
Parameterized Approximation Schemes

Using Graph Widths

Michael Lampis
Research Institute for Mathematical Sciences

Kyoto University

May 13, 2014

Overview

Parameterized Approximation Schemes 2 / 24

Topic of this talk:

Randomized Parameterized Approximation Algorithms

• Approximation: Ratio of (1 + ǫ)
• Parameterized: Parameter is tree/clique-width

• Randomized: Probabilistic rounding

Message: A generic technique for dealing with problems which are:

• W-hard: need time nk to solve exactly

• APX-hard: cannot be (1 + ǫ) approximated in poly time

Result: A natural (logn/ǫ)O(k) algorithm with ratio (1 + ǫ)

Overview

Parameterized Approximation Schemes 2 / 24

Topic of this talk:

Randomized Parameterized Approximation Algorithms

• Approximation: Ratio of (1 + ǫ)
• Parameterized: Parameter is tree/clique-width

• Randomized: Probabilistic rounding

Message: A generic technique for dealing with problems which are:

• W-hard: need time nk to solve exactly

• APX-hard: cannot be (1 + ǫ) approximated in poly time

Result: A natural (logn/ǫ)O(k) algorithm with ratio (1 + ǫ)

Overview

Parameterized Approximation Schemes 2 / 24

Topic of this talk:

Randomized Parameterized Approximation Algorithms

• Approximation: Ratio of (1 + ǫ)
• Parameterized: Parameter is tree/clique-width

• Randomized: Probabilistic rounding

Message: A generic technique for dealing with problems which are:

• W-hard: need time nk to solve exactly

• APX-hard: cannot be (1 + ǫ) approximated in poly time

Result: A natural (logn/ǫ)O(k) algorithm with ratio (1 + ǫ)

More info: arxiv and [ICALP ’14]

What seems to be the problem?

Parameterized Approximation Schemes 3 / 24

Treewidth/Clique-width are big success stories in parameterized

complexity

• Generic DP method solves everything!∗

• Meta-theorems: Lots of problems solvable in f(k)n time.

The problem:

• Often natural DP algorithm runs in nk.

• Too slow to solve exactly!

• Problem is hard to approximate.

We extend the standard DP method to obtain FPT running time for many

such problems, losing only (1 + ǫ) in the solution quality.

Two concrete problems

Parameterized Approximation Schemes 4 / 24

• Max Cut parameterized by clique-width

• Given: Graph G(V,E) (along with a clique-width expression)

• Wanted: A partition of V into L,R that maximizes edges cut.

• Parameter: The clique-width of G (k).

Two concrete problems

Parameterized Approximation Schemes 4 / 24

• Max Cut parameterized by clique-width

• Given: Graph G(V,E) (along with a clique-width expression)

• Wanted: A partition of V into L,R that maximizes edges cut.

• Parameter: The clique-width of G (k).

• ”Easy” nk DP algorithm, known to be essentially optimal

[Fomin et al. SODA ’10]

Two concrete problems

Parameterized Approximation Schemes 4 / 24

• Max Cut parameterized by clique-width

• Given: Graph G(V,E) (along with a clique-width expression)

• Wanted: A partition of V into L,R that maximizes edges cut.

• Parameter: The clique-width of G (k).

• ”Easy” nk DP algorithm, known to be essentially optimal

[Fomin et al. SODA ’10]

• Capacitated Dominating Set parameterized by treewidth

• Given: Graph G(V,E), capacity c : V → N

• Wanted: Min size dominating set + domination plan

• . . . selected vertex u can dominate at most c(u) vertices

• Parameter: treewidth of G (k).

Two concrete problems

Parameterized Approximation Schemes 4 / 24

• Max Cut parameterized by clique-width

• Given: Graph G(V,E) (along with a clique-width expression)

• Wanted: A partition of V into L,R that maximizes edges cut.

• Parameter: The clique-width of G (k).

• ”Easy” nk DP algorithm, known to be essentially optimal

[Fomin et al. SODA ’10]

• Capacitated Dominating Set parameterized by treewidth

• Given: Graph G(V,E), capacity c : V → N

• Wanted: Min size dominating set + domination plan

• . . . selected vertex u can dominate at most c(u) vertices

• Parameter: treewidth of G (k).

• ”Easy” Ck algorithm, C max capacity. Known to be W-hard

[Dom et al. IWPEC ’08]

Treewidth - Pathwidth

Parameterized Approximation Schemes 5 / 24

Gentle definition of pathwidth k:

• We have k stacks. Initially each contains a vertex. They are arbitrarily

connected.

• At each step we add a vertex to the top of a stack. It can be connected

to vertices currently on top of a stack.

Treewidth - Pathwidth

Parameterized Approximation Schemes 5 / 24

Gentle definition of pathwidth k:

• We have k stacks. Initially each contains a vertex. They are arbitrarily

connected.

