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Coloring

Input:

Graph G = (V, E)
n vertices

k colors

Question:
Can we partition V' into k
independent sets?
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Input:

O
’ Graph G = (V, E)

‘ ‘ n vertices
‘ O k colors

Question:
Can we partition V' into k
independent sets?

@ ©
O O

Note: For the rest of this talk, &£ denotes the number of colors.

Problem NP-hard for any k& > 3:
We look at graphs with restricted structure.
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Finer Tight Bounds?

e Whatis a “finer” tight bound?
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Finer Tight Bounds?

e Tight bound: complexity-theoretic bound that “matches” running time
of existing algorithm.
e Finer bounds:

e Increased “granularity”.
e More precise about secondary parameters.
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e Tight bound: complexity-theoretic bound that “matches” running time
of existing algorithm.
e Finer bounds:

e Increased “granularity”.
e More precise about secondary parameters.

Coloring
e We know the “correct” complexity of Coloring for clique-width
e ...~k (more details in a bit)

e This bound is only tight for k sufficiently large.
e What is the exact complexity of 3-coloring, 4-coloring for clique-width?
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Finer Tight Bounds?

e Tight bound: complexity-theoretic bound that “matches” running time
of existing algorithm.
e Finer bounds:

e Increased “granularity”.
e More precise about secondary parameters.

Coloring
e We know the “correct” complexity of Coloring for clique-width
e ...~k (more details in a bit)

e This bound is only tight for k sufficiently large.
e What is the exact complexity of 3-coloring, 4-coloring for clique-width?

In this talk we show that, under the SETH, the correct complexity
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The story so far: Treewidth
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Consider this (very very special) class of graphs of treewidth w:
e The graph consists of a long path
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The story so far: Treewidth

Consider this (very very special) class of graphs of treewidth w:

e The graph consists of a long path
e w extra vertices, arbitrarily connected to each other
e and arbitrary edges between these two parts

Interesting case: w << n.
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The story so far: Treewidth
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Consider this (very very special) class of graphs of treewidth w:
e The graph consists of a long path
3-Coloring algorithm on these graphs:

e Guess a valid coloring of the w non-path vertices
e T[ryto extend it to a coloring of the whole graph (easy!)
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e The graph consists of a long path
3-Coloring algorithm on these graphs:

e Guess a valid coloring of the w non-path vertices
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The story so far: Treewidth

O o—@ e—O

Consider this (very very special) class of graphs of treewidth w:
e The graph consists of a long path
3-Coloring algorithm on these graphs:

e Guess a valid coloring of the w non-path vertices
e T[ryto extend it to a coloring of the whole graph (easy!)
e Either found a valid coloring, or try another coloring for w vertices.

Running time: 3 DAUPHINE
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The story so far: Treewidth

e Graphs of treewidth w are much more general than the graphs of the
previous slide.

e Algorithm generalizes easily (DP)
e Running time: £%.
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The story so far: Treewidth

e Graphs of treewidth w are much more general than the graphs of the
previous slide.

e Algorithm generalizes easily (DP)
e Running time: £%.

Can we do better?

Previous Work:

e Lokshtanov, Marx, Saurabh, SODA’11
e Jaffke and Jansen, CIAC '17

Result:
(SETH) — cannot do (k — €)%, for any k, ¢, even for Paths+w!

Very fine, completely tight bound!
Note: SETH ~ SAT has no 1.999" algorithm.
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The story so far: Clique-width

e Clique-width is the second most widely studied graph width.

e Intuition: Treewidth + Some dense graphs.
e Definition in next slide.

Summary of what is known for k-Coloring on graphs of clique-width w:

e Algorithm in £2° (Kobler and Rotics DAM '03)

e Algorithm in 4% (Kobler and Rotics DAM '03)

e W-hard parameterized by w (Fomin, Golovach, Lokshtanov, and
Saurabh SICOMP ’10)

e ETH LB of n2"’ (Golovach, Lokshtanov, Saurabh, Zehavi SODA’18)
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The story so far: Clique-width

e Clique-width is the second most widely studied graph width.

e Intuition: Treewidth + Some dense graphs.
e Definition in next slide.

