Finer Tight Bounds for Coloring on Clique-width

Michael Lampis LAMSADE Université Paris Dauphine

Coloring

Input:

Graph G = (V, E) n vertices k colors

Question:

Can we partition V into k independent sets?

Coloring

Input:

Graph G = (V, E) n vertices k colors

Question:

Can we partition V into k independent sets?

Coloring

Input:

Graph G = (V, E) n vertices k colors

Question:

Can we partition V into k independent sets?

Note: For the rest of this talk, k denotes the number of **colors**.

Problem NP-hard for any $k \ge 3$: We look at graphs with restricted structure.

• What is a "finer" tight bound?

- Tight bound: complexity-theoretic bound that "matches" running time of existing algorithm.
- Finer bounds:
 - Increased "granularity".
 - More precise about secondary parameters.

- Tight bound: complexity-theoretic bound that "matches" running time of existing algorithm.
- Finer bounds:
 - Increased "granularity".
 - More precise about secondary parameters.

Coloring

- We know the "correct" complexity of Coloring for clique-width
 - ... $\approx k^{2^w}$ (more details in a bit)
- This bound is only tight for k sufficiently large.
- What is the exact complexity of 3-coloring, 4-coloring for clique-width?

- Tight bound: complexity-theoretic bound that "matches" running time of existing algorithm.
- Finer bounds:
 - Increased "granularity".
 - More precise about secondary parameters.

Coloring

- We know the "correct" complexity of Coloring for clique-width
 - ... $\approx k^{2^w}$ (more details in a bit)
- This bound is only tight for k sufficiently large.
- What is the exact complexity of 3-coloring, 4-coloring for clique-width?

In this talk we show that, under the SETH, the **correct** complexity of k-Coloring for clique-width is

- Tight bound: complexity-theoretic bound that "matches" running time of existing algorithm.
- Finer bounds:
 - Increased "granularity".
 - More precise about secondary parameters.

Coloring

We know the "correct" complexity of Coloring for clique-width

This bound is

What is the example

In this talk we of k-Coloring for

g for clique-width?

ect complexity

- Tight bound: complexity-theoretic bound that "matches" running time of existing algorithm.
- Finer bounds:
 - Increased "granularity".
 - More precise about secondary parameters.

Coloring

- We know the "correct" complexity of Coloring for clique-width
 - ... $\approx k^{2^w}$ (more details in a bit)
- This bound is only tight for k sufficiently large.
- What is the exact complexity of 3-coloring, 4-coloring for clique-width?

In this talk we show that, under the SETH, the **correct** complexity of k-Coloring for clique-width is c_k^w .

Consider this (very very special) class of graphs of treewidth w:

The graph consists of a long path

- The graph consists of a long path
- ullet w extra vertices, arbitrarily connected to each other

Consider this (very very special) class of graphs of treewidth w:

- The graph consists of a long path
- ullet w extra vertices, arbitrarily connected to each other
- and arbitrary edges between these two parts

Interesting case: $w \ll n$.

- The graph consists of a long path
- 3-Coloring algorithm on these graphs:
- Guess a valid coloring of the w non-path vertices
- Try to extend it to a coloring of the whole graph (easy!)

- The graph consists of a long path
- 3-Coloring algorithm on these graphs:
- Guess a valid coloring of the w non-path vertices
- Try to extend it to a coloring of the whole graph (easy!)

- The graph consists of a long path
- 3-Coloring algorithm on these graphs:
- Guess a valid coloring of the w non-path vertices
- Try to extend it to a coloring of the whole graph (easy!)

- The graph consists of a long path
- 3-Coloring algorithm on these graphs:
- Guess a valid coloring of the w non-path vertices
- Try to extend it to a coloring of the whole graph (easy!)

Consider this (very very special) class of graphs of treewidth w:

The graph consists of a long path

3-Coloring algorithm on these graphs:

- ullet Guess a valid coloring of the w non-path vertices
- Try to extend it to a coloring of the whole graph (easy!)
- ullet Either found a valid coloring, or try another coloring for w vertices.

Running time: 3^w

- Graphs of treewidth w are **much more general** than the graphs of the previous slide.
 - Algorithm generalizes easily (DP)
 - Running time: k^w .