• At each step we add a vertex to the top of a stack. It can be connected

to vertices currently on top of a stack.

Treewidth - Pathwidth

Parameterized Approximation Schemes 5 / 24

Gentle definition of pathwidth k:

• We have k stacks. Initially each contains a vertex. They are arbitrarily

connected.

• At each step we add a vertex to the top of a stack. It can be connected

to vertices currently on top of a stack.

Treewidth - Pathwidth

Parameterized Approximation Schemes 5 / 24

Gentle definition of pathwidth k:

• We have k stacks. Initially each contains a vertex. They are arbitrarily

connected.

• At each step we add a vertex to the top of a stack. It can be connected

to vertices currently on top of a stack.

Treewidth - Pathwidth

Parameterized Approximation Schemes 5 / 24

Gentle definition of pathwidth k:

• We have k stacks. Initially each contains a vertex. They are arbitrarily

connected.

• At each step we add a vertex to the top of a stack. It can be connected

to vertices currently on top of a stack.

Treewidth - Pathwidth

Parameterized Approximation Schemes 5 / 24

Gentle definition of pathwidth k:

• We have k stacks. Initially each contains a vertex. They are arbitrarily

connected.

• At each step we add a vertex to the top of a stack. It can be connected

to vertices currently on top of a stack.

Treewidth - Pathwidth

Parameterized Approximation Schemes 5 / 24

Gentle definition of pathwidth k:

• We have k stacks. Initially each contains a vertex. They are arbitrarily

connected.

• At each step we add a vertex to the top of a stack. It can be connected

to vertices currently on top of a stack.

Treewidth - Pathwidth

Parameterized Approximation Schemes 5 / 24

Gentle definition of pathwidth k:

• We have k stacks. Initially each contains a vertex. They are arbitrarily

connected.

• At each step we add a vertex to the top of a stack. It can be connected

to vertices currently on top of a stack.

Treewidth - Pathwidth

Parameterized Approximation Schemes 5 / 24

Gentle definition of pathwidth k:

• We have k stacks. Initially each contains a vertex. They are arbitrarily

connected.

• At each step we add a vertex to the top of a stack. It can be connected

to vertices currently on top of a stack.

Treewidth - Pathwidth

Parameterized Approximation Schemes 5 / 24

Gentle definition of pathwidth k:

• We have k stacks. Initially each contains a vertex. They are arbitrarily

connected.

• At each step we add a vertex to the top of a stack. It can be connected

to vertices currently on top of a stack.

Treewidth - Pathwidth

Parameterized Approximation Schemes 5 / 24

Note that this is equivalent to the standard definition of path

decompositions.

Treewidth - Pathwidth

Parameterized Approximation Schemes 5 / 24

Note that this is equivalent to the standard definition of path

decompositions.

Algorithmic view

Parameterized Approximation Schemes 6 / 24

The reason that this decomposition of the graph is useful is that we have

a moving boundary of small separators that “sweeps” the graph.

Algorithmic view

Parameterized Approximation Schemes 6 / 24

The reason that this decomposition of the graph is useful is that we have

a moving boundary of small separators that “sweeps” the graph.

Algorithmic view

Parameterized Approximation Schemes 6 / 24

The reason that this decomposition of the graph is useful is that we have

a moving boundary of small separators that “sweeps” the graph.

Algorithmic view

Parameterized Approximation Schemes 6 / 24

The reason that this decomposition of the graph is useful is that we have

a moving boundary of small separators that “sweeps” the graph.

Algorithmic view

Parameterized Approximation Schemes 6 / 24

The reason that this decomposition of the graph is useful is that we have

a moving boundary of small separators that “sweeps” the graph.

Algorithmic view

Parameterized Approximation Schemes 6 / 24

The reason that this decomposition of the graph is useful is that we have

a moving boundary of small separators that “sweeps” the graph.

Algorithmic view

Parameterized Approximation Schemes 6 / 24

The reason that this decomposition of the graph is useful is that we have

a moving boundary of small separators that “sweeps” the graph.

Algorithmic view

Parameterized Approximation Schemes 6 / 24

The reason that this decomposition of the graph is useful is that we have

a moving boundary of small separators that “sweeps” the graph.

Algorithmic view

Parameterized Approximation Schemes 6 / 24

The reason that this decomposition of the graph is useful is that we have

a moving boundary of small separators that “sweeps” the graph.

Algorithmic view

Parameterized Approximation Schemes 6 / 24

The reason that this decomposition of the graph is useful is that we have

a moving boundary of small separators that “sweeps” the graph.

Algorithmic view

Parameterized Approximation Schemes 6 / 24

The reason that this decomposition of the graph is useful is that we have

a moving boundary of small separators that “sweeps” the graph.