Summary of what is known for k-Coloring on graphs of clique-width w:

e Algorithm in £2° (Kobler and Rotics DAM '03)
e Algorithm in 4% (Kobler and Rotics DAM '03)

e W-hard parameterized by w (Fomin, Golovach, Lokshtanov, and
Saurabh SICOMP ’10)

e ETH LB of n2"’ (Golovach, Lokshtanov, Saurabh, Zehavi SODA’18)

Remark: Last LB is tight (!), but requires & to be large
(otherwise contradicts second algorithm)

Story not as clear as treewidth (yet). ..
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Clique-width: Definition and Intuition

Reminder of the inductive definition of clique-width:
e Each vertex is labelled with a labele {1,... w}.

e Base operation:

2 3
e Construct single-vertex graph. O
e Inductive operations: O/i
e Join (add all edges between two labels)

e Rename (one label to another)
e Disjoint Union

Intuition: Each label set is a module with respect to vertices that do not
appear in the graph yet.

e Allows us to “forget” some information about what is happening inside
a label set, do DP.
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Clique-width: basic algorithm

1 2 3 _ 4
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We recall a basic DP algorithm:

e For every label we remember the set of colors used in this label set.
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Clique-width: basic algorithm
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We recall a basic DP algorithm:
e For every label we remember the set of colors used in this label set.

e Observe: not important which/how many vertices received color
red.
e All future neighbors are common.
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Clique-width: basic algorithm
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We recall a basic DP algorithm:

e For every label we remember the set of colors used in this label set.
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Clique-width: basic algorithm
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We recall a basic DP algorithm:
e For every label we remember the set of colors used in this label set.

e For Join operations we check if the sets are disjoint
e Otherwise discard this partial solution

DAUPHINE

UNIVERSITE PARIS

Parameterized Approximation Schemes 8/18



Clique-width: basic algorithm

1 2 3 _ 4
/O\ /0N /D / \\
\ \
//O \ // >N\ / 2 // o
O | © | © b ©
. O \ O \ O I O
. O \ o o \ OR
/ O o o
\\// \\// N \\//
Y o | BT Y

We recall a basic DP algorithm:
e For every label we remember the set of colors used in this label set.

e For Join operations we check if the sets are disjoint
e Otherwise discard this partial solution
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Clique-width: basic algorithm
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We recall a basic DP algorithm:
e For every label we remember the set of colors used in this label set.

e For Rename/Union operations we take unions of sets of colors.
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Clique-width: basic algorithm

We recall a basic DP algorithm:

e For every label we remember the set of colors used in this label set.

e In the algorithm we sketched the DP has size:
o 2F for each label — 2¥v in total.

e The 4% running time claimed comes from a naive implementation of
Union operations.

e With modern Fast Subset Convolution technology this can be
improved to 28,
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Clique-width: basic algorithm

We recall a basic DP algorithm:

e For every label we remember the set of colors used in this label set.

e In the algorithm we sketched the DP has size:
o 2F for each label — 2¥v in total.

e The 4% running time claimed comes from a naive implementation of
Union operations.

e With modern Fast Subset Convolution technology this can be
improved to 28,

Can we make the DP smaller than 2+ ?

(Note: The k2" algorithm is much more involved. . .)
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DP algorithm: a closer look
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Basic Argument:

e For each label we store a set of colors.
e There are k colors — there are 2* possible sets.
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DP algorithm: a closer look
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Basic Argument:

e For each label we store a set of colors.
e There are k colors — there are 2* possible sets.
e BUT! How could a label set be colored with (7

e Ignoring the empty set we improve the DP table to (2F — 1)¥

DAUPHI

UNIVERSITE PARIS

Parameterized Approximation Schemes 9/18



DP algorithm: an even closer look
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e Could a label set be using ALL k colors?
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DP algorithm: an even closer look

e Could a label set be using ALL k colors?
Yes!
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DP algorithm: an even closer look

1 2 3 _ 4
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e Could a label set be using ALL k colors?
e Yes, but, then we cannot apply join operations to this label.

e Separate labels into live and junk.
o For live labels 2% — 2 feasible sets.
e Forjunk labels, who cares?? (no more edges!)

DAUPHINE

UNIVERSITE PARIS

Parameterized Approximation Schemes 10/18



DP algorithm: an even closer look
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e Could a label set be using ALL k colors?

