
Finer Tight Bounds for

Coloring on Clique-width

Michael Lampis
LAMSADE

Université Paris Dauphine

ICALP 2018



Coloring

Parameterized Approximation Schemes 2 / 18

Input:

Graph G = (V,E)
n vertices

k colors

Question:

Can we partition V into k
independent sets?



Coloring

Parameterized Approximation Schemes 2 / 18

Input:

Graph G = (V,E)
n vertices

k colors

Question:

Can we partition V into k
independent sets?



Coloring

Parameterized Approximation Schemes 2 / 18

Input:

Graph G = (V,E)
n vertices

k colors

Question:

Can we partition V into k
independent sets?

Note: For the rest of this talk, k denotes the number of colors.

Problem NP-hard for any k ≥ 3:

We look at graphs with restricted structure.



Finer Tight Bounds?

Parameterized Approximation Schemes 3 / 18

• What is a “finer” tight bound?



Finer Tight Bounds?

Parameterized Approximation Schemes 3 / 18

• Tight bound: complexity-theoretic bound that “matches” running time

of existing algorithm.

• Finer bounds:

• Increased “granularity”.

• More precise about secondary parameters.



Finer Tight Bounds?

Parameterized Approximation Schemes 3 / 18

• Tight bound: complexity-theoretic bound that “matches” running time

of existing algorithm.

• Finer bounds:

• Increased “granularity”.

• More precise about secondary parameters.

Coloring

• We know the “correct” complexity of Coloring for clique-width

• . . .≈ k2
w

(more details in a bit)

• This bound is only tight for k sufficiently large.

• What is the exact complexity of 3-coloring, 4-coloring for clique-width?



Finer Tight Bounds?

Parameterized Approximation Schemes 3 / 18

• Tight bound: complexity-theoretic bound that “matches” running time

of existing algorithm.

• Finer bounds:

• Increased “granularity”.

• More precise about secondary parameters.

Coloring

• We know the “correct” complexity of Coloring for clique-width

• . . .≈ k2
w

(more details in a bit)

• This bound is only tight for k sufficiently large.

• What is the exact complexity of 3-coloring, 4-coloring for clique-width?

In this talk we show that, under the SETH, the correct complexity

of k-Coloring for clique-width is



Finer Tight Bounds?

Parameterized Approximation Schemes 3 / 18

• Tight bound: complexity-theoretic bound that “matches” running time

of existing algorithm.

• Finer bounds:

• Increased “granularity”.

• More precise about secondary parameters.

Coloring

• We know the “correct” complexity of Coloring for clique-width

• . . .≈ k2
w

(more details in a bit)

• This bound is only tight for k sufficiently large.

• What is the exact complexity of 3-coloring, 4-coloring for clique-width?

In this talk we show that, under the SETH, the correct complexity

of k-Coloring for clique-width is



Finer Tight Bounds?

Parameterized Approximation Schemes 3 / 18

• Tight bound: complexity-theoretic bound that “matches” running time

of existing algorithm.

• Finer bounds:

• Increased “granularity”.

• More precise about secondary parameters.

Coloring

• We know the “correct” complexity of Coloring for clique-width

• . . .≈ k2
w

(more details in a bit)

• This bound is only tight for k sufficiently large.

• What is the exact complexity of 3-coloring, 4-coloring for clique-width?

In this talk we show that, under the SETH, the correct complexity

of k-Coloring for clique-width is cw
k

.



The story so far: Treewidth

Parameterized Approximation Schemes 4 / 18

Consider this (very very special) class of graphs of treewidth w:

• The graph consists of a long path



The story so far: Treewidth

Parameterized Approximation Schemes 4 / 18

Consider this (very very special) class of graphs of treewidth w:

• The graph consists of a long path

• w extra vertices, arbitrarily connected to each other



The story so far: Treewidth

Parameterized Approximation Schemes 4 / 18

Consider this (very very special) class of graphs of treewidth w:

• The graph consists of a long path

• w extra vertices, arbitrarily connected to each other

• and arbitrary edges between these two parts

Interesting case: w << n.