For Dominating Set only need to remember information about boundary

Selected (Blue) Not Selected – Already Covered (Green)

Not Covered (Red) Total Cost

Algorithmic view

Parameterized Approximation Schemes 6 / 24

The reason that this decomposition of the graph is useful is that we have

a moving boundary of small separators that “sweeps” the graph.

For Dominating Set only need to remember information about boundary

Selected (Blue) Not Selected – Already Covered (Green)

Not Covered (Red) Total Cost

Separator: {3, 4, 5, 6} includes tuple (3,4,5,6;?)

Algorithmic view

Parameterized Approximation Schemes 6 / 24

The reason that this decomposition of the graph is useful is that we have

a moving boundary of small separators that “sweeps” the graph.

For Dominating Set only need to remember information about boundary

Selected (Blue) Not Selected – Already Covered (Green)

Not Covered (Red) Total Cost

Separator: {3, 4, 5, 6} includes tuple (3,4,5,6;2)

Algorithmic view

Parameterized Approximation Schemes 6 / 24

The reason that this decomposition of the graph is useful is that we have

a moving boundary of small separators that “sweeps” the graph.

For Dominating Set only need to remember information about boundary

Selected (Blue) Not Selected – Already Covered (Green)

Not Covered (Red) Total Cost

Separator: {3, 4, 5, 6} includes tuple (3,4,5,6;2)

Algorithmic view

Parameterized Approximation Schemes 6 / 24

The reason that this decomposition of the graph is useful is that we have

a moving boundary of small separators that “sweeps” the graph.

For Dominating Set only need to remember information about boundary

Selected (Blue) Not Selected – Already Covered (Green)

Not Covered (Red) Total Cost

Separator: {3, 4, 5, 6} includes tuple (3,4,5,6;2)

Separator: {3, 4, 5, 7} includes tuple (3,4,5,7;2)

Algorithmic view

Parameterized Approximation Schemes 6 / 24

The reason that this decomposition of the graph is useful is that we have

a moving boundary of small separators that “sweeps” the graph.

For Dominating Set only need to remember information about boundary

Selected (Blue) Not Selected – Already Covered (Green)

Not Covered (Red) Total Cost

Separator: {3, 4, 5, 6} includes tuple (3,4,5,6;2)

Separator: {3, 4, 5, 7} includes tuple (3,4,5,7;3)

Algorithmic view

Parameterized Approximation Schemes 6 / 24

The reason that this decomposition of the graph is useful is that we have

a moving boundary of small separators that “sweeps” the graph.

For Dominating Set only need to remember information about boundary

Selected (Blue) Not Selected – Already Covered (Green)

Not Covered (Red) Total Cost

Separator: {3, 4, 5, 6} includes tuple (3,4,5,6;2)

Separator: {3, 4, 5, 7} includes tuple (3,4,5,7;3)

Separator: {4, 5, 7, 8} includes tuple (4,5,7,8;3)

Algorithmic view

Parameterized Approximation Schemes 6 / 24

The reason that this decomposition of the graph is useful is that we have

a moving boundary of small separators that “sweeps” the graph.

For Dominating Set only need to remember information about boundary

Selected (Blue) Not Selected – Already Covered (Green)

Not Covered (Red) Total Cost

Separator: {3, 4, 5, 6} includes tuple (3,4,5,6;2)

Separator: {3, 4, 5, 7} includes tuple (3,4,5,7;3)

Separator: {4, 5, 7, 8} includes tuple (4,5,7,8;4)

Algorithmic view

Parameterized Approximation Schemes 6 / 24

The reason that this decomposition of the graph is useful is that we have

a moving boundary of small separators that “sweeps” the graph.

For Dominating Set only need to remember information about boundary

Selected (Blue) Not Selected – Already Covered (Green)

Not Covered (Red) Total Cost

• For Dominating Set DP tables have size 3k.

• For Capacitated Dominating Set must remember capacity info for

selected vertices

• Table Size: Ck

• Note: May remember Capacity left OR Capacity used. Same thing?

Why nk for Max Cut? (1/2)

Parameterized Approximation Schemes 7 / 24

A labelled graph G has clique-width at most k if

• G is K1 with some label in {1, . . . , k}
• Union: G = G1 ∪G2, with cw k
• Join: G = Join(i, j, G′), i, j ∈ {1, . . . , k} and G′ has cw k
• Rename: G = Rename(i → j,G′), i, j ∈ {1, . . . , k} and G′ has cw k

Why nk for Max Cut? (1/2)

Parameterized Approximation Schemes 7 / 24

A labelled graph G has clique-width at most k if

• G is K1 with some label in {1, . . . , k}
• Union: G = G1 ∪G2, with cw k
• Join: G = Join(i, j, G′), i, j ∈ {1, . . . , k} and G′ has cw k
• Rename: G = Rename(i → j,G′), i, j ∈ {1, . . . , k} and G′ has cw k

