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Topic of this talk:

Randomized Parameterized Approximation Algorithms

• Approximation: Ratio of (1 + ǫ)
• Parameterized: Parameter is tree/clique-width

• Randomized: Probabilistic rounding

Message: A generic technique for dealing with problems which are:

• W-hard: need time nk to solve exactly

• APX-hard: cannot be (1 + ǫ) approximated in poly time

Result: A natural (logn/ǫ)O(k) algorithm with ratio (1 + ǫ)
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Topic of this talk:

Randomized Parameterized Approximation Algorithms

• Approximation: Ratio of (1 + ǫ)
• Parameterized: Parameter is tree/clique-width

• Randomized: Probabilistic rounding

Message: A generic technique for dealing with problems which are:

• W-hard: need time nk to solve exactly

• APX-hard: cannot be (1 + ǫ) approximated in poly time

Result: A natural (logn/ǫ)O(k) algorithm with ratio (1 + ǫ)

More info: arxiv and [ICALP ’14]
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Treewidth/Clique-width are big success stories in parameterized

complexity

• Generic DP method solves everything!∗

• Meta-theorems: Lots of problems solvable in f(k)n time.

The problem:

• Often natural DP algorithm runs in nk.

• Too slow to solve exactly!

• Problem is hard to approximate.

We extend the standard DP method to obtain FPT running time for many

such problems, losing only (1 + ǫ) in the solution quality.
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• Max Cut parameterized by clique-width

• Given: Graph G(V,E) (along with a clique-width expression)

• Wanted: A partition of V into L,R that maximizes edges cut.

• Parameter: The clique-width of G (k).
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• Wanted: Min size dominating set + domination plan

• . . . selected vertex u can dominate at most c(u) vertices

• Parameter: treewidth of G (k).
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• Max Cut parameterized by clique-width

• Given: Graph G(V,E) (along with a clique-width expression)

• Wanted: A partition of V into L,R that maximizes edges cut.

• Parameter: The clique-width of G (k).

• ”Easy” nk DP algorithm, known to be essentially optimal

[Fomin et al. SODA ’10]

• Capacitated Dominating Set parameterized by treewidth

• Given: Graph G(V,E), capacity c : V → N

• Wanted: Min size dominating set + domination plan

• . . . selected vertex u can dominate at most c(u) vertices

• Parameter: treewidth of G (k).

• ”Easy” Ck algorithm, C max capacity. Known to be W-hard

[Dom et al. IWPEC ’08]
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connected.

• At each step we add a vertex to the top of a stack. It can be connected

to vertices currently on top of a stack.
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Separator: {4, 5, 7, 8} includes tuple (4,5,7,8;4)
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The reason that this decomposition of the graph is useful is that we have

a moving boundary of small separators that “sweeps” the graph.

For Dominating Set only need to remember information about boundary

Selected (Blue) Not Selected – Already Covered (Green)

Not Covered (Red) Total Cost

• For Dominating Set DP tables have size 3k.

• For Capacitated Dominating Set must remember capacity info for

selected vertices

• Table Size: Ck

• Note: May remember Capacity left OR Capacity used. Same thing?
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A labelled graph G has clique-width at most k if

• G is K1 with some label in {1, . . . , k}
• Union: G = G1 ∪G2, with cw k
• Join: G = Join(i, j, G′), i, j ∈ {1, . . . , k} and G′ has cw k
• Rename: G = Rename(i → j,G′), i, j ∈ {1, . . . , k} and G′ has cw k

• A clique-width expression for G is a “proof” that G can be built using

these operations and k labels.

• Finding an optimal expression is generally hard. . .

• We “hope” that such an expression is supplied.

• We view it as a binary tree and perform dynamic programming.
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• Meaning: There exists a solution that places exactly li vertices with

label i in L and cuts C edges.
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• For each node store a collection of tuples (l1, l2, . . . , lk;C)
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Natural dynamic program for Max Cut

• For each node store a collection of tuples (l1, l2, . . . , lk;C)
• Meaning: There exists a solution that places exactly li vertices with

label i in L and cuts C edges.

Example tuple: (red = L)

(1,3,0; 5)
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• Algorithm must compute up to (n/k)k entries for each node of the

clique-width expression.
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Natural dynamic program for Max Cut

• For each node store a collection of tuples (l1, l2, . . . , lk;C)
• Meaning: There exists a solution that places exactly li vertices with

label i in L and cuts C edges.

• Can prove inductively that all entries corresponding to potential cuts

are filled in.

• Algorithm must compute up to (n/k)k entries for each node of the

clique-width expression.

Today’s idea: keep rounded values for the li entries.

This can make the table smaller.
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Example rounding scheme:

• Normal table has values li ∈ {0, 1, 2, 3, . . . , n}.

• We can store values li ∈ {0, 1, 2, 4, 8, 16, . . . , n}.

