decides if G |= φ in time f(w, φ)|G|.

• But the function f is a tower of exponentials!

Some bad news

Model Checking Lower Bounds 4 / 30

• Courcelle’s theorem:

There exists an algorithm which, given an MSO formula φ and a
graph G with treewidth w decides if G |= φ in time f(w, φ)|G|.

• But the function f is a tower of exponentials!

• Unfortunately, this is not Courcelle’s fault.

Thm: If G |= φ can be decided in f(w, φ)|G|c for elementary f then
P=NP. [Frick & Grohe ’04]

Some bad news

Model Checking Lower Bounds 4 / 30

• Courcelle’s theorem:

There exists an algorithm which, given an MSO formula φ and a
graph G with treewidth w decides if G |= φ in time f(w, φ)|G|.

• But the function f is a tower of exponentials!

• Unfortunately, this is not Courcelle’s fault.

Thm: If G |= φ can be decided in f(w, φ)|G|c for elementary f then
P=NP. [Frick & Grohe ’04]

• In fact, Frick and Grohe’s lower bound applies to FO logic on trees!

There is still hope

Model Checking Lower Bounds 5 / 30

This is bad! Can we somehow escape the Frick and Grohe lower bound?

There is still hope

Model Checking Lower Bounds 5 / 30

This is bad! Can we somehow escape the Frick and Grohe lower bound?

There is still hope

Model Checking Lower Bounds 5 / 30

This is bad! Can we somehow escape the Frick and Grohe lower bound?

Recently, a series of meta-theorems that evade it give “better” parameter
dependence.

• For vertex cover, neighborhood diversity, max-leaf [L. ’10]

• For twin cover [Ganian ’11]

• For shrub-depth [Ganian et al. ’12]

• For tree-depth [Gajarský and Hliňený ’12]

There is still hope

Model Checking Lower Bounds 5 / 30

This is bad! Can we somehow escape the Frick and Grohe lower bound?

Recently, a series of meta-theorems that evade it give “better” parameter
dependence.

• For vertex cover, neighborhood diversity, max-leaf [L. ’10]

• For twin cover [Ganian ’11]

• For shrub-depth [Ganian et al. ’12]

• For tree-depth [Gajarský and Hliňený ’12]

Predominant idea: Removing isomorphic parts of the graph, when we
have too many

There is still hope

Model Checking Lower Bounds 5 / 30

This is bad! Can we somehow escape the Frick and Grohe lower bound?

Recently, a series of meta-theorems that evade it give “better” parameter
dependence.

• For vertex cover, neighborhood diversity, max-leaf [L. ’10]

• For twin cover [Ganian ’11]

• For shrub-depth [Ganian et al. ’12]

• For tree-depth [Gajarský and Hliňený ’12]

Predominant idea: Removing isomorphic parts of the graph, when we
have too many

What’s next?

Let’s destroy all hope!

Model Checking Lower Bounds 6 / 30

• In this talk the pendulum swings again.

• Main goal: prove hardness results even
more devastating than Frick& Grohe.

• Motivation: If we know what we can’t
do, we might find things we can do.

Let’s destroy all hope!

Model Checking Lower Bounds 6 / 30

• In this talk the pendulum swings again.

• Main goal: prove hardness results even
more devastating than Frick& Grohe.

• Motivation: If we know what we can’t
do, we might find things we can do.

Today: Three new hardness results.

• Threshold graphs

• Paths

• Bounded-height trees

An appetizer:

Threshold Graphs

More background

Model Checking Lower Bounds 8 / 30

Theorem:

• MSO1 expressible properties can be decided in linear time on graphs
of bounded clique-width [Courcelle, Makowsky, Rotics ’00]

More background

Model Checking Lower Bounds 8 / 30

Theorem:

• MSO1 expressible properties can be decided in linear time on graphs
of bounded clique-width [Courcelle, Makowsky, Rotics ’00]

A graph has clique-width k if it can be constructed with the following
operations using ≤ k labels

• Introduce a new vertex with label i ∈ [k].

• Connect all vertices with label i to all vertices with label j.

• Rename all vertices with label i to label j.

• Take the disjoint union of two clique-width k graphs.

