
Algorithmic Meta-Theorems for
Restrictions of Treewidth

Michael Lampis

Computer Science Dept.

Graduate Center, City University of New York

Algorithmic Meta-Theorems, Michael Lampis – p. 1/31

Outline

Introduction and Background
Algorithmic Meta-Theorems
FO and MSO logic
Courcelle’s theorem and lower bounds

Algorithmic Results
FO logic for Vertex Cover
FO logic for Max-Leaf number
MSO logic for Vertex Cover

Hardness results
Lower bounds for Vertex Cover

Conclusions and further work

Algorithmic Meta-Theorems, Michael Lampis – p. 2/31

Algorithmic Meta-Theorems

Algorithmic Theorems
Vertex Cover, Dominating Set, 3-Coloring are
solvable in linear time on graphs of constant
treewidth.
Vertex Cover, Feedback Vertex Set can be solved in
sub-exponential time on planar graphs

Algorithmic Meta-Theorems, Michael Lampis – p. 3/31

Algorithmic Meta-Theorems

Algorithmic Meta-Theorems
All MSO-expressible problems are solvable in linear
time on graphs of constant treewidth.
All minor closed optimization problems can be
solved in sub-exponential time on planar graphs

Main uses: quick complexity classification tools,
mapping the limits of applicability for specific
techniques.

Algorithmic Meta-Theorems, Michael Lampis – p. 3/31

Algorithmic Meta-Theorems

Algorithmic Meta-Theorems
All MSO-expressible problems are solvable in linear
time on graphs of constant treewidth.
All minor closed optimization problems can be
solved in sub-exponential time on planar graphs

Main uses: quick complexity classification tools,
mapping the limits of applicability for specific
techniques.

This talk: Algorithmic Meta-Theorems where the class
of problems is defined using logic.

Algorithmic Meta-Theorems, Michael Lampis – p. 3/31

First Order Logic on graphs

We express graph properties using logic

Basic vocabulary
Vertex variables: x, y, z, . . .

Algorithmic Meta-Theorems, Michael Lampis – p. 4/31

First Order Logic on graphs

We express graph properties using logic

Basic vocabulary
Vertex variables: x, y, z, . . .

Edge predicate E(x, y), Equality x = y

Algorithmic Meta-Theorems, Michael Lampis – p. 4/31

First Order Logic on graphs

We express graph properties using logic

Basic vocabulary
Vertex variables: x, y, z, . . .

Edge predicate E(x, y), Equality x = y

Boolean connectives ∨,∧,¬

Algorithmic Meta-Theorems, Michael Lampis – p. 4/31

First Order Logic on graphs

We express graph properties using logic

Basic vocabulary
Vertex variables: x, y, z, . . .

Edge predicate E(x, y), Equality x = y

Boolean connectives ∨,∧,¬

Quantifiers ∀,∃

Example:

Algorithmic Meta-Theorems, Michael Lampis – p. 4/31

First Order Logic on graphs

We express graph properties using logic

Basic vocabulary
Vertex variables: x, y, z, . . .

Edge predicate E(x, y), Equality x = y

Boolean connectives ∨,∧,¬

Quantifiers ∀,∃

Example: Dominating Set of size 2

∃x1∃x2∀yE(x1, y) ∨ E(x2, y) ∨ x1 = y ∨ x2 = y

Algorithmic Meta-Theorems, Michael Lampis – p. 4/31

First Order Logic on graphs

We express graph properties using logic

Basic vocabulary
Vertex variables: x, y, z, . . .

Edge predicate E(x, y), Equality x = y

Boolean connectives ∨,∧,¬

Quantifiers ∀,∃

Example: Vertex Cover of size 2

∃x1∃x2∀y∀zE(y, z) → (y = x1 ∨ y = x2 ∨ z = x1 ∨ z = x2)

Algorithmic Meta-Theorems, Michael Lampis – p. 4/31

First Order Logic on graphs

We express graph properties using logic

Basic vocabulary
Vertex variables: x, y, z, . . .

Edge predicate E(x, y), Equality x = y

Boolean connectives ∨,∧,¬

Quantifiers ∀,∃

Example: Clique of size 3

∃x1∃x2∃x3E(x1, x2) ∧ E(x2, x3) ∧ E(x1, x3)

Algorithmic Meta-Theorems, Michael Lampis – p. 4/31

First Order Logic on graphs

We express graph properties using logic

Basic vocabulary
Vertex variables: x, y, z, . . .