The story so far: Treewidth

Parameterized Approximation Schemes 4 / 18

Consider this (very very special) class of graphs of treewidth w:

• The graph consists of a long path

3-Coloring algorithm on these graphs:

• Guess a valid coloring of the w non-path vertices

• Try to extend it to a coloring of the whole graph (easy!)



The story so far: Treewidth

Parameterized Approximation Schemes 4 / 18

Consider this (very very special) class of graphs of treewidth w:

• The graph consists of a long path

3-Coloring algorithm on these graphs:

• Guess a valid coloring of the w non-path vertices

• Try to extend it to a coloring of the whole graph (easy!)



The story so far: Treewidth

Parameterized Approximation Schemes 4 / 18

Consider this (very very special) class of graphs of treewidth w:

• The graph consists of a long path

3-Coloring algorithm on these graphs:

• Guess a valid coloring of the w non-path vertices

• Try to extend it to a coloring of the whole graph (easy!)



The story so far: Treewidth

Parameterized Approximation Schemes 4 / 18

Consider this (very very special) class of graphs of treewidth w:

• The graph consists of a long path

3-Coloring algorithm on these graphs:

• Guess a valid coloring of the w non-path vertices

• Try to extend it to a coloring of the whole graph (easy!)



The story so far: Treewidth

Parameterized Approximation Schemes 4 / 18

Consider this (very very special) class of graphs of treewidth w:

• The graph consists of a long path

3-Coloring algorithm on these graphs:

• Guess a valid coloring of the w non-path vertices

• Try to extend it to a coloring of the whole graph (easy!)

• Either found a valid coloring, or try another coloring for w vertices.

Running time: 3w



The story so far: Treewidth

Parameterized Approximation Schemes 5 / 18

• Graphs of treewidth w are much more general than the graphs of the

previous slide.

• Algorithm generalizes easily (DP)

• Running time: kw.



The story so far: Treewidth

Parameterized Approximation Schemes 5 / 18

• Graphs of treewidth w are much more general than the graphs of the

previous slide.

• Algorithm generalizes easily (DP)

• Running time: kw.

Can we do better?



The story so far: Treewidth

Parameterized Approximation Schemes 5 / 18

• Graphs of treewidth w are much more general than the graphs of the

previous slide.

• Algorithm generalizes easily (DP)

• Running time: kw.

Can we do better?



The story so far: Treewidth

Parameterized Approximation Schemes 5 / 18

• Graphs of treewidth w are much more general than the graphs of the

previous slide.

• Algorithm generalizes easily (DP)

• Running time: kw.

Can we do better?

Previous Work:

• Lokshtanov, Marx, Saurabh, SODA’11

• Jaffke and Jansen, CIAC ’17

Result:

(SETH) → cannot do (k − ǫ)w, for any k, ǫ, even for Paths+w!

Very fine, completely tight bound!

Note: SETH ≈ SAT has no 1.999n algorithm.



The story so far: Treewidth

Parameterized Approximation Schemes 5 / 18

• Graphs of treewidth w are much more general than the graphs of the

previous slide.

• Algorithm generalizes easily (DP)

• Running time: kw.

Can we do better?

Previous Work:

• Lokshtanov, Marx, Saurabh, SODA’11

• Jaffke and Jansen, CIAC ’17

Result:

(SETH) → cannot do (k − ǫ)w, for any k, ǫ, even for Paths+w!

Very fine, completely tight bound!

Note: SETH ≈ SAT has no 1.999n algorithm.



The story so far: Clique-width

Parameterized Approximation Schemes 6 / 18

• Clique-width is the second most widely studied graph width.

• Intuition: Treewidth + Some dense graphs.

• Definition in next slide.