More background

Model Checking Lower Bounds 8 / 30

Theorem:

• MSO1 expressible properties can be decided in linear time on graphs
of bounded clique-width [Courcelle, Makowsky, Rotics ’00]

An MSO1 formula φ may contain:

• ∃x, ∀x (quantifying over a graph’s vertices)

• ∃X, ∀X (quantifying over a set of vertices)

• Relation E(x, y) (edges), x = y

• Boolean connectives

More background

Model Checking Lower Bounds 8 / 30

Theorem:

• MSO1 expressible properties can be decided in linear time on graphs
of bounded clique-width [Courcelle, Makowsky, Rotics ’00]

• Trees have clique-width 3.
Frick&Grohe → non-elementary dependence.

• Graphs with clique-width 1 are easy for MSO1.

What about clique-width 2?

Threshold Graphs

Model Checking Lower Bounds 9 / 30

A graph is a threshold graph if it can be constructed with the following
operations:

• Add a new vertex and connect it to everything.

• Add a new vertex and connect it to nothing.

Threshold Graphs

Model Checking Lower Bounds 9 / 30

A graph is a threshold graph if it can be constructed with the following
operations:

• Add a new vertex and connect it to everything.

• Add a new vertex and connect it to nothing.

u

Threshold Graphs

Model Checking Lower Bounds 9 / 30

A graph is a threshold graph if it can be constructed with the following
operations:

• Add a new vertex and connect it to everything.

• Add a new vertex and connect it to nothing.

uj

Threshold Graphs

Model Checking Lower Bounds 9 / 30

A graph is a threshold graph if it can be constructed with the following
operations:

• Add a new vertex and connect it to everything.

• Add a new vertex and connect it to nothing.

uju

Threshold Graphs

Model Checking Lower Bounds 9 / 30

A graph is a threshold graph if it can be constructed with the following
operations:

• Add a new vertex and connect it to everything.

• Add a new vertex and connect it to nothing.

ujuj

Threshold Graphs

Model Checking Lower Bounds 9 / 30

A graph is a threshold graph if it can be constructed with the following
operations:

• Add a new vertex and connect it to everything.

• Add a new vertex and connect it to nothing.

ujuj

Thm: Threshold graphs have clique-width 2.

Hardness for threshold graphs

Model Checking Lower Bounds 10 / 30

We use the following result of Frick& Grohe:

• There is no elementary-dependence model-checking algorithm for
FO logic on binary strings.

Hardness for threshold graphs

Model Checking Lower Bounds 10 / 30

We use the following result of Frick& Grohe:

• There is no elementary-dependence model-checking algorithm for
FO logic on binary strings.

Input:

• String w, FO formula φ:

• ∃x, ∀x (x will correspond to a character in the string)

• Relation ≺ (x ≺ y if x comes before y in the string)

• Relation P1(x) (the character x is a 1)

• Boolean connectives

Hardness for threshold graphs

Model Checking Lower Bounds 10 / 30

We use the following result of Frick& Grohe:

• There is no elementary-dependence model-checking algorithm for
FO logic on binary strings.

Input:

• String w, FO formula φ:

• ∃x, ∀x (x will correspond to a character in the string)

• Relation ≺ (x ≺ y if x comes before y in the string)

• Relation P1(x) (the character x is a 1)

• Boolean connectives

Example:

∀xP1(x) → ∃y¬P1(y) ∧ x ≺ y

Hardness for threshold graphs

Model Checking Lower Bounds 11 / 30

Given a string w we construct a threshold graph G

• w :

• G : uuj

Hardness for threshold graphs

Model Checking Lower Bounds 11 / 30

Given a string w we construct a threshold graph G

• w : 0

• G : uuj uj

Hardness for threshold graphs

Model Checking Lower Bounds 11 / 30

Given a string w we construct a threshold graph G

• w : 0 1

• G : uuj uj ujj

Hardness for threshold graphs

Model Checking Lower Bounds 11 / 30

Given a string w we construct a threshold graph G

• w : 0 1 1

• G : uuj uj ujj ujj

Hardness for threshold graphs

Model Checking Lower Bounds 11 / 30

Given a string w we construct a threshold graph G

• w : 0 1 1 0. . .

• G : uuj uj ujj ujj uj. . .