Example: Join(1,2)

Rename(3→2)

Why nk for Max Cut? (1/2)

Parameterized Approximation Schemes 7 / 24

A labelled graph G has clique-width at most k if

• G is K1 with some label in {1, . . . , k}
• Union: G = G1 ∪G2, with cw k
• Join: G = Join(i, j, G′), i, j ∈ {1, . . . , k} and G′ has cw k
• Rename: G = Rename(i → j,G′), i, j ∈ {1, . . . , k} and G′ has cw k

Example: Join(1,2)

Rename(3→2)

Why nk for Max Cut? (1/2)

Parameterized Approximation Schemes 7 / 24

A labelled graph G has clique-width at most k if

• G is K1 with some label in {1, . . . , k}
• Union: G = G1 ∪G2, with cw k
• Join: G = Join(i, j, G′), i, j ∈ {1, . . . , k} and G′ has cw k
• Rename: G = Rename(i → j,G′), i, j ∈ {1, . . . , k} and G′ has cw k

Why nk for Max Cut? (1/2)

Parameterized Approximation Schemes 7 / 24

A labelled graph G has clique-width at most k if

• G is K1 with some label in {1, . . . , k}
• Union: G = G1 ∪G2, with cw k
• Join: G = Join(i, j, G′), i, j ∈ {1, . . . , k} and G′ has cw k
• Rename: G = Rename(i → j,G′), i, j ∈ {1, . . . , k} and G′ has cw k

• A clique-width expression for G is a “proof” that G can be built using

these operations and k labels.

• Finding an optimal expression is generally hard. . .

• We “hope” that such an expression is supplied.

• We view it as a binary tree and perform dynamic programming.

Why nk for Max Cut? (2/2)

Parameterized Approximation Schemes 8 / 24

Natural dynamic program for Max Cut

• For each node store a collection of tuples (l1, l2, . . . , lk;C)
• Meaning: There exists a solution that places exactly li vertices with

label i in L and cuts C edges.

Why nk for Max Cut? (2/2)

Parameterized Approximation Schemes 8 / 24

Natural dynamic program for Max Cut

• For each node store a collection of tuples (l1, l2, . . . , lk;C)
• Meaning: There exists a solution that places exactly li vertices with

label i in L and cuts C edges.

Example tuple: (red = L)

(1, 1, 2; 2)

Why nk for Max Cut? (2/2)

Parameterized Approximation Schemes 8 / 24

Natural dynamic program for Max Cut

• For each node store a collection of tuples (l1, l2, . . . , lk;C)
• Meaning: There exists a solution that places exactly li vertices with

label i in L and cuts C edges.

Example tuple: (red = L)

(1, 1, 2;5)

Why nk for Max Cut? (2/2)

Parameterized Approximation Schemes 8 / 24

Natural dynamic program for Max Cut

• For each node store a collection of tuples (l1, l2, . . . , lk;C)
• Meaning: There exists a solution that places exactly li vertices with

label i in L and cuts C edges.

Example tuple: (red = L)

(1,3,0; 5)

Why nk for Max Cut? (2/2)

Parameterized Approximation Schemes 8 / 24

Natural dynamic program for Max Cut

• For each node store a collection of tuples (l1, l2, . . . , lk;C)
• Meaning: There exists a solution that places exactly li vertices with

label i in L and cuts C edges.

• Can prove inductively that all entries corresponding to potential cuts

are filled in.

• Algorithm must compute up to (n/k)k entries for each node of the

clique-width expression.

Why nk for Max Cut? (2/2)

Parameterized Approximation Schemes 8 / 24

Natural dynamic program for Max Cut

• For each node store a collection of tuples (l1, l2, . . . , lk;C)
• Meaning: There exists a solution that places exactly li vertices with

label i in L and cuts C edges.

• Can prove inductively that all entries corresponding to potential cuts

are filled in.

• Algorithm must compute up to (n/k)k entries for each node of the

clique-width expression.

Today’s idea: keep rounded values for the li entries.

This can make the table smaller.

What is rounding?

Parameterized Approximation Schemes 9 / 24

Example rounding scheme:

• Normal table has values li ∈ {0, 1, 2, 3, . . . , n}.

• We can store values li ∈ {0, 1, 2, 4, 8, 16, . . . , n}.

• Informal meaning: there exists a partition that places roughly li
vertices with label i in L

• Running time ≈ table size ≈ (logn)k

• But approximation ratio ≥ 2

What is rounding?

Parameterized Approximation Schemes 9 / 24

Example rounding scheme:

• Normal table has values li ∈ {0, 1, 2, 3, . . . , n}.

• Fix some (small) parameter δ > 0
• We will store values li ∈ {0, (1 + δ), (1 + δ)2, (1 + δ)3, . . .}

• Informal meaning: there exists a partition that places roughly li
vertices with label i in L

• Running time ≈ table size

• For small δ we have log(1+δ) n = O(logn
ln(1+δ)) = O(lognδ)

• Table size → (logn/δ)k

What is rounding?