Edge predicate E(x, y), Equality x = y

Boolean connectives ∨,∧,¬

Quantifiers ∀,∃

Example: Many standard (parameterized) problems can
be expressed in FO logic. But some easy problems are
inexpressible (e.g. connectivity).
Rule of thumb: FO = local properties

Algorithmic Meta-Theorems, Michael Lampis – p. 4/31

(Monadic) Second Order Logic

MSO logic: we add set variables S1, S2, . . . and a ∈
predicate. We are now allowed to quantify over sets.

MSO1 logic: we can quantify over sets of vertices
only
MSO2 logic: we can quantify over sets of edges

Algorithmic Meta-Theorems, Michael Lampis – p. 5/31

(Monadic) Second Order Logic

MSO logic: we add set variables S1, S2, . . . and a ∈
predicate. We are now allowed to quantify over sets.

MSO1 logic: we can quantify over sets of vertices
only
MSO2 logic: we can quantify over sets of edges

Example: 2-coloring

∃V1∃V2∀x∀yE(x, y) → (x ∈ V1 ↔ y ∈ V2)

Algorithmic Meta-Theorems, Michael Lampis – p. 5/31

(Monadic) Second Order Logic

MSO logic: we add set variables S1, S2, . . . and a ∈
predicate. We are now allowed to quantify over sets.

MSO1 logic: we can quantify over sets of vertices
only
MSO2 logic: we can quantify over sets of edges

MSO2 6= MSO1. Examples: Hamiltonicity, Edge
dominating set

Algorithmic Meta-Theorems, Michael Lampis – p. 5/31

(Monadic) Second Order Logic

MSO logic: we add set variables S1, S2, . . . and a ∈
predicate. We are now allowed to quantify over sets.

MSO1 logic: we can quantify over sets of vertices
only
MSO2 logic: we can quantify over sets of edges

MSO2 6= MSO1. Examples: Hamiltonicity, Edge
dominating set

Optimization variants of MSO exist, questions of the
form find min S s.t. φ(S) holds.

Algorithmic Meta-Theorems, Michael Lampis – p. 5/31

(Monadic) Second Order Logic

MSO logic: we add set variables S1, S2, . . . and a ∈
predicate. We are now allowed to quantify over sets.

MSO1 logic: we can quantify over sets of vertices
only
MSO2 logic: we can quantify over sets of edges

MSO2 6= MSO1. Examples: Hamiltonicity, Edge
dominating set

Optimization variants of MSO exist, questions of the
form find min S s.t. φ(S) holds.

SO logic: allows to quantify over relations on vertices,
e.g. vertex orderings. All problems in PH are
expressible in SO logic.

Algorithmic Meta-Theorems, Michael Lampis – p. 5/31

Logic and Complexity

Descriptive complexity: look at classes of (fixed)
formulas and estimate the complexity of the
corresponding problems

Most famous result: Fagin’s theorem, ∃ SO = NP.

Algorithmic Meta-Theorems, Michael Lampis – p. 6/31

Logic and Complexity

Descriptive complexity: look at classes of (fixed)
formulas and estimate the complexity of the
corresponding problems

Most famous result: Fagin’s theorem, ∃ SO = NP.

Drawback: Length and complexity of the formula are
not taken into account.

Algorithmic Meta-Theorems, Michael Lampis – p. 6/31

Logic and Complexity

Descriptive complexity: look at classes of (fixed)
formulas and estimate the complexity of the
corresponding problems

Most famous result: Fagin’s theorem, ∃ SO = NP.

Drawback: Length and complexity of the formula are
not taken into account.

If we consider the formula part of the input, then the
problem of deciding if a formula holds is
PSPACE-complete even for FO logic and trivial graphs!

Algorithmic Meta-Theorems, Michael Lampis – p. 6/31

Logic and Complexity

Descriptive complexity: look at classes of (fixed)
formulas and estimate the complexity of the
corresponding problems

Most famous result: Fagin’s theorem, ∃ SO = NP.

Drawback: Length and complexity of the formula are
not taken into account.

If we consider the formula part of the input, then the
problem of deciding if a formula holds is
PSPACE-complete even for FO logic and trivial graphs!

Solution:
Use parameterized complexity.
The main part of the input is the graph. The
parameter is the length of the formula φ which
describes the problem.

Algorithmic Meta-Theorems, Michael Lampis – p. 6/31

The model checking problem

Problem: p-Model Checking
Input: Graph G and formula φ

Parameter: |φ|
Question: G |= φ?

For general graphs, this problem is W-hard even for FO
logic

Algorithmic Meta-Theorems, Michael Lampis – p. 7/31

The model checking problem

Problem: p-Model Checking
Input: Graph G and formula φ

Parameter: |φ|
Question: G |= φ?