Hardness for threshold graphs

Model Checking Lower Bounds 11 / 30

Given a string w we construct a threshold graph G

• w : 0 1 1 0. . .

• G : uuj uj ujj ujj uj. . .

Idea: union vertices represent the characters

union(x) := ∀y∀z(E(x, y) ∧ E(x, z) ∧ y 6= z) → E(y, z)

main(x) := union(x) ∧ (∃y¬union(y) ∧ ¬E(x, y))

Hardness for threshold graphs

Model Checking Lower Bounds 11 / 30

Given a string w we construct a threshold graph G

• w : 0 1 1 0. . .

• G : uuj uj ujj ujj uj. . .

Idea: union vertices represent the characters

union(x) := ∀y∀z(E(x, y) ∧ E(x, z) ∧ y 6= z) → E(y, z)

main(x) := union(x) ∧ (∃y¬union(y) ∧ ¬E(x, y))

This allows us to interpret ∃xψ(x) (in the string) to ∃x(main(x) ∧ ψI(x))
(in the graph).

Hardness for threshold graphs

Model Checking Lower Bounds 12 / 30

Interpretation continued:

• The ≺ relation can be expressed as

prec(x, y) := ∃z¬union(z) ∧ E(x, z) ∧ ¬E(y, z)

Hardness for threshold graphs

Model Checking Lower Bounds 12 / 30

Interpretation continued:

• The ≺ relation can be expressed as

prec(x, y) := ∃z¬union(z) ∧ E(x, z) ∧ ¬E(y, z)

• The P1 relation can also be expressed in FO logic. . .

Hardness for threshold graphs

Model Checking Lower Bounds 12 / 30

Interpretation continued:

• The ≺ relation can be expressed as

prec(x, y) := ∃z¬union(z) ∧ E(x, z) ∧ ¬E(y, z)

• The P1 relation can also be expressed in FO logic. . .

Thm: There is no elementary-dependence model-checking algorithm for
FO logic on threshold graphs.

Consequences

Model Checking Lower Bounds 13 / 30

Recall some of the “good” graph classes we know

• Some are closed under complement (neighborhood diversity,
shrub-depth)

• Some are closed under union (tree-depth)

Consequences

Model Checking Lower Bounds 13 / 30

Recall some of the “good” graph classes we know

• Some are closed under complement (neighborhood diversity,
shrub-depth)

• Some are closed under union (tree-depth)

• None are closed under both operations. . .

Any class of graph closed under both operations
must∗ contain threshold graphs.

Main course:

Paths

Why paths?

Model Checking Lower Bounds 15 / 30

Main question:

• Is there an elementary-dependence algorithm for MSO1 on paths?

Why paths?

Model Checking Lower Bounds 15 / 30

Main question:

• Is there an elementary-dependence algorithm for MSO1 on paths?

Equivalent question:

• Is there an elementary-dependence algorithm for MSO1 on unary
strings?

Why paths?

Model Checking Lower Bounds 15 / 30

Main question:

• Is there an elementary-dependence algorithm for MSO1 on paths?

Equivalent question:

• Is there an elementary-dependence algorithm for MSO1 on unary
strings?

Why?

• Do Frick and Grohe really need all trees?

• FO is easy on paths.

• MSO is hard on binary strings/colored paths.

Why paths?

Model Checking Lower Bounds 15 / 30

Main question:

• Is there an elementary-dependence algorithm for MSO1 on paths?

Equivalent question:

• Is there an elementary-dependence algorithm for MSO1 on unary
strings?

Why?

• Do Frick and Grohe really need all trees?

• FO is easy on paths.

• MSO is hard on binary strings/colored paths.

• MSO for max-leaf is open!

Why would this be easy?

Model Checking Lower Bounds 16 / 30

• MSO on paths = Regular language over unary alphabet

• FO is easy

Why would this be easy?

Model Checking Lower Bounds 16 / 30

• MSO on paths = Regular language over unary alphabet

• FO is easy

• Reduction seems impossible. . .

“Normal” reduction:

• Start with n-variable 3-SAT

• Construct graph G with |G| = nc

• Construct formula φ with |φ| = log∗ n

• Prove YES instance ↔ G |= φ

Problem: New instance would be encodable with O(logn) bits. We are
making a sparse NP-hard language!