Parameterized Approximation Schemes 9 / 24

Example rounding scheme:

• Normal table has values li ∈ {0, 1, 2, 3, . . . , n}.

• Fix some (small) parameter δ > 0
• We will store values li ∈ {0, (1 + δ), (1 + δ)2, (1 + δ)3, . . .}

• Informal meaning: there exists a partition that places roughly li
vertices with label i in L

• Running time ≈ table size

• For small δ we have log(1+δ) n = O(logn
ln(1+δ)) = O(lognδ)

• Table size → (logn/δ)k

• Approximation ratio depends on choice of δ, but is at least (1 + δ).
• This is achieved if we have the correct/best approximation for each

value.

What is rounding?

Parameterized Approximation Schemes 9 / 24

Example rounding scheme:

• Normal table has values li ∈ {0, 1, 2, 3, . . . , n}.

• Fix some (small) parameter δ > 0
• We will store values li ∈ {0, (1 + δ), (1 + δ)2, (1 + δ)3, . . .}

• Informal meaning: there exists a partition that places roughly li
vertices with label i in L

• Running time ≈ table size

• For small δ we have log(1+δ) n = O(logn
ln(1+δ)) = O(lognδ)

• Table size → (logn/δ)k

• Approximation ratio depends on choice of δ, but is at least (1 + δ).
• This is achieved if we have the correct/best approximation for each

value.

• This will be hard!

The problem with rounding

Parameterized Approximation Schemes 10 / 24

Errors can propagate and pile up!

The problem with rounding

Parameterized Approximation Schemes 10 / 24

Errors can propagate and pile up!

Concrete example

Example tuple: (red = L)

(a1, a2, a3; aC)

The problem with rounding

Parameterized Approximation Schemes 10 / 24

Errors can propagate and pile up!

Concrete example

Example tuple: (red = L)

(a1, a2 + a3,0; aC)

The problem with rounding

Parameterized Approximation Schemes 10 / 24

Errors can propagate and pile up!

• The new value we would like to store (a2 + a3) is not necessarily

“round” (integer power of (1 + δ)).
• We must somehow round it to fit the scheme

• This can introduce an additional error of (1 + δ)

The problem with rounding

Parameterized Approximation Schemes 10 / 24

Errors can propagate and pile up!

• The new value we would like to store (a2 + a3) is not necessarily

“round” (integer power of (1 + δ)).
• We must somehow round it to fit the scheme

• This can introduce an additional error of (1 + δ)
• After n steps this can cause an error of (1 + δ)n

The problem with rounding

Parameterized Approximation Schemes 10 / 24

Errors can propagate and pile up!

• The new value we would like to store (a2 + a3) is not necessarily

“round” (integer power of (1 + δ)).
• We must somehow round it to fit the scheme

• This can introduce an additional error of (1 + δ)
• After n steps this can cause an error of (1 + δ)n

The problem with rounding

Parameterized Approximation Schemes 10 / 24

Errors can propagate and pile up!

• The new value we would like to store (a2 + a3) is not necessarily

“round” (integer power of (1 + δ)).
• We must somehow round it to fit the scheme

• This can introduce an additional error of (1 + δ)
• After n steps this can cause an error of (1 + δ)n

• Running time: (logn/δ)k. Want this to be (logn)O(k) so δ = 1/ logc n.

• Then (1 + δ)n is too big! (Certainly not 1 + ǫ)

• Must round in a way that ensures sometimes rounding improves my

approximation.

The problem with rounding

Parameterized Approximation Schemes 10 / 24

Errors can propagate and pile up!

• The new value we would like to store (a2 + a3) is not necessarily

“round” (integer power of (1 + δ)).
• We must somehow round it to fit the scheme

• This can introduce an additional error of (1 + δ)
• After n steps this can cause an error of (1 + δ)n

• Running time: (logn/δ)k. Want this to be (logn)O(k) so δ = 1/ logc n.

• Then (1 + δ)n is too big! (Certainly not 1 + ǫ)

• Must round in a way that ensures sometimes rounding improves my

approximation.

How to measure errors

Parameterized Approximation Schemes 11 / 24

• Plan so far:

• Start with exact DP. Run it with approximate values.

• TBD: how to re-round non-round intermediate values.

• There is a value x calculated by the exact DP

• There is a value y calculated by approximate DP

• Define

Error(x, y) := log(1+δ)(max{x
y
,
y

x
})

How to measure errors

Parameterized Approximation Schemes 11 / 24

• Plan so far:

• Start with exact DP. Run it with approximate values.

• TBD: how to re-round non-round intermediate values.