Summary of what is known for k-Coloring on graphs of clique-width w:

• Algorithm in k2
O(w)

(Kobler and Rotics DAM ’03)

• Algorithm in 4k·w (Kobler and Rotics DAM ’03)

• W-hard parameterized by w (Fomin, Golovach, Lokshtanov, and

Saurabh SICOMP ’10)

• ETH LB of n2
o(w)

(Golovach, Lokshtanov, Saurabh, Zehavi SODA’18)



The story so far: Clique-width

Parameterized Approximation Schemes 6 / 18

• Clique-width is the second most widely studied graph width.

• Intuition: Treewidth + Some dense graphs.

• Definition in next slide.

Summary of what is known for k-Coloring on graphs of clique-width w:

• Algorithm in k2
O(w)

(Kobler and Rotics DAM ’03)

• Algorithm in 4k·w (Kobler and Rotics DAM ’03)

• W-hard parameterized by w (Fomin, Golovach, Lokshtanov, and

Saurabh SICOMP ’10)

• ETH LB of n2
o(w)

(Golovach, Lokshtanov, Saurabh, Zehavi SODA’18)

Remark: Last LB is tight (!), but requires k to be large

(otherwise contradicts second algorithm)

Story not as clear as treewidth (yet). . .



Clique-width: Definition and Intuition

Parameterized Approximation Schemes 7 / 18

Reminder of the inductive definition of clique-width:
• Each vertex is labelled with a label∈ {1, . . . , w}.

• Base operation:

• Construct single-vertex graph.

• Inductive operations:

• Join (add all edges between two labels)

• Rename (one label to another)

• Disjoint Union

Intuition: Each label set is a module with respect to vertices that do not

appear in the graph yet.

• Allows us to “forget” some information about what is happening inside

a label set, do DP.



Clique-width: Definition and Intuition

Parameterized Approximation Schemes 7 / 18

Reminder of the inductive definition of clique-width:
• Each vertex is labelled with a label∈ {1, . . . , w}.

• Base operation:

• Construct single-vertex graph.

• Inductive operations:

• Join (add all edges between two labels)

• Rename (one label to another)

• Disjoint Union

Intuition: Each label set is a module with respect to vertices that do not

appear in the graph yet.

• Allows us to “forget” some information about what is happening inside

a label set, do DP.



Clique-width: Definition and Intuition

Parameterized Approximation Schemes 7 / 18

Reminder of the inductive definition of clique-width:
• Each vertex is labelled with a label∈ {1, . . . , w}.

• Base operation:

• Construct single-vertex graph.

• Inductive operations:

• Join (add all edges between two labels)

• Rename (one label to another)

• Disjoint Union

Intuition: Each label set is a module with respect to vertices that do not

appear in the graph yet.

• Allows us to “forget” some information about what is happening inside

a label set, do DP.



Clique-width: basic algorithm

Parameterized Approximation Schemes 8 / 18

We recall a basic DP algorithm:

• For every label we remember the set of colors used in this label set.



Clique-width: basic algorithm

Parameterized Approximation Schemes 8 / 18

We recall a basic DP algorithm:

• For every label we remember the set of colors used in this label set.



Clique-width: basic algorithm

Parameterized Approximation Schemes 8 / 18

We recall a basic DP algorithm:

• For every label we remember the set of colors used in this label set.



Clique-width: basic algorithm

Parameterized Approximation Schemes 8 / 18

We recall a basic DP algorithm:

• For every label we remember the set of colors used in this label set.



Clique-width: basic algorithm

Parameterized Approximation Schemes 8 / 18

We recall a basic DP algorithm:

• For every label we remember the set of colors used in this label set.

• Observe: not important which/how many vertices received color

red.

• All future neighbors are common.



Clique-width: basic algorithm

Parameterized Approximation Schemes 8 / 18

We recall a basic DP algorithm:

• For every label we remember the set of colors used in this label set.



