Super-polynomial time approximability of inapproximable problems

Édouard Bonnet, Michael Lampis, Vangelis Paschos

SZTAKI, Hungarian Academy of Sciences LAMSADE UniversitÃl' Paris Dauphine

STACS, Feb 18, 2016

Consider Time-Approximation Trade-offs for Clique.

Clique is $\tilde{\Theta}(n)$ -approximable in P and optimally solvable in λ^n .

 $\rho(\vec{n})$

Clique is r-approximable in time $2^{n/r}$.

Is this the correct algorithm? For every r?

Max Induced Path/Forest/Tree

 \mathcal{I} , n

Introduction

Introduction

Max Minimal Vertex Cover

▶ If a solution is found, it is an optimal solution.

- ▶ If a solution is found, it is an optimal solution.
- ▶ If not, any feasible solution is an *r*-approximation.

Introduction

Max Minimal Vertex Cover

I, n

▶ If a solution is found, it is an *r*-approximation.

- ▶ If a solution is found, it is an *r*-approximation.
- If not, there is no feasible solution.

The *r*-approximation takes time
$$O^*(\binom{n}{n/r}) = O^*((\frac{en}{n/r})^{n/r}) = O^*((er)^{n/r}) = O^*(2^{n \log(er)/r}).$$

The *r*-approximation takes time $O^*(\binom{n}{n/r}) = O^*((\frac{en}{n/r})^{n/r}) = O^*((er)^{n/r}) = O^*(2^{n \log(er)/r}).$

Can we improve this time to $O^*(2^{n/r})$?

The *r*-approximation takes time $O^*(\binom{n}{n/r}) = O^*((\frac{en}{n/r})^{n/r}) = O^*((er)^{n/r}) = O^*(2^{n \log(er)/r}).$

Can we improve this time to $O^*(2^{n/r})$?

- ▶ In this talk we don't care! (?? sort of)
- ▶ Bottom line: $r^{n/r}$ is a **Base-line Trade-off**.
- When can we do better?
- When is it optimal?

Max Induced Path/Forest/Tree

Min ATSP in polytime

- \triangleright $O(\log n)$ -approximation [FGM '82].
- ▶ $O(\frac{\log n}{\log \log n})$ -approximation [AGMOS '10].

Our goal:

Theorem

 $\forall r \leq n$, Min ATSP is $\log r$ -approximable in time $O^*(2^{n/r})$.

A circuit cover of minimum length can be found in polytime.

Pick any vertex in each cycle and recurse.

This can only decrease the total length (triangle inequality).

Introduction

ratio = recursion depth: $\log n$ for polytime; $\log r$ for time $2^{n/r}$.

Is this optimal? NO! Is this close to optimal? No idea!

Inapproximability in super-polynomial time

(Randomized) Exponential Time Hypothesis:

There is no (randomized) $2^{o(n)}$ -time algorithm solving 3-SAT.

Theorem (CLN '13)

Under randomized ETH, $\forall \varepsilon > 0$, for all sufficiently big $r < n^{1/2 - \varepsilon}$,

Max Independent Set is not r-approximable in time $2^{n^{1-\varepsilon}/r^{1+\varepsilon}}$.

Inapproximability in super-polynomial time

(Randomized) Exponential Time Hypothesis:

There is no (randomized) $2^{o(n)}$ -time algorithm solving 3-SAT.

Theorem (CLN '13)

Under randomized ETH, $\forall \varepsilon > 0$, for all sufficiently big $r < n^{1/2-\varepsilon}$, Max Independent Set is not r-approximable in time $2^{n^{1-\varepsilon}/r^{1+\varepsilon}}$.

SAT formula ϕ with N variables \rightsquigarrow graph G with $r^{1+\varepsilon}N^{1+\varepsilon}$ vertices

- ϕ satisfiable $\Rightarrow \alpha(G) \approx rN^{1+\varepsilon}$.
- ϕ unsatisfiable $\Rightarrow \alpha(G) \approx r^{\varepsilon} N^{1+\varepsilon}$.

Max Induced Path/Forest/Tree

Goal: Assuming ETH, Π is not r-approximable in time $2^{o(n/f(r))}$

Inapproximability in super-polynomial time

Goal: Assuming ETH, Π is not r-approximable in time $2^{o(n/f(r))}$

SAT formula ϕ with N variables $\rightsquigarrow \mathcal{I}$ instance of Π s.t.

