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Chapter 1

Introduction

Nowadays, microarray technology is available for taking ‘pictures’ of gene ex-

pressions. Within a single experiment of this sophisticated technology, the level

of expression of thousands of genes can be estimated in a sample of cells under a

given condition. This monograph deals with the discussion and the application

of a methodology based on Game Theory for the analysis of gene expression

data. Roughly speaking, the starting point is the observation of a ‘picture’ of

gene expressions in a sample of cells under a biological condition of interest, for

example a tumor. Then, Game Theory plays a primary role to quantitatively

evaluate the relevance of each gene in regulating or provoking the condition of

interest, taking into account the observed relationships in all subgroups of genes.

To fully understand the methodology introduced in this thesis, some pre-

requisites both on Game Theory and on microarray data analysis are required.

In order to create a common background for readers who approach for the first

time Game Theory or microarray data analysis or both of them, I suggest to

look at Sections 1.1 and 1.2, aimed, respectively, to give a basic introduction to

cooperative Game Theory and to the statistical analysis of microarray expres-

sion data. The contents of those sections are fundamental to understand the

objectives of this thesis, which are described in Section 1.3. Finally, in order

to understand the theory behind the game theoretical model applied to gene

expression data, the preliminary definitions introduced in Section 1.4 and in

Section 1.5 are required.

1
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1.1 Introduction to Game Theory

Game Theory is a mathematical theory dealing with models for studying inter-

action among decision makers (which are called players). Dealing with decision

makers interaction, the reader should be aware that a decision problem that

involves only one decision maker is not properly in the domain of application of

Game Theory.

Since the seminal book by John von Neumann and Oskar Morgenstern (1944)

“Theory of Games and Economic Behavior”, it is usual to divide Game Theory

into two main groups of interaction situations (which are called games), non-

cooperative and cooperative games. Non cooperative games deal with conflict

situations where non binding agreements among the players can be made. In

cooperative games all kinds of agreement among the players are possible.

In non cooperative games, each player will choose to act in his own interest

keeping into account that the outcome of the game depends on the actions of

all the players involved. Actions by players can be simultaneous (for instance

the ‘stone, paper, scissors’ game or the ‘matching pennies’ game) or at several

points in time (for instance the game of chess).

Cooperative games deal with situations where groups of players (which are

called coalitions) coordinate their actions with the objective to end up in joint

profits which often exceed the sum of individual ‘profits’1.

Another important classification in Game Theory about the goals of the

analysis performed using its tools. A game, both non-cooperative and cooper-

ative, can be analyzed with the objective to indicate what players should do

in the game to maximize their profits (usually this goal is referred to as the

‘normative approach’). Another reason for using Game Theory, is to predict

the outcome of game, i.e. whether or not players optimize their profits (usually

referred to as the ‘predictive approach’).

In this dissertation I focus on the application of cooperative game theory to

the analysis of gene expression data from microarray experiments. If it is quite

obvious that I do not plan to give advice to genes on how they should behave

inside a biological cell, on the other hand it is not so straightforward to figure

out how to describe the behavior of genes making them to play a certain game,

1For game theorists, utility value would be more correct than the term profit. As for the

ordinary language, I use for the moment the term profit with reference to something that is

in the interest of the decision maker to be maximized.
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and then use it as a tool to predict which genes obtain the maximum profit.

First, it is not obvious at all what is the meaning of ‘profit’ in this context.

In the following sections I will extensively introduce and discuss this topic.

However, the possibility to extend the concept of profits, benefits, savings or

whatever could be in the interest of each decision maker to be maximized on

her/his own count, is a well known feature of Game Theory applications. In

Game Theory, the term ‘profit’ usually is more correctly replaced by utility

value of a rational player. I do not want to enter here the discussion of how

an utility function is defined and why it is a numerical representation of the

preferences of a rational decision maker. For introductions to this problem see

for instance the books by Kreps (1990) and Osborne and Rubistein (1994).

I will simply note that, sometimes, reasonable considerations bring game

theorists to assume that the players preferences are nicely represented just by

money, and so money will be the profits to be considered in the game. For

example, one can describe a situations using cooperative games in coalitional

form where the players are willing to join bigger coalitions in order to have extra

monetary benefits or extra monetary savings thanks to the effects of coopera-

tion. For instance, consider a cooperative game in coalitional form with three

players, 1, 2 and 3, and with a characteristic function v : P({1, 2, 3})→ {0, 1},

where P({1, 2, 3}) is the set of all possible subsets of {1, 2, 3}, and such that

each coalition with at least two players get 1 euro, and all the remaining coali-

tions get 0 euro (i.e. all the single player coalitions and the empty coalition

get 0). Formally, we are considering the cooperative game in coalitional form

({1, 2, 3}, v) such that v({1, 2, 3}) = v({1, 2}) = v({1, 3}) = v({2, 3}) = 1 and

v({1}) = v({2}) = v({3}) = v(∅) = 0 (for this kind of problems see books by

Owen (1993), Tijs (2003), Young (1995)).

Other times, preferences of players are not addressed to things that have a

monetary counterpart. This is the case, for example, of decisions in a parlia-

ment. Assume that there are three parties, A, B and C, which share the seats

in parliament by 45%, 40%, and 15%. The preferred outcome for a party or a

coalition of parties is intended as the ability to force a decision. In this case, I

will say that the coalition is a winning one. Suppose that decisions are made by

simple majority. No one of single parties will profit from missing the coopera-

tion with others, in the sense that all parties alone are loosing coalitions. On

the contrary, all coalitions with more than one party inside will be a winning
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coalition.

This parliament situation can be properly represented by a cooperative game

in coalitional form, where players are the three parties A, B and C and the

value of each sub-set of players (coalition) is the label of winning or loosing

coalition. Consider 1 as label for winning coalitions, and 0 as label for loosing

coalitions. So, only coalitions with at least two players get 1 and the remaining

coalitions get 0. We are indeed considering the game ({A,B,C}, w) such that

w({A,B,C}) = w({A,B}) = w({A,C}) = w({B,C}) = 1 and w({A}) =

w({B}) = w({C}) = w(∅) = 0. Note that this game has precisely the same

structure of the game ({1, 2, 3}, v) introduced before. In both cooperative games

in coalitional form there are three players (different names, in this case, are not

essential), and in both games only coalitions with at least two players get 1, and

the others get 0.