For general graphs, this problem is W-hard even for FO
logic

30-second question: Why?

Algorithmic Meta-Theorems, Michael Lampis – p. 7/31

The model checking problem

Problem: p-Model Checking
Input: Graph G and formula φ

Parameter: |φ|
Question: G |= φ?

For general graphs, this problem is W-hard even for FO
logic

30-second question: Why?

We are interested in finding tractable, i.e. FPT, cases
for more restricted classes of graphs.

The most famous such result is Courcelle’s theorem
which states that p-Model Checking for MSO2 logic is
FPT when also parameterized by the graph’s treewidth.

Algorithmic Meta-Theorems, Michael Lampis – p. 7/31

The model checking problem

Problem: p-Model Checking
Input: Graph G and formula φ

Parameter: |φ|
Question: G |= φ?

For general graphs, this problem is W-hard even for FO
logic

30-second question: Why?

Because the property “the graph has a clique of size k”
can be encoded in an FO formula of size O(k)

The problem is in XP though, by the trivial exhaustive
algorithm.

Algorithmic Meta-Theorems, Michael Lampis – p. 7/31

Lower Bounds

Courcelle’s theorem states that deciding if G |= φ can be
done in time f(tw(G), φ) · |G|, for some function f .

Unfortunately, in the worst case this function is horrible!
[Frick and Grohe 2004]: There is no algorithm which
solves p-Model Checking on trees in time O(f(φ) · n)
for any elementary function f unless P=NP.
The lower bound applies also to FO logic, under the
stronger assumption FPT6=AW[*]

Motivation: see if things improve when one looks at
more restricted classes of graphs.

Algorithmic Meta-Theorems, Michael Lampis – p. 8/31

Graph classes

tw

cw

fvs pw

vc

nd

ml

ltw

degree

Some popular graph classes

Algorithmic Meta-Theorems, Michael Lampis – p. 9/31

Graph classes

tw

cw

fvs pw

vc

nd

ml

ltw

degree

Some popular graph classes

FO logic is FPT for all,
MSO1 for the blue area,
MSO2 for the green area.

Lower bounds:
FO logic is
non-elementary for
trees, triply
exponential for binary
trees.

Algorithmic Meta-Theorems, Michael Lampis – p. 9/31

Graph classes

tw

cw

fvs pw

vc

nd

ml

ltw

degree

Some popular graph classes

FO logic is FPT for all,
MSO1 for the blue area,
MSO2 for the green area.

Lower bounds:
FO logic is
non-elementary for
trees, triply
exponential for binary
trees.

Our focus is on improving on the bottom.

Algorithmic Meta-Theorems, Michael Lampis – p. 9/31

Summary of results

FO logic for graphs of bounded vertex cover is singly
exponential

FO logic for graphs of bounded max-leaf number is
singly exponential

MSO logic for graphs of bounded vertex cover is doubly
exponential

Tight lower bounds (under the ETH) for vertex cover

Generalize FO and MSO1 results to neighborhood
diversity

Algorithmic Meta-Theorems, Michael Lampis – p. 10/31

Graphs with small Vertex Cover

A vertex cover is a set of vertices whose removal
makes the graph an independent set.

Usually viewed as just an optimization problem, but the
existence of a small vertex cover gives a graph a very
special form.

Small vertex cover trivially implies small treewidth.

It makes sense to study problems hard for treewidth
parameterized by vertex cover

Good example: Bandwidth

Algorithmic Meta-Theorems, Michael Lampis – p. 11/31

Vertex cover - A warm-up

Model checking FO logic on graphs of bounded vertex
cover is singly exponential.

Algorithmic Meta-Theorems, Michael Lampis – p. 12/31

Vertex cover - A warm-up

Model checking FO logic on graphs of bounded vertex
cover is singly exponential.

Intuition:
Model checking FO logic on general graphs is in XP:
each time we see a quantifier, we try all possible
vertices.
The existence of a vertex cover of size k partitions
the remainder of the graph into at most 2k sets of
vertices, depending on their neighbors in the vertex
cover.
Crucial point: Trying all possible vertices in a set is
wasteful. One representative suffices.

Algorithmic Meta-Theorems, Michael Lampis – p. 12/31

Vertex cover - A warm-up

Model checking FO logic on graphs of bounded vertex
cover is singly exponential.

Definition: u, v have the same type iff
N(u) \ {v} = N(v) \ {u}.

Lemma: If φ(x) is a FO formula with a free variable and
u, v have the same type then G |= φ(u) iff G |= φ(v).

Algorithmic Meta-Theorems, Michael Lampis – p. 12/31

Vertex cover - A warm-up

Model checking FO logic on graphs of bounded vertex
cover is singly exponential.

