Parameterized Power Vertex Cover

Eric Angel, Evripidis Bampis, Bruno Escoffier, Michael Lampis

Universities in Paris

WG 2016

Parameterized Power Vertex Cover

Parameterized Power Vertex Cover

- Parameterized
 - Dealing with NP-hard problem
 - Goal: Algorithm exponential in some parameter FPT

Parameterized Power Vertex Cover

- Parameterized
 - Dealing with NP-hard problem
 - Goal: Algorithm exponential in some parameter FPT

- Vertex Cover
 - Given graph G, find minimum set of vertices that hit all edges
 - Standard NP-hard problem

Parameterized Power Vertex Cover

- Parameterized
 - Dealing with NP-hard problem
 - Goal: Algorithm exponential in some parameter FPT
 - 4 5 6 7

- Vertex Cover
 - Given graph G,
 - Standard NP-ha
- Power?

hit all edges

Vertex Cover: Select vertices that touch all edges

Vertex Cover: Select vertices that touch all edges

Power: Some edges demand more power to be covered

Power: Some edges demand more power to be covered

Power: Some edges demand more power to be covered

Power Vertex Cover: Must decide which vertices get power ...and how much

Power Vertex Cover: Must decide which vertices get power ...and how much

Formal Definition:

$$\min \sum p(v)$$

$$\max\{p(u), p(v)\} \ge d((u, v)) \ \forall (u, v) \in E$$

Applications to communication networks

Applications to communication networks ??

- Applications to communication networks ??
- Interesting Generalization of Vertex Cover
 - Note: added **non-linear** constraint $\max\{p(u), p(v)\} \ge d((u, v)) \ \ \forall (u, v) \in E$
 - Compare: $p(u) + p(v) \ge d((u, v))$
 - Is this problem really different/harder from Vertex Cover?
 - Admits 2 approximation
 - In P for bipartite graphs [Angel et al. ISAAC '15]

- Applications to communication networks ??
- Interesting Generalization of Vertex Cover
 - Note: added **non-linear** constraint $\max\{p(u), p(v)\} \ge d((u, v)) \ \forall (u, v) \in E$
 - Compare: $p(u) + p(v) \ge d((u, v))$
 - Is this problem really different/harder from Vertex Cover?
 - Admits 2 approximation
 - In P for bipartite graphs [Angel et al. ISAAC '15]
 - What about Parameterized algorithms?
 - Vertex Cover is flagship problem
 - Compare: Weighted VC, Capacitated VC, Connected VC, ...

- Applications to communication networks ??
- Interesting Generalization of Vertex Cover
 - Note: added **non-linear** constraint $\max\{p(u), p(v)\} \ge d((u, v)) \ \forall (u, v) \in E$
 - Compare: $p(u) + p(v) \ge d((u, v))$
 - Is this problem really different/harder from Vertex Cover?
 - Admits 2 approximation
 - In P for bipartite graphs [Angel et al. ISAAC '15]
 - What about Parameterized algorithms?
 - Vertex Cover is flagship problem
 - Compare: Weighted VC, Capacitated VC, Connected VC, ...

Bottom line: Natural and interesting generalization of VC

- Good
 - FPT parameterized by budget
 - Same complexity as VC!
 - FPT parameterized by used vertices

- Good
 - FPT parameterized by budget
 - Same complexity as VC!
 - FPT parameterized by used vertices
- Bad
 - W-hard parameterized by treewidth!

- Good
 - FPT parameterized by budget
 - Same complexity as VC!
 - FPT parameterized by used vertices
 - FPT $(1+\epsilon)$ -approximation for treewidth time $(\log n/\epsilon)^{tw}$

W-hard parameterized by treewidth!

- Good
 - FPT parameterized by budget
 - Same complexity as VC!
 - FPT parameterized by used vertices
 - FPT $(1+\epsilon)$ -approximation for treewidth time $(\log n/\epsilon)^{tw}$

- W-hard parameterized by treewidth!
- Ugly
 - Quadratic (bi)-kernel
 - Linear kernel?
 - k^k for asymmetric case
 - c^k ? c^n ?