What is basically changed, making the ‘same’ game suitable for the de-

scription of such completely different situations, is just the definition of the

objectives of each coalition in relation to the preferences of its players. In game

({1, 2, 3}, v), it has been assumed that the objective of the players is to maxi-

mize their rewards; in terms of preferences it has been assumed that each player

prefers 1 euro to nothing. In game ({A,B,C}, w), it has been assumed that

the objective of the players is to force a decision in the parliament, so players

prefer to have the ability to force a decision than not to have it. Concerning

this kind of models, there are many other important aspects that cannot be

taken up in a basic introduction on Game Theory. But I think that these very

preliminary considerations are already sufficient to give a first insight on the

extreme flexibility of the formal definition of cooperative game in coalitional

form in representing completely different interaction situations.

Now, some words on what it is possible to predict using cooperative games

in coalitional form.

Consider again the example of the parliament. Since the decision rule was the

simple majority it seems not very likely that the distribution of power, however

defined, coincides with the distribution of seats for parties A, B and C. In order

to discuss issues related to the problem of assigning power to the players of

similar cooperative games, and understand how the power distribution changes

when the number of seats or the decision rule change, classical analytical tools

developed in the Game Theory framework are power indices (see for instance
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Felsenthal and Machover (1998) for a formal discussion of the problem; Owen

(1993) for some political applications). The most popular, widely applied to

many political institutions (e.g USA President Elections, ONU Council, EU

Parliament etc.) are the Shapley-Shubik power index (Shapley and Shubik

(1954)) and Banzhaf-Coleman power index (Banzhaf (1965)). Surprisingly, most

power indices are nothing else that well known solution concepts for cooperative

games in coalitional forms. This means that the same method can be used to

allocate among the players the profits of the big coalition in games where the

value of each coalition represents, for example, monetary rewards.

Which arguments can support the application of the same solution concept

to so different interaction situations and their consequent alternative interpre-

tations?

The answer to this question is rooted in the property driven approach2. If the

quantification of power is the goal of the analysis, the property driven approach

suggests to postulate discriminating properties which a power measure has to

satisfy in order to qualify as an appropriate measure. If the cooperative game

concerns monetary profits and the objective is to fairly allocate the total reward

of cooperation, of course the basic properties to be postulated can be different

and their interpretation must be appropriate to the context. On the strength of

the property driven approach, it often happens that a solution concept satisfies

sound properties in completely different situations (see for instance the volume

by Roth (1988) for different applications of the Shapley value). The strong

connection with the property driven approach is in my opinion one of the main

reasons of success of applied Game Theory, success which is widely manifested by

the several applications of Game Theory to different scientific fields, especially

in Economics, Political Science, Social Science and Evolutionary Biology. Next,

I will try to convince the reader that it can also be successfully applied to gene

expression analysis.

1.2 Introduction to microarray data analysis

Proteins are the structural constituents of cells and tissues and may act as

necessary enzymes for biochemical reactions in biological systems. Most genes

contain the information for making a specific protein. This information is coded

2In Game Theory this approach is also known as the axiomatic method
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in genes by means of the deoxyribonucleic acid (DNA). Gene expression occurs

when genetic information contained within DNA is transcripted into messenger

ribonucleic acid (mRNA) molecules and then translated into the proteins.

Nowadays, a revolutionary technique, i.e., the microarray technology, allows

for the collection of huge amount of information concerning the function of

human genes. This approach provides a quantitative measure of gene expression

(the amount of mRNA in a cell sample) for thousands of genes in the same

experiment. The crucial step of this procedure is the hybridization: many DNA

regions immobilized on a small glass, plastic or nylon matrix (probes), bind to

a complementary sequence from the sample under study (sampled mRNA itself

or cDNA obtained by inverse transcription of sampled mRNA), labelled with

fluorescent dyes that flag their presence when exposed to a specific wavelength

of light. A separate experiment takes place in each of many individual spots

arrayed as a regular pattern on the matrix, whence the name array (Parmigiani

et al. (2003)).

There are several microarray based technologies, which involve different ex-

perimental procedures (see for instance Schena (2003), Parmigiani et al. (2003)).

However, a common objective of gene expression microarrays is to consistently

generate a matrix of expression data, in which the rows (possibly thousands)

index the genes and the columns (usually in the order of units or tens) index the

study samples. Numbers in the matrix represent gene expression ratios which

quantify the relative expression of genes in one target sample with respect to a

given reference sample.

Complex experimental artifacts associated with microarray data collection

have been described, emphasizing the need for statistical treatment of data

during all stages of the experiment. This includes the design of the slide, the

quality assessment, the normalization process (Dudoit et al. (2001); Smith and

Speed (2003), Amaratunga and Cabrera (2004)) and other pre-processing data

analysis (Amaratunga and Cabrera (2004), Parmigiani et al. (2003)) with the

objective of removing systematic variation in microarray experiments. In the

following of this paper I will assume to work on a matrix of gene expression

values that have been already pre-processed.

Many models for data analysis have been presented in the literature for infer-

ring, from a matrix of gene expression data, the role of genes, their interactions

and their behavior when changes in condition of the biological system occur
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(Moler et al. (2000), Su et al. (2003)).

So far, classical statistical techniques used for extracting information from

gene expression microarrays can be classified in three main groups: inferential

statistical methods used for identifying genes that are regulated by different

conditions of interest, e.g., to find single genes or groups of genes which show

a statistically significant difference in the expression levels under two or more

conditions of interest (Fujarewicz and Wiench (2003), Storey and Tibshirani

(2003)); unsupervised analysis techniques, used as a method to identify groups

of genes with similar patterns in the expression data (Golub et al. (1999), Alon

et al. (1999)); class prediction tools, where selected genes are used to classify

samples into known categories of morphology, known biological features, clinical

outcomes, or other condition of interests according to gene expression patterns.

It is mostly aimed at supporting early diagnosis in new samples (Dudoit and

Fridlyand (2003), Golub et al. (1999), Dudoit et al. (2002b)).

In order to give a slightly more accurate idea about how these classical

statistical methods have currently been applied to microarray data analysis, I

follow the essential outline of the presentation of the methods in what I consider

one of the most complete books on microarray analysis at the moment, i.e. the

book by Amaratunga and Cabrera (2004).

Concerning the inferential statistical methods, the main task of these meth-

ods is usually accomplished by mean of statistical hypothesis testing. The result

of an hypothesis testing on a gene expression matrix is its decision among two

possible options: to reject the conjecture (null hypothesis) that there is no dif-

ferences in terms of gene expression between two conditions of interest or not

to reject the null hypothesis and declare that there is insufficient evidence to

detect a difference of gene expression between the two conditions. In order to

select or develop a good test for a particular microarray data-set, it is necessary

to make assumptions about that microarray data-set. Different assumptions for

the same situation will generally lead to quite different tests and perhaps even

quite different test results. In general it is important to consider assumptions

carefully, but this is a very difficult task on microarray analysis where the bio-

logical knowledge that could be used as diagnostics to check the assumptions is

still vague and strongly dependent from the biological conditions of interest.