Clique-width: basic algorithm

Parameterized Approximation Schemes 8 / 18

We recall a basic DP algorithm:

• For every label we remember the set of colors used in this label set.

• For Join operations we check if the sets are disjoint

• Otherwise discard this partial solution



Clique-width: basic algorithm

Parameterized Approximation Schemes 8 / 18

We recall a basic DP algorithm:

• For every label we remember the set of colors used in this label set.

• For Join operations we check if the sets are disjoint

• Otherwise discard this partial solution



Clique-width: basic algorithm

Parameterized Approximation Schemes 8 / 18

We recall a basic DP algorithm:

• For every label we remember the set of colors used in this label set.

• For Rename/Union operations we take unions of sets of colors.



Clique-width: basic algorithm

Parameterized Approximation Schemes 8 / 18

We recall a basic DP algorithm:

• For every label we remember the set of colors used in this label set.

• In the algorithm we sketched the DP has size:

• 2k for each label → 2k·w in total.

• The 4k·w running time claimed comes from a naive implementation of

Union operations.

• With modern Fast Subset Convolution technology this can be

improved to 2k·w.



Clique-width: basic algorithm

Parameterized Approximation Schemes 8 / 18

We recall a basic DP algorithm:

• For every label we remember the set of colors used in this label set.

• In the algorithm we sketched the DP has size:

• 2k for each label → 2k·w in total.

• The 4k·w running time claimed comes from a naive implementation of

Union operations.

• With modern Fast Subset Convolution technology this can be

improved to 2k·w.

Can we make the DP smaller than 2k·w?



Clique-width: basic algorithm

Parameterized Approximation Schemes 8 / 18

We recall a basic DP algorithm:

• For every label we remember the set of colors used in this label set.

• In the algorithm we sketched the DP has size:

• 2k for each label → 2k·w in total.

• The 4k·w running time claimed comes from a naive implementation of

Union operations.

• With modern Fast Subset Convolution technology this can be

improved to 2k·w.

Can we make the DP smaller than 2k·w?

(Note: The k2
w

algorithm is much more involved. . . )



DP algorithm: a closer look

Parameterized Approximation Schemes 9 / 18

Basic Argument:

• For each label we store a set of colors.

• There are k colors → there are 2k possible sets.



DP algorithm: a closer look

Parameterized Approximation Schemes 9 / 18

Basic Argument:

• For each label we store a set of colors.

• There are k colors → there are 2k possible sets.

• BUT! How could a label set be colored with ∅?

• Ignoring the empty set we improve the DP table to (2k − 1)w



DP algorithm: an even closer look

Parameterized Approximation Schemes 10 / 18

• Could a label set be using ALL k colors?



DP algorithm: an even closer look

Parameterized Approximation Schemes 10 / 18

• Could a label set be using ALL k colors?

Yes!



DP algorithm: an even closer look

Parameterized Approximation Schemes 10 / 18

• Could a label set be using ALL k colors?

• Yes, but, then we cannot apply join operations to this label.

• Separate labels into live and junk.

• For live labels 2k − 2 feasible sets.

• For junk labels, who cares?? (no more edges!)



DP algorithm: an even closer look

Parameterized Approximation Schemes 10 / 18

• Could a label set be using ALL k colors?

Bottom line: DP size can be brought down to (2k − 2)w.



DP algorithm: an even closer look

Parameterized Approximation Schemes 10 / 18

• Could a label set be using ALL k colors?

Bottom line: DP size can be brought down to (2k − 2)w.

Main result: Under SETH, (2k − 2)w is the correct complexity!



The Reduction



Outline

Parameterized Approximation Schemes 12 / 18

Result: Under SETH, ∀k, ǫ there is no (2k − 2− ǫ)w Coloring algorithm.

• Starting Point: q-CSP-B not solvable in (B − ǫ)n

• A convenient starting point!

