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Improved Inapproximability for TSP 2 / 32

The material in this talk is based on the following papers:

• “Improved Inapproximability for TSP”, APPROX’12

• “New Inapproximability Bounds for TSP”, arxiv’13 (joint work with
Marek Karpinski and Richard Schmied)
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The Story

Improved Inapproximability for TSP 3 / 32

• The Traveling Salesman problem is famous and important.
Unfortunately, it’s NP-hard.

• How well can we approximate it?

• Big breakthroughs in algorithms recently. We set out to improve
on inapproximability results.

Main idea

• Expander graphs →
→Hardness for bounded occurrence CSPs →
→Hardness for TSP
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The Actual Story

Improved Inapproximability for TSP 4 / 32

Better Expanders

•
A local improvement argument gives (slightly) better
expander graphs than those already in the literature.

See “Local Improvement Gives Better Expanders”, arxiv’12

• But improvement is too small to matter!
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The Actual Story
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Second attempt:

• We will rely on amplifier graph constructions due to Berman and
Karpinski.

• These will help us construct inapproximable CSPs with 3 or 5
occurrences for each variable.

• We will reduce these to TSP (and ATSP).

• End result: simpler construction and better inapproximability
constants!

• Warning: don’t expect a big improvement.
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Improved Inapproximability for TSP 6 / 32

Input:

• An edge-weighted graph G(V,E)

Objective:

• Find an ordering of the vertices v1, v2, . . . , vn
such that d(v1, v2)+ d(v2, v3)+ . . .+ d(vn, v1) is
minimized.

• d(vi, vj) is the shortest-path distance of vi, vj
on G
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• 3

2
approximation (Christofides 1976)

For graphic (un-weighted) case

• 3

2
−ǫ approximation (Oveis Gharan et al. FOCS

’11)

• 1.461 approximation (Mömke and Svensson
FOCS ’11)

• 13

9
approximation (Mucha STACS ’12)

• 1.4 approximation (Sebö and Vygen arXiv ’12)

• For ATSP the best ratio is O(logn/ log logn)
(Asadpour et al. SODA ’10)
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• Problem is APX-hard (Papadimitriou and Yannakakis
’93)

• 5381

5380
-inapproximable, ATSP 2805

2804
(Engebretsen STACS

’99)

• 3813

3812
-inapproximable (Böckenhauer et al. STACS ’00)

• 220

219
-inapproximable, ATSP 117

116
(Papadimitriou and

Vempala STOC ’00, Combinatorica ’06)



TSP Approximations – Lower bounds

Improved Inapproximability for TSP 8 / 32

• Problem is APX-hard (Papadimitriou and Yannakakis
’93)

• 5381

5380
-inapproximable, ATSP 2805

2804
(Engebretsen STACS

’99)

• 3813

3812
-inapproximable (Böckenhauer et al. STACS ’00)

• 220

219
-inapproximable, ATSP 117

116
(Papadimitriou and

Vempala STOC ’00, Combinatorica ’06)

This talk:

Theorem
It is NP-hard to approximate TSP better than 123

122
and ATSP

better than 75

74
.
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We reduce some inapproximable CSP (e.g. MAX-3SAT) to TSP.
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Then, add some choice vertices to represent truth assignments to
variables
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For each variable, create a path through clauses where it appears positive
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. . . and another path for its negative appearances
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A truth assignment dictates a general path
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We must make sure that gadgets are cheaper to traverse if corresponding
clause is satisfied
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For the converse direction we must make sure that ”cheating” tours are
not optimal!
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• Papadimitriou and Vempala design a gadget
for Parity.

• They eliminate variable vertices altogether.

• Consistency is achieved by hooking up gad-
gets ”randomly”

• In fact gadgets that share a variable are
connected according to the structure dic-
tated by a special graph

• The graph is called a ”pusher”. Its ex-
istence is proved using the probabilistic
method.
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occurred at most c times, c a constant.

• Cheating would only help a tour ”fix” a bounded number of
clauses.
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How to ensure consistency

Improved Inapproximability for TSP 11 / 32

• Basic idea here: consistency would be easy if each variable
occurred at most c times, c a constant.

• Cheating would only help a tour ”fix” a bounded number of
clauses.

• We will rely on techniques and tools used to prove inapproximability
for bounded-occurrence CSPs.

• This is where expander graphs are important.

• Main tool: “amplifier graph” constructions due to Berman and
Karpinski.

• Result: an easier hardness proof that can be broken down into
independent pieces, and also gives improved bounds.
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• Informal description:

An expander graph is a well-connected and sparse graph.