Unsupervised analysis techniques, also known as pattern discovery or cluster

analysis, has as a main objective to produce evidences for correlated patterns
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of gene expression displayed by genes behaving jointly, such as genes perform-

ing similar functions or genes operating along a genetic pathway. Based on the

quantifications of similarity between observations, most of these methods de-

pend on either a dissimilarity or similarity measure, which quantifies how far,

or how close, two observations (for example vectors of gene expressions across

different samples) are from each other. Dissimilarity measures which have been

employed in microarray analysis are classical distances like the Euclidean dis-

tance (Coco et al. (2005)). It is matter of fact that different definitions of

dissimilarity measures bring to different clusters of similar genes. The notion

of similarity or dissimilarity used, however, should reflect an a priori selected

attribute for joint gene behavior that it is expected to be informative with re-

spect to the biological condition under investigation. So far, it is not clear which

analytical instruments should be used to evaluate the meaning of a given dissim-

ilarity or similarity measure, and the choice of a metric is still almost completely

arbitrary.

Finally, few words on supervised analysis, also called class prediction. To

better understand the main characteristics of this kind of analysis, I found more

explanatory to refer to the biological conditions of interest directly as tumors.

In fact, the tumors are known to be of various different classes and a microarray

gene expression data-set can be extracted from samples collected from different

tumors. Now it is likely that different genes are expressed in the cells of different

tumor classes. Therefore it can be conjectured that it ought to be possible to

differentiate among the tumors classes by studying and contrasting their gene

expression profiles, that is developing a classification rule to discriminate them.

The great potential of these methods is that the classification rule could be ex-

ploited to predict the class of a new tumor sample of unknown class based on its

gene expression profile. Another advantage of these methods is the easy way to

evaluate their performance, as the proportion of misclassifications on the gene

expression matrix where the original tumor class of samples is known (training

set), i.e. the misclassification rate. On the other hand, from the mathematical

point of view, the biggest problem in the applications of supervised methods to

gene expression data-set is the number of genes much greater than the number

of samples. By retaining such a large number of genes, it is incredibly easy for

supervised methods to find good-looking but non-reproducible and meaningless

classification rules, with low misclassification rate on the training set and very
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high misclassification rate on the gene expression data where the information

on tumor classes is unknown (test set). From this follows the necessity to find

a strategy to reduce the number of genes, for example, performing the super-

vised procedure only on those genes which result differentially expressed on the

basis of the application of inferential statistical methods. Besides the problems

concerning the assumptions which affect the statistical inferential methods as I

mentioned before, this filtering approach encounters also other disadvantages.

Some genes retained could be false positive, and even so produce good perfor-

mance as classifiers, performance that of course are not reproducible on other

data-set. Even worst, it may exist a set of genes that together acts as a classifier,

but each individual gene in the set does not, making them good candidate for

being filtered out all together. Moreover, many retained genes could show the

same pattern of expression, determining a redundancy in the information.

1.3 Objectives and overview of the thesis

The criterium for the choice of one particular statistical method should be based

on the (justified) claim that such method is able to select genes covering the

most relevant role in the mechanisms which provoke a biological condition or

response of interest (e.g. a tumor). Unfortunately, the big difficulty in taking

the decision is that classical statistical methods are not directly related with a

biologically sound and operative definition of genes relevance in this context.

Consequently, different sets of genes may be selected depending on the ap-

plication of different statistical methods (Jaeger et al. (2003)). Since usually

there exists a limit on the number of genes to choose, a researcher might not be

able to include all relevant genes in deserving further investigations.

For example, an extremely difficult question to answer is whether a group

of genes which are individually differentially expressed between two different

conditions are more or less relevant in regulating the mechanisms governing

these conditions than another group of genes able to characterize the two con-

ditions only jointly. Differently stated, similarly to the considerations done for

the classification problem, it may exist a set of genes A that together have a

characteristic expression pattern under each condition, but each individual gene

in the set has not. On the contrary, it may exist a set of genes B where each

individual gene is differentially expressed under the two conditions. So, the
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problem is: how to make a quantitative comparison of the roles played by the

two respective sets A and B in regulating or provoking the condition of interest?

Another very hard practical problem faced when attempting to use a classical

statistical method in quantifying genes relevance, is that genes relevance index

should take into account the interaction links among genes in the mechanisms

which determine the biological condition of interest. This would imply the

application of the statistical method to each possible subgroup of thousand of

genes, which is often a procedure computationally too costly.

A completely different approach, based on a cooperative game in coalitional

form where the players are genes, has been proposed in this thesis.

In my opinion, the novelty of the approach with respect to the classical

statistical methods is essentially twofold. First, the class of cooperative games

used, called the class of microarray games, provides the effective opportunity to

describe the association between the global expression of each coalition of genes

and a biological condition of interest and, as a consequence, to incorporate in the

successive analysis all possible genes interaction ties related with the biological

condition. For example, it is possible to describe the association between the

over-expression or the under-expression properties of genes in each coalition and

the tumor or the effect of a treatment in samples.

Even considering all possible subsets of genes, which means increasing a lot

the level of complexity of the analysis, no strong assumptions on the expression

probability distributions have been done. In fact, the characteristic function of

a microarray game relays completely on the observed experimental gene expres-

sion matrix. The very relevant assumption in this context, is the definition of

the causality relation (also called sufficiency principle) which incorporates the

criterium used to establish whether the expression levels of genes in a coalition

are associated or not with the biological condition of interest.

All the information on genes associations stored in the characteristic function

of a microarray game can be successively exploited to quantitatively resume the

role of each gene in each possible coalition by means of the application of solution

concepts for cooperative games. The second novelty of the approach presented in

this thesis is based on this idea of application of solution concepts to microarray

games, and on the strong connection between game theory and the property

driven approach commonly used for studying the properties of solution concepts.

As I pointed out in the general introduction on cooperative game theory, the



11

property driven characterization of solution concepts has abundantly been used

in Game Theory, attempting to investigate the real extent of the theory and to

contextualize its potential applications.

Usually, the interpretation of the results obtained by classical statistical pro-

cedures are strongly dependent from the theoretical model used for the analysis

or from strong assumptions about the reference population from which the sam-

ples are collected. The property driven approach offers the possibility to over-

turn this view: only weak assumptions on the population are needed and what

is strongly outlined a priori are the boundaries for a plausible interpretations of

the results. In the game theoretical approach, the result is the outcome of a so-

lution concept applied to a microarray game built on a gene expression matrix.

Its interpretation is contextualized ex-ante by means of sound basic properties,

that have to be satisfied by a numerical representation of the role played by each

gene in associating the expressions of coalitions with the condition of interest.