- Graphs of treewidth w are **much more general** than the graphs of the previous slide.
 - Algorithm generalizes easily (DP)
 - Running time: k^w .

Can we do better?

- Graphs of treewidth w are **much more general** than the graphs of the previous slide.
 - Algorithm generalizes easily (DP)
 - Running time: k^w .

Can we do better?

- Graphs of treewidth w are **much more general** than the graphs of the previous slide.
 - Algorithm generalizes easily (DP)
 - Running time: k^w .

Can we do better?

Previous Work:

- Lokshtanov, Marx, Saurabh, SODA'11
- Jaffke and Jansen, CIAC '17

Result:

(SETH) \rightarrow cannot do $(k - \epsilon)^w$, for any k, ϵ , even for Paths+w!

Very fine, completely tight bound!

Note: SETH \approx SAT has no 1.999^n algorithm.

- Graphs of treewidth w are **much more general** than the graphs of the previous slide.
 - Algorithm generalizes easily (DP)
 - Running time: k^w .

Can we do better?

Previous Work:

Lokshtanov, Marx, Saurabh. SODA'11

Jaffke and Jansen, CIAC

Result:

(SETH) \rightarrow cannot do $(k - \epsilon)$

Very fine, completely tight

Note: SETH \approx SAT has no

en for Paths+w!

The story so far: Clique-width

- Clique-width is the second most widely studied graph width.
 - Intuition: Treewidth + Some dense graphs.
 - Definition in next slide.

Summary of what is known for k-Coloring on graphs of clique-width w:

- Algorithm in $k^{2^{O(w)}}$ (Kobler and Rotics DAM '03)
- Algorithm in $4^{k \cdot w}$ (Kobler and Rotics DAM '03)
- W-hard parameterized by w (Fomin, Golovach, Lokshtanov, and Saurabh SICOMP '10)
- ETH LB of $n^{2^{o(w)}}$ (Golovach, Lokshtanov, Saurabh, Zehavi SODA'18)

The story so far: Clique-width

- Clique-width is the second most widely studied graph width.
 - Intuition: Treewidth + Some dense graphs.
 - Definition in next slide.

Summary of what is known for k-Coloring on graphs of clique-width w:

- Algorithm in $k^{2^{O(w)}}$ (Kobler and Rotics DAM '03)
- Algorithm in $4^{k \cdot w}$ (Kobler and Rotics DAM '03)
- W-hard parameterized by w (Fomin, Golovach, Lokshtanov, and Saurabh SICOMP '10)
- ETH LB of $n^{2^{o(w)}}$ (Golovach, Lokshtanov, Saurabh, Zehavi SODA'18)

Remark: Last LB is tight (!), but requires k to be large (otherwise contradicts second algorithm)

Story not as clear as treewidth (yet)...

Clique-width: Definition and Intuition

Reminder of the inductive definition of clique-width:

- Each vertex is labelled with a label $\{1, \ldots, w\}$.
- Base operation:
 - Construct single-vertex graph.
- Inductive operations:
 - Join (add all edges between two labels)
 - Rename (one label to another)
 - Disjoint Union

Intuition: Each label set is a **module** with respect to vertices that do not appear in the graph yet.

 Allows us to "forget" some information about what is happening inside a label set, do DP.

Clique-width: Definition and Intuition

Reminder of the inductive definition of clique-width:

- Each vertex is labelled with a label $\{1, \ldots, w\}$.
- Base operation:
 - Construct single-vertex graph.
- Inductive operations:
 - Join (add all edges between two labels)
 - Rename (one label to another)
 - Disjoint Union

Intuition: Each label set is a module with respect to vertices that do not appear in the graph yet.

 Allows us to "forget" some information about what is happening inside a label set, do DP.

Clique-width: Definition and Intuition

Reminder of the inductive definition of clique-width:

- Each vertex is labelled with a label $\{1, \ldots, w\}$.
- Base operation:
 - Construct single-vertex graph.
- Inductive operations:
 - Join (add all edges between two labels)
 - Rename (one label to another)
 - Disjoint Union

Intuition: Each label set is a **module** with respect to vertices that do not appear in the graph yet.