Things you (almost) already know

Basic Branching Algorithm for Vertex Cover

Basic Branching Algorithm for Vertex Cover

- Pick an uncovered edge

Basic Branching Algorithm for Vertex Cover

- Pick an uncovered edge
- Pick one of its endpoints (Branch)

Basic Branching Algorithm for Vertex Cover

- Pick an uncovered edge
- Pick one of its endpoints (Branch)

Basic Branching Algorithm for Vertex Cover

- Pick an uncovered edge
- Pick one of its endpoints (Branch)
- Remove endpoint, decrease budget by 1

Running time: 2^k

Basic Branching Algorithm for Vertex Cover

- Pick an uncovered edge
- Pick one of its endpoints (Branch)
- Remove endpoint, decrease budget by 1

Running time: 2^k

 \dots Can be improved to 1.28^k with smarter branching

Power Vertex Cover

Parameter: Total Budget *P*

Power Vertex Cover

Parameter: Total Budget *P* Basic Branching Algorithm

- Pick The heaviest edge to branch on
- If unweighted call VC algorithm

Power Vertex Cover

Parameter: Total Budget P Basic Branching Algorithm

- Pick The heaviest edge to branch on
- If unweighted call VC algorithm

Almost as good as best VC algorithm

Power Vertex Cover

Parameter: Total Budget *P* Better Branching Algorithm

- If two heaviest edges share vertex branch there

Power Vertex Cover

Parameter: Total Budget *P* Better Branching Algorithm

- If two heaviest edges share vertex branch there

Power Vertex Cover

Parameter: Total Budget PBetter Branching Algorithm

- If two heaviest edges share vertex branch there

Power Vertex Cover

Parameter: Total Budget *P* Better Branching Algorithm

- If two heaviest edges share vertex branch there
- If not decrease weight of heaviest edge and budget by 1

Power Vertex Cover

Parameter: Total Budget *P* Better Branching Algorithm

- If two heaviest edges share vertex branch there
- If not decrease weight of heaviest edge and budget by 1

Power Vertex Cover

Parameter: Total Budget *P* Better Branching Algorithm

- If two heaviest edges share vertex branch there
- If not decrease weight of heaviest edge and budget by 1

As fast as best VC algorithm! (1.28^P)

Power Vertex Cover

Parameter: Total Budget P

Parameter 2: Number of selected vertices k

Power Vertex Cover

Parameter: Total Budget P

Parameter 2: Number of selected vertices k

Same algorithm gives 1.41^k

Note: k < P so this is a harder problem

Q: Can we do as fast as VC here?

This is too easy! Let's make things more interesting!

Asymmetric Power Vertex Cover: Each edge has a different demand for each endpoint

Asymmetric Power Vertex Cover:

Each edge has a different demand for each endpoint

- Problem: what is a "heaviest" edge?
- Branching not guaranteed to be fast

Asymmetric Power Vertex Cover:

Each edge has a different demand for each endpoint

- Problem: what is a "heaviest" edge?
- Branching not guaranteed to be fast
- Result: 1.325^P algorithm with case analysis

Asymmetric Power Vertex Cover:

Each edge has a different demand for each endpoint

- Problem: what is a "heaviest" edge?
- Branching not guaranteed to be fast
- Result: 1.325^P algorithm with case analysis
- What about parameter k?

A simple kernel for parameter k

• Consider a vertex withe degree > k

- Consider a vertex withe degree > k
- Order its incident edges by demand

- Consider a vertex withe degree > k
- Order its incident edges by demand
- If the vertex gets power lower than the k+1-th cost...

- Consider a vertex withe degree > k
- Order its incident edges by demand
- If the vertex gets power lower than the k+1-th cost...
- we need to use > k vertices

- Consider a vertex withe degree > k
- Order its incident edges by demand
- If the vertex gets power lower than the k+1-th cost...
- we need to use > k vertices
- We can therefore give it power W_{k+1} , which covers the lower cost edges

- In the end graph has $O(k^2)$ edges left.
- Q: Running time of FPT algorithm?
- Q: Kernel inherently asymmetric?
- Q: Linear (order) kernel?

Things which are different

Reminder:

- Treewidth is most basic graph width
- Vertex Cover solvable in $2^{tw}n$ time

Theorem: There is no $n^{o(t)}$ algorithm for PVC (under ETH)

Theorem: There is no $n^{o(t)}$ algorithm for PVC (under ETH)

Proof: Reduction from Multi-Colored Clique

Theorem: There is no $n^{o(t)}$ algorithm for PVC (under ETH)

Proof: Reduction from Multi-Colored Clique

Vertex Selection Gadget:

Thick edges have weight n

Theorem: There is no $n^{o(t)}$ algorithm for PVC (under ETH)

Proof: Reduction from Multi-Colored Clique

- Thick edges have weight n
- At least one internal vertex must get power n

Theorem: There is no $n^{o(t)}$ algorithm for PVC (under ETH)

Proof: Reduction from Multi-Colored Clique

- Thick edges have weight n
- At least one internal vertex must get power n

Theorem: There is no $n^{o(t)}$ algorithm for PVC (under ETH)