• There is a value x calculated by the exact DP

• There is a value y calculated by approximate DP

• Define

Error(x, y) := log(1+δ)(max{x
y
,
y

x
})

In pictures:

How to measure errors

Parameterized Approximation Schemes 11 / 24

• Plan so far:

• Start with exact DP. Run it with approximate values.

• TBD: how to re-round non-round intermediate values.

• There is a value x calculated by the exact DP

• There is a value y calculated by approximate DP

• Define

Error(x, y) := log(1+δ)(max{x
y
,
y

x
})

In pictures:

How to measure errors

Parameterized Approximation Schemes 11 / 24

• Plan so far:

• Start with exact DP. Run it with approximate values.

• TBD: how to re-round non-round intermediate values.

• There is a value x calculated by the exact DP

• There is a value y calculated by approximate DP

• Define

Error(x, y) := log(1+δ)(max{x
y
,
y

x
})

In pictures:

How to measure errors

Parameterized Approximation Schemes 11 / 24

• Plan so far:

• Start with exact DP. Run it with approximate values.

• TBD: how to re-round non-round intermediate values.

• There is a value x calculated by the exact DP

• There is a value y calculated by approximate DP

• Define

Error(x, y) := log(1+δ)(max{x
y
,
y

x
})

In pictures:

How to measure errors

Parameterized Approximation Schemes 11 / 24

• Plan so far:

• Start with exact DP. Run it with approximate values.

• TBD: how to re-round non-round intermediate values.

• There is a value x calculated by the exact DP

• There is a value y calculated by approximate DP

• Define

Error(x, y) := log(1+δ)(max{x
y
,
y

x
})

End goal:

• Would like Error(x, y) ≤ ǫ/δ for all x, y.

• Approximation ratio = (1 + δ)Error ≤ (1 + δ)ǫ/δ ≈ 1 + ǫ

What we know about errors

Parameterized Approximation Schemes 12 / 24

• Consider values x1, x2 and their approximations y1, y2 with Errors

E1, E2.

What we know about errors

Parameterized Approximation Schemes 12 / 24

• Consider values x1, x2 and their approximations y1, y2 with Errors

E1, E2.

• The (non-round) value y1 + y2 has error at most max{E1, E2}.

What we know about errors

Parameterized Approximation Schemes 12 / 24

• Consider values x1, x2 and their approximations y1, y2 with Errors

E1, E2.

• The (non-round) value y1 + y2 has error at most max{E1, E2}.

• The (non-round) value y1 · y2 has error at most E1 +E2.

What we know about errors

Parameterized Approximation Schemes 12 / 24

• Consider values x1, x2 and their approximations y1, y2 with Errors

E1, E2.

• The (non-round) value y1 + y2 has error at most max{E1, E2}.

• The (non-round) value y1 · y2 has error at most E1 +E2.

• The (non-round) value y1 − y2 has unbounded error!

What we know about errors

Parameterized Approximation Schemes 12 / 24

• Consider values x1, x2 and their approximations y1, y2 with Errors

E1, E2.

• The (non-round) value y1 + y2 has error at most max{E1, E2}.

• The (non-round) value y1 · y2 has error at most E1 +E2.

• The (non-round) value y1 − y2 has unbounded error!

• DPs relying on additions are the “Easiest Target”.

From now on only Additive DPs considered.

• Fortunately, there are plenty. . .

• E.g. Max Cut, Capacitated Dominating Set

Two roads to success

Parameterized Approximation Schemes 13 / 24

Obliviously round in some way.

Hope for the best!

Probabilistically round. Prove

that good things happen whp.

The lucky man’s solution

Parameterized Approximation Schemes 14 / 24

Consider a DP that only uses additions.

• Trivial observation: each level of the given clique-width expression/tree

decomposition increases maximum Error by at most 1.

• Error can only be introduced in re-rounding.

• What if the given decomposition is balanced? Then it has logarithmic

height!

• Wouldn’t this be nice?

The lucky man’s solution

Parameterized Approximation Schemes 14 / 24

Consider a DP that only uses additions.

• Trivial observation: each level of the given clique-width expression/tree

decomposition increases maximum Error by at most 1.

• Error can only be introduced in re-rounding.

• What if the given decomposition is balanced? Then it has logarithmic

height!

• Wouldn’t this be nice?

The lucky man’s solution

Parameterized Approximation Schemes 14 / 24

Consider a DP that only uses additions.

• Trivial observation: each level of the given clique-width expression/tree

decomposition increases maximum Error by at most 1.

• Error can only be introduced in re-rounding.

• What if the given decomposition is balanced? Then it has logarithmic

height!

• Wouldn’t this be nice?

Thm [Bodlaender and Hagerup SICOMP ’98]: Every graph with treewidth

w has a balanced tree decomposition with width 3w.

