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Preface

In this monograph I provide a summary of my recent research activity, with a particular emphasis on the results
published after my arrival at Paris Dauphine University, where I work since 2010 as an associate scientist of the
French National Centre for Scienti�c Research (French: Centre national de la recherche scienti�que, CNRS).

The HDR (French: Habilitation à Diriger des Recherches) is a French degree which accredits to supervise
PhD students, but it is also the opportunity to look at the past research and to plan the future. To make
projects for the future is a good practice in every human activity, so it is the same in research. But we live in
an uncertain world, and research is not spared from this reality. When we try to formulate models, axioms and
algorithms to solve practical problems, we end up in theories. And theories can be generalized or particularized:
this process may lead us to consider other practical problems, not even imagined before. This is the the strong
interplay between theory and practice, a process that can be hardly predicted and that generates new models,
axioms and algorithms, which are the basic ingredients of my research activity. This kind of �constructive�
uncertainty, that I experienced several times during my past research work, led me to study problems that are
quite di�erent in their nature, and yet are characterized by a common pattern in their conceptualisation.

But what models, axioms and algorithms are? Avoiding an epistemic debate about these abstract objects
(well away from the goals of this monograph and from my competences!) I would like to give here some intuitions
based on common sense and real life examples.

Models are abstract and hyper-simpli�ed representations of reality. For instance, we use models to teach to
our children how to behave well in a society, or to predict at what time we need to wake up in order to catch the
train that tomorrow will bring us to an important meeting. On the other hand, our computational resources
are limited, we cannot process too much information in our models and, most important, we need to select
the relevant parameters. Axioms may drive us to the selection of the �right� model and help us to characterize
appropriate �solutions�. For example, the problem of purchase a good car or a nice apartment, or the choice
of a loyal mate, can be �solved� specifying the axioms that a car, an apartment or a mate should satisfy to be
considered good, nice and loyal, respectively. Finally, algorithms are e�cient procedures that allow to compute
solutions and to compare the results of our models with the observed data, in order to understand whether our
predictions are right and, if needed, to update and correct our models (e.g., like improving a receipt to prepare
a good dish of pasta through repeated trials over the ingredients' proportions).

In these few lines all terms of the title have been shortly introduced except the �rst one: game. Games
are in fact the main subjects of this monograph, and I invite the interested reader to go further in the text to
discover the role played by games in my work. After all, once again, in real life as well as in doing research, we
need to have fun...

Stefano Moretti
Paris, April 2016
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Chapter 1

Introduction

In Game Theory it is usual to divide interaction situations into two main groups: cooperative games, where all
kinds of agreements among the interacting agents (that are called players) are possible, and non-cooperative
games, dealing with con�ict situations where players cannot make binding agreements.

More precisely, in cooperative games, players may form coalitions with the objective to coordinate their
actions and to obtain joint payo�s which exceed the sum of the individual payo�s. For example, cooperative
games can be used to analyse cost allocation problems, where the players are willing to form coalitions in order
to have extra monetary savings as an e�ect of cooperation. For instance, consider three nearby municipalities
(namely, 1, 2 and 3) that must take the decision on whether to cooperate in order to implement a joint project, for
instance, a Waste-water Treatment System (WTS). Suppose that each municipality 1, 2 and 3 could implement
its own independent WTS at a cost of 5, 3 and 2 million euros, respectively. However, if they cooperate, they
can reduce the cost of implementation thanks to a more e�cient use of common facilities and resources. Suppose
that the cost to implement a WTS is for each group of municipalities as follows (in million euros): c({1, 2}) = 7,
c({1, 3}) = 6, c({2, 3}) = 4 and c({1, 2, 3}) = 8 (the cost of a coalition of municipalities S ⊆ {1, 2, 3} is intended
as the cost to implement a WTS serving the total area of municiplities in S). Together with the individual costs
c({1}) = 5, c({2}) = 3, c({3}) = 2, the map c, assigning to each coalition S ⊆ {1, 2, 3} the cost of implementing
a WTS on S, is called characteristic function (see Section 1.2.2 for a formal de�nition of games in characteristic
function form, also known as Transferable Utility (TU) games). Looking at the characteristic function c, it
seems quite clear that cooperating and forming larger coalitions yields extra savings (in particular, we notice
that the map c is sub-additive, i.e., the cost c(S ∪ T ) of the union of each pair of disjoint coalitions S and T is
lower than the sum c(S) + c(T )). On the other hand, the opportunity to have extra savings is only a necessary
condition to guarantee the cooperation! In fact, all the municipalities will coordinate their action only if they
�nd an agreement on how to share the total cost of 8 million euros, corresponding to a WTS serving all the
three municipalities. How to guarantee that coalition {1, 2, 3} forms? and which cost allocation will likely be
adopted? These questions are the main issues in the analysis of TU games, and will be further discussed in
Chapter 2.

The previous example illustrates an applications of cooperative games to a cost sharing problem. Sometimes,
the outcome of a coalition of players does not represent an amount of money. Consider, for instance, three
political parties, (again, 1, 2 and 3) that have 47%, 38%, and 15% of the seats of a parliament, respectively.
A coalition of parties S ⊆ {1, 2, 3} is said to be winning if S is able to force the adoption of a decision in the
parliament. For instance, suppose that decisions are taken using a simple majority rule (a voting requirement
of more than half of all seats). So, only coalitions with more than one party will be a winning coalition. We
can represent the parliament situation again as a cooperative game with characteristic function w such that
w({1, 2, 3}) = w({1, 2}) = w({1, 3}) = w({2, 3}) = 1 and w({1}) = w({2}) = w({3}) = w(∅) = 0, where the
value w(S) = 1 means that coalition S is winning, and w(S) = 0 means that S is losing. An important question,
here, concerns the distribution of �power� among the players. Looking at the simple structure of winning and
losing coalitions in the parliament example, we notice that, despite the di�erences in terms of number of seats,
all the parties may form the same number of winning coalitions in a �symmetric� way (see Section 1.2.2 for more
details). Consequently, we argue that they have the same opportunities to force the adoption of a decision.
For more complex situations, classical game theoretical tools to measure the power of players are power indices
[171, 86], that will be further discussed in Chapter 5.

As we already said, in non-cooperative games, players have not the possibility to sign an agreement and
each player chooses to act in his own interest, keeping into account that the outcome of the game depends on
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the actions of all the players involved. Actions can be made simultaneously by players, as in the `stone, paper,
scissors' game or in `matching pennies', or sequentially at several time moments, as in chess. A classical and
illustrative example of non-cooperative (strategic) game with simultaneous actions is the �battle of sexes�. The
interaction situation involves a man and a woman who agreed to go out in the evening, either to a football
match or to the opera. Unfortunately, they forgot which of the two special events they had agreed on. The
man prefers the football match, the women prefers the opera, but both prefer being together to spending the
night alone. They must decide simultaneously and they have no means to communicate 1. We can represent
this situation using the following table, where the available actions correspond to the choice of a row for the
man, and to the choice of a column for the women, and the payo� at each combination of row and column must
be read as follows: the �rst number is the payo� of the man, and the second one is the payo� of the woman 2

Football Opera
Football 2, 1 0, 0
Opera 0, 0 1, 2

One of the main goals in the analysis of non-cooperative games is trying to predict the choice of the players.
In the game of the battle of sexes, there is no clear indication of what is the best choice for the man and
for the women. However the combination (Football, Football) and (Opera, Opera) are special, in the sense
that the man and the woman's actions are �best replies� to each other: if the man chooses Football (Opera) ,
then it is optimal for the woman to choose Opera (Football). A combination of actions of this type is called
Nash equilibrium (for a formal de�nition see 1.2.2; see also Chapter 4 for some results on the existence of Nash
equilibria for particular classes of games).

For a general introduction on cooperative situations we suggest the books [158, 151, 160, 148] and on non-
cooperative situations we suggest to look at [155, 152, 144, 82] (anyway, most of these readings deal with both
cooperative and non-cooperative games).

1.1 Overview

The structure of this monograph re�ects the organization of my research activity around �ve main axes: (1)
TU-games (Chapters 2), ordinal coalitional situations (Chapters 3), algorithmic game theory (Chapter 4),
application of power indices (Chapters 5) and bioinformatics and statistical analysis of biological data (Chapter
6). The �rst three chapters mainly deal with game theoretical models, whereas the last two are more oriented
to game practice and other applications.

An important part of my research activity focuses on the analysis of TU-games and their solutions, and is
described in Chapter 2. To be more speci�c, in Section 2.2 we introduce cost sharing problems arising from
connection situations, and, in particular, we discuss new cost allocation protocols for minimum cost spanning
tree games [94] based on our contributions published in [10, 16, 22, 22, 23, 51, 26]. In Section 2.3, we describe
the family of generalized additive games, a class of TU-games games recently introduced in [70] and [71] and
where the worth of a coalition is evaluated as a sum over the �valuable� contributions of players involved in
the cooperation. Section 2.4 deals with argumentation games, recently published in [43], where we proposed
a method to evaluate the impact of arguments in a debate by merging the classical argumentation framework
proposed in [111] into a game theoretic coalitional setting.

Chapter 3 focuses on models that we recently introduced to analyse coalitional situations where the strength
of agents' interaction is characterized by a �qualitative� information. Section 3.2 focuses on the problem of
how to generalize the notion of power index within an ordinal framework and is mainly based on the papers
[5] and [72]. Section 3.3 is devoted to the problem of how to extend a ranking over single objects to another
ranking over all possible collections of objects, taking into account the fact that objects grouped together can
have mutual interaction. This part is mainly based on the articles [46, 3, 59].

Chapter 4 is devoted to algorithmic issues related to non-cooperative games, and in particular to problems
arising from considering the dynamics of interaction among the players (e.g., better response dynamic). Section
4.2 is based on the article [47], where we analysed non-cooperative games based on connection situations,
which are the counter-part of the cooperative framework considered in Section 2.2. In Section 4.3, we provide

1Most of the classical introductory examples of games have been suggested at a time characterized by much less e�cient
communication facilities. Nowadays, we will assume that the mobile phones of the two players have run out of battery...

2Notice that the choice of the payo�s is purely ordinal: for instance, the payo� (2, 1) at position (Football, Football) compared to
the payo� (1, 2) at combination (Opera, Opera) simply means that the men prefers the outcome (Football, Football) over (Opera,
Opera), and the opposite for the woman; and both of them prefer being together to staying alone (payo� (0, 0))...
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an overview of the main results recently published in [6], where we introduced a class of congestion games
characterized by the fact that each resource is associated both with a capacity level, representing the maximum
number of users that such a resource may simultaneously accommodate, and with an ordering on the users,
prescribing the priority of accommodation of the users. Finally, Section 4.4, which is based on the paper [44],
deals with games on social networks where the players interact only with their neighbours and the relationship
between them can be modelled as simple two-player strategic games.

Chapter 5 deals with some recent contributions to the application of power indices to real-life situations.
Section 5.2 is devoted to the problem of reducing the energy consumption over computer networks and is based
on publications [49] and [48]. Section 5.3, is devoted to the discussion of a recent application of power indices
presented in [54] to design a weighted majority voting system for the Paris Science & Lettre (PSL) Federal
University. Finally, in Section 5.4 the problem of the measurement of �social capital�, intended as the ability of
individuals to gain bene�ts by utilizing their position in the society, is presented as an overview of the papers
[4] and [8].

Chapter 6 is the last chapter of this monograph and is aimed at introducing and discussing our recent
contributions on the application of coalitional games and their solutions to measure the importance of biological
factors/variables in producing certain biological or epidemiological e�ects. We start in Section 6.2 with some
results from publications [15, 37, 21, 17, 19, 14, 13, 50, 12, 9], where we introduced and applied alternative
coalitional games to the analysis of large data-sets on gene expression. Then, Section 6.3, is focused on a
recent approach described in our publication [11] to evaluate the �centrality� of genes in co-expression networks.
Section 6.4 concludes with a very short presentation of recent results in the domain of the statistical analysis
of biological data of human RNA (Ribonucleic acid) from publications [36, 38, 39, 40, 35], and, more recently,
from [33, 31, 29, 32, 34, 30, 28, 27].

All chapters are provided with an introductory overview and a concluding section with future directions of
research on the topics discussed in each chapter.

Finally, a list of bibliographic references is given at the end. The �rst part of the list collects the papers
I contributed to (for most of them, the electronic version of this monograph is supplied with a link to the
publication or to the journal website where it has been published). The second part (namely, section `Other
papers') lists the other publications cited in this monograph.

1.1.1 Issues not discussed in this monograph

For space reasons (this monograph must not exceed �fty pages), I omit from this monograph the issues related
to the following papers.

In [62], we developed a mathematical model for the analysis of a cost allocation problem in a consortium of
municipalities for garbage collection. In [25], we studied a more general model of cost allocation (also inspired by
a waste management problem) and taking into account the fact that collecting information on costs can be itself
costly. In [20] we have analysed the role that social rules play in selecting an equilibrium in a contest of strategic
interaction arising from (unexpected) states of the world. The results of this paper, which makes use of fuzzy
logic and default reasoning, are applied to the context of Corporate Social Responsibility for the theoretical
foundations of ethical codes. In [45] we considered Internet as composed of Autonomous Systems exchanging
routes via the inter-domain routing protocol and we introduced an auction framework adapted to determine the
price at which these routes can be sold. In [61], we have studied a cost allocation problem arising from water
resource management in the framework of an irrigation project for the West Delta region, in Egypt. Within
the same project framework, in [2] we introduced an application of cooperative game theory to a cost allocation
problem taking into account the di�erences in the regional landscape of land sectors of the project area. In [50]
we proposed an approach based on the framework of connection situations to represent the interactions between
all possible pairs of genes from gene expression data. In [12] we have presented some contributions from the
literature on the analysis of the behaviour of non-rational agents in the domain of computational biology, in
particular using evolutionary games and coalitonal games.

For lack of space, I will neither discuss any further the research studies concerning the development of
educational tools and learning models introduced in the papers [41, 42, 52, 53].

1.2 Preliminaries and notations

In this section we introduce some basic de�nitions and notations that will be used in the following chapters.
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1.2.1 Basic de�nitions on binary relations and graphs

A binary relation R on a �nite setN = {1, . . . , n} is a collection of ordered pairs of elements ofN , i.e. R ⊆ N×N .
For all elements x, y ∈ N , the more familiar notation xRy will be often used instead of the more formal one
(x, y) ∈ R. We provide some standard properties for R. Re�exivity : for each x ∈ N , xRx; transitivity : for each
x, y, z ∈ N , xRy and yRz ⇒ xRz; totality : for each x, y ∈ N , x 6= y ⇒ xRy or yRx; antisymmetry : for each
x, y ∈ N , xRy and yRx ⇒ x = y. A re�exive and transitive binary relation is called preorder. A preorder that
is also total is called total preorder. A total preorder that also satis�es antisymmetry is called linear order. The
notation ¬(xRy) means that xRy is not true. We denote by 2N the power set of N and we use the notations
T N and T 2N to denote the set of all total preorders on N and on 2N , respectively. Moreover, the cardinality
of a set S ∈ 2N is denoted by |S|.

Consider a total preorder <⊆ 2N×2N over the subsets of N . Often we will use the notation S � T to denote
the fact that S < T and ¬(T < S) (in this case, we also say that the relation between S and T is `strict'), and
the notation S ∼ T to denote the fact that S < T and T < S. For each i, j ∈ N , i 6= j, and all k = 1, . . . , n− 2,
we denote by Σkij = {S ∈ 2N\{ij} : |S| = k} the set of all subsets of N not containing neither i nor j with k
elements. Moreover, for each i, j ∈ N , we de�ne the set Dk

ij(<) = {S ∈ Σkij : S ∪ {i} < S ∪ {j}} as the set of
coalitions S ∈ 2N\{ij} of cardinality k such that S ∪ {i} is in relation with S ∪ {j}.

We provide now some basic de�nitions on graphs. An (undirected) graph is a pair < V,E >, where V is a
set of vertices or nodes and E is a set of edges e of the form {i, j} with i, j ∈ V , i 6= j. The complete graph on
a set V of vertices is the graph < V,EV >, where EV = {{i, j}|i, j ∈ V and i 6= j}.

A path between i and j in a graph < V,E > is a sequence of nodes (i0, i1, . . . , ik), where i = i0 and j = ik,
k ≥ 1, such that {is, is+1} ∈ E for each s ∈ {0, ..., k − 1} and such that all these edges are distinct. A cycle
in < V,E > is a path from i to i for some i ∈ V . A path (i0, i1, . . . , ik) is without cycles if there do not exist
a, b ∈ {0, 1, . . . , k}, a 6= b, such that ia = ib. Two nodes i, j ∈ V are connected in < V,E > if i = j or if there
exists a path between i and j in E. A connected component of V in < V,E > is a maximal subset of V with
the property that any two nodes in this subset are connected in < V,E >.

For any set of edges E ⊆ EV , let V (E) =
⋃
{i,j}⊆E{i, j} be the set of vertices of edges in E and, for each

T ⊆ V , let E(T ) = {{i, j} ∈ E : i, j ∈ T} be the set of edges contained in T . Moreover, let G[T ] =< T,E(T ) >
be the subgraphs of < V,E > induced by T .

A directed graph or digraph is a pair 〈V,A〉, where V is a set of vertices or nodes and A is a set of arcs a of the
form (i, j) with i, j ∈ V and i 6= j, where arc (i, j) denotes the connection between i and j in the direction from
i to j. The complete digraph on a set V of vertices is the graph 〈V,AV 〉, where AV = V × V . Given a digraph
〈V,A〉, we denote by A(S) ⊆ A the set of arcs in A whose vertices are in S, i.e. A(S) = {(i, j) ∈ A|i, j ∈ S},
for each S ⊆ V .

1.2.2 Basic de�nitions on games

A Transferable Utility (TU) game (also referred to as coalitional game or game in characteristic function form)
is a pair (N, v), where N = {1, . . . , n} denotes the set of players and v : 2N → R is the characteristic function,
(by convention, v(∅) = 0). A group of players S ⊆ N is called coalition and v(S) is called the value or worth
of the coalition S. If the set N of players is �xed, we identify a coalitional game (N, v) with its characteristic
function v and we denote as CN the class of all coalitional games with N as the set of players.

A game (N, v) is said to be monotonic if it holds that v(S) ≤ v(T ) for all S, T ⊆ N such that S ⊆ T and it
is said to be superadditive if it holds that

v(S ∪ T ) ≥ v(S) + v(T )

for all S, T ⊆ N such that S ∩ T = ∅.
Moreover, a game (N, v) is said to be convex or supermodular if it holds that

v(S ∪ T ) + v(S ∩ T ) ≥ v(S) + v(T )

for all S, T ⊆ N . Equivalently, a game (N, v) is said to be convex if the marginal contribution of any player to
any coalition is not strictly larger than his marginal contribution to a larger coalition, i.e. if it holds that

v(S ∪ {i})− v(S) ≤ v(T ∪ {i})− v(T ) (1.1)

for all i ∈ N and all S ⊆ T ⊆ N \ {i}.
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The unanimity game (N, uS) on S ⊆ N is the game described by uS(T ) = 1 if S ⊆ T and uS(T ) = 0,
otherwise, for each T ∈ 2N \ {∅}. Every coalitional game (N, v) can be written as a linear combination of
unanimity games in a unique way, i.e. v =

∑
S⊆N,S 6=∅ λS(v)uS . The coe�cients λS(v), for each S ∈ 2N \ {∅},

are called unanimity coe�cients of the game (N, v). Given a coalitional game (N, v) and a non-empty coalition
S ⊆ N , the subgame of v on S is de�ned as the game (S, v|S) such that v|S(T ) = v(T ) for all T ⊆ S.

An imputation of a game (N, v) is a vector x ∈ Rn such that
∑
i∈N xi = v(N) (e�ciency) and xi ≥ v({i})

for all i ∈ N (individual rationality). An important subset of the set of the imputations is the core, which
represents a classical solution concept for TU-games. The core C(v) of v is de�ned as the set of e�cient payo�
vectors for which no coalition has an incentive to leave the grand coalition N , precisely,

C(v) = {x ∈ Rn :
∑
i∈N

xi = v(N),
∑
i∈S

xi ≥ v(S) ∀S ⊂ N}.

A population monotonic allocation scheme or pmas [173] of the game (N, v) is a scheme x = {xS,i}S∈2N\{∅},i∈S
with the properties

i)
∑
i∈S

xS,i = v(S) for all S ∈ 2N\{∅};

ii) xS,i ≤ xT,i for all S, T ∈ 2N\{∅} and i ∈ N with i ∈ S ⊂ T 3.

A pmas provides an allocation vector for every coalition in a monotonic way, i.e. the value allocated to some
player increase if the coalition to which he belongs becomes larger. It is easy to check that a pmas provides a
core element for the game and all its subgames.

A one-point solution (or simply a solution) for a class CN of coalitional games with n players is a function
ψ that assigns a payo� vector ψ(v) to every coalitional game in the class, that is ψ : CN → RN .