Bottom line: DP size can be brought down to (2% — 2)v.
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DP algorithm: an even closer look

1 2 3 _ 4
/ N /0N /D /D
;O ,O\ /o\ ,O\
;O / L Vo \
I Y - R I B I
o | O o O
\ 5 5 5
. O \ I I |

O O O
\ / \ / \ Iy /

\_// \_// \_// \_//

Y o | BT Y

e Could a label set be using ALL k colors?

Bottom line: DP size can be brought down to (2% — 2)v.

Main result: Under SETH, (2% — 2)“ is the correct complexity!

DAUPHINE

UNIVERSITE PARIS

Parameterized Approximation Schemes 10/18



The Reduction



Result: Under SETH, Vk, € there is no (2 — 2 — €)™ Coloring algorithm.

e Starting Point: ¢-CSP-B not solvable in (B — ¢)"
e A convenient starting point!
e The main reduction

e List Coloring
e Weak Edges — Implications
e The general structure
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SETH more carefully

Goal: A reduction that works as follows
SAT LB Coloring on clique-width LB
A2—e)" | = A2—-¢"

n variables | w =
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SETH more carefully

Goal: A reduction that works as follows
SAT LB Coloring on clique-width LB
A2—e)" | = A(4—¢)"

n variables | w =n/2
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SETH more carefully

Goal: A reduction that works as follows
SAT LB Coloring on clique-width LB
A2—e)" | = AB—¢)"

n variables | w =n/3
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SETH more carefully

Goal: A reduction that works as follows
SAT LB Coloring on clique-width LB
A2—e)" | = A(6—¢)"

n variables | w = ??
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SETH more carefully

Goal: A reduction that works as follows
SAT LB Coloring on clique-width LB
A2—e)" | = A(6—¢)"

n variables | w = n/log6 Not an int!

e Reductions aiming for a LB of the form ¢*, where c is a power of 2 are
easy

e Map log c SAT variables to each unit of width.

e If cis not a power of 2 things become messier:
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SETH more carefully

Goal: A reduction that works as follows
SAT LB Coloring on clique-width LB
A2—¢" | = A

n variables | w = n/log6 Not an int!

e Reductions aiming for a LB of the form ¢*, where c is a power of 2 are
easy

e Map log c SAT variables to each unit of width.

e If cis not a power of 2 things become messier:

myelar ETLE
P; p;

(veeeees) (seeeeees)

Vi v,
Figure 5: Reduction to ¢-COLORING. The f groups of vertices Vi, ..., V; represent the ¢ groups of
variables £}, ..., F} (each of size [log ¢”]). Each vertex of the clause path P; is connected to one group
Vi via a connector. D U PH I N E
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SETH more carefully

Goal: A reduction that works as follows
SAT LB Coloring on clique-width LB
A2—¢" | = A

n variables | w = n/log6 Not an int!

e Reductions aiming for a LB of the form ¢*, where c is a power of 2 are
easy

e Map log c SAT variables to each unit of width.

e If cis not a power of 2 things become messier:
e Solution: Map plog c variables to p units of width, for p sufficiently
large.

e Usually done as sub-part of the reduction.
e May complicate the problem unnecessarily. ..
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SETH more carefully

e SETH informal: SAT cannot be solved in (2 — ¢)™.
e SETH more careful: for all ¢ > 0 there exists ¢ such that ¢-SAT cannot
be solved in (2 — €)".

DAUPHINE

UNIVERSITE PARIS

Parameterized Approximation Schemes 14/18



SETH more carefully

e SETH informal: SAT cannot be solved in (2 — ¢)".

e SETH more careful: for all ¢ > 0 there exists ¢ such that ¢-SAT cannot
be solved in (2 — €)".

e If we accept the more careful form of SETH we can obtain a
convenient starting point for any lower bound

If SETH is true, then for all B > 2, ¢ > 0 there exists ¢ such

that ¢-CSP-B cannot be solved in (B — €)™
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SETH more carefully

e SETH informal: SAT cannot be solved in (2 — ¢)".

e SETH more careful: for all ¢ > 0 there exists ¢ such that ¢-SAT cannot
be solved in (2 — €)".

e If we accept the more careful form of SETH we can obtain a
convenient starting point for any lower bound

If SETH is true, then for all B > 2, ¢ > 0 there exists ¢ such
that ¢-CSP-B cannot be solved in (B — €)™

e T[ranslation: we get a problem that needs time 6", or 14™, or 30", or ...
e Ready to be used for all your reduction needs!
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Main Reduction — Step 1

Strategy: Reduce ¢-CSP-6 to 3-Coloring on clique-widih.
o If w=mn+0(1), then we get (6 — )V = (2 — 2 — ¢)* lower bound,
DONE!

e Step 1: Define an arbitrary mapping from the alphabet of the CSP
1,...,6 to sets of colors.