Algorithm: For each of the q quantified vertex variables
in the formula try the following

Each of the vertices of the vertex cover (k choices)
Each of the previously selected vertices (q choices)

An arbitrary representative from each type (2k

choices)

Total time: O∗(k + q + 2k)q = O∗(2kq+q log q)

Algorithmic Meta-Theorems, Michael Lampis – p. 12/31

Vertex cover - A warm-up

Model checking FO logic on graphs of bounded vertex
cover is singly exponential.

Algorithm: For each of the q quantified vertex variables
in the formula try the following

Each of the vertices of the vertex cover (k choices)
Each of the previously selected vertices (q choices)

An arbitrary representative from each type (2k

choices)

Total time: O∗(k + q + 2k)q = O∗(2kq+q log q)

Trivial technique, but singly exponential time. Can we
do better?

Algorithmic Meta-Theorems, Michael Lampis – p. 12/31

Max-Leaf Number

The max-leaf number of graph ml(G) is the maximum
number of leaves of any sub-tree of G.

Again, small max-leaf number implies a special
structure

Trivially, small degree and small treewidth
[Kleitman and West] A graph of max-leaf number k is
a sub-division of a graph of at most O(k) vertices.

Again, it makes sense to study problems hard for
treewidth parameterized by max-leaf number

Good example: Bandwidth

Algorithmic Meta-Theorems, Michael Lampis – p. 13/31

FO logic on paths

Let us first try to solve this basic problem: Given a path
on n vertices and a FO sentence φ, decide if φ holds on
that path.

This is an important special case of max-leaf number
graphs. We cannot use the previous technique since
the vertex cover is high.

Algorithmic Meta-Theorems, Michael Lampis – p. 14/31

FO logic on paths

Let us first try to solve this basic problem: Given a path
on n vertices and a FO sentence φ, decide if φ holds on
that path.

Key intuition: if the path is very long, its precise length
does not matter.

Algorithmic Meta-Theorems, Michael Lampis – p. 14/31

FO logic on paths

Let us first try to solve this basic problem: Given a path
on n vertices and a FO sentence φ, decide if φ holds on
that path.

Lemma: If φ has q quantified vertex variables and
n ≥ 2q then Pn |= φ iff Pn−1 |= φ

Algorithmic Meta-Theorems, Michael Lampis – p. 14/31

FO logic on paths

Let us first try to solve this basic problem: Given a path
on n vertices and a FO sentence φ, decide if φ holds on
that path.

Lemma: If φ has q quantified vertex variables and
n ≥ 2q then Pn |= φ iff Pn−1 |= φ

Proof: Induction on q

Suppose that Pn |= φ when the first quantified
variable is mapped to some vertex in the path.
We now have two pieces, one of length at least 2q−1

and q − 1 variables left. From the inductive
hypothesis, this can be shortened without affecting
the outcome of the computation.
Therefore the original path can be shortened.

Algorithmic Meta-Theorems, Michael Lampis – p. 14/31

FO logic on paths

Let us first try to solve this basic problem: Given a path
on n vertices and a FO sentence φ, decide if φ holds on
that path.

Lemma: If φ has q quantified vertex variables and
n ≥ 2q then Pn |= φ iff Pn−1 |= φ

By applying the lemma, any path can be shortened to
size 2q. Applying the trivial algorithm for FO logic gives
a time bound of O∗(2q2

)

Algorithmic Meta-Theorems, Michael Lampis – p. 14/31

FO logic on paths

Let us first try to solve this basic problem: Given a path
on n vertices and a FO sentence φ, decide if φ holds on
that path.

Lemma: If φ has q quantified vertex variables and
n ≥ 2q then Pn |= φ iff Pn−1 |= φ

By applying the lemma, any path can be shortened to
size 2q. Applying the trivial algorithm for FO logic gives
a time bound of O∗(2q2

)

This is a classic idea related to Ehrenfaucht-Fraisse
games in logic.

Algorithmic Meta-Theorems, Michael Lampis – p. 14/31

FO logic for Max-Leaf

Generalize this idea to graphs of small max-leaf
number.

Algorithmic Meta-Theorems, Michael Lampis – p. 15/31

FO logic for Max-Leaf

Generalize this idea to graphs of small max-leaf
number.

Definition: a topo-edge is a vertex-maximal induced
path

The vast majority of vertices belong in topo-edges

Algorithmic Meta-Theorems, Michael Lampis – p. 15/31

FO logic for Max-Leaf

Generalize this idea to graphs of small max-leaf
number.