An important family of solutions for TU-games are probabilistic values [179]. A probabilistic value (or
probabilistic power index ) for the game v is an n-vector πp(v) = (πp1(v), . . . , πpn(v)), such that

πpi (v) =
∑

S∈2N\{i}

pi(S)mi(S) (1.2)

where mi(S) = v(S ∪ {i}) − v(S) is the marginal contribution of i to S ∪ {i}, for each i ∈ N and S ∈ 2N\{i},
and p = (pi : 2N\{i} → R+)i∈N , is a collection of non negative real-valued functions ful�lling the condition∑
S∈2N\{i} p

i(S) = 1. A probabilistic value πpi is called regular when all the coordinates of p are strictly positive
functions. A particular interesting case is when the probabilistic value πp is a semivalue [110], which means
that non negative weights p0, . . . , pn−1 are given such that pi(S) = ps, whenever the cardinality of coalition S
is equal to s and i ∈ N4; furthermore, it is required that

∑n−1
k=0 pk

(
n−1
k

)
= 1, in order to ful�l the condition∑

S∈2N\{i} ps = 1; thus p = (p0, . . . , pn−1) represents a probability distribution on the family of the subsets of
N not containing i, and it is the same for all i ∈ N . We shall denote by p a vector (p0, . . . , pn−1) as above,
and, by a slight abuse of notation, πp is the semivalue engendered by the vector p. Hence, for each i ∈ N

πp
i (v) =

∑
S∈2N\{i}

psmi(S). (1.3)

We shall denote by S the set of all semivalues for the given �xed set N . The two most famous regular semivalues
(i.e., with ps > 0, for each s = 0, . . . , n− 1) are the Shapley value [170] πpφ , with pφs = 1

n(n−1
s )

, and the Banzhaf

value [86] πpβ , with p
β

s = 1
2n−1 , for each s = 0, . . . , n− 1. Other regular semivalues are present in the literature

[104, 102, 103, 120, 142]. In order to simplify notations, in the following we will often use the notation φ(v) and
β(v) to denote, respectively, the Shapley value and the Banzhaf value of game v.

We recall some nice properties of the Shapley value πpφ of a coalitional game (N, v): e�ciency (EFF), i.e.∑
i∈N φi(v) = v(N); symmetry (SYM), i.e. if i, j ∈ N are such that v(S∪{i}) = v(S∪{j}) for all S ⊆ N \{i, j},

then φi(v) = φj(v); dummy player property (DPP), i.e. if i ∈ N is such that v(S ∪ {i})− v(S) = v({i}) for all
S ⊆ N , then φi(v) = v({i}); additivity (ADD), i.e. φ(v) +φ(w) = φ(v+w) for each v, w ∈ CN . It is well known
that the Shapley value is the only solution that satis�es these four properties on the class CN of all TU-games
with N as the set of players [170].

3 Note that all the previous de�nitions hold for TU-games where v represents a gain, while the inequalities should be replaced
with ≤ when v is a cost function.

4Observe: p0 = pi(∅) for all i ∈ N .
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The Shapley value φ(v) of a game (N, v) is often introduced as the average of marginal vectors over all n!
possible orders of players (we denote by SN the set of all bijections σ : N → N , where σ(i) = j means that
with respect to σ, player j is in the i-th position). In formula

φi(v) =
1

n!

∑
σ∈SN

mσ
i (v) for all i ∈ N, (1.4)

where for each σ ∈ SN , the marginal vector mσ(v) is de�ned by

mσ
i (v) = v([i, σ])− v((i, σ)) for all i ∈ N,

where [i, σ] = {j ∈ N : σ−1(j) ≤ σ−1(i)} is the set of predecessors of i with respect to σ including i, and
(i, σ) = {j ∈ N : σ−1(j) < σ−1(i)} is the set of predecessors of i with respect to σ excluding i.

Basic combinatorial considerations on relation (1.4) lead to the equivalent de�nition (1.3) with pφs = 1

n(n−1
s )

for each s = 0, . . . , n−1. A still alternative formulation of the Shapley value (that will be used in the following)
is provided in terms of the unanimity coe�cients (λS(v))S∈2N\{∅} of a game (N, v), that is:

φi(v) =
∑

S⊆N :i∈S

λS(v)

|S|
(1.5)

for each i ∈ N .
A coalitional game (N, v) such that v(S) ∈ {0, 1} (i.e., the worth of every coalition is either 0 or 1) for

each S ∈ 2N and v(N) = 1 is said a simple game. The standard interpretation for these games is to consider
coalitions as �winning� (v(S) = 1) or �losing� (v(S) = 0). A particular class of simple games is the one of
weighted majority games, where the players in N are associated to a vector of n = |N | weights (w1, . . . , wn) and
a majority quota q is given. A weighted majority game (N, vw) on the weight w and the quota q is such that
for each S ∈ 2N \ {∅}:

vw(S) =

{
1 if

∑
i∈S wi > q,

0 otherwise.
(1.6)

For a monotonic simple game (N, v) and a player i ∈ N , a coalition S ∈ 2N \ {∅} with i ∈ S and such that
v(S) = 1 and v(S \ {i}) = 0 is said a swing for i (and player i is said critical for S) and we denote by si(v) the
number of swings for player i in game v. It is easy to check that the normalized Banzhaf value β̄(v) of v can be
de�ned for monotonic simple games as follows:

β̄i(v) =
βi(v)∑
i∈N βi(v)

=
si(v)∑
i∈N si(v)

, (1.7)

for each i ∈ N .
Given a (communication) network 〈N,E〉, following the approach in [150], we de�ne a new game (N,wvE),

where the value wvE(S) of a coalition S ⊆ N equals the sum of the values assigned by v to the connected
components of the network restricted to this coalition S. The game wvE is called the graph-restricted game.
Formally,

wvE(S) =
∑

T∈CE(S)

v(T ) (1.8)

for each S ∈ 2N \ {∅}, where, according to the notations of Section 1.2.1, E(S) = {e ∈ E|e ⊆ S} is the set of
edges with vertices in S and CE(S) is the set of all the connected components in the subgraph 〈S,E(S)〉, and
with the convention wvE(∅) = 0. The Shapley value of game wvE is known as the Myerson value [150] of the
communication situation 〈N, v,E〉 and denoted by µ(v,E).

We give now some basic de�nitions on strategic games. A strategic game is a tuple 〈N, (Si)i∈N , (ui)i∈N 〉
where N = {1, . . . , n} is the set of players, Si is a �nite set of pure strategies or actions for player i and
ui :

∏
j∈N Si → R is a payo� function specifying for each strategy pro�le or state s = (si)i∈N ∈

∏
j∈N Si player

i' s payo� ui(s) ∈ R, for each i ∈ N . Given a strategy pro�le s = (si)i∈N ∈
∏
j∈N Si, in the following, s−i

will denote s from which the strategy of player i is removed, i.e. s−i = (s1, . . . , si−1, si+1, sn) and (x, s−i) will
denote the strategy pro�le s from which si is replaced by x ∈ Si, i.e. (x, s−i) = (s1, . . . , si−1, x, si+1, sn).
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Given a strategic game 〈N, (Si)i∈N , (ui)i∈N 〉, a pure strategy x ∈ Si is a better response of player i with
respect to the strategy pro�le s = (si)i∈N ∈

∏
j∈N Si if ui(x, s−i) ≥ ui(s); we say that x is a best response to

s−i when ui(x, s−i) = maxy∈Si ui(y, s−i).
A state s = (si)i∈N ∈

∏
j∈N Si is a (pure) Nash equilibrium of the strategic game 〈N, (Si)i∈N , (ui)i∈N 〉, if

for every player i ∈ N , it holds that si is a best response to s−i for each i ∈ N .
A Better Response Dynamic (BRD, also called Nash dynamics) (associated with a strategic game 〈N, (Si)i∈N ,

(ui)i∈N 〉) is a sequence of states s0, s1, s2, . . . ∈
∏
j∈N Si such that each state s

k ∈
∏
j∈N Si (except s

0) is resulted
by a better response of some player from the state sk−1. Note that if a better response dynamic reaches a Nash
equilibrium after a �nite number of states, then no further changes of strategies are expected (if we assume that
a player changes his strategy only if he strictly prefers a di�erent strategy).

Sometimes the payo� function ui, i ∈ N , will be replaced by a cots function ci, for each player i ∈ N : in
this case we will call the tuple 〈N, (Si)i∈N , (ci)i∈N 〉 a strategic cost game and the inequality in the de�nition of
better response is replaced with ≤, and the max in the de�nition of best response is replaced with min.



Chapter 2

Transferable Utility (TU-)games

2.1 Overview of the chapter

This chapter focuses on the property-driven design of solutions for TU-games that are robust against coalitional
deviations in a dynamic framework, and on the generation of e�cient algorithms for their computation.

In Section 2.2, we introduce and discuss cost sharing problems arising from connection situations [64]. A
connection situation takes place in the presence of a group of agents, each of whom needs to be connected
directly or via other agents to a source. Since links are costly, agents evaluate the opportunity of cooperating in
order to reduce costs. If a group of agents decides to cooperate, a minimum cost spanning tree (mcst) (which
minimizes the total cost of connection) is constructed and the total cost of the tree must be shared among
the agents of the group. Examples of connection situation are the problem of building a telecommunication
network connecting some users with a service provider: players are the users, the source is the service provider
and the costs over the links may represent the communication costs of each pair of users, or of a user and
the service provider. The problem of �nding an mcst can be easily solved by means of alternative algorithms
proposed in the literature (e.g. Kruskal's algorithm [136], Prim's algorithm [163], etc.). However, �nding an
mcst does not guarantee that it is going to be really implemented: players must still support the cost of the
mcst and then a cost allocation problem must be addressed. This cost allocation problem was introduced in
[106] and has been studied with the aid of cooperative game theory since the basic paper [94]. After this
seminal paper, many cost allocation methods have been proposed in the literature on mcst games (see, for
instance, [97, 115, 128, 92]). More recently, we introduced some alternative approaches aimed at considering
connection situations in a dynamic framework [64]. In fact, in many applications the number of agents can
vary in time, and also increasing or decreasing of connection costs may occur. In [16], we introduced a new
family of cost allocation protocols for connection situations. As discussed in more details in Section 2.2, these
allocation protocols charge the agents with `fractions' of the cost of each edge constructed at each step of the
Kruskal's algorithm. It turns out that a subclass of these cost allocation protocols coincides with the class of
Obligations rules [22], which are cost monotonic and induce a population monotonic allocation scheme (pmas)
(see Section 1.2.2 for a formal de�nition of pmas). Connection networks and coalitional games are also the main
subjects of the joint-papers [24, 26, 23, 51, 25]. Connection situations where the costs on the edges are interval
numbers have been introduced in [10] and are brie�y discussed at the end of Section 2.2. On these situations,
we generalized the approach introduced in [22, 16] to interval costs and we analyzed the monotonicity and other
properties of mcst solutions.

Section 2.3 is devoted to another class of cooperative games, namely, the class of Generalized Additive Games
(GAGs), recently introduced in [70]1. In a GAG, the worth of a coalition S ⊆ N is evaluated by means of an
interaction �lter, that is a mapM which returns the valuable players involved in the cooperation among players
in S. The paper starts from the consideration that in some cases the procedure used to assess the worth of
a coalition S ⊆ N is strongly related to the sum of the individual values over another subset S ⊆ N , not
necessarily included in S. Several examples from the literature fall into this category (for instance, the class
of argumentation games introduced in [43] and discussed in Section 2.4, and many other operation research
games[97]). Moreover, by making further hypothesis on the �lter M, our approach in [70] enables to classify
existing games based on the properties of the mapM. In particular, in [70] we introduced and studied the class

1The results presented in the paper [70] originate from a collaboration with Giulia Cesari, student of a joint PhD program
at Paris Dauphine University, under my supervision, and at Politecnico di Milano, in Italy, under the supervision of Roberto
Lucchetti.

12
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of basic GAGs, which is characterized by the fact that the valuable players in a coalition S are selected on the
basis of the presence, among the players in S, of their friends and enemies: precisely, a player contributes to the
value of S if and only if S contains at least one of his friends and none of his enemies is present. These situations
seem to well represent an online social network where the players (e.g., the members of a social network) are
provided with a utility value that may represent their individual activity in a social networking web site (for
instance, measured in terms of the productive time spent in uploading content �les), and the participation of
each player to the global activity of the social network is based on a coalitional structure of friends and enemies
that is determined by their social pro�les. In [71], we provided formulas for the easy computation, under certain
conditions, of several classical solutions from cooperative game theory on basic GAG (e.g., the semivalues and
the core).

Finally, Section 2.4 deals with the family of argumentation games introduced in [43], where we proposed
a method to compute the relative relevance of arguments by merging the classical argumentation framework
proposed in [111] into a game theoretic coalitional setting, where the worth of a collection of arguments can be
seen as the combination of the information concerning the defeat relation and the preferences over arguments
of a �user�. In fact, a central problem faced by agents in a multi-agent debate is that they have to put forward
arguments taking into account their own goals, but also how the audience may react to their arguments and
the rules of the debate. Consider, for instance, the attitude of politicians participating to public debates: their
choice to embrace arguments often depends on factors like the popularity of the arguments, a degree of personnel
satisfaction, the consensus generated by those arguments in an assembly or in a forum, the contiguity with a
political position, etc. This results in a complex decision-making problem, where most of the parameters are
likely to be uncertain: what are the arguments known by other agents? what are their own goals? The �nal
goal of the study presented in [43], and shortly resumed in Section 2.4, is to measure the relative importance
of arguments for an agent taking part in a debate, and keeping into account both her/his own preferences -
as represented by a utility function de�ned over the set of arguments - and the information provided by the
attack relations among arguments. Following [43], we also provide an axiomatic characterization of the Shapley
value for coalitional games de�ned over an argumentation framework, and we show that, for a large family of
(coalitional) argumentation frameworks, the Shapley value can be easily computed.

2.2 Minimum cost spanning tree games

A connection situation or minimum cost spanning tree (mcst) situation is represented by a set N = {1, . . . , n}
of agents that are willing to be connected as cheap as possible to a source (i.e. a supplier of a service) denoted
by 0, based on a given weight (or cost) system of connection. In the sequel we use the notation S′ = S ∪ {0},
for each set S ⊆ N , and w for the weight function, i.e. a map which assigns to each edge or link of the form
{i, j} (with i, j ∈ N ′, i 6= j) a non-negative number w({i, j}) representing the weight or cost of edge {i, j}. We
denote an mcst situation with set of users N , source 0, and weight function w by < N ′, w > (or simply w).
Further, we denote by WN ′ the set of all mcst situations w with node set N ′.

Let ES′ = {{i, j}|i, j ∈ S′ and i 6= j} be the set of all possible edges between elements in S′, S ⊆ N , S 6= ∅.
The cost of a network < S′,Γ > with Γ ⊆ EN ′ is w(Γ) =

∑
e∈Γ w(e). An indirected graph < S′,Γ > is a

spanning network on S′ ⊆ N ′ if for every e ∈ Γ we have e ∈ ES′ and for every i ∈ S there is a path in < S′,Γ >
from i to the source. For any mcst situation w ∈ WN ′ it is possible to determine at least one spanning tree on
N ′, i.e. a spanning network without circuits on N ′, of minimum cost; each spanning tree of minimum cost is
called an mcst for N ′ in w or, shorter, an mcst for w. In order to �nd a mcst, one can use the Kruskal algorithm
[136] that works in the following way: in the �rst step an edge between two nodes in N ∪ {0} of minimal cost
is formed. In every subsequent step, a new edge of minimal cost is formed, under the constraint that no cycles
are formed with the edges constructed at the previous steps. In summary, a sequence of edges is produced and
after n steps an mcst appears. Since some edges may have the same cost, di�erent mcsts may be selected by
the Kruskal algorithm, depending on the ordering of the edges with respect to their increasing costs which has
been considered in the Kruskal algorithm.

Example 1. In this example (inspired by [24]) we consider a minimum cost spanning tree situation arising
from the problem of car pooling. Suppose that three employees of a �rm consider the possibility of car pooling
in order to reduce their daily travel cost. The cost of driving a car from one employee to another or from one
employee to the �rm are given in Figure 2.1. Here the employees are denoted by 1, 2, and 3 and the �rm by 0.
To each edge e ∈ E{0,1,2,3} is assigned a non-negative number w(e) representing the cost of edge e. A minimum
cost spanning tree in this mcst situation < {0, 1, 2, 3}, w > is the network Γ = {{0, 1}, {1, 2}, {1, 3}} with cost
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Figure 2.1: An mcst situation < {0, 1, 2, 3}, w > (left side) and a related mcst (right side).

w(Γ) = 48. This network Γ corresponds to the plan of car pooling in which employees 2 and 3 drive their car in
solitude to employee 1 where all employees take one car in order to drive together to the �rm.

Let < N ′, w > be an mcst situation. The minimum cost spanning tree game (N, cw) (or simply cw),
corresponding to < N ′, w >, is de�ned by

cw(S) = min{w(Γ)| < S′,Γ > is a spanning network on S′}

for every S ∈ 2N\{∅}, with the convention that cw(∅) = 0. We denote byMCST N the class of all mcst games
corresponding to mcst situations in WN ′ .

Example 2. Consider the mcst situation < N ′, w > with N ′ = {0, 1, 2, 3} and w as depicted in Figure 2.1.
If S = {1, 2} then a minimum cost spanning network for S is Γ = {{1, 2}, {0, 1}} with cost 36, whereas the
minimum cost spanning network for S = {3} is Γ = {{0, 3}} with cost 26. Proceeding in this way we �nd that
the mcst game (N, cw), corresponding to < N ′, w >, is given by

cw(123) = 48,
cw(12) = 36, cw(13) = 36, cw(23) = 44,
cw(1) = 24, cw(2) = 24, cw(3) = 26.

Note that the allocation (x1, x2, x3) = (24, 12, 12), assigning to each player i ∈ N the cost of the link from i to
its predecessor on the unique path from the source to i in the mcst of Figure 2.1, is in the core of game (N, cw).

Given a mcst situation < N ′, w >, allocations provided by the procedure assigning to each player i ∈ N the
cost of the link from i to its predecessor on the unique path from the source to i in an optimal tree is called
Bird allocation [94], and is always in the core of the associated mcst cw ∈ MCST N [94, 128]. Note that the
allocation (x1, x2, x3) = (24, 12, 12) is the Bird allocation associated to the mcst of Figure 2.1.

In [16, 22, 24] we have studied several solutions for mcst situations. Precisely, a solution is a map F :WN ′ →
RN assigning to every mcst situation w ∈ WN ′ a unique allocation in RN . An interesting family of solutions is
the class of Obligation rules, introduced in [22].

In order to provide a formal de�nition of Obligation rules we need some further notations. We de�ne
the set ΣEN′ of linear orders on EN ′ as the set of all bijections σ : {1, . . . , |EN ′ |} → EN ′ , where |EN ′ |
is the cardinality of the set EN ′ . For each mcst situation < N ′, w > there exists at least one linear or-
der σ ∈ ΣEN′ such that w(σ(1)) ≤ w(σ(2)) ≤ . . . ≤ w(σ(|EN ′ |)). We denote by wσ the column vector(
w(σ(1)), w(σ(2)), . . . , w(σ(|EN ′ |))

)t
.

For any σ ∈ ΣEN′ we de�ne the set

Kσ = {w ∈ REN′+ | w(σ(1)) ≤ w(σ(2)) ≤ . . . ≤ w(σ(|EN ′ |))}.

The set Kσ is a cone in REN′+ , which we call the Kruskal cone with respect to σ (corresponding to the ordering

of the edges considered according to the Kruskal algorithm). One can easily see that
⋃
σ∈ΣE

N′
Kσ = REN′+ .

Let w ∈ WN ′ and let σ ∈ ΣEN′ be such that w ∈ Kσ. We can consider a sequence of precisely |EN ′ | + 1

graphs < N ′, Fσ,0 >,< N ′, Fσ,1 >, . . . , < N ′, Fσ,|EN′ | > such that Fσ,0 = ∅, Fσ,k = Fσ,k−1 ∪ {σ(k)} for each
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k ∈ {1, . . . , |EN ′ |}. For each graph < N ′, Fσ,k >, with k ∈ {0, 1, . . . , |EN ′ |}, let πσ,k be the partition of N ′

consisting of the connected components of N ′ in < N ′, Fσ,k >.

Example 3. Consider the mcst situation < N ′, w > with N ′ = {0, 1, 2, 3} and w as depicted in Figure 2.1.
Note that w ∈ Kσ, with σ(1) = {1, 3}, σ(2) = {1, 2}, σ(3) = {2, 3}, σ(4) = {0, 1}, σ(5) = {0, 2}, σ(6) = {0, 3}.

The sequence of seven graphs < N ′, Fσ,k > and the corresponding sequence of partitions πσ,k are shown in
the following table

k F σ,k πσ,k

0 {∅} {{0}, {1}, {2}, {3}}
1 {{1, 3}} {{0}, {1, 3}, {2}}
2 {{1, 3}, {1, 2}} {{0}, {1, 2, 3}}
3 {{1, 3}, {1, 2}, {2, 3}} {{0}, {1, 2, 3}}
4 {{1, 3}, {1, 2}, {2, 3}, {0, 1}} {N ′}
5 {{1, 3}, {1, 2}, {2, 3}, {0, 1}, {0, 2}} {N ′}
6 {{1, 3}, {1, 2}, {2, 3}, {0, 1}, {0, 2}, {0, 3}} {N ′}

Now, let ∆(N) = {x ∈ RN+ |
∑
i∈N xi = 1}. The sub-simplex ∆(S) of ∆(N) given by ∆(S) = {x ∈

∆(N)|
∑
i∈S xi = 1} is called, for reasons to be clari�ed later, the set of obligation vectors of S.

An obligation function is a map o : 2N \ {∅} → ∆(N) assigning to each S ∈ 2N \ {∅} an obligation vector

o(S) ∈ ∆(S) (2.1)

in such a way that for each S, T ∈ 2N \ {∅} with S ⊂ T and for each i ∈ S

oi(S) ≥ oi(T ). (2.2)

Let Θ(N ′) be the family of partitions of N ′. Such an obligation function o on 2N \ {∅} induces an obligation
map ô : Θ(N ′)→ RN , where Θ(N ′) is the family of partitions of N ′, and

ô(θ) =
∑

S∈θ,0/∈S

o(S) (2.3)

for each θ ∈ Θ(N ′).
Note that if θ = {N ′}, then the resulting empty sum is assumed, by de�nition, to be the n-vector of zeroes:

ô(θ) = 0 ∈ RN .