OO0k WD —
X

e Intuition: We define a label class for each variable. This label class
uses exactly the colors given by the mapping of its satisfying value.
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Main Reduction — Step 2

We assume the existence of the following gadgets:

e List Coloring: We can assign each vertex a list of feasible colors
e Implications: If source has a certain color, this forces a color on the
sink
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Main Reduction — Step 2

e \We maintain n label sets (one for each variable).
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Main Reduction — Step 2

e \We maintain n label sets (one for each variable).
e Invariant: Colors used «> value
e Here:z1=1,29=4
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Main Reduction — Step 2
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We maintain n label sets (one for each variable).
Invariant: Colors used < value

For each constraint: odd cycle with 3 color list

— Each vertex represents a satisfying assignment
— Green vertex > selected assignment
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— Each vertex represents a satisfying assignment
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Main Reduction — Step 2
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We maintain n label sets (one for each variable).
Invariant: Colors used < value

— Green vertex > selected assignment

Add Green-activated implications
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Main Reduction — Step 2

We maintain n label sets (one for each variable).
Invariant: Colors used < value

— Green vertex > selected assignment

Add Green-activated implications

Non-selected assignment — implications irrelevant
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Main Reduction — Step 2

We maintain n label sets (one for each variable).
Invariant: Colors used < value

— Green vertex > selected assignment

Add Green-activated implications

Selected assignment — Colors forced
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Main Reduction — Step 2

We maintain n label sets (one for each variable).

Invariant: Colors used < value

— Green vertex «+> selected assignment

Add edges from vertices not supposed to have a color in z; to z;.
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Main Reduction — Step 2

We maintain n label sets (one for each variable).

Invariant: Colors used < value

— Green vertex > selected assignment

Add edges from vertices not supposed to have a color in z; to z;.
Move these vertices to JUNK, others to x;
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Main Reduction — Step 2

We maintain n label sets (one for each variable).
Invariant: Colors used < value

— Green vertex «+> selected assignment

Do the same for other variables of ¢;
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Main Reduction — Step 2

We maintain n label sets (one for each variable).
Invariant: Colors used < value

— Green vertex > selected assignment

Do the same for other constraints
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Main Reduction — Step 2

We maintain n label sets (one for each variable).

Invariant: Colors used < value

— Green vertex > selected assignment

Do the same for other constraints

Repeating the sequence of constraints kn times ensures consistency!
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Main Reduction — Gadgets

e List Coloring

e Implemented by adding a complete k-partite graph to G,
connecting each vertex with appropriate parts.
e Tricky part: maintain clique-width.

e Weak Edges

e Edges that only rule out one pair of colors (c1, c3).
e Example: No (Red Blue)

H H B
]
O O—0C—=0

e Implications

e Implemented with weak edges.
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Conclusions

Summary:

e Under SETH, (2" — 2)“ is the correct complexity of Coloring on
cligue-width, for any constant .

e Similarly “fine tight” bounds for modular treewidth.

Open Problems:

e Why/how/when does complexity go from 2¢% to k2" ?2??
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Conclusions

Summary:

e Under SETH, (2" — 2)“ is the correct complexity of Coloring on
cligue-width, for any constant .
e Similarly “fine tight” bounds for modular treewidth.

Open Problems:

e Why/how/when does complexity go from 2¢% to k2" ?2??
e Approximation?

o Consistent with current knowledge: 2t 2-approximation for
Coloring?
e Can we distinguish 3 from 7-colorable graphs in 2t%?
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Conclusions

Summary:

e Under SETH, (2" — 2)“ is the correct complexity of Coloring on
clique-width, for ar Is e\
e Similarly “fine tight

Open Problems:

e Why/how/when do 2?7
e Approximation?
e (Consistent with iImation for
Coloring?
e Can we disting! A

Thank you!
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