This view is particular valuable in the genomic field, which is still a relatively

young research topic, and the evidences to support strong hypothesis on the

reference populations or the application of sophisticated mathematical models

are still far from to be clear. These considerations are, in my opinion, effec-

tively resumed by the following sentence, in Stöltzner (2004): if a field is still

provisional in its basic concepts, and experience with models is fragmentary,

the property driven method is able to act as a controlling instance and steering

device for further exploration.

On the other hand, it is not possible to neglect the fact that gene expression

is a stochastic, or “noisy”, process (Elowitz (2002), Swain (2002)). Besides

the biological noise, microarrays data, as any other experimental process, are

subject to random experimental noise. As a consequence, since a microarray

game is inferred from gene expression data, a microarray game itself follows a

stochastic law. Therefore, I felt the necessity to introduce microarray games

in an alternative way, supported by inference arguments, with the objective to

assess the effects of the random variability on the observed results of the game

theoretical analysis.

Summing up, the class of microarray games and the methods for their anal-

ysis, constitute the core of this work. Their intrinsic simple structure was the

main reason that convinced me to focus my efforts on their analysis. On the

other hand, it is possible that some aspects of the real phenomenon that I was
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going to investigate were missed due to the same reason. To catch such aspects,

one possibility could be to make the models a bit more sophisticated, and the

preliminary study on new classes of gene expression based games is the present

direction of my work and the conclusion of my dissertation.

1.3.1 A brief summary of the following chapters

Next sections 1.4 and 1.5 introduce some preliminaries on cooperative games

and on microarray data analysis, respectively.

Chapter 2 is based on Moretti et al. (2004), where the class of microarray

games has been introduced. Via a dichotomization technique applied to gene

expression data, it is constructed a game whose characteristic function takes

values on the interval [0, 1]. The objective of such a game is to stress the

relevance (‘sufficiency’) of groups of genes in relation to a specific biological

condition or response of interest (e.g. a disease of interest). It has been discussed

the possibility of applying game-theoretical tools that can take into account the

relationships which exist among genes, like the Shapley value. The highest

Shapley values of the game should point to the most influential genes, so that

it could be useful as a hint for pointing at the genes that mostly deserve further

investigation. A property driven characterization of the Shapley value with a

genetic interpretation is also provided in order to contextualize and justify the

use of the Shapley value as relevance index for genes.

Chapter 3 is based on Moretti (2006). It has been presented a statistical

framework aimed at estimating the accuracy of the observed genes relevance

index and a procedure to test the null hypothesis of no differences in terms

of relevance index for genes studied in samples regulated by different biological

conditions. The first goal of Chapter 3 is to answer the question on how accurate

are the relevance estimates provided by the Shapley value applied on games

introduced in Chapter 2. That question is the prelude for the second subject

of this chapter, i.e. comparing the relevance of genes under different biological

conditions or responses.

Chapter 4 is still in a germinal form and contains many directions on which

I am presently working. In Section 4.1, an alternative model based on minimum

cost spanning tree representation of gene expression data has been introduced.

One of the main characteristics of this model is the possibility to avoid the

dichotomization technique required for microarray games introduced in Chapter
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2. In Section 4.2, the connections between microarray games and the class

prediction problem have been also presented. Finally, in Section 4.3, it has

been introduced an overview of analysis performed on gene expression data of

neuroblastoma samples that is still in progress and that I am doing using the

game theoretical tools presented in the previous chapters.

Finally, note that all the algorithms presented in this dissertation and other

procedures used in the analysis of expression data have been implemented using

the statistical programming language R (R Development Core Team (2004)),

and available on request.

1.4 Preliminary notations on cooperative games

Now, let us introduce some basic game theoretical notations. A cooperative

game with transferable utility or TU-game, also known as coalitional game with

transferable payoff, is a pair (N, v), where N denotes the finite set of players

and v : 2N → IR the characteristic function, with v(∅) = 0. Often we identify

a TU-game (N, v) with the corresponding characteristic function v. A group of

players T ⊆ N is called a coalition and v(T ) is called the value of this coalition.

A TU-game (N,w) such that w : 2N → [0, 1] is called a [0, 1]-game. We will

denote the class of all [0, 1]-games as W, with W ⊂ G, being G the class of all

TU-games (N, v).

Let C ⊆ G be a subclass of TU-games. Given a set of players N , we denote

by CN ⊆ G the class of TU-games in C with N as set of players.

The unanimity game (N,uR) based on the unanimity set R ⊆ N is the

game described by uR(T ) = 1 if R ⊆ T and uR(T ) = 0, otherwise. Every

TU-game (N, v) can be written as a linear combination of unanimity games in

a unique way, i.e. v =
∑

S⊆N,S 6=∅ λS(v)uS (see for instance Owen (1995)). The

coefficients (λS(v))S∈2N\{∅} are called unanimity coefficients or dividends of the

game (N, v).

A TU-game (N, v) is monotonic if for all S, T ⊆ N , S ⊆ T implies that

v(S) ≤ v(T ).

Let i ∈ N . For each S ⊆ N \ {i}, the quantity mi(v, S) = v(S ∪ {i})− v(S)

is the marginal contribution of player i to coalition S. A TU-game (N, v) is

convex if for all i ∈ N and all S, T ⊆ N \ {i}, S ⊆ T implies that

mi(v, S) ≤ mi(v, T )). (1.1)
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An allocation (xi)i∈N of a TU-game (N, v) is a vector in IRN describing the

payoffs of the players, where player i ∈ N receives xi.

An one-point solution for a class C of TU-games is a function ψ that assigns

a payoff vector ψ(v) to every TU-game in the class, that is ψ : CN → IRN .

The most famous one-point solution in the theory of cooperative games with

transferable utility is the Shapley value, introduced by Shapley (1953). To have

a basic idea about the Shapley value, suppose that all the players are arranged in

some order, all orderings being equally likely. The Shapley value φi of the game

(N, v) ∈ GN , for each i ∈ N , is defined as the expected marginal contribution,

over all orderings, of player i to the set of players who precede him. Since for

each S ⊆ N \ {i} there are precisely (s−1)!(n−s)!
n! orderings in which players in

S precede player i, than the Shapley value φi applied to game (N, v) ∈ GN can

be calculated by the general formula

φi(v) =
∑

S⊆N :i∈S

(s− 1)!(n− s)!

n!
mi(v, S)) (1.2)

for each i ∈ N , where s = |S| and n = |N | are the cardinality of coalitions S

and N , respectively.

An alternative representation of the Shapley value can be given in terms of

the unanimity coefficients (λS(v))S∈2N\{∅} of a game (N, v), that is:

φi(v) =
∑

S⊆N :i∈S

λS(v)

s
(1.3)

for each i ∈ N .