Lemma: If a topo-edge has length at least 2q it can be
shortened without affecting the truth value of any FO
sentence with at most q quantifiers.

Proof: Similar as in the case of paths

Algorithmic Meta-Theorems, Michael Lampis – p. 15/31

FO logic for Max-Leaf

Generalize this idea to graphs of small max-leaf
number.

The graph can be reduced to size O(k22q) so the trivial
FO algorithm runs in 2O(q2+q log k)

Algorithmic Meta-Theorems, Michael Lampis – p. 15/31

FO logic for Max-Leaf

Generalize this idea to graphs of small max-leaf
number.

The graph can be reduced to size O(k22q) so the trivial
FO algorithm runs in 2O(q2+q log k)

Again, trivial algorithmic ideas but singly exponential
running time.

Algorithmic Meta-Theorems, Michael Lampis – p. 15/31

MSO logic for VC - first attempt

In MSO logic our formula contains quantified set
variables.

Algorithmic Meta-Theorems, Michael Lampis – p. 16/31

MSO logic for VC - first attempt

In MSO logic our formula contains quantified set
variables.

Trying all possible sets of vertices would of course take
time 2n, which is not allowed.

Algorithmic Meta-Theorems, Michael Lampis – p. 16/31

MSO logic for VC - first attempt

In MSO logic our formula contains quantified set
variables.

Trying all possible sets of vertices would of course take
time 2n, which is not allowed.

However, since all vertices of a given type are
equivalent, it only matters how many of a given type are
selected in a set.

Algorithmic Meta-Theorems, Michael Lampis – p. 16/31

MSO logic for VC - first attempt

In MSO logic our formula contains quantified set
variables.

Trying all possible sets of vertices would of course take
time 2n, which is not allowed.

However, since all vertices of a given type are
equivalent, it only matters how many of a given type are
selected in a set.

This leads to at most n2k

choices for each set and an
algorithm running in time n2kq.

Algorithmic Meta-Theorems, Michael Lampis – p. 16/31

MSO logic for VC - first attempt

In MSO logic our formula contains quantified set
variables.

Trying all possible sets of vertices would of course take
time 2n, which is not allowed.

However, since all vertices of a given type are
equivalent, it only matters how many of a given type are
selected in a set.

This leads to at most n2k

choices for each set and an
algorithm running in time n2kq.

This isn’t even FPT. Must do better. . .

Algorithmic Meta-Theorems, Michael Lampis – p. 16/31

MSO logic for independent sets

Let’s try to analyze the simplest possible case for
bounded vertex cover graphs.

Algorithmic Meta-Theorems, Michael Lampis – p. 17/31

MSO logic for independent sets

Let’s try to analyze the simplest possible case for
bounded vertex cover graphs.

We are given an empty graph on n vertices and an
MSO sentence φ and must decide if φ holds.

Algorithmic Meta-Theorems, Michael Lampis – p. 17/31

MSO logic for independent sets

Let’s try to analyze the simplest possible case for
bounded vertex cover graphs.

We are given an empty graph on n vertices and an
MSO sentence φ and must decide if φ holds.

This probably sounds like a really silly problem, but
surprisingly it captures the complexity of the problem
we are interested in quite well. . .

Algorithmic Meta-Theorems, Michael Lampis – p. 17/31

MSO logic for independent sets

Let’s try to analyze the simplest possible case for
bounded vertex cover graphs.

We are given an empty graph on n vertices and an
MSO sentence φ and must decide if φ holds.

This probably sounds like a really silly problem, but
surprisingly it captures the complexity of the problem
we are interested in quite well. . .

Observe that all the vertices are equivalent/have the
same type, so there exists a trivial nq algorithm,
corresponding to our previous idea.

Algorithmic Meta-Theorems, Michael Lampis – p. 17/31

MSO logic for independent sets

Target: we would like to prove a lemma of the form: “if
n > f(q) then we can delete some vertices without
affecting the outcome”.

Algorithmic Meta-Theorems, Michael Lampis – p. 18/31

MSO logic for independent sets

Target: we would like to prove a lemma of the form: “if
n > f(q) then we can delete some vertices without
affecting the outcome”.

Lemma: For FO logic we can prove this with f(q) = q. In
other words, FO sentences with q variables cannot
distinguish between independent sets of q or more
vertices.

Algorithmic Meta-Theorems, Michael Lampis – p. 18/31

MSO logic for independent sets

Target: we would like to prove a lemma of the form: “if
n > f(q) then we can delete some vertices without
affecting the outcome”.

Lemma: For FO logic we can prove this with f(q) = q. In
other words, FO sentences with q variables cannot
distinguish between independent sets of q or more
vertices.