• The main reduction

• List Coloring

• Weak Edges – Implications

• The general structure



SETH more carefully

Parameterized Approximation Schemes 13 / 18

Goal: A reduction that works as follows

SAT LB Coloring on clique-width LB

6 ∃(2− ǫ)n → 6 ∃ (2− ǫ)w

n variables w =



SETH more carefully

Parameterized Approximation Schemes 13 / 18

Goal: A reduction that works as follows

SAT LB Coloring on clique-width LB

6 ∃(2− ǫ)n → 6 ∃ (2− ǫ)w

n variables w = n



SETH more carefully

Parameterized Approximation Schemes 13 / 18

Goal: A reduction that works as follows

SAT LB Coloring on clique-width LB

6 ∃(2− ǫ)n → 6 ∃ (4− ǫ)w

n variables w = n/2



SETH more carefully

Parameterized Approximation Schemes 13 / 18

Goal: A reduction that works as follows

SAT LB Coloring on clique-width LB

6 ∃(2− ǫ)n → 6 ∃ (8− ǫ)w

n variables w = n/3



SETH more carefully

Parameterized Approximation Schemes 13 / 18

Goal: A reduction that works as follows

SAT LB Coloring on clique-width LB

6 ∃(2− ǫ)n → 6 ∃ (6− ǫ)w

n variables w = ??



SETH more carefully

Parameterized Approximation Schemes 13 / 18

Goal: A reduction that works as follows

SAT LB Coloring on clique-width LB

6 ∃(2− ǫ)n → 6 ∃ (6− ǫ)w

n variables w = n/ log 6 Not an int!

• Reductions aiming for a LB of the form cw, where c is a power of 2 are

easy

• Map log c SAT variables to each unit of width.

• If c is not a power of 2 things become messier:



SETH more carefully

Parameterized Approximation Schemes 13 / 18

Goal: A reduction that works as follows

SAT LB Coloring on clique-width LB

6 ∃(2− ǫ)n → 6 ∃
n variables w = n/ log 6 Not an int!

• Reductions aiming for a LB of the form cw, where c is a power of 2 are

easy

• Map log c SAT variables to each unit of width.

• If c is not a power of 2 things become messier:



SETH more carefully

Parameterized Approximation Schemes 13 / 18

Goal: A reduction that works as follows

SAT LB Coloring on clique-width LB

6 ∃(2− ǫ)n → 6 ∃
n variables w = n/ log 6 Not an int!

• Reductions aiming for a LB of the form cw, where c is a power of 2 are

easy

• Map log c SAT variables to each unit of width.

• If c is not a power of 2 things become messier:



SETH more carefully

Parameterized Approximation Schemes 13 / 18

Goal: A reduction that works as follows

SAT LB Coloring on clique-width LB

6 ∃(2− ǫ)n → 6 ∃
n variables w = n/ log 6 Not an int!

• Reductions aiming for a LB of the form cw, where c is a power of 2 are

easy

• Map log c SAT variables to each unit of width.

• If c is not a power of 2 things become messier:

• Solution: Map p log c variables to p units of width, for p sufficiently

large.

• Usually done as sub-part of the reduction.

• May complicate the problem unnecessarily. . .



SETH more carefully

Parameterized Approximation Schemes 14 / 18

• SETH informal: SAT cannot be solved in (2− ǫ)n.

• SETH more careful: for all ǫ > 0 there exists q such that q-SAT cannot

be solved in (2− ǫ)n.

• If we accept the more careful form of SETH we can obtain a

convenient starting point for any lower bound

If SETH is true, then for all B ≥ 2, ǫ > 0 there exists q such

that q-CSP-B cannot be solved in (B − ǫ)n

• Translation: we get a problem that needs time 6n, or 14n, or 30n, or . . .

• Ready to be used for all your reduction needs!



SETH more carefully

Parameterized Approximation Schemes 14 / 18

• SETH informal: SAT cannot be solved in (2− ǫ)n.