Using our gift

Parameterized Approximation Schemes 15 / 24

1. Set δ = ǫ/ logn.

2. Balance decomposition.

3. Run approximate DP, rounding arbitrarily.

This works! (As long as we only do additions/comparisons)

• Approximation ratio ≤ (1 + δ)logn ≈ (1 + ǫ).
• Running time (logn/ǫ)O(k).

Application approximation schemes:

• Capacitated Dom. Set (bi-criteria)

• Capacitated Vertex Cover (bi-criteria)

• Bounded Degree Deletion (bi-criteria)

• Equitable Coloring (bi-criteria)

• Graph Balancing

Back to the Interesting Part

We have to round

Parameterized Approximation Schemes 17 / 24

• What about Max Cut on clique-width?

• Best known balancing theorem blows up number of labels to 2k

• Must round in a way that works for n steps.

• Intuition: randomization “evens out” the errors.

Process:

We denote the (random) outcome of this process by y1 ⊕ y2

We have to round

Parameterized Approximation Schemes 17 / 24

• What about Max Cut on clique-width?

• Best known balancing theorem blows up number of labels to 2k

• Must round in a way that works for n steps.

• Intuition: randomization “evens out” the errors.

Process:

We denote the (random) outcome of this process by y1 ⊕ y2

We have to round

Parameterized Approximation Schemes 17 / 24

• What about Max Cut on clique-width?

• Best known balancing theorem blows up number of labels to 2k

• Must round in a way that works for n steps.

• Intuition: randomization “evens out” the errors.

Process:

We denote the (random) outcome of this process by y1 ⊕ y2

Addition Trees

Parameterized Approximation Schemes 18 / 24

• We want this process to work whp for δ = Ω(1/poly(logn)).
• This is complicated. So we abstract it out.

Definition: An Addition Tree (AT) is a binary tree with positive integers on

the leaves. The value of each node is the sum of its children.

Definition: An Approximate Addition Tree (AAT) is an Addition Tree where

additions are replaced by the ⊕ operation.

• Motivation: If AATs are good whp, we can use this as a black box for

any DP that only does additions.

Addition Trees

Parameterized Approximation Schemes 18 / 24

• We want this process to work whp for δ = Ω(1/poly(logn)).
• This is complicated. So we abstract it out.

Definition: An Addition Tree (AT) is a binary tree with positive integers on

the leaves. The value of each node is the sum of its children.

Definition: An Approximate Addition Tree (AAT) is an Addition Tree where

additions are replaced by the ⊕ operation.

• Motivation: If AATs are good whp, we can use this as a black box for

any DP that only does additions.

Theorem: For any n-vertex AAT T and any ǫ > 0, there exists

δ = Ω(ǫ2/ log6 n) such that:

Pr [∃v ∈ T : Error(v) > 1 + ǫ] ≤ n− logn

Black Box Applications

Parameterized Approximation Schemes 19 / 24

Application approximation schemes for clique-width:

• Max Cut

• Edge Dominating Set

• Is DP additive?

• Capacitated Dom. Set (bi-criteria)

• Bounded Degree Deletion (bi-criteria)

• Equitable Coloring (bi-criteria)

• Running times (logn/ǫ)O(k)

• Recall: last three are W-hard even for treewidth

AAT theorem proof sketch

Parameterized Approximation Schemes 20 / 24

Intuition for main Approximate Addition Tree theorem.

Two main cases:

AAT theorem proof sketch

Parameterized Approximation Schemes 20 / 24

Intuition for main Approximate Addition Tree theorem.

Two main cases:

Balanced Tree: easy

AAT theorem proof sketch

Parameterized Approximation Schemes 20 / 24

Intuition for main Approximate Addition Tree theorem.

Two main cases:

UnBalanced Tree: not so easy

AAT theorem proof sketch

Parameterized Approximation Schemes 20 / 24

Intuition for main Approximate Addition Tree theorem.

Proof Strategy:

• Prove the theorem for UnBalanced Trees

• Main part

• Define notion of balanced height

• Use induction

• Base case: UnBalanced trees

• Inductive step similar to UnBalanced case

Unbalanced case

Parameterized Approximation Schemes 21 / 24

Intuition: self-correcting random walk

• n addition + rounding, each can increase Error by 1.

• In the end we should have error at most logc n

Unbalanced case

Parameterized Approximation Schemes 21 / 24

Intuition: self-correcting random walk

Observation 1: Each rounding step has in expectation no effect.

Unbalanced case

Parameterized Approximation Schemes 21 / 24

Intuition: self-correcting random walk

Observation 1: Each rounding step has in expectation no effect.

p is the probability of rounding down

Unbalanced case

Parameterized Approximation Schemes 21 / 24

Intuition: self-correcting random walk

Observation 1: Each rounding step has in expectation no effect.

