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Consider Time-Approximation Trade-offs for Clique.
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Clique is Θ̃(n)-approximable in P and optimally solvable in λn.



Introduction Min Independent Dominating Set Max Induced Path/Forest/Tree Max Minimal Vertex Cover

approximation ratio
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ρ(n)

n
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n/ρ−1(r)

Optimal under ETH?

aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa

Clique is r -approximable in time 2n/r .
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Optimal under ETH?
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Is this the correct algorithm? For every r?
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Minimization subset problems

I, n

I If a solution is found, it is an optimal solution.
I If not, any feasible solution is an r -approximation.
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Weakly monotone maximization subset problems

I, n

I If a solution is found, it is an r -approximation.
I If not, there is no feasible solution.
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The r -approximation takes time
O∗(

( n
n/r

)
) = O∗(( en

n/r )n/r ) = O∗((er)n/r ) = O∗(2n log(er)/r ).

AAAAAAAAAAAAAA
Can we improve this time to O∗(2n/r )?
I In this talk we don’t care! (?? sort of)
I Bottom line: rn/r is a Base-line Trade-off.
I When can we do better?
I When is it optimal?
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Min Asymmetric Traveling Salesman Problem
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Min ATSP in polytime

I O(log n)-approximation [FGM ’82].
I O( log n

log log n )-approximation [AGMOS ’10].

Our goal:

Theorem
∀r 6 n, Min ATSP is log r -approximable in time O∗(2n/r ).
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A circuit cover of minimum length can be found in polytime.
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Pick any vertex in each cycle and recurse.
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This can only decrease the total length (triangle inequality).
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aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa

ratio = recursion depth: log n for polytime; log r for time 2n/r .
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aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa

Is this optimal? NO!
Is this close to optimal? No idea!
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Inapproximability in super-polynomial time

(Randomized) Exponential Time Hypothesis:
There is no (randomized) 2o(n)-time algorithm solving 3-SAT.

Theorem (CLN ’13)
Under randomized ETH, ∀ε > 0, for all sufficiently big r < n1/2−ε,
Max Independent Set is not r -approximable in time 2n1−ε/r1+ε .

aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa

SAT formula φ with N variables graph G with r1+εN1+ε vertices
I φ satisfiable ⇒ α(G) ≈ rN1+ε.
I φ unsatisfiable ⇒ α(G) ≈ r εN1+ε.
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Inapproximability in super-polynomial time

Goal: Assuming ETH, Π is not r -approximable in time 2o(n/f (r))

aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa

SAT formula φ with N variables  I instance of Π s.t.
I |I| ≈ f (r)N
I φ satisfiable ⇒ val(Π) ≈ a
I φ unsatisfiable ⇒ val(Π) ≈ ra
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Min Independent Dominating Set
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Inapproximability in polytime [I ’91, H ’93]

x1 ¬x1 x2 ¬x2 x3 ¬x3 x4 ¬x4

C1 C2 C3 C4 C5

Satifiable CNF formula with N variables and CN clauses
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Inapproximability in polytime [I ’91, H ’93]

x1 ¬x1 x2 ¬x2 x3 ¬x3 x4 ¬x4

C1 C2 C3 C4 C5

MIDS of size N
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Inapproximability in polytime [I ’91, H ’93]

x1 ¬x1 x2 ¬x2 x3 ¬x3 x4 ¬x4

C1 C2 C3 C4 C5

Unsatifiable CNF formula with N variables and CN clauses
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Inapproximability in polytime [I ’91, H ’93]

x1 ¬x1 x2 ¬x2 x3 ¬x3 x4 ¬x4

C1 C2 C3 C4 C5

MIDS of size greater than rN
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Inapproximability in polytime [I ’91, H ’93]

x1 ¬x1 x2 ¬x2 x3 ¬x3 x4 ¬x4

C1 C2 C3 C4 C5

Set r = N9998 ≈ n 9998
10000 > n0.999

As n = 2N + CrN2 ≈ N1000
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(In)approximability in subexponential time

Our goal:

Theorem
Under ETH, ∀ε > 0, ∀r 6 n,
MIDS is not r -approximable in time O∗(2n1−ε/r1+ε

).

almost matching the r -approximation in time O∗(2n log(er)/r ).

I

a

In the previous reduction, n1−ε

r1+ε ≈ N2−ε′ .
We need to build a graph with n ≈ rN vertices.

I

a

Can we use only r vertices per independent set Ci and use
the inapproximability of a CSP to boost the gap?
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Almost linear PCP with perfect completeness?