• SETH more careful: for all ǫ > 0 there exists q such that q-SAT cannot

be solved in (2− ǫ)n.

• If we accept the more careful form of SETH we can obtain a

convenient starting point for any lower bound

If SETH is true, then for all B ≥ 2, ǫ > 0 there exists q such

that q-CSP-B cannot be solved in (B − ǫ)n

• Translation: we get a problem that needs time 6n, or 14n, or 30n, or . . .

• Ready to be used for all your reduction needs!



SETH more carefully

Parameterized Approximation Schemes 14 / 18

• SETH informal: SAT cannot be solved in (2− ǫ)n.

• SETH more careful: for all ǫ > 0 there exists q such that q-SAT cannot

be solved in (2− ǫ)n.

• If we accept the more careful form of SETH we can obtain a

convenient starting point for any lower bound

If SETH is true, then for all B ≥ 2, ǫ > 0 there exists q such

that q-CSP-B cannot be solved in (B − ǫ)n

• Translation: we get a problem that needs time 6n, or 14n, or 30n, or . . .

• Ready to be used for all your reduction needs!



Main Reduction – Step 1

Parameterized Approximation Schemes 15 / 18

Strategy: Reduce q-CSP-6 to 3-Coloring on clique-width.

• If w = n+O(1), then we get (6− ǫ)w = (2k − 2− ǫ)w lower bound,

DONE!

• Step 1: Define an arbitrary mapping from the alphabet of the CSP

1, . . . , 6 to sets of colors.

1 R

2 G

3 B

4 RG

5 RB

6 GB

• Intuition: We define a label class for each variable. This label class

uses exactly the colors given by the mapping of its satisfying value.



Main Reduction – Step 2

Parameterized Approximation Schemes 16 / 18

We assume the existence of the following gadgets:

• List Coloring: We can assign each vertex a list of feasible colors

• Implications: If source has a certain color, this forces a color on the

sink



Main Reduction – Step 2

Parameterized Approximation Schemes 16 / 18

• We maintain n label sets (one for each variable).



Main Reduction – Step 2

Parameterized Approximation Schemes 16 / 18

• We maintain n label sets (one for each variable).

• Invariant: Colors used ↔ value

• Here: x1 = 1, x2 = 4



Main Reduction – Step 2

Parameterized Approximation Schemes 16 / 18

• We maintain n label sets (one for each variable).

• Invariant: Colors used ↔ value

• For each constraint: odd cycle with 3 color list

• → Each vertex represents a satisfying assignment

• → Green vertex ↔ selected assignment



Main Reduction – Step 2

Parameterized Approximation Schemes 16 / 18

• We maintain n label sets (one for each variable).

• Invariant: Colors used ↔ value

• For each constraint: odd cycle with 3 color list

• → Each vertex represents a satisfying assignment

• → Green vertex ↔ selected assignment



Main Reduction – Step 2

Parameterized Approximation Schemes 16 / 18

• We maintain n label sets (one for each variable).

• Invariant: Colors used ↔ value

• → Green vertex ↔ selected assignment

• Add Green-activated implications



Main Reduction – Step 2

Parameterized Approximation Schemes 16 / 18

• We maintain n label sets (one for each variable).

• Invariant: Colors used ↔ value

• → Green vertex ↔ selected assignment

• Add Green-activated implications

• Non-selected assignment → implications irrelevant



Main Reduction – Step 2

Parameterized Approximation Schemes 16 / 18

• We maintain n label sets (one for each variable).

• Invariant: Colors used ↔ value

• → Green vertex ↔ selected assignment

• Add Green-activated implications

• Selected assignment → Colors forced



Main Reduction – Step 2

Parameterized Approximation Schemes 16 / 18

• We maintain n label sets (one for each variable).

• Invariant: Colors used ↔ value

• → Green vertex ↔ selected assignment

• Add edges from vertices not supposed to have a color in x1 to x1.