Example 4. Let o∗ : 2N \{∅} → ∆(N) be de�ned by o∗(S) = eS

|S| for each S ∈ 2N \{∅}, where eS is the n-vector

such that eSi = 1 if i ∈ S and eSi = 0 if i ∈ N \ S. Then, o∗ is an obligation function and the corresponding
obligation map is

ô∗i (θ) =

 |S(θ, {i})|−1 if 0 /∈ S(θ, {i})

0 otherwise,
(2.4)

for each θ ∈ Θ(N ′) and each i ∈ N . Here S(θ, {i}) ∈ θ is the partition element to which i belongs.
Note that o∗(S) is the barycenter of ∆(S) and for N = {1, 2, 3, 4}, θ = {{1, 2}, {0, 3}, {4}} we have ô∗(θ) =

( 1
2 ,

1
2 , 0, 1).

A characteristic of Obligation rules is that they assign to an mcst situation a vector of cost contributions
which can be obtained as a product of a contribution matrix with the cost vector of edges ordered according to
σ.

De�nition 1. Let ô be an obligation map on Θ(N ′). Let σ ∈ ΣEN′ . The contribution matrix w.r.t ô and σ is
the matrix Dσ,ô ∈ RN×|EN′ | where

Dσ,ô
ik = ôi(π

σ,k−1)− ôi(πσ,k)

for each i ∈ N and each k ∈ {1, . . . , |EN ′ |}.
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De�nition 2. Let ô be an obligation map on Θ(N ′). Let σ ∈ ΣEN′ . We de�ne the map φσ,ô : Kσ → RN by

φσ,ô(w) = Dσ,ôwσ, (2.5)

for each mcst situation w in the cone Kσ.

Next proposition states that φσ,ô does not depend on the choice of σ and makes it possible to de�ne an
Obligation rule with respect to an obligation map on Θ(N ′) as a map on WN ′ (di�erently from the bird
allocations, which depend on the selected optimal tree).

Proposition 1 (from [22]). Let ô be an obligation map on Θ(N ′). If w ∈ Kσ ∩Kσ′ with σ, σ′ ∈ ΣEN′ , then
φσ,ô(w) = φσ

′,ô(w).

A basic property of fairness for solutions is cost monotonicity, imposing that if some connection costs go
down, then no agents will pay more. Formally, a solution F is a cost monotonic solution if for all mcst situations
w,w′ ∈ WN ′ such that w(e) ≤ w′(e) for each e ∈ EN ′ it holds that Fi(w) ≤ Fi(w′) for each i ∈ N . Unfortunately,
the Bird rule and many other solutions for mcst games are not cost monotonic. In [22] we proved the following
result.

Theorem 1 (from [22]). Obligation rules are cost monotonic.

As we formally de�ned in Section 1.2.2, a pmas provides a cost allocation vector for every coalition in a
monotonic way. The following result has been proved in [22] too.

Theorem 2 (from [22]). Let ô be an obligation map on Θ(N ′), let φô be the Obligation rule w.r.t ô, and let
w ∈ WN ′ . Then, the table [φôS (w|S′)]S∈2N\{∅} is a pmas for the mcst game (N, cw).

The obligation map of Example 4 de�nes a well known solution for mcst situations, that is the Equal
Remaining Obligation rule, also called P -value [23, 92, 115].

De�nition 3. The P -value is the map P :WN ′ → RN , de�ned by

P (w) = φô
∗
(w) (2.6)

for each w ∈ WN ′ and where φô
∗
is the Obligation rule w.r.t. the obligation map ô∗ of Example 4.

Example 5 provides an illustration of the P -value.

Example 5. Consider the mcst situation < N ′, w > with N ′ = {0, 1, 2, 3} and w of Example 1. The contribution
matrix Dσ,ô∗ is

Dσ,ô∗ =

 1
2

1
6 0 1

3 0 0
0 2

3 0 1
3 0 0

1
2

1
6 0 1

3 0 0


and wσ = (12, 12, 20, 24, 24, 26)t.
Then, P (w) = φô

∗
(w) = Dσ,ô∗wσ = (16, 16, 16)t.

In [23] we also provided an axiomatic characterization of the P -value is provided, that is shortly introduced
in the following. A solution for mcst situations is a map F :WN ′ → RN assigning to every mcst situation w a
unique cost allocation in RN . Some interesting properties for solutions for mcst situations are the following.

Property 1. The solution F is e�cient (EFF) if for each w ∈ WN ′∑
i∈N

Fi(w) = w(Γ),

where Γ is a minimum cost spanning network on N ′.

Property 2. The solution F has the Equal Treatment (ET) property if for each w ∈ WN ′ and for each i, j ∈ N
with Ci(w) = Cj(w),

Fi(w) = Fj(w).
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Property 3. The solution F has the upper bounded contribution (UBC) property if for each w ∈ WN ′ and
every (w,N ′)-component C 6= {0} ∑

i∈C\{0}

Fi(w) ≤ min
i∈C\{0}

w({i, 0}).

Property 4. The solution F has the Cone-wise Positive Linearity (CPL) property if for each σ ∈ ΣEN′ , for
each pair of mcst situations w, ŵ ∈ Kσ and for each pair α, α̂ ≥ 0, we have

F (αw + α̂ŵ) = αF (w) + α̂F (ŵ).

Theorem 3 (from [23]). The P -value is the unique solution which satis�es the properties EFF, ET, UBC and
CPL on the class WN ′ of mcst situations.

We give now a short summary of other interesting results on connection situations provided in our papers
[26, 24, 51, 16, 10]. In [26] we showed that, for variants of classical mcst games on directed graphs, a pmas
does not necessarily exist. In particular, in [26] we provide a simple algorithm to obtain an mcst and to extend
each core elementto a pmas and also to a bi-monotonic allocation scheme [101, 177]. In [24], we introduced the
Subtraction Algorithm computing, for every mcst situation and each permutation on the set of players, a pmas.
This algorithm is based on a decomposition theorem which guarantees that every mcst game can be written as
a nonnegative combination of mcst games corresponding to 0−1 cost functions. In [51], we presented a new way
to de�ne the irreducible core [94], based on a non-Archimedean semimetric. The Bird core correspondence turns
out to have interesting monotonicity and additivity properties, and each stable cost monotonic allocation rule
for mcst situations is a selection of the Bird core correspondence. In [16], we studied the class of Construct and
Charge (CC -) rules for mcst situations, that are de�ned starting from charge systems, and specify particular
allocation protocols that are also rooted on the Kruskal algorithm for computing an mcst.

In [10] we introduced the model of minimum interval cost spanning tree (micst) situations, i.e. situations
where agents of the set N = {1, . . . , n} are willing to be connected as cheaply as possible to a source based on an
interval-valued cost system of connection: to each edge e ∈ EN ′ is assigned a closed interval in R+ representing
the uncertain cost of edge e (no probability distribution is assumed for edge costs). In [10] we focused on
particular allocation protocols for micst situations that we called extended obligation rules generalizing the
notion of obligation rule. In this setting, it turns out that cost monotonicity provides extra incentives in favour
of a social agreement, where the unique condition of core membership may not be su�cient. We also presented
an application to a randomly generated ad-hoc wireless network with many nodes, together with a computer
programme in the R language [167] for the computation of the (extended) P -value.

2.3 Generalized additive games

One of the main issues in the analysis of coalitional games is that the number of coalitions grows exponentially
with respect to the number of players. Consequently, it is computationally very interesting to single out classes
of games that can be described in a concise way. In the literature on coalitional games there exist several
approaches for de�ning classes of games whose concise representation is derived by an additive pattern among
coalitions. In some contexts, due to an underlying structure among the players, such as a network, an order, or a
permission structure, the value of a coalition S ⊆ N can be derived additively from a collection of subcoalitions
{T1, · · ·Tk}, Ti ⊆ S ∀i ∈ {1, · · · , k}. Such situations are modeled, for example, by the graph-restricted games,
introduced by Myerson [150] and further studied by Owen [157], the component additive games [109] and the
restricted component additive games [108].

Sometimes, the procedure used to assess the worth of a coalition S ⊆ N is strongly related to the sum of the
individual values over another subset T ⊆ N , not necessarily included in S. Several examples from the literature
fall into this category, among them the well-known glove game, the airport games [139, 140], the connectivity
game and its extensions [80, 138], the argumentation games [43] and some classes of operation research games,
such as the peer games [100] and the mountain situations [26]. In these models, the value of a coalition S of
players is calculated as the sum of the single values of players in a subset of S. On the other hand, in some
cases the worth of a coalition might be a�ected by external in�uences and players outside the coalition might
contribute, either in a positive or negative way, to the worth of the coalition itself. This is the case, for example,
of the bankruptcy games [83] and the maintenance problems [134, 97].

In [70] we introduced a general class of additive TU-games where the worth of a coalition S ⊆ N is evaluated
by means of an interaction �lter, that is a mapM which returns the valuable players involved in the cooperation
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among players in S. More precisely, a Generalized Additive Situation (GAS ) is a triple 〈N, v,M〉, where N is
the set of players, v : N → R is a map that assigns a value to each player and M : 2N → 2N is a coalitional
map, which assigns a (possibly empty) coalitionM(S) to each coalition S ⊆ N of players.

Given the GAS 〈N, v,M〉, the associated Generalized Additive Game (GAG) is de�ned as the TU-game
(N, vM) assigning to each coalition S ∈ 2N the value

vM(S) =
∑

i∈M(S)

v(i) (2.7)

for each S ∈ 2N \ {∅} and vM(∅) = 0, as usual.
In particular, in [70] we introduced and studied the class of basic GAGs, which is characterized by the fact

that the valuable players in a coalition S are selected on the basis of the presence, among the players in S, of
their friends and enemies. For each i ∈ N , de�ne Ci = {F 1

i , . . . , F
mi
i , Ei} as a collection of subsets of N such

that F ji ∩ Ei = ∅ for all i ∈ N and for all j = 1, · · · ,mi. Let C = {Ci}i∈N . A basic GAS is the triple 〈N, v, C〉,
associated with the coalitional mapM de�ned as:

M(S) = {i ∈ N : S ∩ F 1
i 6= ∅, . . . , S ∩ F

mi
i 6= ∅, S ∩ Ei = ∅}. (2.8)

Several of the aforementioned classes of games from the literature can be described as basic GAGs, as well
as games deriving from real-world situations (see [70] for more details).

Example 6. (airport games [139, 140]): Let N be the set of players 2. We partition N into groups N1, N2, . . . ,
Nk such that to each Nj, j = 1, . . . , k, is associated a positive real number cj with c1 ≤ c2 ≤ · · · ≤ ck
(representing costs). Consider an airport game w such that w(S) = max{ci : i ∈ S}. This type of game
(and variants) can be described by a basic GAS 〈N, (Ci = {Fi, Ei})i∈N , v〉 by setting for each i ∈ Nj and each
j = 1, . . . , k:

- the value v(i) =
cj
|Nj | ,

- the set of friends Fi = Nj,

and the set of enemies Ei = Nj+1 ∪ . . . ∪ Nk for each i ∈ Nj and each j = 1, . . . , k − 1 and El = ∅ for each
l ∈ Nk.

By using similar arguments, it is possible to show that also the maintenance games ([134], [97]), which
generalize the airport games, can be represented as basic GAGs.

Moreover, it is possible to produce, for basic GAGs, results concerning important solution concepts, like the
core and the semivalues. It is therefore interesting to study under which conditions a GAS can be described as
a basic one. To this purpose, the following theorem provides a necessary and su�cient condition when the set
of enemies of each player is empty.

Theorem 4 ([70]). Let 〈N, v,M〉 be a GAS. The map M can be obtained by relation (2.8) via collections
Ci = {F 1

i , . . . , F
mi
i , Ei = ∅}, for each i ∈ N , if and only if M is monotonic (i.e., M(s) ⊆ M(T ) for each S, T

such that S ⊆ T ⊆ N).

The model of basic GAG turns out to be suitable for representing an online social network, where friends and
enemies of the web users are determined by their social pro�les. It is well known that the problem of identifying
in�uential users on a social networking web site plays a key role to �nd strategies aimed at increasing the site's
overall view. The main issue is to target advertisement to the site members of the online social network whose
activities' levels have a signi�cant impact on the activity of the other site members. The overall in�uence of a
user can be seen as the combination of two ingredients: 1) the individual ability to get the attention of other site
members, and 2) the personal characteristic of the social pro�le, that can be represented in terms of groups or
communities to which users belong. A basic GAS 〈N, v, C〉 can represent an online social network as described
above. More speci�cally, each player i ∈ N of the basic GAS is associated to a value v(i) representing her/his
individual activity in a social networking web site (for instance, measured in terms of the productive time spent
in uploading content �les), and the participation of the individuals to the global activity of the social network is
based on a coalitional structure C of friends and enemies that is determined by players' social pro�les. Thus, it

2In airport games the players are the landings that occur during the lifetime of the landing strip of an airport. Since not all
players will need a landing strip of the same length, the cost of a coalition S is computed as the cost associated with a landing strip
long enough to accommodate all of the landings in S.
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is interesting to analyze, for this type of games, the behavior of indices aimed at measuring the in�uence of the
players in the game: in particular we consider the Shapley value [171, 170], the Banzhaf Value [86] and other
semivalues [110].

In what follows, in order to simplify the notation, we �x i ∈ N and denote by f the cardinality of Fi and
by e the cardinality of Ei (in order to simplify the notation, if Ei = ∅ we assume by convention that e = 0 and
1
e = 0). We denote by 〈N, vC〉 the GAG associated to a basic GAS 〈N, v, C〉, and we call such a game basic
GAG. Consider a basic GAS with a single set of friends for each player i. The associated basic GAG vCi reduces
to:

vCi(S) =

{
v(i) if S ∩ Fi 6= ∅, S ∩ Ei = ∅

0 otherwise

The following proposition holds.

Proposition 2 ([70]). Let us consider a basic GAS on 〈N, v, {Ci = {Fi, Ei}}i∈N 〉. Then the Shapley value φ(v)
and Banzhaf value β(v) for the game vCi are given, respectively, by:

φj(v
Ci) =


0 if j ∈ N \ (Fi ∪ Ei)
v(i)
f+e if j ∈ Fi

−v(i) f
e(f+e) if j ∈ Ei

and

βj(v
Ci) =


0 if j ∈ N \ (Fi ∪ Ei)
v(i)

2f+e−1 if j ∈ Fi
−v(i) 2f−1

2f+e−1 if j ∈ Ei.

We comment this result with the help of the following example from [70].

Example 7. As a toy example, consider an online social network with four users N = {1, 2, 3, 4} where each
user spends the same amount of time T in uploading new content �les and, according to her/his social pro�le,
each user i ∈ N belongs to a single community Fi ⊆ N (e.g., the set of users with whom i intends to share her/his
content �les) which is in con�ict with the complementary one Ei = N \ Fi (here, enemies in Ei are interpreted
as those members that have no permission to access the content �les of player i). Suppose, for instance, that
F1 = {1, 2, 3}, F2 = {2, 3}, F3 = {3} and F4 = {1, 2, 3, 4}. Following the discussion about social networking web
sites earlier introduced, we can represent such a situation as a basic GAS 〈N, v, {Ci = {Fi, Ei = N \ Fi}}i∈N 〉.
How to identify the most in�uential users? According to Proposition 2, the in�uence vector provided by the
Shapley value is: φ(vC) = (T6 ,

2T
3 , T,

−5T
6 ). So, user 3 results the most in�uential one, followed by 2, then 1 and

�nally 4, who is the only user to get a negative index.
Suppose now that user 2 wants to improve her/his in�uence as measured by the Shapley value. It is worth

noting that if user 2 removes 3 from her/his set of friends (and all the other sets of friends and enemies
remain the same), then player 2 gets exactly the same Shapley value of user 3. Precisely, if now F2 = {2} and
E2 = {1, 3, 4}, then φ2(vC) = φ3(vC) = 2T

3 . Notice that the fact that an in�uential player has been removed
from his/her list of friends does not impact directly the in�uence of player 2, but it determines an important
reduction of the in�uence of player 3.

2.4 Argumentation games

A Dung Argumentation Framework (DAF) is a directed graph 〈A,R〉, where the set of nodes A is a �nite set
of arguments and the set of arcs R ⊆ A ×A is a binary defeat (or attack) relation (i.e, (i, j) ∈ R means that
argument i ∈ A attacks argument j ∈ A). We say that a set of arguments S ⊆ A (also called a coalition S)
attacks another coalition T ⊆ A in 〈A,R〉 if there exists (s, t) ∈ S × T with (s, t) ∈ R, that is an attacks which
originates from an argument in S and is directed against an argument in T . For each argument a we de�ne
the set of predecessors of a in 〈A,R〉 as the set Pr(R, a) = {j ∈ A : (j, a) ∈ R}, and the set of successors of
a is denoted by Su(R, a) = {j ∈ A : (a, j) ∈ R} (if clear from the context, we omit notation R in Pr(a) and
Su(a)).

The main goal of argumentation theory is to identify which arguments are rationally �acceptable� according
to di�erent notions of acceptability. Some of the most common notions of acceptability are the following ones.
An argument a ∈ A is said acceptable w.r.t. S ⊆ A i� ∀b ∈ A: if (b, a) ∈ R, then ∃c ∈ S such that (c, b) ∈ R.
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A set S ⊆ A is said to be: (con�ict-free) i� S does not attack itself; (stable) i� S is con�ict-free and attacks
every argument in A \ S; (admissible) i� S is con�ict-free and S attacks every argument in A \ S that attacks
S; (preferred) i� it is a maximal (w.r.t. ⊆) admissible extension; (complete) i� ∀a ∈ A, if a is acceptable w.r.t.
S, then a ∈ S; (grounded) i� S is the minimal (w.r.t. ⊆) complete extension.

In [43] we introduced a framework for abstract argumentation, keeping into consideration the preferences
over (collections of) arguments of an agent (hereafter, called �the user�), who deals with the problem of assessing
the relevance of each argument with respect to her/his own objectives, and facing the uncertainty about which
combination of arguments will result from the debate. The �nal goal of this paper, is then to measure the relative
importance of arguments for the user, taking into account both her/his own preferences - as represented by a
utility function de�ned over the set of arguments - and the information provided by the attack relation over the
arguments. In this direction, we merged the classical argumentation framework proposed in [111] into a game
theoretic coalitional setting, where the �worth� of a coalition of arguments can be seen as the combination of
the information about the preferences of the user over arguments and the information concerning the con�icts.

Precisely, in [43] we de�ned a Coalitional Argumentation Framework (CAF) as a triple 〈A,R, v〉 where 〈A,R〉
is a DAF and v is a map assigning to each coalition S ⊆ A a number v(S) ∈ R. The value v(S) represents
the worth of the coalition S for the user (for example, it could measure the success provided by coalition S
according to a criterion speci�ed by the user, e.g., the overall popularity of the arguments in S). We assume
that for each a ∈ A, the worth (or utility) of the singleton {a} is given by a (cardinal) utility function on A. We
also assume that a CAF 〈A,R, v〉 satis�es the following conditions of consistency between the map v and the
DAF 〈A,R〉: (c.1) if a ∈ A is such that Pr(a) = Su(a) = ∅ (a is not connected to other arguments in 〈A,R〉),
then v(S ∪ {a}) = v(S) + v({a}) for each coalition S ⊆ A \ {a}; (c.2) if a, b ∈ A are such that Pr(a) = Pr(b)
and Su(a) = Su(b) (i.e., a and b are symmetric in the DAF) and v({a}) = v({b}), then v(S ∪{a}) = v(S ∪{b})
for each coalition S ⊆ A.

Given a CAF 〈A,R, v〉 (satisfying the consistency conditions (c.1) and (c.2) as well), we study the problem
of providing a measure representing the relevance of arguments, taking into account both the structure of the
DAF and the worth of coalitions as measured by v. In this direction, we focus on properties that such a measure
of relevance should satisfy.

For instance, the SYM3 property introduced in Section 1.2.2, states that two symmetric players in the DAF
should have the same relevance, provided that their worth as singletons is the same. Analogously, rephrasing
the notion of dummy player in a CAF, the DPP says that disconnected arguments in a DAF should receive as
value of relevance precisely their worth as singletons. Still, the EFF property imposes un upper bound over
the scale for measuring the relevance of arguments (precisely, the sum of the relevance values must be equal
to v(A)). Finally, an interesting reinterpretation of the ADD property suggests that the sum of the relevance
values measured over two distinct CAFs 〈A,R, v1〉 and 〈A,R, v2〉 sharing the same DAF (for instance, v1 and
v2 may represent the preference over coalitions of arguments in two distinct populations, like the population of
women and the one of men), should be equal to the relevance of arguments measured on 〈A,R, v1 + v2〉.

Example 8. Consider two CAFs, 〈{1, 2, 3}, {(1, 2), (2, 1)}, v〉 and 〈{1, 2, 3}, {(1, 2), (2, 1)}, v′〉 (satisfying con-
ditions (c.1) and (c.2) as well). Consider the CAF 〈{1, 2, 3}, {(1, 2), (2, 1)}, v̄ = v + v′〉. By ADD and DPP,

1 2 3

Figure 2.2: The DAF corresponding to the CAFs of Example 8.

the Shapley value of argument 3 is φ3(v̄) = v({3}) + v′({3}), and by SYM and EFF, φ1(v̄) = φ2(v̄) =
1
2 (v(A) + v′(A)− (v({3}) + v′({3}))).