FO logic has limited counting power.

Algorithmic Meta-Theorems, Michael Lampis – p. 18/31

MSO logic for independent sets

Target: we would like to prove a lemma of the form: “if
n > f(q) then we can delete some vertices without
affecting the outcome”.

Lemma: For FO logic we can prove this with f(q) = q. In
other words, FO sentences with q variables cannot
distinguish between independent sets of q or more
vertices.

FO logic has limited counting power.

Using this fact we would like to prove that MSO logic
also has limited counting power.

Algorithmic Meta-Theorems, Michael Lampis – p. 18/31

MSO logic for independent sets

Lemma: Let S be a set of vertices such that |S| > 2q

and |S| > 2q. Then S is equivalent to any set of |S| − 1
vertices for MSO sentences of at most q quantifiers.

Algorithmic Meta-Theorems, Michael Lampis – p. 19/31

MSO logic for independent sets

Lemma: Let S be a set of vertices such that |S| > 2q

and |S| > 2q. Then S is equivalent to any set of |S| − 1
vertices for MSO sentences of at most q quantifiers.

Proof: We must show that removing one vertex from S

makes no difference. Let S′ = S \ {u}.

Algorithmic Meta-Theorems, Michael Lampis – p. 19/31

MSO logic for independent sets

Lemma: Let S be a set of vertices such that |S| > 2q

and |S| > 2q. Then S is equivalent to any set of |S| − 1
vertices for MSO sentences of at most q quantifiers.

Proof: We must show that removing one vertex from S

makes no difference. Let S′ = S \ {u}.

Let φ be an MSO formula with a free set variable. We
must show that φ(S) ↔ φ(S′).

Algorithmic Meta-Theorems, Michael Lampis – p. 19/31

MSO logic for independent sets

Lemma: Let S be a set of vertices such that |S| > 2q

and |S| > 2q. Then S is equivalent to any set of |S| − 1
vertices for MSO sentences of at most q quantifiers.

Proof: We must show that removing one vertex from S

makes no difference. Let S′ = S \ {u}.

Let φ be an MSO formula with a free set variable. We
must show that φ(S) ↔ φ(S′).

The only way a difference could arise is if u is used for a
vertex variable.

Algorithmic Meta-Theorems, Michael Lampis – p. 19/31

MSO logic for independent sets

Lemma: Let S be a set of vertices such that |S| > 2q

and |S| > 2q. Then S is equivalent to any set of |S| − 1
vertices for MSO sentences of at most q quantifiers.

Proof: We must show that removing one vertex from S

makes no difference. Let S′ = S \ {u}.

Let φ be an MSO formula with a free set variable. We
must show that φ(S) ↔ φ(S′).

The only way a difference could arise is if u is used for a
vertex variable.

It is possible to avoid this if there are other vertices with
the same type.

Algorithmic Meta-Theorems, Michael Lampis – p. 19/31

MSO logic for independent sets

Lemma: Let S be a set of vertices such that |S| > 2q

and |S| > 2q. Then S is equivalent to any set of |S| − 1
vertices for MSO sentences of at most q quantifiers.

Proof: We must show that removing one vertex from S

makes no difference. Let S′ = S \ {u}.

Let φ be an MSO formula with a free set variable. We
must show that φ(S) ↔ φ(S′).

The only way a difference could arise is if u is used for a
vertex variable.

It is possible to avoid this if there are other vertices with
the same type.

If S has the required size, it is possible to make sure
that u is always a member of a type with enough other
vertices so that it is never picked.

Algorithmic Meta-Theorems, Michael Lampis – p. 19/31

MSO logic for vertex cover

Using a more general version of the previous lemma,
we can show that there are at most O(2q) different sets
of vertices from each type worth trying.

Algorithmic Meta-Theorems, Michael Lampis – p. 20/31

MSO logic for vertex cover

Using a more general version of the previous lemma,
we can show that there are at most O(2q) different sets
of vertices from each type worth trying.

There are 2k different types of vertices. So for a set
variable we will try (2q)2

k

different sets.

Algorithmic Meta-Theorems, Michael Lampis – p. 20/31

MSO logic for vertex cover

Using a more general version of the previous lemma,
we can show that there are at most O(2q) different sets
of vertices from each type worth trying.

There are 2k different types of vertices. So for a set
variable we will try (2q)2

k

different sets.

In the end we get a 22O(k+q)

(doubly exponential)
algorithm.

Algorithmic Meta-Theorems, Michael Lampis – p. 20/31

MSO logic for vertex cover

Using a more general version of the previous lemma,
we can show that there are at most O(2q) different sets
of vertices from each type worth trying.