How the reduction can work

Model Checking Lower Bounds 17 / 30

Key idea: do not use P6=NP but EXP6=NEXP

• Motivation: reduction must construct exponential-size graph, so
should be allowed exponential time.

How the reduction can work

Model Checking Lower Bounds 17 / 30

Key idea: do not use P6=NP but EXP6=NEXP

• Motivation: reduction must construct exponential-size graph, so
should be allowed exponential time.

Plan:

• Start with an NEXP-complete problem and n bits of input.

• Construct a path on 2n
c

vertices.

• Construct a formula φ with |φ| = log∗ n.

• Prove YES instance ↔ G |= φ.

Elementary parameter dependence gives EXP=NEXP.

How the reduction can work

Model Checking Lower Bounds 17 / 30

Key idea: do not use P6=NP but EXP6=NEXP

• Motivation: reduction must construct exponential-size graph, so
should be allowed exponential time.

Plan:

• Start with an NEXP-complete problem and n bits of input.

• Construct a path on 2n
c

vertices.

• Construct a formula φ with |φ| = log∗ n.

• Prove YES instance ↔ G |= φ.

Elementary parameter dependence gives EXP=NEXP.

• Formula will be somewhat larger, but still small enough.

Counting with MSO

Model Checking Lower Bounds 18 / 30

• The basic obstacle (as in Frick and Grohe) is counting efficiently.

• Given two sets of elements S1, S2 with |S1| 6= |S2|, what is the
smallest MSO formula that can verify this?

Counting with MSO

Model Checking Lower Bounds 18 / 30

• The basic obstacle (as in Frick and Grohe) is counting efficiently.

• Given two sets of elements S1, S2 with |S1| 6= |S2|, what is the
smallest MSO formula that can verify this?

• Example: For independent sets, q quantifiers work for size 2q.

Main goal:

• Increase counting power exponentially with each added quantifier.

• Frick and Grohe do this, but they are allowed to design their graphs.
We are (essentially) not!

Counting with MSO

Model Checking Lower Bounds 18 / 30

• The basic obstacle (as in Frick and Grohe) is counting efficiently.

• Given two sets of elements S1, S2 with |S1| 6= |S2|, what is the
smallest MSO formula that can verify this?

• Example: For independent sets, q quantifiers work for size 2q.

Main goal:

• Increase counting power exponentially with each added quantifier.

• Frick and Grohe do this, but they are allowed to design their graphs.
We are (essentially) not!

Today: q quantifiers count up to size tow(Ω(log q)) on unary strings.

Learning to count

Model Checking Lower Bounds 19 / 30

Induction:

• We have a MSO formula eqL(P1, P2) which correctly compares sets
up to size L.

• The formula is only true for equal sets (independent of size).

Use this to compare larger sets economically.

First idea: division

Learning to count

Model Checking Lower Bounds 19 / 30

Induction:

• We have a MSO formula eqL(P1, P2) which correctly compares sets
up to size L.

• The formula is only true for equal sets (independent of size).

Use this to compare larger sets economically.

First idea: division

Given an ordered set of elements to compare with another, we first select
a subset of it.

Learning to count

Model Checking Lower Bounds 19 / 30

Induction:

• We have a MSO formula eqL(P1, P2) which correctly compares sets
up to size L.

• The formula is only true for equal sets (independent of size).

Use this to compare larger sets economically.

First idea: division

We can impose some structure: each “section” must have the same
length (≤ L). We do this on both sets.

Learning to count

Model Checking Lower Bounds 19 / 30

Induction:

• We have a MSO formula eqL(P1, P2) which correctly compares sets
up to size L.

• The formula is only true for equal sets (independent of size).

Use this to compare larger sets economically.

First idea: division

Now we need to count the number of sections. Select one representative
from each. Compare the two sets of representatives.

Learning to count

Model Checking Lower Bounds 19 / 30

Induction:

• We have a MSO formula eqL(P1, P2) which correctly compares sets
up to size L.

• The formula is only true for equal sets (independent of size).

Use this to compare larger sets economically.

First idea: division

This allows us to go from L to L2 with O(1) additional quantifiers (if done
carefully).

Learning to count

Model Checking Lower Bounds 19 / 30

Induction:

• We have a MSO formula eqL(P1, P2) which correctly compares sets
up to size L.