In order to partially take into account the argumentation system, in [43] we de�ned a notion of the worth
of coalitions combining the preferences of the user over single arguments and a �local� information about
the attacks. Precisely, consider a CAF 〈A,R, v̂〉 where the worth of coalitions is additive over non-attacked

3Notice that, given a CAF 〈A,R, v〉, there may exist arguments a and b that are symmetric players in v (according to de�nition
provided in Section 1.2.2) that do not necessarily satisfy the condition Pr(a) = Pr(b), Su(a) = Su(b) and v({a}) = v({b})
introduced in condition (c.2). In a similar way, there may exist arguments a ∈ A that are dummy players in v that do not satisfy
condition Pr(a) = Su(a) = ∅.
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arguments, i.e. if a coalition S ⊆ A forms, v̂(S) denotes the sum of the worth of single arguments that are
not attacked within coalition S. Let FS = {i ∈ S : {i} is not attacked by S \ {i}} be the set of non-attacked
arguments in S, then

v̂(S) =
∑
i∈FS

v̂({i}), (2.9)

for each S ⊆ A (by convention, v̂(∅) = 0). We denote by V̂A the class of CAFs 〈A,R, v̂〉 on A introduced above,
and by GV̂A the class of corresponding games v̂ de�ned by relation (2.9).

Example 9. Consider the CAF 〈{1, 2, 3}, {(1, 2), (2, 3)}, v̂〉, such that the preference over each argument i is
the same and is equal to 1.

1 2 3

Figure 2.3: The DAF corresponding to the CAF of Example 14.

The game v̂ is provided in Table 2.1. The Shapley value of such a game is φ1(v̂) = φ3(v̂) = 1
2 and φ2(v̂) = 0.

So the greatest relevance is given to arguments 1 and 3 (note that the coalition {1, 3} is the only stable one).

S : {1} {2} {3} {1, 2} {1, 3} {2, 3} {1, 2, 3}
v̂(S) : 1 1 1 1 2 1 1

Table 2.1: The worth of each coalition S ⊆ {1, 2, 3} in v̂.

Alternatively, suppose that the argument 2 is preferred to the other ones, and thus the worth of the singleton
coalition {2} is, for instance, v̂({2}) = 1, and v̂({1}) = v̂({3}) = 0. Now the relevance assigned by the Shapley
value is 1

2 to arguments 2, 0 to argument 3, and − 1
2 to argument 1: the user would be worse o� by attacking the

most bene�cial and non-defended argument 2, whereas she/he would receive no detriment in adopting argument
3.

In general the Shapley value is hard to calculate, since it requires a number of operations that is exponential
in the number of arguments. However, for the speci�c class GV̂A, it is possible to calculate the Shapley value
easily, as proved by the following theorem.

Theorem 5 ([43]). Consider a CAF 〈A,R, v̂〉 ∈ V̂A. Then the Shapley value of game (A, v̂) is

φi(v̂) = v̂({i})
|Pr(i)|+1 −

∑
j∈Su(i)

v̂({j})
|Pr(j)|(|Pr(j)|+1) , (2.10)

for each i ∈ A.

Note that the Shapley value of an argument i in game v̂ does not depend only on the number of predecessors
(attackers) an argument has, but also on the number of successors (arguments attacked by i), and on the number
of other attackers of the arguments attacked by i. In [43] we also introduced an axiomatic characterization of
a solution in the speci�c class of coalitional games arising from CAFs in V̂A.

For this purpose, we de�ne a solution as a map ψ : GV̂A → RA. An interesting property for a solution is
the following one.

Property 5 (Equal Impact of an Attack). Let 〈A,R, v̂〉 ∈ V̂A and i, j ∈ A, with i 6= j. Consider a CAF
〈A,R ∪ {(i, j)}, v̂ij〉 ∈ V̂A with v̂ij({k}) := v̂({k}) for each k ∈ A. A solution ψ : GV̂A → RA satis�es (on
GV̂A) the property of Equal Impact of an Attack (EIA) i�

ψi(v̂)− ψi(v̂ij) = ψj(v̂)− ψj(v̂ij).

Property of EIA states that when a new attack between two argument i and j is added to (or removed from)
a CAF, then the relevance of the two arguments should be a�ected in the same way. Di�erently stated, this
property says that a consequence of an attack should be detrimental for both arguments involved in the defeat
relation, since an attacks always decreases the worth of coalitions containing the involved nodes.
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We also say that a solution ψ : GV̂A → RA satis�es the property ADD*, if and only if ψ(v)+ψ(w) = ψ(v+w)
for each v, w ∈ GV̂A such that v + w ∈ GV̂A.

An axiomatic characterization of the Shapley value on the class of the CAFs presented in [43] is the following
one.

Theorem 6 ([43]). The Shapley value is the unique solution that satis�es EFF, SYM, DPP, ADD* and EIA
properties on the class GV̂A.

2.5 Future directions

In Section 2.2, we have discussed connection situations where the players are often located at some nodes of
a network. In many cases, however, the focus of interest of rational agents are the edges of a network. For
instance, the authors of [130] recently introduced a model that can be applied to the problem where agents may
require the connection between certain nodes of a network, using a single link or via longer paths, and where it
is assumed that the set of implemented edges is exogenously �xed and may be "redundant" (see also [149]). A
still di�erent class of games has been studied in [84], where the players are the edges of a graph and a coalition
of edges gets value one if it is a connected component in the graph, and zero otherwise. All the aforementioned
approaches deal with coalitional games where the optimization problem used to compute the cost of a coalition
is not based on the problem of �nding a network of minimum cost in the corresponding sub-graph. Instead, a
di�erent direction is to assume that the optimal network associated to each coalition (of edges) is not �xed and
follows a cost optimization procedure.

One of the goal of our future research on the models introduced in Section 2.3 is the application to the
analysis of real social network data. As shown by Example 7, the information required to compute classical
power indices on basic GAGs representing online social networks (like the users' activity time or the users' social
pro�les and social a�nities) is not very demanding and can be obtained by available records and models from
the literature [169]. Moreover, as it has been stressed in the same example, it would be interesting to explore
the strategic issues related to the attempt of players to increase their in�uence (as measured by the Shapley
value or by other power indices) on a social network. An interesting direction for future research is indeed that
of coalition formation, since for generic basic GAGs associated to GASs with nonnegative v, where the sets of
enemies are not empty, the grand coalition is not likely to form. In general, we believe that the issue about
which coalitions are more likely to form in a basic GAG is not trivial and deserves to be further explored.

In Sections 2.4, a property-driven approach has been used to support the adoption of the Shapley value
as a measure of the relevance of arguments. On the other hand, we may consider a multi-agent interaction
protocol where arguments are introduced by agents one after the other, respecting the protocol's rule according
to which an argument can be introduced at a certain stage of the debate only if it attacks or it is attacked by
another argument previously introduced. According to such a protocol, assuming that all coalitions of arguments
could be formed is not meaningful, and then it would be interesting to look at other semivalues engendered by
probability distributions that are protocol-speci�c.



Chapter 3

Ordinal coalitional situations

3.1 Overview of the chapter

This chapter focuses on models that we recently introduced in [5, 72, 46, 3, 59] to analyse coalitional situations
where the �intensity� of the agents' interaction is characterized by a �qualitative� information. This kind of
problems are studied in [5] (see Section 3.2.1) with the objective to generalize the notions of coalitional game
and power index within an ordinal framework. Given a total preorder representing the relative strength of
coalitions (namely, a power relation), a particular social ranking over the player set is provided in [5] according
to a notion of ordinal in�uence strongly connected to the classical Banzhaf index of a �canonical� coalitional
game. More precisely, in [5] we provided an axiomatic characterization of a social ranking (i.e., a map assigning
to each power relation over the subsets of N a ranking over the single players in N) by means of properties
dealing with the ordinal structure of power relations. A �rst property used in the characterization is a coalitional
dominance axiom, which states that whatever coalition S is going to form, a player with more opportunities
to form coalitions stronger than S should be ranked higher than another one with less. The second property,
namely the additivity axiom, allows for the composition of power relations with opposite social rankings.

A similar problem has been studied in [72] (see Section 3.2.2) with the goal to characterize social rankings
starting from the very basic properties of a power relation over coalitions, and without the use of any particular
coalitional game or power index. The properties for social rankings that we analyse in [72] have classical
interpretations, such as anonymity, saying that the ranking should not depend on the name of the players, or
the dominance, saying that a player i should be ranked higher than a player j whenever i dominates j, i.e.
the coalition S ∪ {i} is stronger than coalition S ∪ {i} for each S not containing neither i nor j. Other two
properties, namely, independence from irrelevant coalitions and separability, have been also discussed in [72],
and we obtained some axiomatic characterizations of social rankings satisfying combinations of the previous
properties over di�erent restricted families of power relations.

In [46] and in [3] (see Section 3.2), we address the problem of how to extend a ranking over single objects
to another ranking over all possible collections of objects, taking into account the fact that objects grouped
together can have mutual interaction. This problem has been carried out in the tradition of the literature on
extending an order on a set N to its power set (denoted by 2N ) with the objective to axiomatically characterize
families of ordinal preferences over subsets (see, for instance, [59] for a survey on this issue). More precisely, the
question raised in [46, 3] is related to the extension problem under the interpretation of sets as �nal outcomes.
Under this interpretation, if objects are goods, one could guess that to have {x, y} is better then to have
x or y alone, because the agent will receive both y and x. But in reality, this assumption of monotonicity
depends on the context. In some decision problems, the judgement depends on the nature of x and y and on
possible e�ects of incompatibility between the two objects. Nevertheless, most of the axiomatic approaches from
literature focused on properties suggesting that interactions among single objects should not play a relevant role
in establishing the ranking among subsets. Another example is the property of responsiveness, which requires
that a set S ⊆ N is preferred to a set T ⊆ N whenever S is obtained from T by replacing some object t ∈ T
with another i ∈ N not in T which is preferred to t (according to the primitive ranking over the single elements
of the set N). In other words, the responsiveness property prevents complementarity or incompatibility e�ects
among objects within sets of the same cardinality. In [3], the idea of alignment with a probabilistic value (the
Banzhaf value, the Shapley value, or, more in general, the family of semivalues [110]) was developed in order
to have meaningful extensions of a total preorder on a �nite set N to the set of its subsets, and keeping into
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account the possibility that objects within each subset may interact. Speci�cally, the fact that an extension
must be aligned with a semivalue means that the ranking of the objects according to the semivalue must be the
same and must preserve the primitive total preorder on the singletons, no matter which utility function is used
to describe the preorder over the coalitions. In the most favourable situation it remains the same for the whole
simplex of the semivalues (if and only if the total preorder on 2N ful�ls a particular condition provided in [3]).

3.2 Ordinal power

In practical situations the information concerning the strength of coalitions and their e�ective possibilities of
cooperation is not easily accessible due to hardly quanti�able factors like bargaining abilities, moral and ethical
codes and other �psychological� attributes [143]. For instance, in addition to what it can gain by itself, a
coalition may obtain some more power by threatening not to cooperate with other players [143].

As an illustrative example of a situation dealing with the ordinal power of coalitions, consider a company
where the employer must evaluate the job performance of some employees with the objective to award bonus
shares or to decide promotions. In order to rank the employees on the basis of the quality of their past job
activities, the evaluation should take into account the ability of each employee to work alone on its own initiative
and with others as a team. From the analysis of the job records of three employees 1, 2 and 3, it can be derived
that when employees 1 and 3 work independently by each other, the job performance of {1} as a singleton
coalition is signi�cantly lower than the job performance of {3}. In addition, because of a strong incompatibility
between 2 and 3, the performance of the team {2, 3} is strictly lower than the performance of any other team;
instead, a complementarity e�ect between 1 and 2 makes {1, 2} the most successful team. Summing up, the job
performance of the teams turns out to be {1, 2} � {3} � {1} � {2, 3}, where the notation S � T means that a
team S performs strictly better than a team T . Based on this evidence, who is better between 1 and 3?

We provided a �rst attempt to solve this kind of problems in [5], where, given a total preorder representing
the relative strength of coalitions, a social ranking over the player set is provided according to a notion of
ordinal in�uence and using the Banzhaf index [86] of a �canonical� coalitional game (see Section 3.2.1). In [72]
we introduced an alternative approach, using general properties that are not based on coalitional games (see
Section 3.2.2).

3.2.1 A game theoretic approach

Adopting a marginalist approach to solve the problem illustrated in the previous section, in [5] we argued that
employee 1 should be ranked higher than employee 3 whenever the probability of joining a team with two
members is higher than the probability of working alone (i.e., joining an empty coalition). To be more speci�c,
take a map v assigning to each subset S ⊆ {1, 2, 3} a hypothetical score v(S) measuring the job performance
of a team S (assuming v(∅) = 0), and compute the expected marginal contribution πi(v) of i in v and over all
possible teams according to the de�nition of a probabilistic power index (more precisely, a semivalue [110], see
also Section 1.2.2) for a 3-players coalitional game. In formula we have:

πi(v) = p0(v(i)− v(∅)) + p1(v(i, j)− v(j) + v(i, k)− v(k)) + p2(v(i, j, k)− v(j, k)),

where i, j, k are distinct elements in {1, 2, 3}, and where pk, for each k = 0, 1, 2, represents the probability that
a coalition of size k forms (i.e., p0, p1 and p2 are positive real numbers such that p0 + 2p1 + p2 = 1). It is easy
to check that the di�erence πi(v)− πj(v) for each i, j ∈ {1, 2, 3} can be written as follows:

πi(v)− πj(v) = (p0 + p1)(v(i)− v(j)) + (p1 + p2)(v(i, k)− v(j, k)).

Now, taking i = 1, j = 3 and k = 2, and supposing p2 > p0, from the above formula we have that π1(v)−π3(v) >
0 for all possible performance scores v such that v(1, 2) > v(3) > v(1) > v(2, 3) (which means that v is compatible
with the ordinal constraint provided by the evaluation of the employees). Di�erently stated, according to a
marginalist approach, the fact that a performance score v satis�es the constraint v(1, 2) > v(3) > v(1) > v(2, 3)
implies that employee 1 is ranked higher than employee 3 (if the probability p2 of participating to a coalition
with two employees is larger than the probability p0 of entering in the empty coalition). So, in this case, the
probability of forming coalitions plays a key role. On the other hand, this is not always the case. Consider
for instance employee 2, and suppose that, again on the basis of the past job records, the evaluation puts in
evidence that the singleton coalition {2} works very well, strictly better than each other team, and that the
job performance of team {1, 3} is strictly higher than the job performance of each other team of precisely two
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employees. Together with the other comparisons involving 1 and 2, the job performance turns out to be such that
{2} � {1, 3} � {1} � {2, 3}. Of course, in this situation, if a cardinal scale to compare the performances of teams
is not given, the marginalist approach cannot help: it is easy to check that the di�erence π1(v)−π2(v) of expected
marginal contributions between 1 and 2, for any strictly positive probability p0 and p2, can be made negative
or positive with a suitable choice of v (still compatible with the constraint v(2) > v(1, 3) > v(1) > v(2, 3)).

In [5], our goal is to provide an analytical method to describe how the relative strength of coalitions may
in�uence the ranking of individuals in a society. Therefore, we de�ne a social ranking as a map assigning to
each total preorder on the set of all the coalitions, a total preorder on the set of players (actually, in [5], we
simply required that ρ(<) is a total binary relation, i.e., we always want to express the relative comparison of
two agents, but we do not exclude a priori the possibility of cycles in ρ(<)). In other words, in the model we
study in this paper we do not exclude the possibility that coalitions may be threatened by internal agents.

We call the map ρ : T 2N −→ T N , assigning to each power relation on 2N a total preorder on N , a social
ranking solution or, simply, a social ranking. Then, given a power relation <, we will interpret the relation ρ(<)
associated to < by the social ranking ρ, as the relative power of players in a society under relation <. Precisely,
for each i, j ∈ N , iρ(<)j stands for `i is considered at least as in�uential as j according to the social ranking
ρ(<)', where the in�uence of a player is intended as her/his ability to join coalitions in the strongest positions
of a power relation.

Given a power relation <∈ T 2N , consider a bijection θ : {1, . . . , 2n} → 2N such that

S � T ⇒ θ−1(S) < θ−1(T ), (3.1)

for every S, T ∈ 2N . Now, for each i ∈ N , let Γi(<) be a 2n-vector of natural numbers such that the k-th
component represents the number of coalitions containing i that are in relation with θ(k), i.e.

Γik(<) = |{S ⊆ N : i ∈ N and S < θ(k)}|

for each k = 1, . . . , 2n. One can see θ−1 as a priority function over the subsets of N according to the power
relation < (that is, from priority 1 given to a strongest subset, to priority 2n assigned to a weakest subset), and
Γik(<) as the number of subsets of N containing i that are at least as strong as the subset with priority k. Note
that vector Γ(<) does not depend on the choice of the bijection θ, since Γik(<) = Γil(<) for every k, l such that
θ(k) < θ(l) and θ(l) < θ(k).

In the following, for every i, j ∈ N , we will say that Γi(<) dominates Γj(<) (denoted by Γi(<) ≥ Γj(<))
i� Γik(<) ≥ Γjk(<) for each k = 1, . . . , 2n; and we will say that Γi(<) strictly dominates Γj(<) (denoted by
Γi(<) > Γj(<)) i� Γi(<) dominates Γj(<) and there exists k ∈ {1, . . . , 2n} such that Γik(<) > Γjk(<). We can
now introduce the �rst property for social rankings.

The �rst property is the coalitional dominance axiom, which states that a player i is ranked better than j
if, for every coalition S, the number of coalitions stronger than S that contain i is larger than the number of
those that contain j. The interpretation of this property is the following: whatever coalition S is going to form,
a player with more opportunities to form coalitions stronger than S should be ranked higher than another one
with less.

De�nition 4 (CDOM). A social ranking ρ satis�es the coalitional dominance property i� for all i, j ∈ N and
<∈ P2N ,

Γi(<) > Γj(<)⇒ iρ(<)j and ¬(jρ(<)i)

and
Γi(<) = Γj(<)⇒ iρ(<)j and jρ(<)i.

In [5] we show that a player i ∈ N dominates a player j ∈ N with respect to the power relation < if and
only if the Banzhaf value βi(v) of player i is larger than (or equal to) the Banzhaf value βj(v) of player j, for
every characteristic function v ∈ V (<).

Theorem 7 ([5]). Let <∈ P2N . Then, for each i, j ∈ N

Γi(<) ≥ Γj(<)⇔ [βi(v) ≥ βj(v) for every v ∈ V (<)]. (3.2)

Corollary 1. Let <∈ P2N and let ρ be a social ranking which satis�es CDOM. Then, for each i, j ∈ N

[βi(v) ≥ βj(v) for every v ∈ V (<)]⇒ iρ(<)j. (3.3)
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Example 10. After the Italian political election held on February 24th and 25th, 2013 for the determination
of the 630 members of the Chamber of Deputies and the 315 members of the Senate of the Italian Republic, no
political party had the majority of seats in the Senate. Precisely, the 315 seats of the Senate were distributed
as follows: 123 to the Center-Left (hereafter, L) alliance, 117 to the Center-Right (hereafter, R) alliance, 54
to the the Five Star Movement (hereafter, M), and the remaining 21 seats were distributed among other minor
parties. As a consequence, in order to have a simple majority in the Senate (and to proceed with the formation
of a new government), a coalition of at least two major parties among L, R and M was required. Holding a
clear majority of seats in the Chamber of Deputies (the other Chamber of the Italian Parliament), the L alliance
was supposed to explore all the possibilities to form a majority coalition with the other political forces in the
Senate. Due to constitutional constraints, formal talks to form a new government started four weeks after the
election, when the President of the Italian Republic o�cially designated the L alliance to lead the formation of
a new government. Initially, the L alliance ruled-out any possibility of a coalition with the R one and tried to
form a minority government supported by M . In fact, the political program of M was characterized by issues
originating from ecological themes (like sustainable mobility and protection of the territory) and other political
principles inspired by a participative attitude of citizens and traditionally close to the positions of L. Therefore,
immediately after the election, a coalition between L and M appeared more likely than a coalition between L
and its historical antagonist R. In that moment, the most realistic representation of the relative strength of
coalitions was {L,M} � {L,R} � {R,M}. Moreover, each coalition of at least two parties was considered more
powerful than any singleton coalition. On the other hand, the comparison among individual parties still re�ected
the electoral consensus of individual parties in the election of the Italian Parliament, that is {L} � {R} � {M}.

In the light of the considerations illustrated above, a compatible representation of the relative power between
coalitions of major parties in the Italian Senate after the election held on February 2013 is represented by the
following power relation: {L,M} � {L,R} � {L,R,M} � {R,M} � {L} � {R} � {M} � ∅1.

The vectors Γi(�), for each i ∈ {L,M,R} are provided in Table 3.1. Note that, ΓL(�) dominates both
ΓR(�) and ΓM (�), but no relation of dominance exists between ΓR(�) and ΓM (�).

S L,M L,R L,R,M R,M L R M ∅ score

ΓL(�) 1 2 3 3 4 4 4 4 25
ΓM (�) 1 1 2 3 3 3 4 4 21
ΓR(�) 0 1 2 3 3 4 4 4 21

Table 3.1: The Γ vectors and their scores for the power relations used to model the Italian election of February
2013 (curly brackets are omitted for coalitions).