There are 2k different types of vertices. So for a set
variable we will try (2q)2

k

different sets.

In the end we get a 22O(k+q)

(doubly exponential)
algorithm.

Simple techniques, much better than a tower of
exponentials. Can we do better?

Algorithmic Meta-Theorems, Michael Lampis – p. 20/31

MSO logic for vertex cover

Using a more general version of the previous lemma,
we can show that there are at most O(2q) different sets
of vertices from each type worth trying.

There are 2k different types of vertices. So for a set
variable we will try (2q)2

k

different sets.

In the end we get a 22O(k+q)

(doubly exponential)
algorithm.

Simple techniques, much better than a tower of
exponentials. Can we do better?

Interesting point: here MSO is exponentially worse than
FO. Not so for treewidth. . .

Algorithmic Meta-Theorems, Michael Lampis – p. 20/31

Lower Bounds

Natural question: can doubly exponential be improved
to singly exponential?

Algorithmic Meta-Theorems, Michael Lampis – p. 21/31

Lower Bounds

Natural question: can doubly exponential be improved
to singly exponential?

Also: can the exponents in singly exponential running
times (2kq, 2q2

) be improved?

Algorithmic Meta-Theorems, Michael Lampis – p. 21/31

Lower Bounds

Natural question: can doubly exponential be improved
to singly exponential?

Also: can the exponents in singly exponential running
times (2kq, 2q2

) be improved?

We will show a lower bound argument that will resolve
the questions related to vertex cover in a negative way.

Algorithmic Meta-Theorems, Michael Lampis – p. 21/31

Lower Bounds

Natural question: can doubly exponential be improved
to singly exponential?

Also: can the exponents in singly exponential running
times (2kq, 2q2

) be improved?

We will show a lower bound argument that will resolve
the questions related to vertex cover in a negative way.

Our results will rely on the ETH

Algorithmic Meta-Theorems, Michael Lampis – p. 21/31

Lower Bounds

Natural question: can doubly exponential be improved
to singly exponential?

Also: can the exponents in singly exponential running
times (2kq, 2q2

) be improved?

We will show a lower bound argument that will resolve
the questions related to vertex cover in a negative way.

Our results will rely on the ETH

ETH: There is no 2o(n) algorithm for 3SAT.

Algorithmic Meta-Theorems, Michael Lampis – p. 21/31

Reduction

Reduction from 3-SAT to model checking.

We will create a graph G to encode a propositional
formula with n variables.

G will have vertex cover O(log n). The MSO formula we
will build will have constant size.

A 22o(k+q)

algorithm would then give 22o(log n)

= 2o(n)

algorithm for 3SAT.

Algorithmic Meta-Theorems, Michael Lampis – p. 22/31

Reduction

Create log n disjoint copies of K7.

Create n vertices for the variables. Connect them to
one vertex of a K7 that corresponds to a 1 in the binary
representation of the variable’s index.

Create m vertices for the clauses. Connect them in a
similar way to the K7’s, encoding also in which position
each variable appears and whether it is negated.

Create an MSO formula that asks for a set of variables
corresponding to vertices which satisfy the original
formula if set to true.

Algorithmic Meta-Theorems, Michael Lampis – p. 23/31

Reduction

The same reduction can be used to show that no
2O(k+q) algorithm is possible for FO logic.

In this case we start the reduction from the
parameterized problem Weighted 3-SAT.

The part of the formula which asks for a set of vertices
is replaced by w existentially quantified vertex variables.

A 2O(k+q) algorithm now gives an FPT algorithm for this
problem.

Algorithmic Meta-Theorems, Michael Lampis – p. 24/31

Neighborhood diversity

We have seen that we can prove stronger
meta-theorems for bounded vertex cover than we can
for bounded treewidth.

However, we are essentially only using one property of
bounded vertex cover graphs: the fact that vertices can
be partitioned into a small number of types.

This motivates the following definition:
The neighborhood diversity of a graph is the
minimum number nd(G) s.t. the vertices of G can be
partitioned in nd(G) sets with all vertices in each set
having the same type.

Observe that this is a strict superset! Example:
complete bipartite graphs.

Algorithmic Meta-Theorems, Michael Lampis – p. 25/31

Graph classes

tw

cw

fvs pw

vc

nd

ml

ltw

degree

Neighborhood diversity is
a special case of
clique-width but
incomparable to
treewidth.

Our results for FO logic
and MSO1 logic can
trivially be extended to
nd.

MSO2 is FPT for ver-
tex cover (Courcelle) but
W-hard for clique-width.
What about nd?