Main Reduction – Step 2

Parameterized Approximation Schemes 16 / 18

• We maintain n label sets (one for each variable).

• Invariant: Colors used ↔ value

• → Green vertex ↔ selected assignment

• Add edges from vertices not supposed to have a color in x1 to x1.
• Move these vertices to JUNK, others to x1



Main Reduction – Step 2

Parameterized Approximation Schemes 16 / 18

• We maintain n label sets (one for each variable).

• Invariant: Colors used ↔ value

• → Green vertex ↔ selected assignment

• Do the same for other variables of c1



Main Reduction – Step 2

Parameterized Approximation Schemes 16 / 18

• We maintain n label sets (one for each variable).

• Invariant: Colors used ↔ value

• → Green vertex ↔ selected assignment

• Do the same for other variables of c1



Main Reduction – Step 2

Parameterized Approximation Schemes 16 / 18

• We maintain n label sets (one for each variable).

• Invariant: Colors used ↔ value

• → Green vertex ↔ selected assignment

• Do the same for other variables of c1



Main Reduction – Step 2

Parameterized Approximation Schemes 16 / 18

• We maintain n label sets (one for each variable).

• Invariant: Colors used ↔ value

• → Green vertex ↔ selected assignment

• Do the same for other constraints



Main Reduction – Step 2

Parameterized Approximation Schemes 16 / 18

• We maintain n label sets (one for each variable).

• Invariant: Colors used ↔ value

• → Green vertex ↔ selected assignment

• Do the same for other constraints

• Repeating the sequence of constraints kn times ensures consistency!



Main Reduction – Gadgets

Parameterized Approximation Schemes 17 / 18

• List Coloring

• Implemented by adding a complete k-partite graph to G,

connecting each vertex with appropriate parts.

• Tricky part: maintain clique-width.

• Weak Edges

• Edges that only rule out one pair of colors (c1, c2).
• Example: No (Red Blue)

• Implications

• Implemented with weak edges.



Conclusions

Parameterized Approximation Schemes 18 / 18

Summary:

• Under SETH, (2k − 2)w is the correct complexity of Coloring on

clique-width, for any constant k.

• Similarly “fine tight” bounds for modular treewidth.

Open Problems:

• Why/how/when does complexity go from 2k·w to k2
w

???

• Approximation?

• Consistent with current knowledge: 2tw 2-approximation for

Coloring?

• Can we distinguish 3 from 7-colorable graphs in 2tw?

Thank you!



Conclusions

Parameterized Approximation Schemes 18 / 18

Summary:

• Under SETH, (2k − 2)w is the correct complexity of Coloring on

clique-width, for any constant k.

• Similarly “fine tight” bounds for modular treewidth.

Open Problems:

• Why/how/when does complexity go from 2k·w to k2
w

???

• Approximation?

• Consistent with current knowledge: 2tw 2-approximation for

Coloring?

• Can we distinguish 3 from 7-colorable graphs in 2tw?

Thank you!



Conclusions

Parameterized Approximation Schemes 18 / 18

Summary:

• Under SETH, (2k − 2)w is the correct complexity of Coloring on

clique-width, for any constant k.

• Similarly “fine tight” bounds for modular treewidth.

Open Problems:

• Why/how/when does complexity go from 2k·w to k2
w

???

• Approximation?

• Consistent with current knowledge: 2tw 2-approximation for

Coloring?

• Can we distinguish 3 from 7-colorable graphs in 2tw?

Thank you!


	Coloring
	Finer Tight Bounds?
	The story so far: Treewidth
	The story so far: Treewidth
	The story so far: Clique-width
	Clique-width: Definition and Intuition
	Clique-width: basic algorithm
	DP algorithm: a closer look
	DP algorithm: an even closer look
	The Reduction
	Outline
	SETH more carefully
	SETH more carefully
	Main Reduction – Step 1
	Main Reduction – Step 2
	Main Reduction – Gadgets
	Conclusions