• Definition:

A graph G(V,E) is an expander if

• For all S ⊆ V with |S| ≤ |V |
2

we have for some constant c

|E(S, V \ S)|

|S|
≥ c

• The maximum degree ∆ is bounded
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Expander graphs have a number of applications

• Proof of PCP theorem

• Derandomization

• Error-correcting codes

• . . . and inapproximability of bounded occurrence CSPs!
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• Add the clauses (x1 → x2) ∧ (x2 → x3) ∧ . . . ∧ (xn → x1)
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Expanders and inapproximability

• Consider the standard reduction from 3-SAT to 3-OCC-3-SAT

• Replace each appearance of variable x with a fresh variable
x1, x2, . . . , xn

• Add the clauses (x1 → x2) ∧ (x2 → x3) ∧ . . . ∧ (xn → x1)

Problem: This does not preserve inapproximability!

• We could add (xi → xj) for all i, j.

• This ensures consistency but adds too many clauses and does
not decrease number of occurrences!
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Expanders and inapproximability

• We modify this using a 1-expander [Papadimitriou Yannakakis 91]

• Recall: a 1-expander is a graph s.t. in each partition of the
vertices the number of edges crossing the cut is larger than the
number of vertices of the smaller part.
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Expanders and inapproximability

• We modify this using a 1-expander [Papadimitriou Yannakakis 91]

• Replace each appearance of variable x with a fresh variable
x1, x2, . . . , xn

• Construct an n-vertex 1-expander.

• For each edge (i, j) add the clauses (xi → xj) ∧ (xj → xi)
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Improved Inapproximability for TSP 14 / 32

Why does this work?

• Suppose that in the new instance the optimal assignment sets some
of the xi’s to 0 and others to 1.

• This gives a partition of the 1-expander.

• Each edge cut by the partition corresponds to an unsatisfied clause.

• Number of cut edges > number of minority assigned vertices =
number of clauses lost by being consistent.

Hence, it is always optimal to give the same value to all xi’s.

• Also, because expander graphs are sparse, only linear number of
clauses added.

• This gives some inapproximability constant.
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• Expanders sound useful. But how good expanders can we get?

We want:

• Low degree – few edges

• High expansion (at least 1).

These are conflicting goals!
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• Expanders sound useful. But how good expanders can we get?

We want:

• Low degree – few edges

• High expansion (at least 1).

These are conflicting goals!

• The smallest ∆ for which we currently know we can have expansion
1 is ∆ = 6. [Bollobás 88]

• Problem: ∆ = 6 is too large, ∆ = 5 probably won’t work. . .
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• Amplifiers are expanders for some of the vertices.

• The other vertices are thrown in to make consistency easier to
achieve.

• This allows us to get smaller ∆.

5-regular amplifier [Berman Karpinski 03]

• Bipartite graph. n vertices on left, 0.8n vertices
on right.

• 4-regular on left, 5-regular on right.

• Graph constructed randomly.

• Crucial Property: whp any partition cuts more
edges than the number of left vertices on the
smaller set.



Amplifiers

Improved Inapproximability for TSP 16 / 32

• Amplifiers are expanders for some of the vertices.

• The other vertices are thrown in to make consistency easier to
achieve.

• This allows us to get smaller ∆.

3-regular wheel amplifier [Berman Karpinski
01]

• Start with a cycle on 7n vertices.

• Every seventh vertex is a contact ver-
tex. Other vertices are checkers.

• Take a random perfect matching of
checkers.



Back to the Reduction
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We start from an instance of MAX-E3-LIN2. Given a set of linear
equations (mod 2) each of size three satisfy as many as possible.
Problem known to be 2-inapproximable (Håstad)
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We use the Berman-Karpinski amplifier construction to obtain an instance
where each variable appears exactly 5 times (and most equations have
size 2).
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A simple trick reduces this to the 1in3 predicate.
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From this instance we construct a graph.



1in3-SAT
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Input :
A set of clauses (l1 ∨ l2 ∨ l3), l1, l2, l3 literals.
Objective :
A clause is satisfied if exactly one of its literals is true. Satisfy as many
clauses as possible.

• Easy to reduce MAX-LIN2 to this problem.

• Especially for size two equations (x+ y = 1) ↔ (x ∨ y).

• Naturally gives gadget for TSP

• In TSP we’d like to visit each vertex at least once, but not more
than once (to save cost)
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TSP and Euler tours

Improved Inapproximability for TSP 20 / 32

• A TSP tour gives an Eulerian multi-graph com-
posed with edges of G.

• An Eulerian multi-graph composed with edges
of G gives a TSP tour.

• TSP ≡ Select a multiplicity for each edge
so that the resulting multi-graph is Eulerian
and total cost is minimized

• Note : no edge is used more than twice



Gadget – Forced Edges
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We would like to be able to dictate in our construction that a certain edge
has to be used at least once.
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If we had directed edges, this could be achieved by adding a dummy
intermediate vertex
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Here, we add many intermediate vertices and evenly distribute the weight
w among them. Think of B as very large.
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At most one of the new edges may be unused, and in that case all others
are used twice.
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In that case, adding two copies of that edge to the solution doesn’t hurt
much (for B sufficiently large).
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Let’s design a gadget
for (x ∨ y ∨ z)
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First, three entry/exit
points
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Connect them . . .
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. . . with forced edges



1in3 Gadget
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The gadget is a con-
nected component.
A good tour visits it
once.
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. . . like this
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This corresponds to
an unsatisfied clause
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This corresponds to a
dishonest tour
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The dishonest tour
pays this edge twice.
How expensive must
it be before cheating
becomes suboptimal?