• The formula is only true for equal sets (independent of size).

Use this to compare larger sets economically.

First idea: division

This allows us to go from L to L2 with O(1) additional quantifiers (if done
carefully).
Counting power: 22

q

. Not good enough, but we’re moving.

Learning to count better

Model Checking Lower Bounds 20 / 30

• Good: a single set gives many sections.

• Bad: hard to count how many sections we have. Using induction not
good enough.

Idea: count in binary!

Learning to count better

Model Checking Lower Bounds 20 / 30

• Good: a single set gives many sections.

• Bad: hard to count how many sections we have. Using induction not
good enough.

Idea: count in binary!

Select the same division into sections.

Learning to count better

Model Checking Lower Bounds 20 / 30

• Good: a single set gives many sections.

• Bad: hard to count how many sections we have. Using induction not
good enough.

Idea: count in binary!

To count sections, select a subset that “writes” a binary number in each
section.

Learning to count better

Model Checking Lower Bounds 20 / 30

• Good: a single set gives many sections.

• Bad: hard to count how many sections we have. Using induction not
good enough.

Idea: count in binary!

Demand that counting is correct for consecutive sections.

• Proof: hand-waving (but check the paper!)

Learning to count better

Model Checking Lower Bounds 20 / 30

• Good: a single set gives many sections.

• Bad: hard to count how many sections we have. Using induction not
good enough.

Idea: count in binary!

We went from L to L2L using eqL O(1) times.
→ each level of exponentiation increases size by a constant factor.
→ can compare sets of size n with 2log

∗ n quantifiers.

Are we done with the math?

Model Checking Lower Bounds 21 / 30

Using eqL it’s easy to do comparisons, div, mod, . . .

• We will also need exponentiation. expL(P1, P2) is true if |P2| = 2|P1|.

Are we done with the math?

Model Checking Lower Bounds 21 / 30

Using eqL it’s easy to do comparisons, div, mod, . . .

• We will also need exponentiation. expL(P1, P2) is true if |P2| = 2|P1|.

Idea: Find a set in P2 with size |P1|+1. Ensure that consecutive distances
are doubled.

DONE!

Are we done with the math?

Model Checking Lower Bounds 21 / 30

Using eqL it’s easy to do comparisons, div, mod, . . .

• We will also need exponentiation. expL(P1, P2) is true if |P2| = 2|P1|.

Idea: Find a set in P2 with size |P1|+1. Ensure that consecutive distances
are doubled.

DONE!

The hard part is over!

Putting things together

Model Checking Lower Bounds 22 / 30

• Reduction from NEXP Turing machine acceptance with n input bits.

• Machine runs in T = 2n
c

time. Input (read as binary number) is
I ≤ 2n.

• Construct a path of length T 2(2I + 1).

• Construct a φ that simulates the machine on the path.

Putting things together

Model Checking Lower Bounds 22 / 30

• Reduction from NEXP Turing machine acceptance with n input bits.

• Machine runs in T = 2n
c

time. Input (read as binary number) is
I ≤ 2n.

• Construct a path of length T 2(2I + 1).

• Construct a φ that simulates the machine on the path.

The last one is the tricky part. But we now have the right tools.

• Locate a set of length T 2. Divide it into sections of size T . These will
represent snapshots of the machine’s tape.

• Locate a set of length I. Use exp to “read” input bits from it.

• Guess the contents of the tape.

• Check that the computation is correct and accepting.

Consequences

Model Checking Lower Bounds 23 / 30

Unless EXP=NEXP:

• Max-leaf is hard

Consequences

Model Checking Lower Bounds 23 / 30

Unless EXP=NEXP:

• Max-leaf is hard

• Graph classes closed under edge sub-divisions are hard

Consequences

Model Checking Lower Bounds 23 / 30

Unless EXP=NEXP:

• Max-leaf is hard

• Graph classes closed under edge sub-divisions are hard

• Graph classes closed under induced subgraphs with unbounded
(dense)∗ diameter are hard

Consequences

Model Checking Lower Bounds 23 / 30

Unless EXP=NEXP:

• Max-leaf is hard

• Graph classes closed under edge sub-divisions are hard

• Graph classes closed under induced subgraphs with unbounded
(dense)∗ diameter are hard

• MSO2 for cliques is very hard! (not in XP)

The last one was already known. But “easier” proof using that eqL has
constant size on cliques with MSO2.