Another one-point solution for cooperative games with transferable utility

is the Banzhaf value, introduced by Banzhaf (1965). The Banzhaf value βi(v)

of a game (N, v) ∈ GN , is defined as follows

βi(v) =
∑

S⊆N :i∈S

1

2n−1
mi(v, S), (1.4)

for each i ∈ N .

A common characteristics of the Banzhaf value and of the Shapley value of

a game (N, v) is that both one-point solutions belong to the class of allocations

which can be obtained via the general formula

εi(v) =
∑

S⊆N :i∈S

pi(S)mi(v, S), (1.5)
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where p(S), for each S ∈ 2N \ {∅}, is the probability that a player i ∈ S

joins the other players in S \ {i} to form coalition S. So, εi(v) is the average

marginal contribution of player i ∈ N with respect to all the possible coalitions

in which player i can enter. If p(S) is assumed to be the same for each coalition

S ∈ 2N \ {∅}, then p(S) = 1
2n−1 , and the definition of the Banzhaf value by

formula (1.4) is obtained. If p(S) is assumed to be dependent from S, one choice

could be assume that p(S) = (s−1)!(n−s)!
n! , and the definition of the Shapley value

by formula (1.2) is obtained. Of course, other probability distributions on the

set of all coalitions can be used in order to define different one-point solutions.

Finally, a particular set, possibly empty, of allocations of a TU-game (N, v)

is the core, which is defined as follows:

core(v) = {x ∈ IRN |
∑

i∈S

xi ≥ v(S) ∀S ∈ 2N \ {∅};
∑

i∈N

xi = v(N)}.

1.5 Preliminary notations on microarray data

analysis

Let G = {1, 2, . . . , n} be a set of n genes, SR = {1, 2, . . . , r} be a set of r

reference samples, i.e. the set of cells from normal tissues and, finally, let SD =

{1, 2, . . . , d} be the set of d cells from tissues with a biological condition or

response of interest (e.g. a disease).

The goal of a microarray experiment is to associate to each sample j ∈

SR ∪ SD an expression profile (aij)i∈G, i.e. aij ∈ IR represents the relative ex-

pression value of the gene i in sample j with respect to the reference sample.

Globally, such expression values will be indicated as the data set of the microar-

ray experiment. In the following we will refer to the data set resulting from the

pre-processed method usually called normalization (Dudoit et al.(2001), Smith

and Speed (2003)), which allows for comparison among expression intensities

of genes from different samples. The data set can be expressed in the form

of two expression matrices ASR = (Aj)j∈SR and ASD = (Aj)j∈SD , where the

index here represents a column, i.e. a sample, where the column Aj is the ex-

pression profile on G of sample j. In summary, we will denote as a microarray

experimental situation (MES) the tuple E =< G,SR, SD, A
SR , ASD >.

As the first step of our analysis, we are interested in understanding whether

genes in each sample in SD are abnormally expressed with respect to the expres-
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sion values showed in SR according to a certain discriminative criterium. For

example, we could refer to the set of abnormally expressed genes in a sample

as the set of over (under) expressed genes in that sample, or the union of over

expressed and under expressed genes in that same sample .

We need to introduce useful notation to deal with abnormally expressed

genes. Note that gene i ∈ G which results abnormally expressed on a sample

j ∈ SD can be represented setting to 1 the value of a boolean variable bij . We call

abnormal expression profile the vector Bj = (bij)i∈G. A discriminant method

can be expressed as a map m assigning to each expression profile from tumor

samples a corresponding abnormal expression profile. Hence, all the information

on the differences of gene expression of sample in SD from the ones of sample in

SR can be represented via an abnormal expression matrix BE,m ∈ {0, 1}G×SD .

Since for our purposes the relevant information is contained in the abnormal

expression matrix BE,m, in the sequel we identify the MES E and the discrimi-

nant method m with the matrix BE,m. Sometimes, unless otherwise clear from

the context, we will also refer to a boolan matrix B ∈ {0, 1}G×SD as an abnor-

mal expression matrix which has been calculated applying some discriminant

method m to some MES E.

Example 1 Consider an MES E =< G,SD, SR, A
SD , ASR > such that ASR is

reported in the following table

sample 1 sample 2 sample 3 sample 4

gene 1 0.4 0.2 0.3 0.6

gene 2 12 10 4 5

gene 3 8 13 20 9

gene 4 0 -0.5 1.4 1.1

and ASD is given in the following one

sample 1 sample 2 sample 3

gene 1 0.9 0.4 0.7

gene 2 4.6 15 18

gene 3 7 21 12

gene 4 0.1 -0.4 1.6
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Note that also negative values are possible. This is due to the fact that, usually,

in literature the data set of a microarray experiment is presented in terms of the

logarithm of the relative gene expression ratios, i.e, gene expression in the target

sample / gene expression in the reference sample. Consequently, a positive

number indicates a higher gene expression in the target sample than in the

reference one, whereas a negative number indicates a lower expression in the

target sample.

Now consider a very naive discriminant method m for the two classes 1 and

0, where 1 labels abnormally expressed genes and 0 labels normally genes and

such that

(m(Aj , ASR))i =















1 if Aji ≥ maxj∈{1,...,|SR|}A
SR
ij or Aji ≤ minj∈{1,...,|SR|}A

SR
ij

0 otherwise.

Then the corresponding abnormal expression matrix is the following

BE,m =













1 0 1

0 1 1

1 1 0

0 0 1













.
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Chapter 2

The class of Microarray

games and the relevance

index for genes

2.1 Introduction

Aim of this chapter is to address the problem of quantifying the relative rel-

evance of genes in a complex scenario - such as the pathogenesis of a genetic

disease - on the basis of the information provided by microarray experiments,

and taking into account the interaction level of each subgroup of genes.

In analyzing gene-gene relationships in microarray data, the main difficulty

is the impossibility to obtain, trough pre-processing data analysis, a total elim-

ination of the technical and biological bias. For this reason, in our approach we

refer to the observed average interaction level of a group of genes, i.e., the aver-

age number of tumor samples in which such a group of genes can be considered

responsible, according to a pre-defined causality principle, for the onset of the

tumor: the higher is the number of samples observed, the lower is the proba-

bility that chance could affect the inferences provided by the model. The basic

idea of this model comes from the theory of cooperative games with transferable

utility (TU-games). In particular we considered the framework of simple games,

which have been widely applied to the analysis of the power of players in interac-

19
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tion situations as Councils, Parliament, etc. (Owen (1995), Shapley and Shubik

(1954), Banzhaf (1965)). We adopted the same formal language of TU-game

for modelling the interaction among genes, considered as players, in relation to

the pathogenesis of a genetic disease, e.g., a tumor. The game we considered

origins from the comparison of two matrixes of gene expression data; one from

tumor samples and the other from normal DNA (referent healthy subjects). We

first used a discriminant method on each sample to split the whole set of genes

in two sets, i.e., those genes showing an expression ratio largely different from

normal samples, and those with expression levels corresponding to normal DNA

samples. At this preliminary stage of the model, for each single gene, as in detail

explained in Section 1.5, we used the interval boundaries containing most data

in the normal distribution of that gene as cut-offs for discrimination (Becquet

et al.(2002)). We then introduced a causality relation (also called sufficiency

principle) which directly determines the characteristic function of the game. An

interpretation of the biological meaning of a relevance index, used for measuring

the “power” of each gene in inducing the tumor, has been given and it turned

out to coincide with the Shapley value of the game considered.