In order to characterize a social ranking on the class of all power relations P2N , in [5] we introduced a second
property, namely the additivity axiom (for the analogy with the use of the homonym property in the theory
of coalitional games [171]; see also Section 1.2.2), that allows for the combination of social rankings with an
opposite relative comparison. More precisely, if a power relation P0 can be obtained as the intersection of two
power relations P1 and P2, such that player i is ranked better than player j in the social ranking on P1 and
player j is ranked better than player i in the social ranking on P2, then the relative social ranking of i and j in
P0 is determined by the comparison of the �intensity� of the dominance of i over j and of j over i on P1 and
on P2, respectively. As a particular measure of the intensity of the dominance in opposite social rankings, we
study a notion of total capacity of players to threaten coalitions, that is computed as the sum (over all possible
coalitions S) of the number of coalitions containing i which are stronger than S (see the last column of Table
3.1 for an example). Surprisingly, on the class of all power relations, we show that a social ranking that satis�es
both the dominance and the additivity axioms coincides with the ranking provided by the Banzhaf value of
a particular coalitional game related to the numerical representation of the power relation (see [5] for more
details).

3.2.2 A social choice approach

In [72], we characterized social rankings starting from the very basic properties of a power relation over coalitions,
and without the use of any particular coalitional game, that would necessarily require the conversion of the

1Here, the ranking of coalition {L,R,M} is motivated by a preliminary attempt of L to obtain a larger consensus in a government
of grand coalition.
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(purely ordinal) information about the relative strength of coalitions into a quantitative assessment of their
power (as, in fact, we did in [5]).

Now we introduce the properties for social rankings studied in [72]. The �rst axiom is the dominance one:
if each coalition S containing agent i but not j is stronger than coalition S with j in the place of i, then agent i
should be ranked higher than agent j in the society, for any i, j ∈ N . Precisely, given a power relation <∈ T 2N

and i, j ∈ N we say that i dominates j in < if S ∪{i} < S ∪{j} for each S ∈ 2N\{i,j} (we also say that i strictly
dominates j in < if i dominates j and in addition there exists S ∈ 2N\{i,j} such that S ∪ {i} � S ∪ {j}).

De�nition 5 (DOM). A social ranking ρ : C2N −→ T N satis�es the dominance (DOM) property on C2N ⊆ T 2N

if and only if for all <∈ C2N and i, j ∈ N , if i dominates j in < then iρ(<)j [and ¬(jρ(<)i) if i strictly dominates
j in <].

The following axiom states that the relative strength of two agents i, j ∈ N in the social ranking should only
depend on their e�ect when they are added to each possible coalition S not containing neither i nor j, and the
relative ranking of the other coalitions is irrelevant. Formally:

De�nition 6 (IIC). A social ranking ρ : C2N −→ T N satis�es the Independence of Irrelevant Coalitions (IIC)
property on C2N ⊆ T 2N i�

iρ(<)j ⇔ iρ(w)j

for all i, j ∈ N and all power relations <,w∈ C2N such that for each S ∈ 2N\{i,j}

S ∪ {i} < S ∪ {j} ⇔ S ∪ {i} w S ∪ {j}.

Let <∈ T 2N and i, j, p, q ∈ N be such that, for each k = 0, . . . , n−2, and for all coalitions S of cardinality k,
the number of times that S∪{i} is stronger than S∪{j} equals the number of times that S∪{p} is stronger than
S ∪{q} (and the number of times that S ∪{j} is stronger than S ∪{i} equals the number of times that S ∪{q}
is stronger than S ∪ {p}). In this symmetric situation, the following axiom states a principle of equivalence
between the pairs i, j and p, q.

De�nition 7 (SYM). A social ranking ρ : C2N −→ T N satis�es the symmetry (SYM) property on C2N ⊆ T 2N

i�
iρ(<)j ⇔ pρ(<)q

for all i, j, p, q ∈ N and <∈ C2N such that |Dk
ij | = |Dk

pq| and |Dk
ji| = |Dk

qp| for each k = 0, . . . , n− 2.

The e�ect of the combination of these axioms is illustrated by the following theorems from [72].

Theorem 8 ([72]). Let |N | > 3. There is no social ranking rule ρ : T 2N −→ T N which satis�es DOM and
SYM on T 2N .

On the other hand, the properties of IIC and SYM in combination determine a �attening of the social
ranking on power relations where the relevant information is represented by coalitions of a given cardinality.

Theorem 9 ([72]). Let ρ : T 2N −→ T N be a social ranking satisfying IIC and SYM. Let <∈ T 2N and
k ∈ {0, . . . , |N | − 2} be such that S ∪ {i} < S ∪ {j} and S ∪ {j} < S ∪ {i}, for all S ∈ 2N\{i,j} with |S| 6= k,
Dk
ij(<) \Dk

ji(<) 6= ∅ and Dk
ji(<) \Dk

ij(<) 6= ∅ for all i, j ∈ N . Then iρ(<)j and jρ(<)i for each i, j ∈ N .

Theorem 9 suggests how to deal with situations where coalitions are of a �xed size (such situations are not so
eccentric in real life). For instance, let us imagine that we have committees with a given number (k) of persons
and that we have a ranking on them (for instance N = {1, 2, 3, 4} and k = 2, with 12 < 13 < 14 < 34 < 24 < 23).
Since committees are always formed by two persons, no information is available on subsets of N with l 6= k
elements (or such information is irrelevant). How to de�ne a social ranking in this case? One solution could be
to consider all the other comparisons indi�erent. Then, by Theorem 9, we know that SYM and IIC properties
can be used in order to support a unanimous social ranking.

Example 11. Consider a power relation <∈ T 2N with N = {1, 2, 3, 4, 5} and

13 � 23 � 12 � 24 � 14 � 34 � 15 ∼ 25 � 35 � 45,

all the other coalitions of the same size being indi�erent (i.e., S ∪ {i} < S ∪ {j} and S ∪ {j} < S ∪ {i}, for all
S ∈ 2N\{i,j} with |S| 6= 1 and i, j ∈ {1, 2, 3}). We rewrite the relevant informations about < and elements 1, 2
and 3 by means of Table 11. If a social ranking ρ satis�es both SYM and DOM, then by Theorem 9, all the
elements in {1, 2, 3} are in relation with each other in ρ(<) (i.e. they are all indi�erent).
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1 vs. 2 2 vs. 3 1 vs. 3

1 ∼ 2 2 ∼ 3 1 ∼ 3
13 � 23 12 ≺ 13 12 ≺ 23
14 ≺ 24 24 � 34 14 � 34
15 ∼ 25 25 � 35 15 � 35

134 ∼ 234 124 ∼ 134 124 ∼ 234
135 ∼ 235 125 ∼ 135 125 ∼ 235

1345 ∼ 2345 1245 ∼ 1345 1245 ∼ 2345

Table 3.2: The relevant informations about < of Example 11 and the elements 1, 2 and 3.

A special class of power relations (namely, the per size-strong dominant relations) are also considered in
[72]: theyr are characterized by the fact that a relation of dominance always exists with respect to coalitions of
the same size, but the dominance may change with the cardinality (for instance, an element i could dominate
another element j when coalitions of size s are considered, but j could dominate i over coalitions of size t 6= s).
We �rst need to introduce the notion of s-strong dominance.

De�nition 8. Let <∈ T 2N , i, j ∈ N and s ∈ {0, . . . , n− 2}. We say that i s-strong dominates j in <, i�

S ∪ {i} � S ∪ {j} for each S ∈ 2N\{i,j} with |S| = s. (3.4)

De�nition 9. We say that <∈ T 2N is per size-strong dominant (shortly, ps-sdom) i� for each s ∈ {0, . . . , n−2}
and all i, j ∈ N , we have either

[i s-strong dominates j in <] or [j s-strong dominates i in <].

The set of all ps-sdom power relations is denoted by S2N ⊆ T 2N .

In [72] we argue that if a social ranking satis�es both DOM and IIC on the set of ps-sdom power realtions
S2N , then it must exist a cardinality t∗ ∈ {0, . . . , n − 2} whose relation of t∗-strong dominance (dictatorially)
determines the social ranking over all power relations in S2N .

Theorem 10 ([72]). Let ρ : S2N −→ T N be a social ranking satisfying IIC and DOM on S2N . There exists
t∗ ∈ {0, . . . , n− 2} such that

iρ(<)j ⇔ i t∗-strong dominates j in <,

for all i, j ∈ N and <∈ S2N .

Example 12. Consider a power relation <∈ S2N with N = {1, 2, 3, 4} and such that

1 � 2 � 3 � 4
34 � 24 � 14 � 23 � 13 � 12
123 � 134 � 124 � 234.

We rewrite the relevant informations about < by means of Table 12. Theorem 10 says that if a social ranking

1 vs. 2 2 vs. 3 1 vs. 3 1 vs. 4 2 vs. 4 3 vs. 4

1 � 2 2 � 3 1 � 3 1 � 4 2 � 4 3 � 4
13 ≺ 23 12 ≺ 13 12 ≺ 23 12 ≺ 24 12 ≺ 14 13 ≺ 14
14 ≺ 24 24 ≺ 34 14 ≺ 34 13 ≺ 34 23 ≺ 34 23 ≺ 24

134 � 234 124 ≺ 134 124 � 234 123 � 234 123 � 134 123 � 124

Table 3.3: The relevant informations about <.

satis�es DOM and IIC on S2N , then it must yield on < one of the following three possible linear orders:
1ρ(<)2ρ(<)3ρ(<)4 (corresponding to the relation of 0-strong dominance); 4ρ(<)3ρ(<)2ρ(<)1 (corresponding to
the relation of 1-strong dominance); 4ρ(<)1ρ(<)3ρ(<)2 (corresponding to the relation of 2-strong dominance).
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For instance, suppose that the social ranking is 4ρ(<)2ρ(<)3ρ(<)1. De�ne a new power relation w∈ S2N

such that (again, the main changes with respect to < are shown in bold):

1 = 2 = 3 = 4
34 = 23 = 24 = 13 = 14 = 12
123 = 134= 234 = 124

We rewrite the relevant informations about w by means of Table 12. By DOM we have that 3ρ(w)4 and

1 vs. 2 2 vs. 3 1 vs. 3 1 vs. 4 2 vs. 4 3 vs. 4

1 = 2 2 = 3 1 = 3 1 = 4 2 = 4 3 = 4
13 < 23 12 < 13 12 < 23 12 < 24 12 < 14 13 = 14
14 < 24 24 < 34 14 < 34 13 < 34 23 < 34 23 = 24

134 = 234 124 < 134 124 < 234 123 = 234 123 = 134 123 = 124

Table 3.4: The relevant informations about w.

¬(4ρ(w)3). By IIC we have 4ρ(w)2 and 2ρ(w)3 (the columns `2 vs. 4' and `2 vs. 3' are the same in the Tables
12 and 12, respectively), which yields a contradiction with the transitivity of ρ(w).

3.3 Preference extensions

The �inverse problem� of the one introduced in Section 3.2 is summarized by the following question: how to
derive a ranking over the set of all subsets of N in a way that is �compatible� with a primitive ranking over
the single elements of N? This question has been carried out in the tradition of the literature on extending
an order on a set N to its power set (the set of all possible subsets of N) with the objective to axiomatically
characterize families of ordinal preferences over subsets (see, for instance, [87, 88, 98, 99, 122, 118, 132, 135]).
In this context, an order < on the power set of N is required to be an extension of a primitive order P on N .
This means that the relative ranking of any two singleton sets according to < must be the same as the relative
ranking of the corresponding alternatives according to P .

The di�erent axiomatic approaches in the literature are related to the interpretation of the properties used
to characterize extensions, which is deeply related to the meaning that is attributed to sets. According to the
survey [88], the main contributions from the literature on ranking sets of objects may be grouped in three main
classes of problems: 1) complete uncertainty, where a decision-maker (DM) is asked to rank sets which are
considered as formed by mutually exclusive objects (i.e., only one object from a set will materialize), and taking
into account that the DM cannot in�uence the selection of an object from a set (see, for instance, [87, 132, 154]);
2) opportunity sets, where sets contain again mutually exclusive objects but, in this case, a DM compares sets
taking into account that he will be able to select a single element from a set (see, for example, [99, 135, 165]);
3) sets as �nal outcomes, where each set contains objects that are assumed to materialize simultaneously (if
that set is selected; for instance, see [98, 118, 168]).

In [46] and [3] we focus on the problem of the third class, where sets of elements materialize simultaneously.
A standard application of this kind of problems is the college admissions problem [168, 121], where colleges need
to rank sets of students based on their ranking of individual applicants.

The model introduced in [46] (and further studied in [3]) relies on the fact that an utility function attached
to a total preorder on 2N represents a coalitional game (provided we set the utility of the empty set to be equal
to zero). Since probabilistic values [179, 102, 103, 142, 158] do provide a natural ranking among the elements of
the set N (the players in the game theoretical context, the objects in this approach), according to [46] and [3]
we can use them in the following sense: given a probabilistic value πp (recall the de�nition provided in Section
1.2.2), a total preorder < on 2N will be πp-aligned , provided that from {i} < {j} it follows that πp ranks
better i than j for every possible choice of the utility function representing <. In other terms, an extension <
on 2N is such that it never changes the mutual positions in the rankings of the objects in N according to πp(v),
whatever coalitional game v is used to numerically represent the preference relation < on 2N .

To be more speci�c, In [46], we introduce the class of Shapley extensions, for their attitude to preserve
the ranking provided by the Shapley value [170, 171], whereas in [3] we are interested in extensions that are
π-aligned to all probabilistic values, or alternatively, to subfamilies of these values.

In [46], a central property for total preorders on 2N is the responsiveness (RESP) property, introduced by
[168] for the analysis of the college admission problem:
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De�nition 10 (responsiveness, RESP). A total preorder < on 2N satis�es the RESP property on 2N if for all
i, j ∈ N and all S ∈ 2N , i, j /∈ S we have that

{i} < {j} ⇔ S ∪ {i} < S ∪ {j}. (3.5)

An extension that satis�es the RESP property does not take into account the fact that some objects together
can present some form of incompatibility or, on the contrary, of mutual enforcement.

Restricted to sets A of �xed cardinality q ∈ N, representing the maximal number of students the college
can admit, the RESP property was used by [98] to characterize (together with another property called �xed-
Cardinality neutrality, saying that the labelling of the alternatives is irrelevant in establishing the ranking among
sets of �xed cardinality q) the family of lexicographic rank-ordered extensions.

We now introduce another property for extensions, namely, the monotonicity property [135, 165].

De�nition 11 (Monotoncity, MON). A total preorder < on 2N satis�es the monotonicity property i� for each
S, T ∈ 2N we have that

S ⊆ T ⇒ T < S.

The MON property states that each set of objects is weakly preferred to each of its subsets. In other words,
the MON property excludes the possibility that some objects in a set S ∈ 2N may be incompatible with some
others not in S.

Let < be a total preorder on 2N . For each S ∈ 2N \ {∅}, a sub-extension <S is a relation on 2S such that
for each U, V ∈ 2S ,

U < V ⇔ U <S V.

We may now introduce the last property of this section, namely the sub-extendibility property for Shapley
extensions.

De�nition 12 (Sub-Extendibility, SE). A Shapley extension < on 2N satis�es the sub-extendibility property
i� for each S ∈ 2N \ {∅} we have that <S is a Shapley extension on 2S.

The SE property states that the e�ects of interaction among objects must be �compatible� not only with the
information provided by the original preference on single elements of N , but also with the information provided
by all restrictions of such a preference to each non-empty subset S ofN . This means that the personal attribution
of importance assigned to objects, and taking into account the e�ects of interaction, must be consistent with
the primitive ranking, independently from the size of the universal set considered.

The following de�nition formally introduces the notion of Shapley extension.

De�nition 13. A total prorder < on 2N is a Shapley extension i� for each numerical representation v ∈ GN<
of < we have that

{i} < {j} ⇔ φi(v) ≥ φj(v)

for all i, j ∈ N .

Next theorem is important in establishing the connection between MON, SE and RESP properties.

Theorem 11 (from [46]). Let < be a total preorder on 2N which satis�es the MON property. The following
two statements are equivalent:

• (i) < satis�es the RESP property.

• (ii) < is a Shapley extension and satis�es the SE property.

By Theorem 11 we have characterized a class of Shapley extensions aimed to rank subsets of objects in
absence of complementarity e�ects. Another goal in [46] and, in particular, in [3], is to analyze properties
of Shapley extensions that, due to the e�ects of interaction among objects, may �invert� (with respect to the
conditions imposed by the RESP property) the relative ranking of a limited number of subsets. To this purpose,
in [3] we required that De�nition 13 holds for every semivalue where the probability distribution over the subsets
S of N not containing i is a function of the cardinality of S, and it is the same for all i in N .

De�nition 14 (πp-alignement). Given a set N , a total preorder < on 2N and a semivalue πp ∈ S, we shall
say that < is πp-aligned if

{i} < {j} ⇔ πp
i (v) ≥ πp

j (v)

for each v ∈ V (<).
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Another condition considered in [46] and in [3] is the permutational responsiveness (PR) property, which
generalizes the notion of RESP property and also guarantees the alignment of a total preorder with any semi-
value. For a formal de�nition of PR we need some further notations. For each subset F ∈ 2N and i ∈ N ,
we de�ne the vector θ(F , i) of ordered coalitions in F , precisely θ(F , i) = (S1 ∪ {i}, S2 ∪ {i}, . . . ) such that
S1 ∪ {i} < S2 ∪ {i} < · · · < S|F| ∪ {i} and with {S1, S2, . . . , S|F|} ≡ F .

De�nition 15 (PR). We say that a total preorder < on 2N satis�es the permutational responsiveness (PR)
property if for each i, j ∈ N we have that

{i} < {j} ⇔ θ(Σsij , i)k < θ(Σsij , j)k (3.6)

for every k = 1, . . . , |Σsij | and every s = 0, . . . , n− 2 (see Section 1.2.1 for the de�nition of Σsij).

In other terms, for each i, j ∈ N such that {i} < {j} and for each s = 0, . . . , n− 2, the PR property admits
the possibility of relative rankings which violate the conditions imposed by the RESP property (i.e., S ∪ {j}
is preferred to S ∪ {i}) due to the e�ect of mutual interaction within the objects in S. Nevertheless, such an
interaction should be compatible with the requirement that, between sets of the same cardinality, the original
relative ranking between {i} and {j} should be preserved with respect to the position of subsets in Σsij and
Σsji, when they are arranged in descending order of preference (i.e., the most preferred subsets in Σsij should
be preferred to the most preferred subsets in Σsji, the second most preferred subsets in Σkij should be preferred
to the second most preferred subsets in Σkji, etc.). So, di�erently from RESP, the PR property can keep into
account possible interaction e�ects among the elements of N .

In [46] it is shown that the PR condition is su�cient to guarantee that a total preorder is aligned with all
semivalues. The following example, instead, displays a total preorder on 2{1,2,3,4} which is πp-aligned for all
πp ∈ S and that does not satisfy the PR property.

Example 13. Let X = {1, 2, 3, 4} and let < be a total preorder such that {1, 2, 3, 4} � {2, 3, 4} � {3, 4} �
{4} � {3} � {2} � {2, 4} � {1, 4} � {1, 3} � {2, 3} � {1, 3, 4} � {1, 2, 4} � {1, 2, 3} � {1, 2} � {1} � ∅.

Note that < does not satisfy PR because {2} � {1}, {2, 4} is strictly preferred to {1, 4} and {1, 3} is strictly
preferred to {2, 3}. However, < is πp-aligned for all semivalues πp ∈ S (see the Appendix in [3] for the details
of the proof).

In [3] we also introduce the property that is necessary and su�cient for the alignment of the preorder to all
semivalues. For every i, j ∈ N , we set Dsij to be the set Dsij = Σsij ∪ Σs+1

ij for s = 0, . . . , n − 3. With a little
abuse of notation, set Dn−2

ij = Σn−1
ij .

De�nition 16 (double permutational responsiveness, DPR). We say that a total preorder on 2N satis�es the
double permutational responsiveness (DPR) property if for each i, j ∈ N we have that

{i} < {j} ⇔ θ(Dsij , i)k < θ(Dsij , j)k (3.7)

for every k = 1, . . . , |Dsij | and every s = 0, . . . , n− 2.

Intuitive examples of the meaning of the DPR property could involve the comparison of committees whose
size is not �xed a priori but, according to di�erent external contingencies, may vary and di�er of at most one
member.

Theorem 12 (from [3]). Let < be a total preorder on 2N . The following statements are equivalent:

1) < ful�ls the DPR property;

2) < is πp-aligned for all semivalues.

3.4 Future directions

An interesting direction for problems discussed in Section 3.2, is the analysis of more realistic classes of power
relations, where, for instance, certain relative comparisons of strength are not possible (e.g., for lack of infor-
mation, or the impossibility to compare on the same scale some social and political attributes of the coalitions,
etc.). Note that assuming that two coalitions S and T are not comparable does not imply that S and T cannot
form or cannot be compared to other coalitions (with respect to this aspect, the model introduced in Section
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3.2 is more general than the classical models of coalitional games with restrictions in cooperation [150], where
certain coalitions cannot form at all without the help of external players).

For the game theoretic approach introduced in Section 3.2.1, it would be interesting to investigate alternative
notions of �intensity� of coalitional dominance, other than the one of relative score considered in [5]. For instance,
in the power relation {1, 2, 3} � {2} � {1, 3} � {1, 2} � {3} � {1} � ∅ � {2, 3} (where the reader may check
that both players 1 and 2 coalitionally dominate player 3), one could argue that the dominance of player 2 over
3 is stronger than the one of player 1 over 3 because among the singletons coalitions it holds that {2} � {3}
and {3} � {1}.

Another possible direction for future research on the topic discussed in Section 3.2.2 is the open question
about which axioms could be used to characterize a social ranking over the domain of all possible power
relations. In view of our results, each combination of the axioms we propose in this paper is not satisfactory.
In this respect, it is worth noting that all the properties that we analysed are based on the comparison of
subsets having the same number of elements. Therefore, it would be interesting to study properties based on
the comparison among subsets with di�erent cardinalities.