- $\blacktriangleright |\mathcal{I}| \approx f(r)N$
- ϕ satisfiable \Rightarrow val $(\Pi) \approx a$
- ϕ unsatisfiable \Rightarrow val $(\Pi) \approx ra$

Min Independent Dominating Set

Satifiable CNF formula with N variables and CN clauses

Inapproximability in polytime [I '91, H '93]

Unsatifiable CNF formula with N variables and CN clauses

Inapproximability in polytime [I '91, H '93]

Max Induced Path/Forest/Tree

(In)approximability in subexponential time

Our goal:

Theorem

Under ETH, $\forall \varepsilon > 0$, $\forall r \leqslant n$,

MIDS is not r-approximable in time $O^*(2^{n^{1-\varepsilon}/r^{1+\varepsilon}})$.

almost matching the r-approximation in time $O^*(2^{n\log(er)/r})$.

Max Induced Path/Forest/Tree

(In)approximability in subexponential time

Our goal:

Theorem

Under ETH. $\forall \varepsilon > 0$. $\forall r \leq n$.

MIDS is not r-approximable in time $O^*(2^{n^{1-\varepsilon}/r^{1+\varepsilon}})$.

In the previous reduction, $\frac{n^{1-\varepsilon}}{r^{1+\varepsilon}} \approx N^{2-\varepsilon'}$. We need to build a graph with $n \approx rN$ vertices.

(In)approximability in subexponential time

Max Induced Path/Forest/Tree

Our goal:

Theorem

Under ETH, $\forall \varepsilon > 0$, $\forall r \leqslant n$,

MIDS is not r-approximable in time $O^*(2^{n^{1-\varepsilon}/r^{1+\varepsilon}})$.

- In the previous reduction, $\frac{n^{1-\varepsilon}}{r^{1+\varepsilon}} \approx N^{2-\varepsilon'}$. We need to build a graph with $n \approx rN$ vertices.
- ▶ \P Can we use only r vertices per independent set C_i and use the inapproximability of a CSP to boost the gap?

Almost linear PCP with perfect completeness?

Lemma (D '05, BS '04)

 $\exists c_1, c_2 > 0$, we can transform ϕ a SAT instance of size N into a constraint graph $G = \langle (V, E), \Sigma, E \rightarrow 2^{\Sigma^2} \rangle$ such that:

- ▶ $|V| + |E| \le N(\log N)^{c_1}$ and $|\Sigma| = O(1)$.
- ϕ satisfiable \Rightarrow UNSAT(G) = 0.
- ϕ unsatisfiable \Rightarrow UNSAT(G) $\geqslant 1/(\log N)^{c_2}$.

Constraint graph

Constraint graph

st is satisfied by the *coloration* iff I_{st} and $\bigcup_{a,b} I_{st,ab}$ are dominated.

Take for instance vw satisfied by ••.

 $v[\bullet]$ dominates $I_{vw,\bullet\bullet}$ (and potentially all the $I_{vw,ab}$ with $a \neq \bullet$).

 $w[\bullet]$ dominates $I_{vw,\bullet\bullet}$ (and potentially all the $I_{vw,ab}$ with $a=\bullet$).

Reciprocally, l_{st} needs s[a] with ab satisfying st for some b.

Then, $l_{st,ab}$ can only be dominated by t[b'] (if ab' satisfies st).

Introduction

SAT $(\phi) \rightsquigarrow CG(V, E) \rightsquigarrow MIDS(V', E')$

Recall $|V| + |E| \leq N(\log N)^{c_1}$ and $\Sigma = O(1)$.

- ϕ satisfiable \Rightarrow MIDS of size $|V| \approx N$.
- ϕ unsatisfiable \Rightarrow MIDS of size $|V| + r \frac{|E|}{(\log N)^{c_2}} \approx rN$
- ► $n := |V'| \le (|\Sigma| + 1)|V| + (1 + |\Sigma|^2)r|E| \approx rN$

Introduction

Max Induced Path/Forest/Tree

Under ETH, $\forall \varepsilon > 0$, $\forall r \leqslant n^{1/2-\varepsilon}$,

Max Induced Forest has no r-approximation in time $2^{n^{1-\varepsilon}/(2r)^{1+\varepsilon}}$.

A max induced forest has size in $[\alpha(G), 2\alpha(G)]$.

Under ETH, $\forall \varepsilon > 0$, $\forall r \leqslant n^{1/2-\varepsilon}$,

Max Induced Forest has no r-approximation in time $2^{n^{1-\varepsilon}/(2r)^{1+\varepsilon}}$.

A max induced forest has size in $[\alpha(G), 2\alpha(G)]$.

- ▶ An independent set is a special forest.
- A forest has an independent set of size at least the half.

Under ETH, $\forall \varepsilon > 0$, $\forall r \leqslant n^{1/2-\varepsilon}$,

Max Induced Tree has no r-approximation in time $2^{n^{1-\varepsilon}/(2r)^{1+\varepsilon}}$.

Add a universal vertex v to the gap instances of MIS: $G \rightsquigarrow G'$.