• Informal meaning: there exists a partition that places roughly li
vertices with label i in L

• Running time ≈ table size ≈ (logn)k

• But approximation ratio ≥ 2
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Example rounding scheme:

• Normal table has values li ∈ {0, 1, 2, 3, . . . , n}.

• Fix some (small) parameter δ > 0
• We will store values li ∈ {0, (1 + δ), (1 + δ)2, (1 + δ)3, . . .}

• Informal meaning: there exists a partition that places roughly li
vertices with label i in L

• Running time ≈ table size

• For small δ we have log(1+δ) n = O( logn
ln(1+δ)) = O( lognδ )

• Table size → (logn/δ)k

• Approximation ratio depends on choice of δ, but is at least (1 + δ).
• This is achieved if we have the correct/best approximation for each

value.

• This will be hard!
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Concrete example

Example tuple: (red = L)

(a1, a2 + a3,0; aC)
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• The new value we would like to store (a2 + a3) is not necessarily

“round” (integer power of (1 + δ)).
• We must somehow round it to fit the scheme

• This can introduce an additional error of (1 + δ)
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• Plan so far:

• Start with exact DP. Run it with approximate values.

• TBD: how to re-round non-round intermediate values.

• There is a value x calculated by the exact DP

• There is a value y calculated by approximate DP

• Define

Error(x, y) := log(1+δ)(max{x
y
,
y

x
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• Plan so far:

• Start with exact DP. Run it with approximate values.

• TBD: how to re-round non-round intermediate values.

• There is a value x calculated by the exact DP

• There is a value y calculated by approximate DP

• Define

Error(x, y) := log(1+δ)(max{x
y
,
y

x
})

End goal:

• Would like Error(x, y) ≤ ǫ/δ for all x, y.

• Approximation ratio = (1 + δ)Error ≤ (1 + δ)ǫ/δ ≈ 1 + ǫ
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• Consider values x1, x2 and their approximations y1, y2 with Errors

E1, E2.

• The (non-round) value y1 + y2 has error at most max{E1, E2}.

• The (non-round) value y1 · y2 has error at most E1 +E2.

• The (non-round) value y1 − y2 has unbounded error!

• DPs relying on additions are the “Easiest Target”.

From now on only Additive DPs considered.

• Fortunately, there are plenty. . .

• E.g. Max Cut, Capacitated Dominating Set



Two roads to success
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Obliviously round in some way.

Hope for the best!

Probabilistically round. Prove

that good things happen whp.



The lucky man’s solution
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Consider a DP that only uses additions.

• Trivial observation: each level of the given clique-width expression/tree

decomposition increases maximum Error by at most 1.

• Error can only be introduced in re-rounding.

• What if the given decomposition is balanced? Then it has logarithmic

height!

• Wouldn’t this be nice?
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Consider a DP that only uses additions.

• Trivial observation: each level of the given clique-width expression/tree

decomposition increases maximum Error by at most 1.

• Error can only be introduced in re-rounding.

• What if the given decomposition is balanced? Then it has logarithmic

height!

• Wouldn’t this be nice?

Thm [Bodlaender and Hagerup SICOMP ’98]: Every graph with treewidth

w has a balanced tree decomposition with width 3w.



Using our gift
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1. Set δ = ǫ/ logn.

2. Balance decomposition.

3. Run approximate DP, rounding arbitrarily.

This works! (As long as we only do additions/comparisons)

• Approximation ratio ≤ (1 + δ)logn ≈ (1 + ǫ).
• Running time (logn/ǫ)O(k).

Application approximation schemes:

• Capacitated Dom. Set (bi-criteria)

• Capacitated Vertex Cover (bi-criteria)

• Bounded Degree Deletion (bi-criteria)

• Equitable Coloring (bi-criteria)

• Graph Balancing



Back to the Interesting Part



We have to round

Parameterized Approximation Schemes 17 / 24

• What about Max Cut on clique-width?

• Best known balancing theorem blows up number of labels to 2k

• Must round in a way that works for n steps.

• Intuition: randomization “evens out” the errors.

Process:

We denote the (random) outcome of this process by y1 ⊕ y2
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• What about Max Cut on clique-width?

• Best known balancing theorem blows up number of labels to 2k

• Must round in a way that works for n steps.

• Intuition: randomization “evens out” the errors.

Process:

We denote the (random) outcome of this process by y1 ⊕ y2



Addition Trees
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• We want this process to work whp for δ = Ω(1/poly(logn)).
• This is complicated. So we abstract it out.

Definition: An Addition Tree (AT) is a binary tree with positive integers on

the leaves. The value of each node is the sum of its children.

Definition: An Approximate Addition Tree (AAT) is an Addition Tree where

additions are replaced by the ⊕ operation.

• Motivation: If AATs are good whp, we can use this as a black box for

any DP that only does additions.
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• We want this process to work whp for δ = Ω(1/poly(logn)).
• This is complicated. So we abstract it out.

Definition: An Addition Tree (AT) is a binary tree with positive integers on

the leaves. The value of each node is the sum of its children.