Chapter 4

Algorithmic game theory

4.1 Overview of the chapter

This chapter is devoted to the discussion of algorithms for the computation and the analysis of equilibria in
non-cooperative games. Classical non-cooperative situations that are considered in the domain of algorithmic
game theory are those where a group of rational players share a common resource, and where the outcome
of their interaction is in�uenced by the action taken by each single player. Typical examples are strategic
connection situations, that are the non-cooperative counterpart of situations considered in Section 2.2. As in
the cooperative framework, each player corresponds to a node of the graph and wants to be connected, directly
or via other agents, with a source. Again, links are costly (e.g., due to the energy consumption needed to send a
message to a remote agent), but now we suppose that each player-node is allowed to construct a single link which
connects himself to another node in the network (i.e., another player or a source) and the decision on which link
to construct is taken individually (i.e., it is not allowed to sign binding agreements with other agents). The cost
incurred by each player depends both on the cost of the network constructed under a certain strategy pro�le
and on the protocol used to allocate among the players the total cost of such a network. In this framework it is
interesting to look at the dynamic process of improvement of each agent's payo� (i.e, the reduction of individual
costs) in response to actions made by other agents, that can be modelled via a better response dynamics (BRD)
(see Section 1.2.2). Do the players converge to an equilibrium via a BRD? Do we have convergence after a small
number of deviations, starting fro any state? Is the state or strategy pro�le corresponding to an equilibrium also
e�cient? This kind of questions are in general (and not only on connection situations) of major importance in
algorithmic game theory. Answers to questions of these type and on di�erent strategic situations are provided
in this chapter.

We start in Section 4.2, with a summary of the main results published in the article [47], where we analysed
strategic games based on (non-cooperative) connection situations with the aim of coordinating rational agents
(placed on the vertices of a graph) and whose objective is to construct an e�cient network. In [47], we �rst
analysed the e�ects of monotonicity and other basic properties on the optimality of a cost allocation protocol.
Successively, we studied the problem of designing cost allocation protocols that can guarantee the convergence
of a BRD in these games.

Section 4.3 deals with the model studied in [6] for congestion situations. Signi�cant interest has been
addressed over the last years to the analysis of practical congestion problems on Internet. Data delays and
losses due to data congestions, or the network collapse as a consequence of exceeding the data �ow capacity of
some links or nodes, is an important issue on Internet. Several policies have been proposed to control congestion,
in order to regulate and improve the availability of broadband access to the Internet. Priority rules, for instance,
have been adopted to regulate the users who enter into the network, with the objective to prevent congestion
and to obtain a Quality of Service (QoS) that otherwise would not be available to users. To this aim, in [6]
we introduced the class of congestion games with capacitated resources, where each resource is associated both
with a capacity level, representing the maximum number of users that such a resource may simultaneously
accommodate, and with an ordering on the users, prescribing the priority of accommodation of the users.

Finally, Section 4.4 is based on paper [44], where we considered strategic interaction situations on social
networks. On those social networks, the players interact only with their neighbours and the relationship between
them can be modelled in terms of two-players games. More precisely, on a particular subclass of problems, in
[44] we suggested how to design mechanisms that make possible to in�uence the players' behaviour towards a
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desired direction. In other words, we studied some indirect mechanisms in which agents repeatedly play a base
game and, at each time step, they are prescribed to choose the best-response to the strategies currently selected
by other agents. Roughly speaking, this class of mechanisms takes advantage of the dynamic nature of many
systems to induce the desired outcome. In [44], we also provided several de�nitions of fairness based on di�erent
aspects of the problem.

4.2 Strategic games on connection situations

In Section 2.2, we have discussed a model of cost sharing on connection situations using cooperative games.
Recently, several authors have studied connection situations in a non-cooperative setting [116, 93, 125], by
means of games in strategic form where each player-node is allowed to construct a single edge which connects
himself to another node in the network (that may be another player or the source). Like in the cooperative
framework, each edge has a cost, and the cost of being disconnected from the source is supposed to be larger
than any �nite cost that could guarantee the connection with the source. Consequently, players want to be
connected to the source at any (�nite) cost, but of course they are self-interested to save their own money. Cost
incurred by players depend both on the cost of the network that is constructed under a certain strategy pro�le,
and also on the protocol used to allocate among the players the total cost of such a network.

For instance, in [125] the authors focused on a strategic game corresponding to the cost allocation protocol
provided by the Bird rule [94]. As shown in [125], the Bird rule satis�es a variety of desirable properties. In
particular, the associated BRD converges to a pure Nash equilibrium. However such a Nash equilibrium may
not correspond to a graph of minimum cost. The question about the existence of a cost allocation protocol that
guarantees the convergence of each BRD to a network of minimum cost remained open until the paper [47],
where we introduced speci�c protocols that guarantee the convergence of the BRD.

To be more precise, using the same notations introduced in Section 1.2.1 and also in Section 2.2, given a set
of nodes (and a source) N ′ = N ∪ {0}, consider a graph 〈N ′, E〉, where E ⊆ EN ′ is the set of edges. Suppose
also that it is given a weight function w : E → R+ assigning to each edge {i, j} ∈ E a non-negative number
w({i, j}) representing the weight or cost of edge {i, j}.

In the following, we describe the ingredients of a connection game, that is a strategic cost game CGE =
〈N, (Si)i∈N , (ci)i∈N 〉 on the player-set N , where each i ∈ N needs to be connected to the source 0, either
directly or via other nodes which are connected to the source. The strategy space of every player i ∈ N
coincides with its set of neighbours in the graph, i.e. Si = {j ∈ V : {i, j} ∈ E}. When a player i plays a
neighbour j, then edge {i, j} is built. Therefore, a state s is a vector (s1, s2, · · · , sn) ∈ S = S1 × S2 × . . .× Sn.
With a small abuse of notation, the set of edges built by the players and associated with state s ∈ S is denoted
by E(s) = {{i, si} : i ∈ N}. For a state s ∈ S, con(s) and dis(s) denote the players who are connected
and disconnected from the source, respectively. Finally, the last ingredient of game CGE is the cost allocation
protocol (or, simply, protocol) ci : S → R: for each strategy pro�le s ∈ S, ci(s) indicates the cost incurred by
player i ∈ N . It is assumed that a player not connected to 0 has an in�nite cost. Of course, it is also assumed
that players want to minimize their costs.

Consider the graph Ts =< con(s) ∪ {0}, E(con(s)) ∩ E(s) > (recall from Section 1.2.1, that E(con(s)) =
{{i, j} ∈ E : i, j ∈ con(s)}). Note that Ts is a tree, since Ts is connected by construction and contains exactly
|con(s)|+ 1. The social cost of a state s is de�ned as

∑
i∈N ci(s).

A Nash equilibrium s ∈ S in CGE is said to be e�cient in game CGE i� the corresponding graph < N ′, E(s) >
is a mcst for < N ′, E > with respect to the map w (i.e. w(E(s)) =

∑
e∈E(s) w(e) equals the minimum cost over

all networks connecting all nodes in N ′). In the following, we provide some properties studied in [47] for cost
allocation protocols. A cost allocation protocol c is said to be :

i) Budget Balanced (BB) i�
∑
i∈con(S) ci(s) = w(E(s)) for every state s;

ii) Consistent (Cons) i� every associated BRD reaches a NE;

iii) Optimal (Opt) i� every associated BRD reaches an e�cient NE;

iv) Individual Monotonic (IM) i� for every s ∈ S, i ∈ con(s) and ŝi ∈ Si, w(i, ŝi) ≥ w(i, si) ⇒ ci(ŝi, s−i) ≥
ci(s);

v) Independent from Disconnected Components (IDC) i� for every state s, for every weight vector w,w′ ∈
(R+)m with w(e) = w′(e) for every e ∈ E(con(s)) ∩ E(s), then ci(w, s) = ci(w

′, s) for every i ∈ con(s).
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Figure 4.1: A 2-player instance of the connection game.

Cons and Opt properties deal with the notion of convergence of the associated BRD. Property BB implies
that the cost of the edges in the network connected to the source is fully supported by its users. Property IM
states that if a player i, who is connected to the source in a state s, decides to construct a more expensive edge
to another neighbour ŝi, then the protocol will charge i in state (ŝi, s−i) more than in s. Property IDC says
that the allocation of the cost of the network Ts connected to the source in a state s should depend only on the
edges in Ts (note that property IDC is called �State Independence� in [47]).

In [47], we proved that there is no BB protocol satisfying both IM and Opt properties, as illustrated by
Figure 4.1, where w(1, 2) = x, w(1, 0) = y, w(2, 0) = z and with z > y > x > 0. To see this, just take the
suboptimal strategy pro�le where player 1 plays 2 while player 2 plays 0. If player 2 deviates, playing strategy 1,
the network is disconnected from the source, and the cost of 2 (and of 1) would be in�nite. If player 1 deviates,
playing strategy 0, then the cost allocated to 1 by a protocol c that satis�es property IM in state (0, 0) should
be larger than in state (2, 0). This means that the strategy pro�le (2, 0) is a Nash equilibrium, but it is not
e�cient (by the BB property); so, c is not optimal. Similarly, there is no BB protocol which is both IDC and
Opt [47]. These impossibility results imply that a large family of solutions from the literature on (cooperative)
mcst games like obligation rules [22], which are cost monotonic, and CC-rules [16], which are IDC, are not
optimal in the strategic framework. Nevertheless, in [47] we show that optimal and budget balanced protocols
exist, as it is shortly discussed in the following.

For each state s ∈ S, let T ∗s = 〈con(s)′, E∗〉 be one speci�c minimum cost spanning tree on the sub-graph
G[con(s)]. The state which corresponds to T ∗s is denoted by s∗ and we say that a player i ∈ con(s) follows T ∗s
in s i� si = s∗i : this means that the strategy of player i is his �rst neighbour in the unique path from i to the
source 0 in E∗. We de�ne V̂ (s) as the players of con(s) such that si 6= s∗i and con(s) = con(s∗i , s−i). Players in
V̂ (s) do not follow T ∗s and are such that if they unilaterally change their strategy to follow it, then the set of
connected players remains unchanged. It is possible to prove that if there exists i ∈ con(s) such that si 6= s∗i ,
then V̂ (s) 6= ∅ (see [47] for more details).

Let M(s) be the total weight of the optimal tree T ∗s , i.e. M(s) =
∑
e∈E∗ w(e). The di�erence between the

weight of the edges built by the players connected to the source and the minimal weight for connecting these
players is denoted by ∆(s) =

∑
e∈E(con(s))∩E(s) w(e)−M(s). Two protocols satisfying Opt exist.

In the �rst protocol, denoted by c̄, all connected players equally share the cost of an optimal network (namely
M(s)
|con(s)| ) except one player, denoted by f(s), who is charged M(s)

|con(s)| plus the extra cost of the current state ∆(s),

for each state s ∈ S. More precisely, let f(s) = min V̂ (s) be the node of V̂ (s) with minimum index if V̂ (s) 6= ∅
and f(s) = ∅ otherwise. Formally, for each state s ∈ S, the players' costs according to c̄ are the following:

• if i ∈ con(s) \ {f(s)}, then c̄i(s) = M(s)
|con(s)| ,

• if f(s) 6= ∅, then c̄f(s)(s) = M(s)
|con(s)| + ∆(s),

• if i ∈ dis(s), then c̄i(s) = +∞.

In the second protocol, denoted by ĉ, all connected players who follow the optimal strategy pro�le T ∗s pay
according to the Bird rule while the other connected players (who do not follow T ∗s ) pay what they should pay
in T ∗s with the Bird rule plus an extra cost, for each state s ∈ S. We assume that this extra cost is shared
equally. More precisely, for each state s ∈ S, according to protocol ĉ, the players' costs are the following:

• if i ∈ dis(s), then ĉi(s) = +∞,

• if i ∈ con(s) \ V̂ (s), then ĉi(s) = w(i, si),

• if i ∈ V̂ (s), then ĉi(s) = w(i, s∗i ) + ∆(s)

|V̂ (s)| (actually here, it is possible to de�ne alternative protocols using

any cost function w(i, s∗i ) + gi(s) such that gi(s) > 0 and
∑
i∈con(s) gi(s) = ∆(s)).
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Figure 4.2: A connection situation with only one mcst.

One can observe that the total weight of E(s), for each state s ∈ S, is always covered by the connected players
according to both protocols c̄ and ĉ. Therefore, both protocols are BB.

Example 14. Consider the connection situation depicted in Figure 4.2. Note that there is a unique mcst of
cost 2, that is the tree {{1, 2}, {0, 1}}. The connection games associated with protocol c̄ and ĉ, in the connection
situation depicted in Figure 4.2 are shown in Table 4.1 (player 1 is the row player and player 2 is the column
player).

0 1
0 1, 5 1, 1
2 3, 1 ∞,∞

0 1
0 2, 4 2, 0
2 4, 0 ∞,∞

Table 4.1: Connection games corresponding to the graph of Figure 4.2 using protocol c̄ (left side) and protocol
ĉ (right side) respectively.

In [47], we proved that the cost protocols c̄ and ĉ satisfy the properties of cons and Opt, and the BRD
converges after at most n3 if all players play their best response under protocol c̄, whereas the BRD converges
after at most |E|n2 if the players play their best response under protocol ĉ.

4.3 Congestion games

Congestion games [166] deal with interaction situations where the cost associated with the use of a resource or
facility depends on the number of players that use it. In order to model more realistic situations, congestion
games have been generalized in several directions including models where players have di�erent weights, or when
the cost of using a resource depends on the identity of the players that are using it, etc. (see, for instance,
[146, 78]).

More precisely, a congestion situation is composed by a �nite set of players N = {1, . . . , n}, a �nite set of
facilities R and a map dr : {0, · · · , n} → N which associates to each facility r ∈ R the cost of facility r as a
function of the number of its users. Let Si ⊆ 2R be the strategy space of player i ∈ N . We denote by nr(s)
the number of players using the resource r according to a strategy pro�le s = (si)i∈N ∈

∏
i∈N Si. The cost

for a player i in state s is denoted by ci(s), and is de�ned as the sum of the costs of the resources used by i
in s, that is ci(s) =

∑
r∈si dr(nr(s)). The associated congestion game is then de�ned as the strategic game

〈N, (Si)i∈N , (ci)i∈N 〉.
More precisely, in [6], we enriched the original congestion situations introduced in [166] assuming that all

resources are provided with a capacity and an ordering over the players: if the number of users of a resource
does not exceed its capacity then it behaves like the classical model of congestion; otherwise, if the capacity is
exceeded, only a given number among the �rst users in the ordering are retained.

In [6] we associated with each facility r ∈ R a capacity κr ∈ R and a bijection �r: N → N representing the
priority of the players for the facility r. According to the model we introduced in [6], the �rst κr users in the
ordering �r face a cost for using facility r equal to dr(nr(s)) (like in the original congestion game introduced in
[166]), whereas the remaining players, if any, face an in�nite cost. The �nal goal in [6] is to provide necessary
and su�cient conditions for the existence of (pure) Nash equilibria of these games and to propose e�cient
algorithms to �nd them.

First, in [6] we showed that congestion games with capacities and priorities may not have a Nash equilibrium.
In the game corresponding to Figure 4.3, for instance, there are two players and three facilities x, y and z. The
strategy space is {{x}, {y, z}}. The facility x has a capacity of 1 and dx(1) = 2. The facility y has a capacity
of 2 and dy(1) = 3, dy(2) = 0. The facility z has a capacity of 1 and dz(1) = 0. The priority is always given to
player 1 for all facilities.

In [6] we also proved the following results.
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{x} {y, z}

{x} +∞ 3
2 2

{y, z} 2 +∞
3 0

Figure 4.3: A situation with two players and three facilities without Nash equilibria [[6]].

Theorem 13 ([6]). All congestion games with capacity and priorities over the facilities and with only two
facilities (|R| = 2) have a Nash equilibrium that can be computed in polynomial time.

Moreover, in [6], we focused on the class of congestion games with capacities and priorities where players
can use only one facility (so, |si| = 1 for each strategy si ∈ Si and each player i ∈ N), and we provided the
following theorem.

Theorem 14 ([6]). Every congestion game with singleton strategies (and with capacities and priorities over the
facilities) is a potential game.

Another interesting result shown in [6] is that the BRD of these games converges to the Nash equilibrium
in at most max{|N |, |R|} steps.

4.4 Games on social networks

Another interesting class of (non-cooperative) network games are social coordination games, that we studied in
the paper [44]. In social coordination games, each player is in a node of a graph and prefers to coordinate with
their neighbours in the graph, (i.e., to take the same action or choose the same product), rather than con�icting
with them. For example, given a network 〈N,E〉, each player/node has at most two available strategies, say 0
and 1, and the local coordination games Ge (see also [117]) corresponding to the edge e = {u, v} ∈ E is given
by the following cost matrix:

0 1
0 αeu(0), αev(0) βeu(0), βev(1)
1 βeu(1), βev(0) αeu(1), αev(1)

where the costs for agreements are smaller or equal to the costs for disagreements (even if these costs may vary
depending on which strategy a player adopts), i.e. βek(b) ≥ αek(b′) ≥ 0 for all b, b′ ∈ {0, 1} and k = u, v.

Social coordination games have been largely adopted for modelling the spread of innovation in social net-
works. Here, network members have to choose between a new and an old technology, for example, a chat
protocol. Clearly, each node prefers to choose the same chat protocol as her neighbours. Thus, once the number
of neighbours adopting the new technology is greater than the number of users of the old technology, a node
will change for the new chat protocol. It is also assumed that players prefer to use the new technology more
than the previous one (that is, the old technology has a strategy cost higher than the new one) or, vice versa,
that the price of the new technology is higher than the price of the old one. These strategy costs in�uence the
threshold, making a node eager to adopt the new technology.

Example 15. Consider the following coordination game with two players (the row player i0 and column player
i1) both with strategies {0, 1}:

0 1
0 0, ε 1− ε, 1− ε
1 1− ε, 1− ε ε, 0

Assume moreover that the row player incurs a preference cost b for playing strategy b ∈ {0, 1} while the column
player has a preference cost for playing strategy b of 1 − b. The actual costs faced by the players are then as
follows:

0 1
0 0, 1 + ε 1− ε, 1− ε
1 2− ε, 2− ε 1 + ε, 0
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Notice that for 0 < ε < 1
3 , the two con�gurations of minimal total cost are (0, 0) and (1, 1), but the unique

Nash equilibrium of the game is (0, 1). This example shows that it is often impossible to force the agents to play
according to the optimal solution because the optimum may not be an equilibrium.

In [44] we focused on incentive-compatible best-response mechanisms [153], where a desired outcome is
induced by means of a repeated playing of a base game where agents are prescribed to choose the best-response
to the strategies currently selected by other agents. For particular classes of interaction situations, it is in fact
possible to modify conveniently the players' cost functions so that players have no incentive to deviate from this
prescribed behaviour and the mechanism converges to a desired equilibrium. In particular, in [44] we considered
a special way of modifying a cost function in local coordination games. First, we assumed that the mechanism
may assign to players playing the desired strategy special fees (possible negative) in place of the costs arising
from social relationships. Second, we assume that the mechanism is frugal, which means that the mechanism
can be implemented by a designer without any cost. This means that whenever inducing a player to play the
target strategy has a cost for the designer, it should be possible to collect in advance the necessary amount of
money from other players.

In [44] we also showed that in social coordination games, made by local coordination games where each
player has two strategies as in the example above, the optimal strategy pro�le can be e�ciently computed and
it is always possible to e�ciently design a frugal best-response mechanism for inducing this optimal pro�le.
Thus, an authority can always �nd policies that allow to exploit the dynamical nature of a system to induce
the desired outcome.

Another aspect on which we focused in [44] is the property of collusion-resistance for mechanisms, which
means that we are interested in mechanisms such that no coalition has any incentive to leave the strategy pro�le
induced by the mechanism, even if side-payments are allowed. Interestingly, we showed in that a frugal best-
response mechanism that is collusion-resistant always exists and we provided a characterization of the property
of collusion-resistance in terms of solutions of a suitable cooperative game.

4.5 Future directions

The method used to de�ne the cost allocation protocols for the strategic connection situations considered in
Section 4.2 might lead to the de�nition of many other optimal protocols, depending on the rule according to
which the cost of a mcst is allocated among the players. As illustrated by numerical examples in [47], the
inherent limitations of the proposed optimal protocols is that symmetric players may be treated di�erently,
depending on the choice of an a priori selected mcst. The question about the existence of optimal protocols
which treat symmetric players in a more equitable manner remains open.

Considering congestion models discussed in Section 4.3, on a dynamic (and more realistic) perspective, it
would be interesting to study an analogous model where the priorities of users depend on their timing of using
resources (for routing problems, this could represent the arrival time to the starting node of an edge).

The focus of the model presented in Section 4.4 is the design of mechanisms through which an authority
may in�uence the bargaining among the components of a social network for inducing optimal states as the
result of the convergence of natural dynamics. We think that this approach can be promising for the design of
mechanisms also in di�erent settings, not necessarily based on social networks.



Chapter 5

Power indices and their applications

5.1 Overview of the chapter

Solutions of cooperative games have been widely used to evaluate the �power� of the players (agents, political
parties, nations, etc.) involved in a collective decision process, i.e. their ability to force a decision in situations
like a parliament, a governing council, a management board, etc. For instance, probabilistic power indices
[110], like the Banzhaf index [86] and the Shapley index [171], are computed using the characteristic function
of a coalitional game providing the information about which coalitions of players are winning or not and, if
available, taking into account additional information about the interaction possibilities of the players (see also
[150, 156, 110, 129]).