In Section 2.2 the class of microarray games is introduced starting from the

general notion of the sufficiency principle, and some basic properties and exam-

ples of such games are reported. In Section 2.3 an axiomatic characterization

of the Shapley value is given by means of five properties suitable to genetic

interpretation of this index. Section 2.4 concludes with some considerations on

related works and future research.

2.2 Interaction among genes

In this phase of the analysis we assume that the abnormal expression profile Bj ,

for each sample j ∈ SD, is a sufficient conditions for the onset of the disease (or

another biological condition or response of interest) in individuals from which

samples in SD are collected (sufficiency principle for groups of genes). Stated

differently, a group of genes A ⊆ G which are abnormally expressed in a sample

of SD (according to a discriminant methodm applied to the reference expression

matrix ASR) implies that an individual whose sample has at least all (possibly

many more, due to biological and technical bias affecting the data set) genes
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in G abnormally expressed (again on the basis of m and ASR) should have the

disease.

One could wonder why a microarray experiment can show -as it usually

happens- different groups of abnormally expressed genes in different tumor sam-

ples.

We attempt to provide an answer to such a question with arguments coming

from different directions.

One is dealing with biology: it is in fact likely that early stages of car-

cinogenesis involve metabolic paths which are controlled by different groups of

genes.

Another reason is technical: a microarray experiment can be affected by

many sources of noise (Parmigiani et al.(2003), Smith and Speed (2003)) and this

unwanted variability can affect the measurement of expression values. Despite

the reduction of variability in microarray experiments has been the objective of

several works in the last few years, in practice the likely misclassification of some

genes considered as abnormally expressed cannot be avoided, due to technical

uncertainty.

The arbitrariness of methods used for the discriminant analysis should also

be considered, i.e. the structure of the sufficient groups can be easily biased by

a bad choice of the discriminant method.

The aim of this work is to give an answer to the following questions: how

much relevant for the onset of a tumor are the genes which are abnormally

expressed inside the sample SD? Is it possible to provide a measure of the

power of genes in determining the onset of the tumor in an individual, on the

basis of the information collected via samples SD and SR and the discriminant

method m used?

Consider for instance a MES Ē =< G,SD, SR, A
SD , ASR > and a discrimi-

nant method m such that the corresponding abnormal expression matrix is

BĒ,m =













1 1 1

0 0 0

1 1 1

0 0 0













. (2.1)

On the basis of matrix (2.1) it seems very reasonable to affirm that on the

basis of the information collected ASR and the discriminant method used m,
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all the genes abnormally expressed have the same power in causing the tumor,

assuming the principle of sufficiency for groups of abnormally expressed genes

introduced before.

On the other hand, it could be reasonable to expect experimental situations

where there are many abnormal expression profiles inside the sample SD, like

in the abnormal expression matrix of Example 1 and Example 2.

Example 2 Consider again the MES E of Example 1 and a more conservative

discriminant method m̄ such that

(m̄(Aj , ASR))i =















1 if Aji ≤ p
25%
i or Aji ≥ p

75%
i

0 otherwise.

The resulting abnormal expression matrix is the following

BE,m̄ =













1 0 1

1 1 1

1 1 0

0 1 1













.

where p25%i and p75%i are the 25th and the 75th percentiles of the expression

distribution of gene i (i.e. the ith row) in the reference expression matrix ASR ,

for each i ∈ G.

How to deal with these situations?

Given an MES E =< G,SD, SR, A
SD , ASR > and a discriminant method m,

first we determined the average number of individuals with the tumor due to

the abnormal expression of a given group of genes. Of course we calculated such

average values on the basis of the information provided by the pair < E,m >,

that is, for each group A ⊆ G, we looked at the number of groups of abnormal

expressed genes in BE,m that are included in A. We formalize such a concept

via the following definitions (in the following BE,m(j) will be the column j,

j ∈ {1, . . . , |SD|}, of the abnormal expression matrix BE,m).

Definition 1 Let v ∈ {0, 1}n, n ∈ {1, 2, . . .}. We define the support of v

denoted by sp(v) the set

sp(v) = {i ∈ {1, . . . , n} | vi = 1}.
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Example 3 Consider the abnormal expression matrix BE,m of Example 1.

Then sp(BE,m(1)) = {1, 3}, sp(BE,m(2)) = {2, 3} and sp(BE,m(3)) = {1, 2, 4}.

Definition 2 Let E =< G,SD, SR, A
SD , ASR > be an MES and let m be a

discriminant method. We define the average number of individuals with tumor

determined by the genes in G, for each T ∈ 2G \ {∅} as the value

v(T ) =
|Θ(T )|

|SD|
(2.2)

where |Θ(T )| is the cardinality of the set

Θ(T ) = {k ∈ {1, . . . , |SD|} | sp(B
E,m(k)) ⊆ T, sp(BE,m(k)) 6= ∅} (2.3)

and v(∅) = 0.

Now, the definition of the corresponding TU-game should be clear:

• the set of players is the set of genes G;

• the characteristic function is the average number of individuals with tumor

determined by the genes T , for each T ∈ 2G \ {∅}.

More formally

Definition 3 Let E =< G,SD, SR, A
SD , ASR > be an MES and let m be a

discriminant method. We define the corresponding microarray game as the TU-

game (G, v), where v is defined as in Definition 2.

Remark 1 Condition sp(BE,m(k) in relation (2.3) is due to practical consid-

erations concerning the interpretation of the sufficiency principle for groups of

genes on samples where genes do not show any abnormal expression properties.

We are assuming that the contribution of such a sample in increasing the level

of association between the abnormal expression of genes in S and the disease

(or another condition of interest) is null, for each coalition S ⊆ N .

The class of microarray games will be denoted with the symbolM. Let E =<

G,SD, SR, A
SD , ASR > be an MES and let m be a discriminant method. Ac-

cording to equality (2.2), an equivalent way to calculate the corresponding mi-

croarray game v is as a sum of unanimity games as follows

v =
1

|SD|

∑

j∈{1,...,|SD|}

usp(BE,m(j)), (2.4)
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where usp(BE,m(j)) is the unanimity game on sp(BE,m(j)) ⊆ G, for each j ∈

{1, . . . , |SD|}.