Proof: Reduction from Multi-Colored Clique

- Thick edges have weight n
- At least one internal vertex must get power n

Theorem: There is no $n^{o(t)}$ algorithm for PVC (under ETH)

Proof: Reduction from Multi-Colored Clique

- Thick edges have weight n
- At least one internal vertex must get power n
- Main claim: Optimal power gives i to u and n-i to u'

Theorem: There is no $n^{o(t)}$ algorithm for PVC (under ETH)

Proof: Reduction from Multi-Colored Clique

- Thick edges have weight n
- At least one internal vertex must get power n
- Main claim: Optimal power gives i to u and n-i to u'
- Encode vertex selection by power level for u

Theorem: There is no $n^{o(t)}$ algorithm for PVC (under ETH)

Proof: Reduction from Multi-Colored Clique

Take k copies of previous gadget

Theorem: There is no $n^{o(t)}$ algorithm for PVC (under ETH)

Proof: Reduction from Multi-Colored Clique

- Take k copies of previous gadget
- Add a (small) check gadget for each non-edge of original graph

Theorem: There is no $n^{o(t)}$ algorithm for PVC (under ETH)

Proof: Reduction from Multi-Colored Clique

- Take k copies of previous gadget
- Add a (small) check gadget for each non-edge of original graph
- Whole graph has treewidth O(k)

Theorem: There is no $n^{o(t)}$ algorithm for PVC (under ETH)

Proof: Reduction from Multi-Colored Clique

Check gadget:

Meaning: not (i and j)

Actually it's not so bad...

Easy **Exact** Algorithms

- $(\Delta + 1)^{tw} n$ time
- $(M+1)^{tw}n$ time (M=maximum weight)

Main observation: Each vertex has limited number of reasonable power values.

(These running times are optimal)

Easy **Exact** Algorithms

- $(\Delta + 1)^{tw}n$ time
- $(M+1)^{tw}n$ time (M=maximum weight)

Main observation: Each vertex has limited number of reasonable power values.

(These running times are optimal)
Can we do better?

FPT **Approximation** Scheme

• $(M+1)^{tw}n$ time to solve exactly

FPT Approximation Scheme

- $(M+1)^{tw}n$ time to solve exactly
- Main idea: Rounding
 - Instead of power value p for each vertex store $\lfloor \log_{1+\epsilon}(p) \rfloor$
 - At most $\log M/\log(1+\epsilon)$ possible values
 - At most a $(1 + \epsilon)$ factor from correct value
 - If $M = n^{O(1)}$ running time $(\log n/\epsilon)^{tw}$
 - (If not, easy: think Knapsack)

FPT Approximation Scheme

- $(M+1)^{tw}n$ time to solve exactly
- Main idea: Rounding
 - Instead of power value p for each vertex store $\lfloor \log_{1+\epsilon}(p) \rfloor$
 - At most $\log M/\log(1+\epsilon)$ possible values
 - At most a $(1 + \epsilon)$ factor from correct value
 - If $M = n^{O(1)}$ running time $(\log n/\epsilon)^{tw}$
 - (If not, easy: think Knapsack)

Bottom line: Fast FPT algorithm for W-hard problem, only $(1 + \epsilon)$ error! (This is part of a more general technique [L. ICALP '14])

Things we don't understand

Linear (bi)-kernel?

- Recall: $O(k^2)$ kernel for (Asymmetric) PVC
- Can we do better?
- Using LP perhaps?

Linear (bi)-kernel?

- Recall: $O(k^2)$ kernel for (Asymmetric) PVC
- Can we do better?
- Using LP perhaps?
- Recall: for VC we have if LP says v(x) = 0, we should not take x

Linear (bi)-kernel?

- Recall: $O(k^2)$ kernel for (Asymmetric) PVC
- Can we do better?
- Using LP perhaps?
- Recall: for VC we have if LP says v(x) = 0, we should not take x
- **Theorem:** Given an instance of PVC and an optimal fractional LP solution that sets p(x) = 0 it is NP-hard to decide whether to take x.

LPs don't help

Theorem: Given an instance of PVC and an optimal fractional LP solution that sets p(x) = 0 it is NP-hard to decide whether to take x.

LPs don't help

Theorem: Given an instance of PVC and an optimal fractional LP solution that sets p(x) = 0 it is NP-hard to decide whether to take x. Reduction from VC

- Left side contains vertices, right edges
- Incidence encoded with weight 1 edges
- Optimal fractional solution: weight 1 to all right vertices

Conclusions

- Interesting generalization of Vertex Cover
- W-hard for treewidth
- But approximable!

Open questions:

- Linear kernel?
- c^k for asymmetric?
- FPT for feedback vertex set?

Thank you!