Section 5.2 is devoted to the problem of reducing the energy consumption over communication networks
and using power indices. Several models to solve this energy consumption problem have been proposed in the
literature: for instance, an interesting �green networking� technology suggests to adapt the network topology to
the tra�c demand, with the objective to concentrate the tra�c on a partial network obtained by allowing some
network nodes or links to enter into a low-energy �sleep� mode [105]. In a similar direction, in [49] and [48], we
studied the problem of reducing energy consumption in computer networks according to an energy-aware routing
approach and keeping into account the contribution of devices in the network in order to provide a good level
of Quality of Service (QoS). In Section 5.2 we present some methods aimed to summarize the contribution of
devices in a network. These methods are based on the Shapley index of particular coalitional games de�ned over
the set of the elements of a backbone network. Those particular coalitional games incorporate the information
about the network structure (e.g., the connectivity of sub-networks), the amount of tra�c that the devices are
routing and the network robustness (i.e., possible failure scenarios). The ranking provided by the Shapley value
of such games has been used to drive a resource consolidation process, i.e., the selection of those devices that
should be switched o� �rst in order to reduce the energy consumption.

Section 5.3 is devoted to the discussion of a recent application of power indices presented in [54] to design
a weighted majority voting system in practice. More speci�cally, we solve an inverse Banzhaf index problem
in order to decide the weight of �great electors� within the electoral college for the election of the members of
the Administration Board and the Academic Senate of the Paris Sciences & Lettres University. To be more
speci�c, the inverse Banzhaf index problem can be formulated as follows: given a vector P = (p1, . . . , pn) of n
real numbers and an appropriate �metric� to evaluate the distance between real-valued vectors, �nd a voting
system with n voters such that the distance (or error) between the Banzhaf index computed on such a voting
system and the vector P is smaller than a prede�ned value (see, for instance, [85, 79] for further details).

Section 5.4 shortly introduces the problem of measuring social capital in coalitional situations. This part is
based on the papers [4] and [8]. In [4] we considered a more advanced approach to the measurement of social
capital, which builds upon the recent literature that uses concepts rooted in cooperative game theory for the
analysis of social networks. With a similar objective, in [8] we studied two important families of indicators for
social-ecological features, speci�cally, resilience, aimed to analyse the ability of ecosystems to absorb changes
on both human and ecological variables (and where the structure of interactions between social and ecological
components of the systems are taken into account) and social capital, here intended as an assessment of the set
of all those human relations which are important for the sustainability issue.

39
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5.2 Green networking

Telecommunication infrastructures are responsible of a large part of the carbon o�print of Information and
Communications Technology (ICT) systems. As a consequence, the research community is showing an ever
increasing interest in studying techniques and algorithms to reduce the energy consumption of ICT systems.

A computer network is represented by a graph 〈N,E〉, where N is a �nite set of computer devices and E
is the set of links between the devices, and is associated with a tra�c matrix, TM = (tij)i,j∈N , in which an
element tij represents the volume of tra�c entering the network through i and exiting through j. Given a
computer network 〈N,E〉 and an associated tra�c matrix TM , in [49], we modelled the resource consolidation
problem as a coalitional game, called the Green-Game (or G-Game for short), where N is the set of devices and
the value of each coalition S ⊆ N is the amount of tra�c that the restriction of the network to S can transport,
precisely,

v(S) =
∑
i,j∈S

tij1{G[S]}(i, j),

where 1{G[S]}(i, j) = 1 whenever i and j are connected in the subgraph 〉S,E(S)〉 (i.e. there exists a path in
G[S] from i to j) and zero otherwise (as usual, by convention v(∅) = 0). The Shapley value of a node in a
G-Game is interpreted as an indication of how much the node contributes in the tra�c delivery process and how
its absence would a�ect the network on �average� (i.e., over all possible network con�gurations). Di�erently
stated, the Shapley value on the G-Game de�nes a joint topology-aware and tra�c-aware ranking of the network
devices, that is considered to establish which nodes can be switched o� �rst.

In order to provide a relevant evaluation of the method based on the Shapley value, in [49] a realistic scenario
has been considered as depicted in Figure 5.1 (for the technical details see [49]). The light-shaded nodes (1 to
8 in Figure 5.1) are access nodes (i.e., source and destination of tra�c requests, and can not be switched o�).
The dark nodes (9 to 21) are transit nodes, performing only tra�c transport, and can be switched o�. Node
T is the tra�c collection point, providing access to the core network and the big Internet, with whom nodes
typically exchange the majority of the tra�c.

Figure 5.1: The reference topology of a computer network.

In a computer network like the one represented in Figure 5.1, the �criticality� of nodes can be evaluated
relatively easily based on the sole topology, or on the sole volume of tra�c routed by each node. Taking into
account the topology, the most widely used rankings are based either on the connectivity of each node (Degree
centrality [89]), or on the number of shortest paths passing through each node (Betweenness centrality [91]), or
the average distance between each couple of nodes (Closeness centrality [95]), or even on the relative importance
of neighbours nodes (Eigenvector centrality [172]). A completely di�erent criticality criterion is the one proposed
by [105] and denoted by �Load � hereafter, which merely consists in sorting nodes depending on the amount of
tra�c load they e�ectively carry in a standard network con�guration. The above indexes either consider the
topology (degree, betweenness, closeness, eigenvector centrality) or the tra�c (Load criterion), but not both.
The Shapley value used in the G-Game instead takes into account (i) the tra�c expressed by the tra�c matrix
and (ii) the importance of the node in the routing process. In fact, the node importance is evaluated in the
G-Game by taking into account the number of paths a node lies on, similarly to the betweenness centrality.
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However, unlike betweenness centrality, the Shapley value takes into account failure scenarios by considering
not only the shortest paths, but also longer ones that can provide alternate routes in degraded scenarios.

All the aforementioned criticality indexes have been evaluated on the reference network scenario of �gure
Figure 5.1. We also compared two di�erent versions of the Shapley value: (i) a simpli�ed index that re�ects
only the network topology, considering the G-Game with a uniform tra�c matrix, referred to as G-Game U-TM
hereafter; (ii) the full G-Game earlier de�ned, that considers the actual tra�c matrix.

In Figure 5.2 we report the link utilization distributions for the di�erent rankings when the �rst less critical
nodes are switched o� and the baseline con�guration, where no node is switched o�. Notice that the Shapley
value yields to excellent performances, as the link distribution is roughly equivalent to the baseline con�guration.

Figure 5.2: Distribution of the link utilization, considering di�erent ranks and in the Baseline con�guration.

In particular, the maximum link utilization does not increase under G-Game with respect to the full network
con�guration: this means that energy saving is obtained without compromising the expected QoS. Conversely,
some links reach an utilization higher than 90% for the U-TM and Load strategies. The Load strategy results
in worse link distribution since it passes through longer alternate paths (i.e., ignores fault cases), while the
worse QoS results of the U-TM strategy are due to its tra�c unawareness (i.e., it takes into account only the
topology). In contrast, the approach based on G-Games explicitly considers di�erent nodes combinations, which
means that it explores con�gurations where some nodes are excluded (i.e., which is precisely what happens when
nodes are switched o� in the resource consolidation process).

A similar approach has been studied in [48], this time computing the importance of links in a network:
the players in the game considered in [48] are the links of a computer network and a coalition corresponds
to a network partition (subgraph) formed by the combination of all these links. The surplus of a coalition is
de�ned as the amount of tra�c that can be accommodated by the corresponding network partition, and the
�importance� of a link is again measured according to the Shapley value of such a game, and thus measures the
(average) additional tra�c that can be accommodated thanks to the addition of a link.

5.3 An application of the inverse Banzhaf index problem

Paris Sciences & Lettres (PSL) is a federal university that brings together 25 education and research institutions
in Paris (to be hereafter denominated the PSL Institution Members or, simply, the Institutions). Founded in
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2010, the organisation of PSL is based on two main bodies1: the PSL Foundation for Scienti�c Cooperation
(Fondation de Coopération scienti�que), which is mainly responsible for the management of key actions of the
PSL project (e.g., the recruitment of chairs of excellence, the development of strategic international partnerships,
the implementation of innovative programs in research and training, etc.) and the Community of Universities
and Institutions (Communauté d'Universités et Etablissements, also denominated ComUE ) which is responsible
of the decisions concerning the training and graduation policy of PSL, and of other decisions over the common
actions related with the educational and research community (e.g., the joint coordination of research policies
and international projects for knowledge dissemination, the activation of digital actions, the implementation of
joint strategies concerning students' life, etc.).

The ComUE is governed by an Administration Board (AB) (Conseil d'Administration) of 30 members,
assisted by an Academic Senate (AS) (Conseil Académique) of 120 members with a consultative role. The
members of the AB and the AS of the ComUE are representatives of the di�erent Institutions but, for statutory
reasons, only 16 Institutions (see Table 5.1) out of the 25 of PSL participate to the electoral process for their
designation. Notice that the PSL Foundation and the ComUE itself are both represented as independent
establishments within the AB and the AS of the ComUE.

The members of the AB and the AS are indirectly elected, among the candidates of the di�erent Institutions,
by a college of �great electors� designated by the Institutions according to their own statutes (usually, via
general elections within their respective Institutions). Moreover, the members of the AB and the AS must be
appointed in the respect of their professional categories (e.g., teachers, researchers, administrative and technical
sta�, etc.) according to the proportion speci�ed in the Internal Regulations [164], which addresses the general
recommendations of the relevant national legislation. The same internal rules also specify that the �great
electors� must have di�erent amounts of say (weight) and should appoint candidates members for the AB and
the AS using a simple majority mechanism.

The ComUE is also provided with a Steering Committee (SC) (Comité des Membres) formed by the PSL
institutions heads, the president and the vice-president of PSL, and the deans of the main departments. The
objective of the SC is to ensure the proper functioning of PSL and to address the implementation of the
guidelines provided by the Internal Regulations [164].

Institution Short name

1 École nationale supérieure de chimie de Paris Chimie ParisTech
2 Centre national de la recherche scienti�que CNRS
3 Conservatoire national supérieur d'art dramatique CNSAD
4 Conservatoire national supérieur de musique et de

danse de Paris CNSMDP
5 Communauté d'universités et établissements PSL ComUE PSL
6 École normale supérieure ENS
7 École nationale supérieure des arts décoratifs ENSAD
8 École nationale supérieure des beaux-arts ENSBA
9 École supérieure de physique et de chimie industrielles

de la ville de Paris ESPCI
10 Fondation de coopération scienti�que PSL FCS PSL
11 Institut national de recherche en informatique et en

automatique INRIA
12 Institut Curie Institut Curie
13 Fondation européenne des métiers de l'image et du son La Fémis
14 École Nationale Supérieure des Mines de Paris Mines ParisTech
15 Observatoire de Paris Observatoire
16 Université Paris-Dauphine Paris-Dauphine

Table 5.1: The 16 Institutions taking part to the electoral college for the appointment of the AB and AS
members.

In [54], we shortly introduced an approach based on coalitional games and on power indices to establish a
�fair� distribution of the weights among the �great electors� within the PSL electoral college for the appointment
of the AB and the AS members. More precisely, the weight system we propose is the result of an inverse power

1For a more detailed description of the governance bodies of PSL, see the PSL o�cial website: https://www.univ-psl.fr/fr
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index problem: if a vector of desired individual powers is given (for instance, as the outcome of a negotiation
process), can we determine a voting method where a certain power index yields a good approximation of the
desired vector?

According to the recommendation of the SC [174], an �ideal� voting system should take into account the
following three criteria: 1) all the Institutions should participate with a non-negligible power to the process
of taking decisions in the AB and the AS of the ComUE ; 2) larger Institutions (in terms of number of sta�
employed) should play a more relevant role; 3) Institutions with a major academic o�er should be fairly rep-
resented. Because of an important disproportion of students over the di�erent Institutions (many Institutions
have no student at all), the SC of the ComUE considers this last principle less relevant than the �rst two,
in order not to destabilise the �global economy� of the decision-making process within PSL. According to this
�ideal� triple-majority rule recommended by the SC [174] a subset of the 16 Institutions of the ComUE shown
in Table 5.1 is a winning coalition if it satis�es the following three criteria:

i) it is formed by a simple majority (> 50%) of the Institutions of the ComUE, all in favour;

ii) it represents a quali�ed majority (> 66%) of the total number of employees working in the Institutions of
the ComUE ;

iii) it represents at least one-fourth (> 25%) of the entire population of students enrolled in the Institutions
of the ComUE ;

A simple game (N, vt), with N = {1, . . . , 16} as the set of players representing the 16 Institutions Members
of PSL, was de�ned according to the above triple majority mechanism. Precisely, let ei and si, be, respectively,
the number of employees and of students of each Institution i ∈ N , and take a coalition of Institutions S ⊆ N ,
S 6= {∅}, then we have that:

vt(S) =

{
1 if |S| > 8 and

∑
i∈S ei >

2
3ρ and

∑
i∈S si >

1
4σ,

0 otherwise,
(5.1)

where ρ =
∑
i∈N ei is the total size of personnel a�liated to the 16 Institutions of the ComUE and σ =

∑
i∈N si

is the total number of enrolled students. The normalized Banzhaf index β̄(vt) of game vt has been computed
according to relation (1.7) and by means of the computer program introduced in [137] and the Mathematica
[180] functions introduced in [90]. The vector β̄(vt) is shown in the second column of Table 5.2.

Our goal in [54] is then to solve an inverse Banzaf index problem [79] with the objective to compute the
weights of the �great electors� of PSL such that the Banzhaf index of the electoral college (based on a simple
majority mechanism) is as close as possible to the Banzhaf index computed on the �ideal� triple majority system
recommended by the SC [174] and yielding the game vt. We consider the inverse Banzhaf index problem as
introduced in the next de�nition.

De�nition 17 (Inverse Banzhaf index problem). Let N = {1, . . . , n} be a �nite set of players, let λ ∈ [0, 1] be
a prede�ned quota (expressed as a fraction of the total weight) and let ε ∈ [0, 1] be the maximum tolerated error.

Given another vector P = (p1, ..., pn) ∈ [0, 1]N of n real numbers on the interval [0, 1] and such that∑
i∈N pi = 1 (i.e., P is normalized), �nd a vector of non-negative integer numbers w = (w1, . . . , wn) ∈ ZN

with wi ≥ 0 for each i ∈ N and such that ∑
i∈N
|β̄i(vw)− pi| < ε, (5.2)

where vw is the weighted majority game on N de�ned according to relation (1.6) with weights w and a quota
q = λ

∑
i∈N wi, and |β̄i(vw) − pi| is the absolute value of the di�erence between the normalized Banzhaf index

β̄i(v
w) of player i ∈ N in game vw and the �ideal� value pi.

Notice that in the above de�nition, it is asked to �nd a vector of integer weights and the quota is provided
a priori (for di�erent formulations of the inverse Banzhaf index problem see [85, 79]).

In order to �nd a solution of the previously introduced instance of the inverse Banzhaf index problem
(speci�cally, the one introduced in De�nition 17 with P := β̄(vt), λ = 1

2 and ε = 0.05), we apply a trial-and-
error procedure (see [54] for more details). This procedure yielded the vector of integer weights shown in the
last column of Table 5.2 together with the Banzhaf value β̄i(vw) of the corresponding weighted majority game
(see also Figure 5.3 for a comparison between β̄i(v

w) and β̄i(v
t) of PSL members ordered according to their

Banzhaf index in the AB).
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Institution β̄(vt) β̄(vw) |β̄(vw)− β̄(vt)| Weight

Chimie ParisTech 0.039 0.037 0.002 3
CNRS 0.023 0.024 0.001 2
CNSAD 0.016 0.013 0.003 1
CNSMDP 0.073 0.076 0.003 6
ComUE PSL 0.018 0.013 0.005 1
ENS 0.213 0.208 0.005 15
ENSAD 0.041 0.037 0.004 3
ENSBA 0.042 0.037 0.005 3
ESPCI 0.049 0.050 0.001 4
FCS PSL 0.011 0.013 0.002 1
INRIA 0.013 0.013 0 1
Institut Curie 0.088 0.090 0.002 7
La Fémis 0.039 0.037 0.002 3
Mines ParisTech 0.079 0.090 0.011 7
Observatoire de Paris 0.071 0.076 0.005 6
Université Paris-Dauphine 0.186 0.186 0 14

Total 1 1 0.049 77

Table 5.2: Normalized Banzhaf index of the �ideal� triple-majority game vt and of the weighted majority game
vw. The absolute value of the di�erences between the two Banzhaf indices |β̄(vw)− β̄(vt)| is shown in the third
column (notice that the total error is less than the maximum tolerated one ε = 0.05). The vector of weights is
shown in the last column (the quota is then �xed at q = 77

2 ).

Figure 5.3: Comparison of the normalized Banzhaf index of the �ideal� triple-majority game vt (left column)
and the Banzhaf index of the weighted majority game vw (right column) for each Institution of the ComUE.

The method proposed in [54] for the design of the electoral college of the ComUE should be seen as an
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attempt to provide an objective basis for the negotiation of the weights among the PSL Institutions. This is,
at least, how it has been perceived by the members of the SC of the ComUE [174], where our proposition has
been debated and �nally approved under few modi�cations during the PSL-SC meeting held in Paris on April
21st, 2015.

5.4 Social capital

Although power indices are able to capture some aspects related to the ability of players to in�uence collective
decisions, in general they fail to capture other aspects more related to the social interaction. For instance,
social capital is one of the fundamental concepts in sociology [107]. Intuitively, we can think of social capital
as the ability of individuals to gain bene�ts by utilizing their position in the society or, in other words, their
connections in a social network [112]. Although it has been extensively studied in various bodies of the literature,
there is no single de�nition or measure that exactly captures all facets of this concept.

Social capital is understood in the literature in two conceptually di�erent way [96], called group and individual
social capital. The former interprets social capital as the quality or performance of a given group of individuals
in a social network and the latter interprets social capital as the value of an individual's social connections,
which are seen as potential sources of information, power, or opportunities. While existing measures quantify
each of the above types of social capital separately, most of them are limited to the aspects of social capital
related solely to network topology and none of them sheds light on the interactions between the two types
(group vs. individual) of social capital.

In [4] and [8] we provided an analysis from the literature of some models based on coalitional games that can
be used to measure social capital on a micro scale, and that have proved their feasibility and e�ciency even on
macro situations where the number of nodes of a social network scales up dramatically. Basically, we start from
the consideration that in order to evaluate and compare the e�ects of social capital, it is �rst necessary to de�ne
analytical methods for measuring characteristics related to social capital, like collective e�cacy, psychological
sense of community, neighbourhood cohesion and community competence [141].

In [8], we presented several applications from the literature that illustrate the fact that coalitional games
allow for a richer description of agents relationships in a social network, where it is quite realistic to �gure
out the mutual in�uence of individuals in producing a certain social outcome. In network analysis, classical
centrality measures [89, 91, 95, 172] are quite appropriate to compute the �importance� of nodes in situations
where it is justi�ed to make the assumption that nodes failures occur independently. Another strong assumption
that justi�es the use of classical centrality measures is that the consequence of the failure of each node in the
system is important (for, instance it determines the collapse of the system) and it is the same for all nodes. On
the contrary, in real-world social networks, assuming that the actions of the agents on the nodes are independent
is not realistic at all. Similarly, the consequences of an action on the social system can be appreciated only
if a consistent number of possibly connected agents take the same action. These important aspects of social
interaction are taken into account by alternative game theoretic notions of centrality [145, 4].

For example, the Myerson value [150] (i.e. the Shapley value of the graph-restriced game) has been used in
[124] to asses the social capital of individuals in a social network. Speci�cally, given a society of N individuals,
in [124], the social in�uence of each coalition S ⊆ N is represented as a coalitional game (N, v), and all possible
relations among individuals by a social network 〈N,E〉. The authors in [124] compute the restricted game wvE
and consider the Shapley value of the di�erence wvE − v as an index to reveal the in�uence of players on the
outcome of the game. In other words, they interpret the Shapley value di�erence φ(wvE) − φ(v) as a social
capital index representing the di�erential power of players between the graph-restricted game wvE and the game
v where all communication possibilities among players are feasible: the higher the di�erence φ(wvE)− φ(v), the
higher the social capital of individuals due to the existing possibilities of interaction in the social network.

5.5 Future directions

In future work related to the consolidation procedure for computer networks discussed in Section 5.2, it would
be interesting to broaden our experimental studies over a wider set of network topologies and tra�c matrices.
In particular, it would be useful to further study the correlation between the criticality of nodes and di�erent
tra�c matrices for any given topology. Another open point that deserves more attention, is the evaluation of
the robustness, by considering the impact of unexpected faults or changes in the tra�c conditions to an already
consolidated network.
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Dealing with the inverse Banzhaf index problem considered in Section 5.3, an interesting open question is
related to the problem of measuring the loss of information in the transformation of a multiple majority weighted
game (original game) into a new weighted voting game with the same voting powers. How �far� the new simple
game is from the original one? is it possible to guarantee that certain a priori -selected winning coalitions in
the original game remain winning also in the new one?

With respect to the problem of measuring the social capital in coalitional games as illustrated in Section
5.4, we are currently studying di�erent notions of criticality for players. For instance, in [1] we look at a player
i that is not critical for a winning coalition S ⊆ N , i ∈ S (that is, S and S \ {i} are both winning coalitions),
but there exists in S another player j, di�erent from i, s.t. S becomes losing when both the players leave. This
�second order� notion of criticality of players in simple games is useful to better understand blackmail power
of players in simple games, which is the possibility of players of threatening coalitions to cause them loss using
arguments that are (only apparently) not justi�ed.