Alternatively, it is possible to rewrite equation (2.4) in terms of the unanimity

coefficients of a microarray game v. Let λ̄S ∈ {0, 1, 2, . . .} be the number of

occurrences of the coalition S as support in the abnormal expression matrix

BE,m. In formula

v =
1

|SD|

∑

S⊆N :S 6=∅

λ̄SuS . (2.5)

where λ̄S = |{k ∈ {1, . . . , |SD|} s.t. sp(B
E,m(k)) = S, sp(BE,m(k)) = ∅}|.

Example 4 Consider again the abnormal expression matrix BE,m of Example

1 By equation 2.4 the corresponding microarray game ({1, 2, 3, 4}, v) is such

that

v =
1

3

(

u{1,3} + u{2,3} + u{1,2,4}
)

.

It follows that v(∅) = v({1}) = v({2}) = v({3}) = v({4}) = v({1, 2}) =

v({1, 4}) = v({2, 4}) = v({3, 4}) = 0; v({1, 3}) = v({2, 3}) = v({1, 3, 4}) =

v({2, 3, 4}) = v({1, 2, 4}) = 1
3 ; v({1, 2, 3}) =

2
3 , v({1, 2, 3, 4}) = 1.

It is easy to check that microarray games are [0, 1]-games.

At this point, the major fundamental question addressed by our work can be

formulated in the following terms: is it possible to employ the standard theory

of TU-games to measure the expected relevance of each gene in determining the

onset of tumor on the basis of the microarray experimental situation and the

discriminant method used?

For instance, we can calculate the Shapley value of a microarray game. In the

last fifty years, many studies have addressed the goal of evaluating the power

of players (e.g. members of councils, voters in an electoral systems, parties

in a parliament etc.) (see for instance Owen (1995)), which are TU-games

whose characteristic function can only assume values 1 (for winning coalitions,

i.e. coalitions which are able to force the endorsement of a motion) or 0 (for

loosing coalitions). In such contexts, the idea was to evaluate the amount of

power of players according to the role covered by each of them in supporting

the goal of each possible coalition. There, the Shapley value (Shapley (1953),

Shapley and Shubik (1954)), as well as many other solutions for TU-games,

have been interpreted as power index for players (Shapley and Shubik (1954),

Banzhaf (1965)).
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On the other hand, even if the Shapley value has been proved to be very

meaningful in political applications, it cannot be taken for granted the same

significance in the microarray context.

The next examples show the behavior of the Shapley value on some particular

instances of microarray.

Example 5 The Shapley value of the microarray game in Example 4 is ( 5
18 ,

5
18 ,

1
3 ,

1
9 ). This means that on the basis of the corresponding MES E and the

discriminant method m the Shapley value of the microarray game states that

the most important attribute in determining the tumor onset - on the average

- is gene 3, followed by genes 1 and 2 with the same score and gene 4.

Example 6 The Shapley value of the microarray game corresponding to the

abnormal expression matrix in Example 2 is ( 29 ,
1
3 ,

2
9 ,

2
9 ). On the basis of the

considerations detailed in Example 5, we obtain that the most important gene

in determining the tumor onset, on the average, is gene 2, followed by gene 1, 3

and 4 with the same score.

Example 7 Consider again the abnormal expression matrix (2.1). The Shapley

value of the corresponding microarray game is ( 12 , 0,
1
2 , 0).

Example 8 We introduce here a preliminary application of our model on a

real MES Ec =< G,SD, SR, A
SD , ASR > where ASD and ASR represent the

tumor/normal data set (freely obtainable on the web site1) containing expres-

sion levels of a set G of 2000 genes measured using Affymatrix oligonucleotide

microarrays for a set SD of 40 tumor samples and a set SR of 22 normal samples

of colon tissues. After the preprocessing stage performed by the Bioconductor

specific software for microarray analysis (Gentleman et al.(2004)), we applied

the discriminant method m introduced in Example 1 in order to provide the

abnormal expression matrix BEc,m, which finally produces the corresponding

microarray game (G, vc).

In the following Table, the first ten genes with highest Shapley value 2 on

the microarray game (G, vc) have been indicated.

1http://microarray.princeton.edu/oncology/affydata/index.html
2We computed the Shapley value of the microarray game (G, vc) by means of the procedure

suggested by equation (1.3), implemented in the programming language R (R Development

Core Team (2004)). Also the discriminant methods and other procedures for the manage-

ment of data sets used in this application have been implemented using the language and

environment R.
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Gene Gene Name Shapley

Number ×(10−3)

Z50753 H.sapiens mRNA for GCAP-II/ 3.83

uroguanylin precursor

H17434 NUCLEOLIN (HUMAN) 3.56

H06524 GELSOLIN PRECURSOR, PLASMA (HUMAN) 3.34

H72234 DNA-(APURINIC OR APYRIMIDINIC SITE) 3.33

LYASE (HUMAN)

M36634 Human vasoactive intestinal peptide (VIP) 3.23

mRNA, complete cds.

U06698 Human neuronal kinesin heavy chain mRNA, 3.21

complete cds.

H61410 PLATELET GLYCOPROTEIN IV (H. sapiens) 3.14

R39209 HUMAN IMMUNODEFICIENCY VIRUS TYPE I 3.13

ENHANCER-BINDING PROTEIN 2 (H. sapiens)

M58050 Human membrane cofactor protein (MCP) 3.09

mRNA, complete cds.

H08393 COLLAGEN ALPHA 2(XI) CHAIN (H. sapiens) 3.01

The complete distribution of the Shapley value on the genes is depicted in

Figure 1.

Some of the genes selected were previously observed to be associated with the

colon cancer (Fujarewick and Wiench (2003)): the vasoactive intestinal peptide

(VIP), has been suggested to promote the growth and proliferation of tumor

cells; the membrane cofactor protein (MCP) represents a possible mechanism

of the ability of the tumor to evade destruction by the immune system (tumor

escape); gelsolin is protein which acts as both a regulator and an effector of

apoptosis, i.e. the mechanism responsible for the physiological deletion of cells.

DNA-apurinic or apyrimidinic site lyase protein plays an important role in DNA

repair and in resistance of cancer cells to radiotherapy (Moler et al.(2000)).

For comparison, we computed on the corresponding microarray game also

another very famous solution: the Banzhaf value (Banzhaf (1965)). The com-

mon genes in the top ten of Shapley value and Banzhaf value have been indicated

in bold.
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Figure 2.1: Shapley value of genes in a real MES.