 Allows us to "forget" some information about what is happening inside a label set, do DP.

We recall a basic DP algorithm:

We recall a basic DP algorithm:

- For every label we remember the set of colors used in this label set.
 - Observe: not important which/how many vertices received color red.
 - All future neighbors are common.

We recall a basic DP algorithm:

We recall a basic DP algorithm:

- For every label we remember the set of colors used in this label set.
 - For Join operations we check if the sets are disjoint
 - Otherwise discard this partial solution

We recall a basic DP algorithm:

- For every label we remember the set of colors used in this label set.
 - For Join operations we check if the sets are disjoint
 - Otherwise discard this partial solution

We recall a basic DP algorithm:

- For every label we remember the set of colors used in this label set.
 - For Rename/Union operations we take unions of sets of colors.

We recall a basic DP algorithm:

- For every label we remember the set of colors used in this label set.
- In the algorithm we sketched the DP has size:
 - 2^k for each label $\rightarrow 2^{k \cdot w}$ in total.
- The $4^{k \cdot w}$ running time claimed comes from a naive implementation of Union operations.
- With modern Fast Subset Convolution technology this can be improved to $2^{k \cdot w}$.

We recall a basic DP algorithm:

- For every label we remember the set of colors used in this label set.
- In the algorithm we sketched the DP has size:
 - 2^k for each label $\rightarrow 2^{k \cdot w}$ in total.
- The $4^{k \cdot w}$ running time claimed comes from a naive implementation of Union operations.
- With modern Fast Subset Convolution technology this can be improved to $2^{k \cdot w}$.

Can we make the DP smaller than $2^{k \cdot w}$?

We recall a basic DP algorithm:

- For every label we remember the set of colors used in this label set.
- In the algorithm we sketched the DP has size:
 - 2^k for each label $\rightarrow 2^{k \cdot w}$ in total.
- The $4^{k \cdot w}$ running time claimed comes from a naive implementation of Union operations.
- With modern Fast Subset Convolution technology this can be improved to $2^{k \cdot w}$.

Can we make the DP smaller than $2^{k \cdot w}$?

(**Note:** The k^{2^w} algorithm is much more involved...)

DP algorithm: a closer look

Basic Argument:

- For each label we store a set of colors.
- There are k colors \rightarrow there are 2^k possible sets.

DP algorithm: a closer look

Basic Argument:

- For each label we store a set of colors.
- There are k colors \rightarrow there are 2^k possible sets.
- BUT! How could a label set be colored with ∅?
 - Ignoring the empty set we improve the DP table to $(2^k-1)^u$

• Could a label set be using **ALL** *k* colors?

Could a label set be using ALL k colors?
 Yes!

- Could a label set be using ALL k colors?
- Yes, but, then we cannot apply join operations to this label.
 - Separate labels into live and junk.
 - For live labels $2^k 2$ feasible sets.
 - For junk labels, who cares?? (no more edges!)

Could a label set be using ALL k colors?

Bottom line: DP size can be brought down to $(2^k - 2)^w$.

Could a label set be using ALL k colors?

Bottom line: DP size can be brought down to $(2^k - 2)^w$.

Main result: Under SETH, $(2^k - 2)^w$ is the correct complexity!

The Reduction

Outline

Result: Under SETH, $\forall k, \epsilon$ there is no $(2^k - 2 - \epsilon)^w$ Coloring algorithm.

- Starting Point: q-CSP-B not solvable in $(B \epsilon)^n$
 - A convenient starting point!
- The main reduction
 - List Coloring
 - Weak Edges Implications
 - The general structure

SAT LB	Coloring on clique-width LB
$ \angle (2-\epsilon)^n $	$\rightarrow \mathbb{A} (2-\epsilon)^w$
n variables	w =

SAT LB	Coloring on clique-width LB
$ \angle (2-\epsilon)^n $	$\rightarrow \mathbb{A} (2-\epsilon)^w$
n variables	w = n

SAT LB	Coloring on clique-width LB
$ \angle (2-\epsilon)^n $	$\rightarrow \cancel{\exists} (4-\epsilon)^w$
n variables	w = n/2

SAT LB	Coloring on clique-width LB
$ \angle (2-\epsilon)^n $	$\rightarrow \mathbb{A} (8 - \epsilon)^w$
n variables	w = n/3

SAT LB	Coloring on clique-width LB
$ \angle (2-\epsilon)^n $	$\rightarrow \cancel{\exists} (6 - \epsilon)^w$
n variables	w = ??