Algorithmic Meta-Theorems, Michael Lampis – p. 26/31

MSO2

We would like to extend our technique to handle edge
sets.

Can we partition the set of edges into a few equivalence
classes as we did with vertices?

Not so straightforward. . . An edge is not fully
characterized by the type of its endpoints.

However, there exists a simple work-around:
Remember that all edges touch k specific vertices.
Every edge set can be partitioned into k parts, which
are fully characterized by the set of the second
endpoints of the edges.

Corollary: MSO2 can also be solved in doubly
exponential parameter dependence for bounded vertex
cover.

Algorithmic Meta-Theorems, Michael Lampis – p. 27/31

MSO2 for nd

This trick does not help with the case of neighborhood
diversity.

If we cannot extend our algorithms from below, can we
extend our hardness results from above?

[Fomin et al. 2009] Hamiltonicity, Edge dominating
set and Graph coloring are W-hard parameterized by
clique-width.

(Un)Fortunately, all three are FPT parameterized by nd.
Intuition: in graphs of small nd vertices are
partitioned into a few groups of independent sets or
cliques.
These are either disconnected or fully connected to
each other.

Algorithmic Meta-Theorems, Michael Lampis – p. 28/31

Conclusions - Open problems

Stronger meta-theorems (and some lower bounds) for
restrictions of treewidth.

Interesting to continue this line of work for other such
graph classes or for other logics.

More concrete open problems:
MSO2 for nd
Lower bound for FO on max-leaf
MSO for max-leaf. . .

Algorithmic Meta-Theorems, Michael Lampis – p. 29/31

MSO for max-leaf

Observe that our techniques for vertex cover also apply
if someone gives us a “colored graph”: just include this
information in the concept of vertex types.

What if someone asks us to model-check an MSO
sentence on a colored path?

Not hard to see: this is similar to model-checking on a
string

Classical result from automata theory: MSO logic on
strings = Regular languages
But parameter dependence is a tower of
exponentials!

Maybe a completely different idea?

Algorithmic Meta-Theorems, Michael Lampis – p. 30/31

Thank you!

Algorithmic Meta-Theorems, Michael Lampis – p. 31/31

	Outline
	Algorithmic Meta-Theorems
	Algorithmic Meta-Theorems
	Algorithmic Meta-Theorems

	First Order Logic on graphs
	First Order Logic on graphs
	First Order Logic on graphs
	First Order Logic on graphs
	First Order Logic on graphs
	First Order Logic on graphs
	First Order Logic on graphs
	First Order Logic on graphs

	(Monadic) Second Order Logic
	(Monadic)
Second Order Logic
	(Monadic)
Second Order Logic
	(Monadic)
Second Order Logic
	(Monadic)
Second Order Logic

	Logic and Complexity
	Logic and Complexity
	Logic and Complexity
	Logic and Complexity

	The model checking problem
	The model checking problem
	The model checking problem
	The model checking problem

	Lower Bounds
	Graph classes
	Graph classes
	Graph classes

	Summary of results
	Graphs with small Vertex Cover
	Vertex cover - A warm-up
	Vertex cover - A warm-up
	Vertex cover - A warm-up
	Vertex cover - A warm-up
	Vertex cover - A warm-up

	Max-Leaf Number
	FO logic on paths
	FO logic on paths
	FO logic on paths
	FO logic on paths
	FO logic on paths
	FO logic on paths

	FO logic for Max-Leaf
	FO logic for Max-Leaf
	FO logic for Max-Leaf
	FO logic for Max-Leaf
	FO logic for Max-Leaf

	MSO logic for VC - first attempt
	MSO logic for VC - first attempt
	MSO logic for VC - first attempt
	MSO logic for VC - first attempt
	MSO logic for VC - first attempt

	MSO logic for independent sets
	MSO logic for independent sets
	MSO logic for independent sets
	MSO logic for independent sets

	MSO logic for independent sets
	MSO logic for independent sets
	MSO logic for independent sets
	MSO logic for independent sets

	MSO logic for independent sets
	MSO logic for independent sets
	MSO logic for independent sets
	MSO logic for independent sets
	MSO logic for independent sets
	MSO logic for independent sets

	MSO logic for vertex cover
	MSO logic for vertex cover
	MSO logic for vertex cover
	MSO logic for vertex cover
	MSO logic for vertex cover

	Lower Bounds
	Lower Bounds
	Lower Bounds
	Lower Bounds
	Lower Bounds

	Reduction
	Reduction
	Reduction
	Neighborhood diversity
	Graph classes
	MSO$_2$
	MSO$_2$ for nd
	Conclusions - Open problems
	MSO for max-leaf