Under ETH, $\forall \varepsilon > 0$, $\forall r \leqslant n^{1/2-\varepsilon}$,

Max Induced Tree has no r-approximation in time $2^{n^{1-\varepsilon}/(2r)^{1+\varepsilon}}$.

Add a universal vertex v to the gap instances of MIS: $G \rightsquigarrow G'$.

- G' has an induced tree of size $\alpha(G) + 1$.
- ▶ If T is an induced tree of G', $\alpha(G) \geqslant |T|/2$.

PCP-free inapproximability

Our goal:

Theorem

Under ETH, $\forall \varepsilon > 0$ and $\forall r \leqslant n^{1-\varepsilon}$,

Max Induced Path has no r-approximation in time $2^{o(n/r)}$.

Walking through partial satisfying assignments

Contradicting edges are not represented

Max Minimal Vertex Cover

- ▶ MMVC admits a $n^{1/2}$ -approximation,
- ▶ but no $n^{1/2-\varepsilon}$ -approximation for any $\varepsilon > 0$, unless P=NP.

Approximability in polytime [BDP '13]

- ▶ MMVC admits a $n^{1/2}$ -approximation,
- ▶ but no $n^{1/2-\varepsilon}$ -approximation for any $\varepsilon > 0$, unless P=NP.

Our goal:

Theorem

For any $r \leqslant n$, MMVC is r-approximable in time $O^*(3^{n/r^2})$

Theorem

Under ETH, $\forall \varepsilon > 0$, $\forall r \leqslant n^{1/2-\varepsilon}$,

MMVC is not r-approximable in time $O^*(2^{n^{1-\varepsilon}/r^{2+\varepsilon}})$.

Compute any maximal matching M.

If $|M| \ge n/r$, then any (minimal) vertex cover contains $\ge n/r$.

Max Minimal Vertex Cover

Otherwise split M into r parts (A_1, A_2, \ldots, A_r) of size $\leq n/r^2$.

For each of the $\leq 3^{n/r^2}$ independent sets of each $G[A_i]$,

add all the non dominated vertices of I,

An optimal solution $R = N(\overline{R}) = N(\overline{R} \cap I) \cup \bigcup_i N(\overline{R} \cap A_i)$.

$$\exists i, |N(\overline{R} \cap I) \cup N(\overline{R} \cap A_i)| \geqslant \frac{|N(\overline{R})|}{r}.$$

 $\overline{R} \cap A_i$ will be tried, and completed with a superset of $\overline{R} \cap I$.

MIS ($\approx rN$ vertices) \rightsquigarrow MMVC ($\approx r^2N$ vertices)

MIS ($\approx rN$ vertices) \rightsquigarrow MMVC ($\approx r^2N$ vertices)

 ϕ satisfiable \Rightarrow |IS| \approx rN; ϕ unsatisfiable \Rightarrow |IS| \approx N.

MIS ($\approx rN$ vertices) \rightsquigarrow MMVC ($\approx r^2N$ vertices)

 ϕ satisfiable \Rightarrow |MVC| $\approx r^2 N$; ϕ unsatisfiable \Rightarrow |MVC| $\approx rN$.

▶ Is there an *r*-approximation in $O^*(2^{n/r})$ for MIDS? for Max Induced Matching?

- ▶ Is there an *r*-approximation in $O^*(2^{n/r})$ for MIDS? for Max Induced Matching?
- ▶ Set Cover is log *r*-approximable in time $O^*(2^{n/r})$ [CKW '09] but not in time $O^*(2^{(n/r)^{\alpha}})$ for some α [M' 11]. Can we tighten this lower bound?

- ▶ Is there an *r*-approximation in $O^*(2^{n/r})$ for MIDS? for Max Induced Matching?
- ▶ Set Cover is $\log r$ -approximable in time $O^*(2^{n/r})$ [CKW '09] but not in time $O^*(2^{(n/r)^{\alpha}})$ for some α [M' 11]. Can we tighten this lower bound?
- ▶ For Set Cover, we know a polytime \sqrt{m} -approximation [N '07] but only an r-approximation in time $O^*(2^{m/r})$ [CKW '09]. Can we match the upper and lower bounds?

- ▶ Is there an *r*-approximation in $O^*(2^{n/r})$ for MIDS? for Max Induced Matching?
- ▶ Set Cover is $\log r$ -approximable in time $O^*(2^{n/r})$ [CKW '09] but not in time $O^*(2^{(n/r)^{\alpha}})$ for some α [M' 11]. Can we tighten this lower bound?
- ▶ For Set Cover, we know a polytime \sqrt{m} -approximation [N '07] but only an r-approximation in time $O^*(2^{m/r})$ [CKW '09]. Can we match the upper and lower bounds?

Thank you for your attention!