1− p is the probability of rounding up

Unbalanced case

Parameterized Approximation Schemes 21 / 24

Intuition: self-correcting random walk

Observation 1: Each rounding step has in expectation no effect.

If we round down we decrease our error by 1− p

Unbalanced case

Parameterized Approximation Schemes 21 / 24

Intuition: self-correcting random walk

Observation 1: Each rounding step has in expectation no effect.

If we round down we decrease our error by 1− p
If we round up we increase our error by p

Unbalanced case

Parameterized Approximation Schemes 21 / 24

Intuition: self-correcting random walk

Observation 1: Each rounding step has in expectation no effect.

If we round down we decrease our error by 1− p
If we round up we increase our error by p
Expected change: −p(1− p) + (1− p)p = 0

Unbalanced case

Parameterized Approximation Schemes 21 / 24

Intuition: self-correcting random walk

Observation 1: Each rounding step has in expectation no effect.

Unfortunately, this observation is not enough!

Unbalanced case

Parameterized Approximation Schemes 21 / 24

Intuition: self-correcting random walk

Observation 1: Each rounding step has in expectation no effect.

Unfortunately, this observation is not enough!

Token will end up at distance
√
n whp.

We need distance ≤ ǫ/δ ≤ logc n

Unbalanced case

Parameterized Approximation Schemes 21 / 24

Intuition: self-correcting random walk

Observation 1: Each rounding step has in expectation no effect.

Unfortunately, this observation is not enough!

Observation 2: In UnBalanced tree, initial approximate value y1 + y2
always has improved error.

• Informally: one value is known without error

• y1 = (1 + δ)E1x1
• y2 = (1 + δ)0x2
• ⇒ y1 + y2 = (1 + δ)E1x1 + x2 < (1 + δ)E1(x1 + x2)

Unbalanced case

Parameterized Approximation Schemes 21 / 24

Intuition: self-correcting random walk

Observation 1: Each rounding step has in expectation no effect.

Unfortunately, this observation is not enough!

Observation 2: In UnBalanced tree, initial approximate value y1 + y2
always has improved error.

Summary:

• Step 1: Obtain initial approximation ⇒ improves Error

• Step 2: Round ⇒ In expectation does not change Error

• ⇒ stronger concentration than just random walk.

• This can be proved with moment-generating function (similar to

Chernoff bound/Azuma inequality etc.)

Unbalanced case

Parameterized Approximation Schemes 21 / 24

Intuition: self-correcting random walk

Observation 1: Each rounding step has in expectation no effect.

Unfortunately, this observation is not enough!

Observation 2: In UnBalanced tree, initial approximate value y1 + y2
always has improved error.

Summary:

• Step 1: Obtain initial approximation ⇒ improves Error

• Step 2: Round ⇒ In expectation does not change Error

• ⇒ stronger concentration than just random walk.

• This can be proved with moment-generating function (similar to

Chernoff bound/Azuma inequality etc.)

UnBalanced Trees are OK

Balanced height

Parameterized Approximation Schemes 22 / 24

To generalize the previous argument to any tree, use balanced height.

Balanced height

Parameterized Approximation Schemes 22 / 24

To generalize the previous argument to any tree, use balanced height.

Definition:

• A leaf has balanced height 0.

• A node whose children have heights h1 6= h2 has height max{h1, h2}
• A node whose children have heights h1 = h2 has height h1 + 1

Balanced height

Parameterized Approximation Schemes 22 / 24

To generalize the previous argument to any tree, use balanced height.

Definition:

• A leaf has balanced height 0.

• A node whose children have heights h1 6= h2 has height max{h1, h2}
• A node whose children have heights h1 = h2 has height h1 + 1

Fact: All trees have balanced height logn

Proof idea: Prove bound by induction on balanced height

• Base case: UnBalanced trees

• Inductive step: One child has smaller balanced height

→ by induction smaller error

Summary – Further Work

Parameterized Approximation Schemes 23 / 24

Recap:

• (Randomized) Parameterized Approximation Algorithms for several

problems.

• General Approximation Result for AATs.

Further questions:

• Concrete: Hamiltonicity on clique-width

• General: Deal with other operations (subtraction?)

• Soft: Other applications of AATs?

• Problems W-hard on trees? (e.g. parameterized by degree)

Thank you!

Parameterized Approximation Schemes 24 / 24

Questions?

	Overview
	What seems to be the problem?
	Two concrete problems
	Treewidth - Pathwidth
	Algorithmic view
	Why nk for Max Cut? (1/2)
	Why nk for Max Cut? (2/2)
	What is rounding?
	The problem with rounding
	How to measure errors
	What we know about errors
	Two roads to success
	The lucky man's solution
	Using our gift
	Back to the Interesting Part
	We have to round
	Addition Trees
	Black Box Applications
	AAT theorem proof sketch
	Unbalanced case
	Balanced height
	Summary – Further Work
	Thank you!

