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Path Coloring

Input: A graph G and a multi-set of paths on that graph
Constraint: Assign colors from {1,..., W} to the paths
so that paths that share an edge receive different colors.

Objective: min W
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Input: A graph G and a multi-set of paths on that graph
Constraint: Assign colors from {1,..., W} to the paths
so that paths that share an edge receive different colors.
Objective: min W

e Graph could be undirected or bi-directed

e Instead of paths we could be given endpoints (Routing
and Path Coloring)
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Input: A graph G and a multi-set of paths on that graph
Constraint: Assign colors from {1,..., W} to the paths
so that paths that share an edge receive different colors.
Objective: min W

e Graph could be undirected or bi-directed

e Instead of paths we could be given endpoints (Routing
and Path Coloring)

o We’'ll mostly talk about trees (— unique routing)
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Known results

e PCis very hard!

0 NP-hard on stars [Erlebach, Jansen 2001]

0 NP-hard on rings [Garey, Johnson, Miller,
Papadimitriou 1980]

0 NP-hard on bi-directed binary trees [Kumat,
Panigrahy, Russel, Sundaram 1997]

e Good news: Thanks to a simple trick undirected trees
are no harder than stars.
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Edge slicing

e Repeated edge slicing can break
down any undirected tree to a star

e If we could solve PC on stars — poly-
time algorithm (we can’t!)

0 But FPT algorithm when parame-
terized by A. [Erlebach, Jansen
2001]

e lronically, this doesn’t work for bi-
directed trees, where stars are easy.

0 But FPT algorithm when param-
eterized by A + W. [Erlebach,
Jansen 2001]
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Input: A graph GG and a multi-set of paths on that graph,
color buget W

Constraint: Assign colors from {1,...,W} to B of the
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colors.
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e Strict generalization of PC as a decision problem

0 — At least as hard to solve exactly
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Max Path Coloring

Input: A graph GG and a multi-set of paths on that graph,
color buget W

Constraint: Assign colors from {1,...,W} to B of the
paths so that paths that share an edge receive different
colors.

Objective: max B

e Strict generalization of PC as a decision problem

0 — At least as hard to solve exactly

e Max PC is solvable in n®" on trees. [Erlebach, Jansen

1998]

e Can we do this in FPT time for either parameter?
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Max PC hardness results

O Path Coloring

0 Example e An n®Wt algorithm is known to solve Max PC exactly on
- Known results trees. (¢ = treewidth)

00 Edge slicing

[l Max PC

e We show that:

results

L1 DNP ; .

0 Reduction 0 Max PC is W-hard parameterized by W, even for
- Reduction trees with A = 3.

0 Complexity jump

0 (p2, pW, pT)- 0 Max PC is W-hard parameterized by A, even for
0 (pT)-MaxPC trees with W = 4.

binary trees

3 (pT)-MaxpC 0 Max PC is W-hard parameterized by t, even for
inary

O Algoritm contd A — W — 4

0 Open problems

e — No n°(VAWY) glgorithm exists (assuming ETH).

e Strategy: Ind Set < DNP < Cap Max PC < Max PC
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[1 Open problems . . .
vertices such that all pairs have distance > 2
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Disjoint Neighborhood Packing
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Selecting a vertex will disqualify its neighbors and their
neighbors from future selection

8/17



Disjoint Neighborhood Packing

[J Path Coloring R R
[0 Example ‘ 1 \ :: 2 : :: 3 : 4
[ Known results / anast anas® C