SAT LB	Coloring on clique-width LB
$ \angle (2-\epsilon)^n $	$\rightarrow \mathbb{A} (6 - \epsilon)^w$
n variables	$w = n/\log 6$ Not an int!

- Reductions aiming for a LB of the form c^w , where c is a power of 2 are easy
 - Map $\log c$ SAT variables to each unit of width.
- If c is not a power of 2 things become messier:

SAT LB	Coloring on clique-width LB
$ \angle (2-\epsilon)^n $	ightarrow $ ightarrow$
n variables	$w = n/\log 6$ Not an int!

- Reductions aiming for a LB of the form c^w , where c is a power of 2 are easy
 - Map $\log c$ SAT variables to each unit of width.
- If c is not a power of 2 things become messier:

SAT LB	Coloring on clique-width LB
$\mathbb{A}(2-\epsilon)^n$	$ ightarrow$ $ ot \square$
n variables	$w = n/\log 6$ Not an int!

- Reductions aiming for a LB of the form c^w , where c is a power of 2 are easy
 - Map $\log c$ SAT variables to each unit of width.
- If c is not a power of 2 things become messier:

Figure 5: Reduction to q-COLORING. The t groups of vertices V_1, \ldots, V_t represent the t groups of variables F_1, \ldots, F_t (each of size $\lceil \log q^p \rceil$). Each vertex of the clause path \widehat{P}_j is connected to one group V_i via a connector.

SAT LB	Coloring on clique-width LB
$\mathbb{A}(2-\epsilon)^n$	$ ightarrow$ $ ot \!\!\!/$
n variables	$w = n/\log 6$ Not an int!

- Reductions aiming for a LB of the form c^w , where c is a power of 2 are easy
 - Map $\log c$ SAT variables to each unit of width.
- If c is not a power of 2 things become messier:
- Solution: Map $p \log c$ variables to p units of width, for p sufficiently large.
 - Usually done as sub-part of the reduction.
 - May complicate the problem unnecessarily...

- SETH informal: SAT cannot be solved in $(2 \epsilon)^n$.
- SETH more careful: for all $\epsilon > 0$ there exists q such that q-SAT cannot be solved in $(2 \epsilon)^n$.

- SETH informal: SAT cannot be solved in $(2 \epsilon)^n$.
- SETH more careful: for all $\epsilon > 0$ there exists q such that q-SAT cannot be solved in $(2 \epsilon)^n$.
- If we accept the more careful form of SETH we can obtain a convenient starting point for any lower bound

If SETH is true, then for all $B \geq 2, \epsilon > 0$ there exists q such that q-CSP-B cannot be solved in $(B - \epsilon)^n$

- SETH informal: SAT cannot be solved in $(2 \epsilon)^n$.
- SETH more careful: for all $\epsilon > 0$ there exists q such that q-SAT cannot be solved in $(2 \epsilon)^n$.
- If we accept the more careful form of SETH we can obtain a convenient starting point for any lower bound

If SETH is true, then for all $B \ge 2, \epsilon > 0$ there exists q such that q-CSP-B cannot be solved in $(B - \epsilon)^n$

- Translation: we get a problem that needs time 6^n , or 14^n , or 30^n , or ...
- Ready to be used for all your reduction needs!

Strategy: Reduce *q*-CSP-6 to 3-Coloring on clique-width.

- If w = n + O(1), then we get $(6 \epsilon)^w = (2^k 2 \epsilon)^w$ lower bound, DONE!
- Step 1: Define an arbitrary mapping from the alphabet of the CSP $1, \ldots, 6$ to sets of colors.

```
1 | R
2 | G
3 | B
4 | RG
5 | RB
6 | GB
```

• Intuition: We define a label class for each variable. This label class uses exactly the colors given by the mapping of its satisfying value.