Definition: An Approximate Addition Tree (AAT) is an Addition Tree where

additions are replaced by the ⊕ operation.

• Motivation: If AATs are good whp, we can use this as a black box for

any DP that only does additions.

Theorem: For any n-vertex AAT T and any ǫ > 0, there exists

δ = Ω(ǫ2/ log6 n) such that:

Pr [∃v ∈ T : Error(v) > 1 + ǫ] ≤ n− logn



Black Box Applications
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Application approximation schemes for clique-width:

• Max Cut

• Edge Dominating Set

• Is DP additive?

• Capacitated Dom. Set (bi-criteria)

• Bounded Degree Deletion (bi-criteria)

• Equitable Coloring (bi-criteria)

• Running times (logn/ǫ)O(k)

• Recall: last three are W-hard even for treewidth



AAT theorem proof sketch

Parameterized Approximation Schemes 20 / 24

Intuition for main Approximate Addition Tree theorem.

Two main cases:
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Intuition for main Approximate Addition Tree theorem.

Two main cases:

UnBalanced Tree: not so easy



AAT theorem proof sketch
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Intuition for main Approximate Addition Tree theorem.

Proof Strategy:

• Prove the theorem for UnBalanced Trees

• Main part

• Define notion of balanced height

• Use induction

• Base case: UnBalanced trees

• Inductive step similar to UnBalanced case



Unbalanced case
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Intuition: self-correcting random walk

• n addition + rounding, each can increase Error by 1.

• In the end we should have error at most logc n



Unbalanced case

Parameterized Approximation Schemes 21 / 24

Intuition: self-correcting random walk

Observation 1: Each rounding step has in expectation no effect.



Unbalanced case

Parameterized Approximation Schemes 21 / 24

Intuition: self-correcting random walk

Observation 1: Each rounding step has in expectation no effect.

p is the probability of rounding down



Unbalanced case

Parameterized Approximation Schemes 21 / 24
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1− p is the probability of rounding up
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Intuition: self-correcting random walk

Observation 1: Each rounding step has in expectation no effect.

If we round down we decrease our error by 1− p
If we round up we increase our error by p
Expected change: −p(1− p) + (1− p)p = 0
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Intuition: self-correcting random walk

Observation 1: Each rounding step has in expectation no effect.

Unfortunately, this observation is not enough!

Token will end up at distance
√
n whp.

We need distance ≤ ǫ/δ ≤ logc n



Unbalanced case
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Intuition: self-correcting random walk

Observation 1: Each rounding step has in expectation no effect.

Unfortunately, this observation is not enough!

Observation 2: In UnBalanced tree, initial approximate value y1 + y2
always has improved error.

• Informally: one value is known without error

• y1 = (1 + δ)E1x1
• y2 = (1 + δ)0x2
• ⇒ y1 + y2 = (1 + δ)E1x1 + x2 < (1 + δ)E1(x1 + x2)
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Intuition: self-correcting random walk

Observation 1: Each rounding step has in expectation no effect.

Unfortunately, this observation is not enough!

Observation 2: In UnBalanced tree, initial approximate value y1 + y2
always has improved error.

Summary:

• Step 1: Obtain initial approximation ⇒ improves Error

• Step 2: Round ⇒ In expectation does not change Error

• ⇒ stronger concentration than just random walk.

• This can be proved with moment-generating function (similar to

Chernoff bound/Azuma inequality etc.)
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Intuition: self-correcting random walk

Observation 1: Each rounding step has in expectation no effect.

Unfortunately, this observation is not enough!

Observation 2: In UnBalanced tree, initial approximate value y1 + y2
always has improved error.

Summary:

• Step 1: Obtain initial approximation ⇒ improves Error

• Step 2: Round ⇒ In expectation does not change Error

• ⇒ stronger concentration than just random walk.

• This can be proved with moment-generating function (similar to

Chernoff bound/Azuma inequality etc.)

UnBalanced Trees are OK
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To generalize the previous argument to any tree, use balanced height.
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• A leaf has balanced height 0.

• A node whose children have heights h1 6= h2 has height max{h1, h2}
• A node whose children have heights h1 = h2 has height h1 + 1
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To generalize the previous argument to any tree, use balanced height.

Definition:

• A leaf has balanced height 0.

• A node whose children have heights h1 6= h2 has height max{h1, h2}
• A node whose children have heights h1 = h2 has height h1 + 1

Fact: All trees have balanced height logn

Proof idea: Prove bound by induction on balanced height

• Base case: UnBalanced trees

• Inductive step: One child has smaller balanced height

→ by induction smaller error



Summary – Further Work
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Recap:

• (Randomized) Parameterized Approximation Algorithms for several

problems.

• General Approximation Result for AATs.

Further questions:

• Concrete: Hamiltonicity on clique-width

• General: Deal with other operations (subtraction?)

• Soft: Other applications of AATs?

• Problems W-hard on trees? (e.g. parameterized by degree)



Thank you!
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Questions?
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