[J Edge slicing
[ Max PC
[0 Max PC hardness

results RAE .
I : .
{5 1 6 U e

[0 Reduction ®anat

00 Reduction
[0 Complexity jump
O (pAa pWa pT)-

MaxPC KA ."‘"..‘-
0 (pT)-MaxPC i 9 :10: @ @
binary trees Moot *tenne®

O (pT)-MaxPC
binary trees

[ Algoritm cont'd
[1 Open problems

8/17



[J Path Coloring
[0 Example

[0 Known results
[J Edge slicing
[JMax PC

[0 Max PC hardness
results

(1 DNP

[J Reduction

[J Reduction

[0 Complexity jump
O (pAa pWa pT)-
MaxPC

O (pT)-MaxPC
binary trees

O (pT)-MaxPC
binary trees

[ Algoritm cont'd
[1 Open problems

Disjoint Neighborhood Packing

8/17



[J Path Coloring
[0 Example

[0 Known results
[J Edge slicing
[JMax PC

[0 Max PC hardness
results

(1 DNP

[J Reduction

[J Reduction

[0 Complexity jump
[](pll,pﬁ@ﬁ}ﬂr)-
MaxPC

O (pT)-MaxPC
binary trees

O (pT)-MaxPC
binary trees

[ Algoritm cont'd
[1 Open problems

Disjoint Neighborhood Packing

. L4 s, e N,
* . - 3 - .
* . * S * .
L . & . ~ .
] n ] [ [ ] 1
¥ . .
‘Q " * " * ‘0
MY MY ®ann®

Problem is similar to Independent Set (and similarly W-hard)
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e We put n copies of the gadget on the backbone, one for

each vertex.
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e For each vertex of the original graph we will make a set

of global demands.
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e The global demands use up all the neighbors’ branches

and are enough to increase the solution by one.

10/17



[J Path Coloring
[0 Example

[0 Known results
[J Edge slicing
[JMax PC

[0 Max PC hardness
results

[1 DNP
[0 Reduction

O Reduction

[0 Complexity jump
O (pAa pWa pT)'
MaxPC

O (pT)-MaxPC
binary trees

O (pT)-MaxPC
binary trees

[J Algoritm cont'd
[1 Open problems

Reduction

e If we can go from n? to n? + k satisfied demands then
original graph has DNP of size k.

e A =3and W = 2k.
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e Reduction for treewidth: Replace backbone with a k x n

grid.
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Reduction

e Reduction for A: Replace backbone with a vertex of
degree k2. Use (’;) copies of this gadget to check
compatibility between all pairs.
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e What makes Max PC harder than PC?

O Intuitively, we first have to decide which requests to

drop, then color the rest. The first part appears to
be harder.

e What if we only want to drop a small number of requests

T?
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e What makes Max PC harder than PC?

O Intuitively, we first have to decide which requests to

drop, then color the rest. The first part appears to
be harder.

e What if we only want to drop a small number of requests

T?

Another parameter is born. ..
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(pA, pW, pT')-MaxPC

Recall that (pA, pW)-PC is FPT

0 Bottom-up dynamic programming algorithm

So, the problem is (essentially) to pick the dropped
requests

Observation: if more than 2AW + T + 1 requests touch
a vertex reject immediately

0 Even if we drop 1" requests one of its incident edges
will have > T requests going through it.

Otherwise, do bottom-up dynamic programming again.
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MaxPC on undirected binary trees

e Slice edges until we are left with stars, solve PC on each

star

e Some stars are “good”, other “bad” (if all are good
accept)

e If a sub-tree contains only good stars cut it off the tree

[0 We can color everything there even if we don’t drop

any requests

e All leaf-stars are now bad
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(pT')-MaxPC binary trees

e All leaf-stars are now bad
e All of them must be touched by a dropped request
e No dropped request can touch more than two leaves

O If more than 27T leaf-stars reject

e Now graph has O(T) leaf-stars and internal-stars
(A =3)

e Easy to pick one endpoint of a dropped request. If we
have O(T) choices for the other endpoint — recursive
T7O(T) algorithm.
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Algoritm cont'd

e Now graph has O(T) leaf-stars and internal-stars
(A =3)

e Easy to pick one endpoint of a dropped request. If we
have O(T) choices for the other endpoint — recursive
TOT) algorithm.

e Possible candidates are the O(T') special stars and a
(possible large) number of degree two stars.

0 But we can be greedy with degree two stars!
O Pick the one that is furthest away
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Algoritm cont'd

e Now graph has O(T) leaf-stars and internal-stars
(A =3)

e Easy to pick one endpoint of a dropped request. If we
have O(T) choices for the other endpoint — recursive
TOT) algorithm.

e Possible candidates are the O(T') special stars and a
(possible large) number of degree two stars.

0 But we can be greedy with degree two stars!
O Pick the one that is furthest away

e The greedy part is the only part that requires A = 3
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Open problems

Conclusions:

e PC is easy parameterized by A, W, but MaxPC is hard!

e In our reductions we have to drop many requests. If we

parameterize also by 7' things get better.

What next?

e (pA,pT)-MaxPC on undirected trees
e Other parameters?

e (pW)-MaxPC on rings?
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0 Open problems

Thank you!

Questions?
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