Dessert:

Trees of bounded height

Why trees of bounded height?

Model Checking Lower Bounds 25 / 30

This class of graphs is important for two recent meta-theorems:

• Shrub-depth in “When trees grow low: Shrubs and fast MSO1”
[Ganian et al. MFCS ’12]

• Tree-depth in “Faster deciding MSO properties of trees of fixed
height, and some consequences” [Gajarský and Hliňený FSTTCS
’12]

In both cases the main tool is the following:

MSO model-checking for q quantifiers on trees of height h colored with
t colors can be done in exp(h+1)(O(q(t+ q)) time.

Lower bound

Model Checking Lower Bounds 26 / 30

Goal: prove that h+ 1 levels of exponentiation are exactly necessary.

• Start from an n-variable 3-SAT instance.

• Construct a tree of height h. Use t = log(h)(n) colors.

• Construct a formula with q = O(h) quantifiers.

• Prove equivalence between instances.

Lower bound

Model Checking Lower Bounds 26 / 30

Goal: prove that h+ 1 levels of exponentiation are exactly necessary.

• Start from an n-variable 3-SAT instance.

• Construct a tree of height h. Use t = log(h)(n) colors.

• Construct a formula with q = O(h) quantifiers.

• Prove equivalence between instances.

Argument: an algorithm running in exp(h+1)(o(t)) would run in 2o(n) here,
disproving ETH.

Let’s count some more!

Model Checking Lower Bounds 27 / 30

Fix h. The main problem is again to count efficiently.

• We have log(h)(n) colors available. These can represent numbers up
to log(h−1)(n) with a single vertex (and comparisons are
propositional!).

Let’s count some more!

Model Checking Lower Bounds 27 / 30

Fix h. The main problem is again to count efficiently.

• We have log(h)(n) colors available. These can represent numbers up
to log(h−1)(n) with a single vertex (and comparisons are
propositional!).

• Assuming we can do numbers up to L with trees of height i. We do
numbers up to 2L with trees of height i+ 1 (Frick& Grohe).

The rest is easy

Model Checking Lower Bounds 28 / 30

• Construct a tree of height h− 1 for each variable, encoding its index.

• Construct a tree of height h− 1 for each clauses, encoding the
indices of its three literals.

• Add a root.

• Express satisfiability with a constant quantifier-depth formula.

Essential idea: we are using the proof of Frick and Grohe for h levels.

The rest is easy

Model Checking Lower Bounds 28 / 30

• Construct a tree of height h− 1 for each variable, encoding its index.

• Construct a tree of height h− 1 for each clauses, encoding the
indices of its three literals.

• Add a root.

• Express satisfiability with a constant quantifier-depth formula.

Essential idea: we are using the proof of Frick and Grohe for h levels.

Thm: There is no exp(h+1)(o(t)) algorithm for MSO logic on t-colored
trees of height h unless the ETH is false.

Conclusions - Open problems

Model Checking Lower Bounds 29 / 30

• Three natural barriers to future improvements.

• Paths are probably the toughest to work around.

Future work

• (Uncolored) tree-depth?

• Height of tower for paths?

Conclusions - Open problems

Model Checking Lower Bounds 29 / 30

• Three natural barriers to future improvements.

• Paths are probably the toughest to work around.

Future work

• (Uncolored) tree-depth?

• Height of tower for paths?

• Other logics?!?

Thank you!

Model Checking Lower Bounds 30 / 30

	Algorithmic Meta-Theorems
	Good news so far
	Some bad news
	There is still hope
	Let's destroy all hope!
	More background
	Threshold Graphs
	Hardness for threshold graphs
	Hardness for threshold graphs
	Hardness for threshold graphs
	Consequences
	Why paths?
	Why would this be easy?
	How the reduction can work
	Counting with MSO
	Learning to count
	Learning to count better
	Are we done with the math?
	Putting things together
	Consequences
	Why trees of bounded height?
	Lower bound
	Let's count some more!
	The rest is easy
	Conclusions - Open problems
	Thank you!