Note that w = 10 suffices, since the two cheating variables appear in at
most 10 clauses.
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High-level view: con-
struct an origin s and
two terminal vertices
for each variable.
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Connect them with
forced edges
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Add the gadgets
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x2 looks like this
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A dishonest traversal
looks like this. . .
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cheating in two places
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→ w ≤ 5



Construction

Improved Inapproximability for TSP 23 / 32

. . . but there must be
cheating in two places

There are as many doubly-used forced edges as affected variables
→ w ≤ 5

In fact, no need to write off affected clauses. Use random assignment for
cheated variables and some of them will be satisfied
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• Dishonest variables are set randomly but
not independently to ensure that some
clauses are satisfied with probability 1.

• The structure of the instance (from BK am-
plifier) must be taken into account to calcu-
late the final constant.
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• Many details missing

• Dishonest variables are set randomly but
not independently to ensure that some
clauses are satisfied with probability 1.

• The structure of the instance (from BK am-
plifier) must be taken into account to calcu-
late the final constant.

Theorem :
There is no 185

184
approximation algorithm for TSP, unless P=NP.

Can we do better?
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Bounds have recently been improved further!

• 123

122
for TSP

• 75

74
for ATSP

(Joint work with Marek Karpinski, Richard
Schmied)

Main ideas:

• Eliminate variable part

• Use 3-regular amplifier

• More clever gadgeteering. . .
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Recall our construction:

The variable part is pure overhead!
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Lose the variable part

Improved Inapproximability for TSP 26 / 32

We use an idea that:

• Eliminates this overhead

• Simulates many of the equations of the amplifier “for free”

• This time we will use the wheel amplifier.

• The idea is to use gadgets only for the match-
ing edges.

• The consistency properties of the gadgets will
simulate the cycle edges without extra cost.



Lose the variable part

Improved Inapproximability for TSP 26 / 32

Construction summary, CSP→TSP:
• For each variable make a vertex

• For each cycle edge make an edge

• Add two gadgets

• For matching edges

• For size-three equations

• We are skipping 1-in-3-SAT

• The wheel and the cycle edges are translated unchanged

• Matching edges = inequality gadget from previous reduction
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The problem with inequality

Improved Inapproximability for TSP 27 / 32

• We want to use an inequality gadget to represent the matching
edges of the amplifier.

• Normally, amplifier edges become equalities.

• Replacing them with inequalities is fine for a
bipartite amplifier.



The problem with inequality
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• We want to use an inequality gadget to represent the matching
edges of the amplifier.

• Normally, amplifier edges become equalities.

We want cycle edges to remain equalities.



The problem with inequality
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• We want to use an inequality gadget to represent the matching
edges of the amplifier.

• Normally, amplifier edges become equalities.

Solution: the bi-wheel!
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Main idea: honesty gives equality
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Main idea: honesty gives equality

Consider two vertices consecutive in one cycle (x, z)
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Suppose that their matching gadgets are honest
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Main idea: honesty gives equality

Then if one is traversed as True. . .
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Main idea: honesty gives equality

. . . the other is also!

• In other words, we extract an assignment for x by setting it to 1 iff
both its incident non-forced edges are used.
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What is the cost of the forced edges?

• In case of dishonest traversal we must make the tour pay for all
unsatisfied equations.
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What is the cost of the forced edges?

• In case of dishonest traversal we must make the tour pay for all
unsatisfied equations.

• There are 5 affected equation.

• We can always satisfy 3.

• Hence, cost of forced edges is 2.
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• For size-three equations we come up with
some gadget (not shown).

• Some work needs to be done to ensure con-
nectivity.

• Similar ideas can be used for ATSP.
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• For size-three equations we come up with
some gadget (not shown).

• Some work needs to be done to ensure con-
nectivity.

• Similar ideas can be used for ATSP.

Theorem :
There is no 123

122
− ǫ approximation algorithm for TSP, unless P=NP.

There is no 75

74
− ǫ approximation algorithm for ATSP, unless P=NP.
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• A simpler reduction for TSP and a better inapproximability threshold

• But, constant still very low!

Future work

• Better amplifier constructions?

• Application for improved expanders?
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• A simpler reduction for TSP and a better inapproximability threshold

• But, constant still very low!

Future work

• Better amplifier constructions?

• Application for improved expanders?

• . . . Reasonable inapproximability for TSP?



The end
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Questions?
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