We assume the existence of the following gadgets:

- List Coloring: We can assign each vertex a list of feasible colors
- Implications: If source has a certain color, this forces a color on the sink

• We maintain n label sets (one for each variable).

- We maintain n label sets (one for each variable).
- Invariant: Colors used ↔ value
- Here: $x_1 = 1, x_2 = 4$

- We maintain n label sets (one for each variable).
- Invariant: Colors used ↔ value
- For each constraint: odd cycle with 3 color list
- → Each vertex represents a satisfying assignment
- → Green vertex ↔ selected assignment

- We maintain n label sets (one for each variable).
- Invariant: Colors used ↔ value
- For each constraint: odd cycle with 3 color list
- → Each vertex represents a satisfying assignment
- → Green vertex ↔ selected assignment

- We maintain n label sets (one for each variable).
- Invariant: Colors used ↔ value
- → Green vertex ↔ selected assignment
- Add Green-activated implications

- We maintain n label sets (one for each variable).
- Invariant: Colors used ↔ value
- → Green vertex ↔ selected assignment
- Add Green-activated implications
- Non-selected assignment → implications irrelevant

- We maintain n label sets (one for each variable).
- Invariant: Colors used ↔ value
- → Green vertex ↔ selected assignment
- Add Green-activated implications
- Selected assignment → Colors forced

- We maintain n label sets (one for each variable).
- Invariant: Colors used ↔ value
- → Green vertex ↔ selected assignment
- Add edges from vertices not supposed to have a color in x_1 to x_1 .

- We maintain n label sets (one for each variable).
- Invariant: Colors used ↔ value
- → Green vertex ↔ selected assignment
- Add edges from vertices not supposed to have a color in x_1 to x_1 .
- Move these vertices to JUNK, others to x_1

- We maintain n label sets (one for each variable).
- Invariant: Colors used ↔ value
- → Green vertex ↔ selected assignment
- Do the same for other variables of c_1

- We maintain n label sets (one for each variable).
- Invariant: Colors used ↔ value
- → Green vertex ↔ selected assignment
- Do the same for other variables of c_1

- We maintain n label sets (one for each variable).
- Invariant: Colors used ↔ value
- → Green vertex ↔ selected assignment
- Do the same for other variables of c_1

- We maintain n label sets (one for each variable).
- Invariant: Colors used ↔ value
- → Green vertex ↔ selected assignment
- Do the same for other constraints

- We maintain n label sets (one for each variable).
- Invariant: Colors used ↔ value
- → Green vertex ↔ selected assignment
- Do the same for other constraints
- Repeating the sequence of constraints kn times ensures consistency!

Main Reduction – Gadgets

- List Coloring
 - Implemented by adding a complete k-partite graph to G, connecting each vertex with appropriate parts.
 - Tricky part: maintain clique-width.
- Weak Edges
 - Edges that only rule out one pair of colors (c_1, c_2) .
 - Example: No (Red Blue)

- Implications
 - Implemented with weak edges.

Conclusions

Summary:

- Under SETH, $(2^k 2)^w$ is the **correct** complexity of Coloring on clique-width, for any constant k.
- Similarly "fine tight" bounds for modular treewidth.

Open Problems:

• Why/how/when does complexity go from $2^{k \cdot w}$ to k^{2^w} ???

Conclusions

Summary:

- Under SETH, $(2^k 2)^w$ is the **correct** complexity of Coloring on clique-width, for any constant k.
- Similarly "fine tight" bounds for modular treewidth.

Open Problems:

- Why/how/when does complexity go from $2^{k \cdot w}$ to k^{2^w} ???
- Approximation?
 - Consistent with current knowledge: 2^{tw} 2-approximation for Coloring?
 - Can we distinguish 3 from 7-colorable graphs in 2^{tw} ?

Conclusions

Summary:

• Under SETH, $(2^k-2)^w$ is the **correct** complexity of Coloring on

clique-width, for ar

Similarly "fine tight

Open Problems:

Why/how/when do

Approximation?

Consistent with Coloring?

Can we disting:

Thank you!