Chapter 6

Bioinformatics and statistical analysis of
biological data

6.1 Overview of the chapter

In this chapter, we introduce some of our recent contributions on the application of coalitional games and
their solutions to measure the importance of biological factors/variables in producing certain biological or
epidemiological e�ects, and, more in general, to the analysis of gene expression data.

The starting point of this research is the variety of innovative experimental technologies in medical research
that in the last few decades has permitted the collection of a large amount of biological data, markers and
other relevant factors at once. In the papers [15, 37, 21, 17, 19, 14, 13], we introduced and applied alternative
coalitional games to the analysis of large data-sets of gene expression data. Gene expression data may be
collected, for instance, by means of microarray technology [159, 123]. Within a single experiment of this
sophisticated technology, the level of expression of thousands of genes can be estimated in a sample of cells under
given conditions (genetic diseases, environmental expositions, pharmacologic treatments, etc.). Many di�erent
approaches have been proposed in literature to discover �central� genes in the huge amount of information
provided by this technology.

In Section 6.2 we introduce and discuss microarray games [21, 15], a class of coalitional games aimed to asses
the relevance of genes in regulating or provoking a condition of interest, and taking into account the observed
relationships in all subgroups of genes. Via a dichotomization technique applied to gene expression data, it is
constructed a game whose characteristic function takes values in the interval [0, 1]. The objective of such a game
is to stress the relevance (�su�ciency�) of groups of genes in relation to a speci�c condition. The de�nition of
relevance index for genes is provided in terms of the Shapley value [170, 18], that is contextualized and justi�ed
as a relevance index by means of an axiomatic approach.

In Section 6.3, we introduce a method based on coalitional games (and published in [11]) to evaluate the
�centrality� of genes in co-expression networks. The Myerson value for coalitional games is used to express
the power of each gene in interaction with the others and to stress the centrality of certain hub-genes in the
regulation of biological pathways of interest. The main improvement of this contribution, with respect the
model discussed in Section 6.2, consists in a �ner resolution of the genes' interaction, which is based on pairwise
relationships of genes in a co-expression network. In addition, the new approach allows for the integration of a
priori knowledge about genes playing a key function on a certain biological process.

Finally, in Section 6.4, we brie�y introduce some of our recent papers in the domain of the statistical analysis
of biological data of human RNA (Ribonucleic acid), mainly based on the publications [36, 38, 39, 40, 35] and,
more recently, on [33, 31, 29, 32, 34, 30, 28, 27].

6.2 Microarray games

By means of modern technologies it is possible to consistently generate a matrix of gene expression data, in
which the rows index the genes (i.e., the variable) and the columns index the study samples/experiments (e.g.
several patients with a genetic disease), which are the observations or e�ects (for example, see [159] for a general
introduction to the technology of microarrays and related statistical aspects).

47
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In [21] and [65] we introduced a method based on coalitional games where the Shapley value has been
proposed for inferring, from a matrix of gene expression data, the relevance of genes keeping into account their
individual behaviours and their interactions when the biological system is studied under a condition of interest
(e.g. a disease state, the exposure to environmental or therapeutic agents, etc.). According to this method, the
frequency of associations of each subset of genes with a condition of interest has been described by means of a
coalitional game (namely, a microarray game) where players are genes. The relevance of genes is assessed by
means of the Shapley value of a microarray game: the higher the number attributed by the Shapley value to a
certain gene in a given microarray game, the higher the relevance of that gene for the mechanisms governing
the genomic e�ects of the condition under study.

We brie�y introduce here the model introduced in [21]. Let N = {1, . . . , n} be a set of genes. On a single
microarray experiment on N , a su�cient requirement to realize in a subset (a coalition of genes) S ⊆ N the
association between a condition and an expression property is that all the genes showing that expression property
belong to coalition S (su�ciency principle). Di�erent expression properties for genes might be considered (e.g.,
abnormal expression, up- or down-regulation, etc). Moving to k ≥ 1 microarray experiments on N , we refer
to a Boolean matrix B ∈ {0, 1}n×k, where the Boolean values 0 − 1 represent two complementary expression
properties, for example the property of normal expression (coded by 0) and the property of abnormal expression
(coded by 1). Let B·j be the j-th column of B. We de�ne the support of B·j , denoted by sp(B·j), as the set
sp(B·j) = {i ∈ N | Bij = 1}. The microarray game corresponding to B is the coalitional game (N, v), where
v : 2N → IR+ is such that v(T ) is the rate of occurrences of the coalition T as a superset of supports in B; in
formula, we de�ne v(T ), for each T ∈ 2N \ {∅}, as the value

v(T ) =
|Θ(T )|
k

, (6.1)

where Θ(T ) = {j ∈ K | sp(B·j) ⊆ T, sp(B·j) 6= ∅}, with K = {1, . . . , k} and where |Θ(T )| is the cardinality of
Θ(T ). Finally, we de�ne v(∅) = 0.

Example 16. Consider the boolean matrix B ∈ {0, 1}4×3 such that

B =


0 1 1
1 0 1
1 1 0
0 0 1

 .

Then sp(B1) = {2, 3}, sp(B2) = {1, 3} and sp(B3) = {1, 2, 4}. By equation (6.1), the corresponding mi-
croarray game ({1, 2, 3, 4}, v) is such that v(∅) = v({1}) = v({2}) = v({3}) = v({4}) = v({1, 4}) = v({2, 4}) =
v({1, 2}) = v({3, 4}) = 0; v({1, 3}) = v({2, 3}) = v({1, 3, 4}) = v({2, 3, 4}) = v({1, 2, 4}) = 1

3 ; v({1, 2, 3}) = 2
3 ,

v({1, 2, 3, 4}) = 1. The Shapley value of the microarray game ({1, 2, 3, 4}, v) is ( 5
18 ,

5
18 ,

1
3 ,

1
9 ).

One of the main objectives of the applications of coalitional games to biological problems, is the contextual-
ization of the basic model of coalitional games in the biological domain, and the justi�cation of game theoretic
solutions as measures of the importance of the variables governing the biological system. For example, in [21]
we provided an axiomatic characterization of the Shapley value on the class of microarray games, using �ve
axioms with a genetic interpretation: 1) the null gene property says that a relevance index should attribute null
relevance to genes that are never up- or down- regulated under a certain condition; 2) in order to bring smaller
gene pathways into prominence, another reasonable property is that if two disjoint sets of genes are up- or
down-regulated in a same rate of samples, then genes in the smaller set should receive a higher relevance index
than genes in the bigger one (Partnership Monotonicity property); 3) The partnership rationality property and
the 4) partnership feasibility property determine, respectively, a lower and an upper bound of the power of
�partnerships� of genes; 5) �nally, a special version of additivity, namely the equal splitting property, is used
with a natural interpretation of giving the same reliability to di�erent microarray experiments. In [21], we
proved that the Shapley value is the unique relevance index which satis�es the �ve properties listed above on
the class of microarray games.

In [37] we presented the �rst biological validation for the use of the Shapley value of microarray games as
a relevance index for genes. Precisely, a set of genes involved in the pathogenesis of neuroblastic tumors has
been selected in [37] according to the Shapley value of a microarray game de�ned on gene expression data from
neuroblastoma cells. In [19] we presented and discussed an application of the method to a gene expression dataset
concerning blood cells of 23 children from the region of Teplice (Czech Republic), a mining district characterized
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by high levels of airborne pollutants including carcinogens. For other applications on real data-sets see also
[113, 176, 114].

The problem to compare the relevance of genes under two di�erent conditions has been also studied in [19]
and in [14]. In these papers we considered two groups of microarray experiments on the same set of genes
N = {1, . . . , n}, collected under two di�erent conditions 1 and 2. A statistical procedure to test the null
hypothesis that each gene in N has the same Shapley value between the two conditions 1 and 2 is presented in
[19] and is further discussed in [14]. Such a test procedure is based on a non-parametric Bootstrap method of
re-sampling with replacement that we called in [19] Comparative Analysis of Shapley value.

Other game theoretic relevance indices for genes have been proposed in the literature. For example, in [13]
we provided a characterization of the Banzhaf value [86] on the class of microarray games, and compared the
results given by the Banzhaf and the Shapley value when they are applied to real data. The ranking of the genes
according to the two values are, in general, signi�cantly di�erent and it can happen that the Banzhaf value
divides the list of genes in very few classes of equal relevance [13, 142]. This happens because the relevance
computed according to the Banzhaf value for a single player decreases exponentially (and not linearly, as in the
Shapley's case) with respect to the size of the support of a certain column (see relation (6.1)); consequently, due
to round o�-errors, the contribution of large supports to the Banzhaf value of single genes is practically null.

Another application of coalitional games deals with the machine learning technique called feature selection
(also known as variable selection), which denotes a family of algorithms aimed to select a subset of relevant
variables (or features) for building robust learning models. In the computational biology domain, the technique
is also called gene selection, and it is usually applied to detect genes with high discriminative power (e.g., genes
that can successfully be used to generate classi�cation rules which are able to predict, as accurately as possible,
the true class of biological samples). In [17], we introduced classi�cation games to estimate the contribution
of a feature for the classi�cation task. Using the classi�cation games in [17], where genes are again in the role
of players, we represented the power of groups of genes to classify samples into the right classes (for instance,
the class of normal tissues or the class of tumour tissues). Classi�cation games turn out to be closely related
to microarray games and, on some numerical examples, the Shapley value and the Interaction Index (see, for
instance, [126, 127]) have been studied as criteria for gene selection.

6.3 Game centrality on biological networks

Another interesting �eld related to the analysis of genetic data deals with gene networks, that are increasingly
used to explore the system-level functionality of proteins and genes [131]. In [11] we introduced a new method
based on coalitional games to evaluate the centrality of genes in co-expression networks 1 keeping into account
the interactions among genes.

Following the approach introduced in [11], an association game (N, v) is �rst de�ned, where N is the set of
genes under study (for instance, analysed by means of a gene expression data-set) and the characteristic function
v assigns a worth to each coalition of genes S ⊆ N representing the overall magnitude of the �interaction�
between the genes in S and a given set of key-genes (e.g., a set of genes known a priori to be involved in
biological pathways related to chromosome damage). More precisely, suppose to have a set K of key-genes and
let I ⊆ {{i, k}|i ∈ N, k ∈ K} be the set of interactions between genes in N and the key-genes in K. Given a set
of genes S ⊆ N , the higher the number of key-genes which interact with genes in S, the higher the likelihood
that genes in S are also involved in the regulation of the biological process of interest. The map v : 2N → N
assigning to each coalition S ∈ 2N \ {∅} the number v(S) of key-genes in K which only interact (in I) with
genes in S (again, by convention, v(∅) = 0) is the association game corresponding to (N,K, I).

Example 17. Consider a set of genes N = {1, 2, 3, 4}, a set of key-genes K = {a, b, c} and a set of interactions
I = {{1, a}, {1, b}, {3, b}, {3, c}, {4, c}}, as depicted in Figure 6.1. This information is su�cient to calculate the
corresponding association game: if S = {1, 2, 3}, for example, we have that key-genes a and b only interact with
genes in S, whereas the key-gene c interact with gene 3 but also with gene 4, which is not in S; so v(1, 2, 3) = 2.
Similarly, we can de�ne the entire characteristic function of the association game (N, v), which is such that
v(∅) = v(2) = v(3) = v(4) = v(2, 3) = v(2, 4) = 0, v(1, 3) = v(1, 2, 3) = 2, v(1, 3, 4) = v(1, 2, 3, 4) = 3 and
v(S) = 1 for all the remaining coalitions.

In order to study the cascade of activation/deactivation among genes, in [11] we considered a second game,
where gene interaction is restricted to the connections within an associated undirected graph 〈N,E〉, the nodes

1Roughly speaking, a co-expression network is a network where the node correspond to the genes, and a link between two genes
is established if they are simultaneously expressed in a dataset (see, for instance, [175] for more details on co-expression networks).
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a b c

1 2 3 4

Figure 6.1: A set of genes N = {1, 2, 3, 4} and their interactions with a set of key-genes K = {a, b, c} (red
nodes).

of the graph being the genes. The set of edges E indicates interaction ties between pairs of genes, i.e. a set
{i, j} ⊆ N is an element of E if and only if i and j have an interaction (for instance, they are signi�cantly
co-expressed). Following the approach in [150], in [11] we used the structure of network 〈N,E〉 to de�ne the
graph-restricted game (N,wvE) (see Section 1.2.2).

Example 18. Consider the association game (N, v) introduced in Example 17 and the gene network (N,E)
where E = {{1, 2}, {2, 3}, {2, 4}, {3, 4}}.

a b c

1 2 3 4

Figure 6.2: The situation of Example 17 with the interaction among the genes 1, 2, 3 and 4.

If we consider coalition S = {1, 3}, for example, we have that key-genes a and b only interact with genes in
S, but node 1 is not connected to 3 in 〈S,E(S)〉; so, wvE(1, 3) = v(1) + v(3) = 1.

The graph-restricted game (N,wvE) is such that wvE(3, 4) = wvE(2, 3, 4) = 1, wvE(1) = wvE(1, 2) = wvE(1, 4)
= wvE(1, 2, 4) = wvE(1, 3) = 1, wvE(1, 2, 3) = wvE(1, 3, 4) = 2, wvE(1, 2, 3, 4) = 3 and wvE(S) = 0 for all the
remaining coalitions.

The di�erence of the Shapley values computed on the two coalitional games (N, v) and (N,wvE) is considered
in [11] as a gene centrality measure. Precisely, the gamma value γ(v,E) is de�ned by

γi(v,E) = φi(w
v
E)− φi(v), (6.2)

for each i ∈ N , where φ(v) is the Shapley value of the association game v and φ(wv) is the Shapley value of
the corresponding graph-restricted game wvE (i.e., the Myerson value). According to relation (6.2), genes with
strictly positive γ represent those genes with a positive di�erential power between the graph-restricted game
and the association game.

Example 19. Consider the association game (N, v) introduced in Example 17 and the gene network of Example
18. According to relation (1.3), we can compute the Shapley value in the two games φ(v) = ( 3

2 , 0, 1,
1
2 ) and

φ(wvE) = (4
3 ,

1
3 ,

5
6 ,

1
2 ). Thus, by relation (6.2), the gamma value is γ(v,E) = (− 1

6 ,
1
3 ,−

1
6 , 0). Note that gene 2 is

the unique gene with strictly positive centrality according to γ.

An important issue in the analysis of gene data using coalitional games and power indices is the computational
one. In some cases, the calculation of the Shapley value can be easy, independently from the number of genes
involved in the analysis. This is the case, for instance, of microarray games. In fact, a microarray game (N, v)
de�ned by relation (6.1) can be equivalently formulated via the following relation

v̄(T ) =
∑

j=1,...,k

usp(Bj)(T )

k
, T ∈ 2N \ ∅, (6.3)
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where (N, usp(Bj)) is the unanimity game on the set sp(Bj), and the Shapley value of game v can be easily
calculated in view of relation (1.5) (see [21] for more details). The very simple formulation of the Shapley value
for microarray games follows from the particular de�nition of the worth of a coalition of genes, which is based on
the underlying assumption behind the aforementioned su�ciency principle, which says that all the abnormally
expressed genes are, as a whole, equally responsible for the �disease� (or another condition of interest) in each
experiment. An extension of microarray games, which allows for using weighted majority games in order to
di�erentiate the role of genes within the group of abnormally expressed ones, has been presented in [142].

In other cases, the problem of understanding whether an e�cient algorithm to compute the exact Shapley
value exists remains open, and the only possibility so far is adopting approximation methods. This is the case,
for instance, of the method introduced in [11] and shortly discussed in this section. For gene networks, in fact,
it is easy to show that the characteristic function v of an association game can be written as a sum of unanimity
games according to the following relation,

v =
∑

k∈K,Nk 6=∅

uNk , (6.4)

where Nk = {i ∈ N |{i, k} ∈ I} denotes the set of genes in N which have a strong interaction with a key-gene
k ∈ K. A natural decomposition of a graph-restricted game based on the reformulation of the association
game given in (6.4) can be also provided (see [11] for further details), but it requires to consider all minimal
components containing Nk, for each key-gene k ∈ K, and all of their combinations (see equation (6) in [11]).
However, as the number of minimal components in a graph can be very large (especially for graphs generated
from realistic data-sets with thousands of variables) this option is computationally too expensive. For practical
computational reasons, in [11] we limited the decomposition of the graph-restricted game to the �smallest�
minimal components connecting the most associated genes (i.e., genes that directly interact with key-genes) on
a graph, which are those minimal components where the most associated genes are connected to each other by
a shortest path. This procedure was used to calculate an approximate γ centrality for a large gene network with
201 nodes and 2083 edges. Of course, the price for using the method based on shortest paths was that genes
outside those particular paths received a null value of approximated γ centrality, even if their exact γ value was
not null.

Looking at the axiomatic approach for applications to gene networks, in [11] we noticed that both the
gamma value and its approximated version satisfy the intuitive property requiring that smaller pathways of
genes are more central, since they provide a less complex explanation of the observed network of interactions
(this property has been named in [11] Total Aggregation Monotonicity).

6.4 Statistical analysis of biological data

A non-negligible part of my research has been devoted to the statistical analysis of biological data in a framework
of international collaborations with di�erent cancer research laboratories. The majority of our contributions
in the domain of the statistical analysis of biological data deals with the analysis of data of human RNA
(Ribonucleic acid). More precisely, most of the papers we published in this domain, focus on the statistical
analysis, the design and the quality control of gene expression data from experiments concerning the study of
genetic disorders, and in particular the research on genetic mechanisms regulating the neuroblastoma, a rare
malignant tumour, and the most common solid extra-cranial cancer in childhood [36, 38, 39, 40, 35].

More recently, our goal in [33] was to identify proteins expressed by the metastatic cells of neuroblastoma,
which may be relevant to prognostic and therapeutic purposes. Metastases in the bone marrow, are important
prognostic factors in patients with neuroblastoma. Sixty-six children over 18 months, with a diagnosis of �stage
4 neuroblastoma� were included in the study presented in [33]. Among other results, we have shown that the
calprotectin, a potent in�ammatory protein, and another protein called HLA-G may represent new biomarkers
and/or targets for intervention therapy in patients with high-risk neuroblastoma. In [31], we compared the
expression data of thousands of genes of children with localized and metastatic neuroblastoma against the
data of healthy children. Among the genes analysed, we found that the expression of CXCL12 gene is almost
completely cancelled in patients with a metastatic disease. To investigate the role of patients' age in tumour
aggressiveness in [29] we performed array-CGH (roughly speaking, an experimental technique aimed at �nding
aberrations in the DNA) and expression pro�les of three groups of metastatic neuroblastoma. In [32] we tried to
identify new molecular prognostic markers with the objective to better predict relapse risk estimate for children
with high-risk metastatic neuroblastoma and we have shown that patients with less than three segmental copy
number aberrations in their tumors represent a molecular subgroup de�ned with a high probability of survival
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observed in the patients group. In the article [34], we studied multipotent migratory cells of the embryonic
neural crest.

We also elaborated biological studies related to other diseases di�erent from the neuroblastoma. In [30],
we evaluated the e�ects of a certain treatment (le�unomide combined with a low dose of prednisone), on
the expression of genes responsible for in�ammation in the peripheral blood mononuclear cells of patients
with rheumatoid arthritis, a chronic in�ammatory degenerative disease. In [28], we analysed the relationship
between the the downregulation of a speci�c gene (namely, the DKK3 gene) and the medulloblastoma, an
highly malignant embryonic tumour of the cerebellum which accounts for 20% of all intracranial tumours of
childhood. We showed for the �rst time that DKK3 gene is signi�cantly downregulated on di�erent groups of
Medulloblastoma patients as compared to normal cerebellum. More recently, in [27], we studied the storage
time impact on the transcriptome (i.e., the set of all RNA molecules, including non-coding RNA) transcribed
in one cell or a population of cells of slowly frozen cryopreserved human oocytes. Oocyte cryopreservation is a
largely-used technique for storage of surplus oocytes in vitro fertilization (IVF) cycles or to allow �exibility if
an IVF cycle has to be halted, as well as for fertility preservation (i.e., women at risk of losing fertility because
of endometriosis, premature ovarian failure, or gonadotoxic therapies) and oocyte donation programs. For the
�rst time, in [27], we demonstrated that the length of cryostorage has no e�ect on the gene expression pro�le
of human oocytes.

6.5 Future directions

With respect the models discussed in Section 6.2, an interesting question concerns the statistical signi�cance of
the Shapley value of microarray games computed on real data-sets. In risk attributions, [133] proposed a measure
of the uncertainty of the Shapley value based on its probabilistic interpretation, de�ning the corresponding
uncertainty as the variance of the marginal contributions. Moreover, making the assumption that the marginal
contributions are distributed approximately normally (which is likely to happen in large games), then the
statistical results for normal distributions are applicable together with the standard test of signi�cance. However,
these aspects, with the exception of the examples provided in [133], seem to be neglected from the literature of
coalitional games based on real and large data-sets.

The problem of understanding whether an e�cient algorithm to compute the exact Shapley value of gene
networks presented in Section 6.3 remains open, and the only possibility so far is adopting approximation
methods. We are also exploring a di�erent approach to the problem of computing the relevance of genes
on networks using the idea of game theoretic centrality generalizing classical notions of centrality as recently
introduced in [145].

We want to stress the fact that some of the approaches illustrated in this chapter still need an extensive
comparative analysis of their performance with respect to other methods already in use in the literature of
reference. This is the case, for example, of classi�cation games [17], where it would be interesting to compare
the Shapley value and the Interaction Index with more classical feature selection methods for classi�cation
problems.
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