Lemma (D ’05, BS ’04)
∃c1, c2 > 0, we can transform φ a SAT instance of size N into a
constraint graph G = 〈(V ,E ),Σ,E → 2Σ2〉 such that:
I |V |+ |E | 6 N(log N)c1 and |Σ| = O(1).
I φ satisfiable ⇒ UNSAT(G) = 0.
I φ unsatisfiable ⇒ UNSAT(G) > 1/(log N)c2 .
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Constraint graph

v

w

x

y

v [ ] w [ ] x [ ] y [ ]
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Ist,ab ↔ s[ 6= a]
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Reciprocally, Ist needs s[a] with ab satisfying st for some b.
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Then, Ist,ab can only be dominated by t[b′] (if ab′ satisfies st).
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SAT (φ)  CG (V ,E )  MIDS (V ′,E ′)

Recall |V |+ |E | 6 N(log N)c1 and Σ = O(1).
I φ satisfiable ⇒ MIDS of size |V | ≈ N.
I φ unsatisfiable ⇒ MIDS of size |V |+ r |E |

(log N)c2 ≈ rN
I n := |V ′| 6 (|Σ|+ 1)|V |+ (1 + |Σ|2)r |E | ≈ rN
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Max Induced Path/Forest/Tree
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Theorem
Under ETH, ∀ε > 0, ∀r 6 n1/2−ε,
Max Induced Forest has no r-approximation in time 2n1−ε/(2r)1+ε .

aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa

A max induced forest has size in [α(G), 2α(G)].

I An independent set is a special forest.
I A forest has an independent set of size at least the half.
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Theorem
Under ETH, ∀ε > 0, ∀r 6 n1/2−ε,
Max Induced Tree has no r-approximation in time 2n1−ε/(2r)1+ε .

aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa

Add a universal vertex v to the gap instances of MIS: G  G ′.

I G ′ has an induced tree of size α(G) + 1.
I If T is an induced tree of G ′, α(G) > |T |/2.
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PCP-free inapproximability

Our goal:

Theorem
Under ETH, ∀ε > 0 and ∀r 6 n1−ε,
Max Induced Path has no r-approximation in time 2o(n/r).
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Walking through partial satisfying assignments

Contradicting edges are not represented
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Max Minimal Vertex Cover
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Approximability in polytime [BDP ’13]

I MMVC admits a n1/2-approximation,
I but no n1/2−ε-approximation for any ε > 0, unless P=NP.

Our goal:

Theorem
For any r 6 n, MMVC is r -approximable in time O∗(3n/r2

) .

Theorem
Under ETH, ∀ε > 0, ∀r 6 n1/2−ε,
MMVC is not r -approximable in time O∗(2n1−ε/r2+ε

).
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M

I

aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa

Compute any maximal matching M.
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M

I

aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa

If |M| > n/r, then any (minimal) vertex cover contains > n/r.
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M

I

aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa

Otherwise split M into r parts (A1,A2, . . . ,Ar ) of size 6 n/r2.
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M

I

aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa

For each of the 6 3n/r2 independent sets of each G [Ai ],
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M

I

aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa

add all the non dominated vertices of I,
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M

I

aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa

and compute a minimal vertex cover from the complement.
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M

I

aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa

An optimal solution R = N(R) = N(R ∩ I) ∪
⋃

i N(R ∩ Ai ).
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M

I

aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa

∃i , |N(R ∩ I) ∪ N(R ∩ Ai )| > |N(R)|
r .
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M

I

aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa

R ∩ Ai will be tried, and completed with a superset of R ∩ I.
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φ satisfiable ⇒ |IS| ≈ rN; φ unsatisfiable ⇒ |IS| ≈ N.
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MIS (≈ rN vertices)  MMVC (≈ r 2N vertices)
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φ satisfiable ⇒ |MVC| ≈ r2N; φ unsatisfiable ⇒ |MVC| ≈ rN.
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Open questions

I Is there an r -approximation in O∗(2n/r ) for MIDS? for Max
Induced Matching?

I Set Cover is log r -approximable in time O∗(2n/r ) [CKW ’09]
but not in time O∗(2(n/r)α) for some α [M’ 11]. Can we
tighten this lower bound?

I For Set Cover, we know a polytime
√

m-approximation [N ’07]
but only an r -approximation in time O∗(2m/r ) [CKW ’09]. Can
we match the upper and lower bounds?

aaaaaaaaaaaaaaaaaaaaaaaaaaa

Thank you for your attention!
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