The previous examples show a reasonable behavior of the Shapley value in

measuring the relevance of each gene in determining the tumor onset. Further-

more, to support the idea that the Shapley value is a good estimator of the

relevance of each gene, in the next section we provide a new axiomatic charac-

terization of this solution satisfying properties which have a nice interpretation

in the gene scenario.

We end this section with some properties of microarray games.

Proposition 1 Let < G,SD, SR, A
SD , ASR > and m be an MES and a dis-

criminant method, respectively, and let v be the corresponding microarray game

inMG. Then v is a super-additive, monotone and convex TU-game.

Proof Super-additivity and monotonicity follow directly from the fact that

unanimity games are super-additive and monotone and by equation (2.5) mi-

croarray games are positive linear combination of unanimity games.

It is easy to check that Convexity follows analogously from convexity of

unanimity games. First, note that for an unanimity game uS , S ⊆ N , the

marginal contribution uS(T ) − uS(T \ {i}) can be 0 or 1, for each i ∈ N and

each T ∈ 2N \ {∅} such that i ∈ T . If i ∈ N \ S, then uS(T )− uS(T \ {i}) = 0.

On the other hand, by definition of unanimity game, if i ∈ S then the following
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statement:

uS(T )− uS(T \ {i}) = 1⇒ uS(R)− uS(R \ {i}) = 1

holds for each R, T such that T ⊆ R ⊆ N and i ∈ T . Hence, it remains to prove

equation (1.1) on game uS .

Again, convexity of v follows immediately by equation 2.5, since for each

T ⊆ R ⊆ N \ {i} and each i ∈ N

v(T ∪ {i})− v(T ) =
1
|SD|

∑

S⊆N :S 6=∅ λ̄V uV (T ∪ {i})−
1
|SD|

∑

S⊆N :S 6=∅ λ̄V uV (T ) =
1
|SD|

∑

S⊆N :S 6=∅ λ̄V
(

uV (T ∪ {i})− uV (T )
)

≤
1
|SD|

∑

S⊆N :S 6=∅ λ̄V
(

uV (R ∪ {i})− uV (R)
)

=

v(R ∪ {i})− v(R),

where λ̄S = |{k ∈ {1, . . . , |SD|} s.t. sp(B
E,m(k)) = S}|.

2.3 An axiomatic characterization of the Shap-

ley value with genetic interpretation

In order to characterize the Shapley value by means of properties with genetic

interpretation, the definition of partnership of genes takes a basic role.

Definition 4 Let v ∈MN . A coalition S ∈ 2N \ {∅} such that for each T ( S

and each R ⊆ N \ S

v(R ∪ T ) = v(R)

is a partnership of genes in the microarray game v.

The worth v(S) of a partnership of genes S represents the maximum average

number of onsets of the tumor that genes in the partnership are able to deter-

mine in the population, whatever the interaction of its genes with the others

outside the partnership may be. Note that the concept of partnership in TU-

games has been introduced in Kalai and Samet (1988) in a general context not

involving genes.
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Remark 2 Let v ∈MN and let S ∈ 2N \ {∅} be a partnership in v. Then it is

trivial to prove that each T ⊆ S is a partnership itself.

Let v ∈ MN . A maximal partnership S ∈ 2N \ {∅} in v is a maximal subset of

N with the property to be a partnership in v.

We denote by P(v) the set of all the maximal partnerships in v. Note that, by

Definition 4, it immediately follows that all one player coalitions are partnerships

in v. One easily obtains that the collection of maximal partnerships in v forms a

partition of N . For instance, in the microarray game ({1, 2, 3, 4}, v) of Example

4 P(v) = {{1}, {2}, {3}, {4}} and coincides with set of all the partnerships in

v; whereas in the microarray game of Example 7 P(v) = {{1, 3}, {2, 4}}.

Some interesting properties for solutions of microarray games, which are

related to the concept of partnership of genes, are the following.

Let F :MN → IRN be a solution on the class of microarray games.

Property 1 Let v ∈ MN . The solution F has the Partnership Rationality

(PR) property, if
∑

i∈S

Fi(v) ≥ v(S)

for each S ∈ 2N \ {∅} such that S is a partnership of genes in the game v.

The PR properties determines a lower bound of the power of a partnership,

i.e. the total relevance of a partnership of genes in determining the onset of the

tumor in the individuals should not be lower than the average number of cases

of tumor enforced by the partnership itself.

Property 2 Let v ∈MN . The solution F has the Partnership Feasibility (PF)

property, if
∑

i∈S

Fi(v) ≤ v(N)

for each S ∈ 2N \ {∅} such that S is a partnership of genes in the game v.

On the contrary of PR, the PF properties determines an upper bound of

the power of a partnerships, i.e. the total relevance of a partnership of genes

in determining the tumor onset in the individuals should not be greater than

the average number of cases of tumor enforced by the grand coalition, which is

always 1.
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Property 3 Let v ∈ MN . The solution F has the Partnership Monotonicity

(PM) property, if

Fi(v) ≥ Fj(v)

for each i ∈ S and each j ∈ T , where S, T ∈ 2N \ {∅} are partnerships of genes

in v such that S ∩ T = ∅, v(S) = v(T ), v(S ∪ T ) = v(N), |S| ≤ |T |.

The PM property is very intuitive: consider two disjoint partnerships of

genes enforcing the same average number of cases of tumor in the set of samples.

If the genes outside the union of those two partnerships are irrelevant - that is

they do not contribute in increasing the average number of tumors - then genes

in the smaller partnership should receive a higher relevance index than genes in

the bigger one.

The next two properties do not involve the concept of partnership of genes.

Property 4 3 Let v1, . . . , vr ∈ M
N . The solution F has the Equal Splitting

(ES) property, if

F (

∑r
i=1 vi
r

) =

∑r
i=1 F (vi)

r
.

Remark 3 Note that
∑r
i=1 vi
r

∈MN .

Moreover, if BEi,m
1 , . . . ,BEr,m

r are r abnormal expression matrix with the

same number of columns and v1, . . . , vr ∈M
N are the corresponding microarray

games, then
∑r
i=1 vi
r

coincides with the microarray game corresponding to the ab-

normal expression matrix obtained juxtaposing the matrices BEi,m
i , . . . ,BEr,m

r .

To prove these facts a cumbersome notation is needed. So, we prove it in

detail only for r = 2.

Let k, l, p ∈ N and let ⊕ : IRk×l × IRk×p → IRk×(l+p) be a matrix operator

such that if A ∈ IRk×l and B ∈ IRk×p, then A ⊕ B = C is such that Ci = Ai

for each i ∈ {1, . . . , l} and Cj+l = Bj for each j ∈ {1, . . . , n}.

Let AEA,m ∈ {0, 1}k×l and BEB ,m ∈ {0, 1}k×p be two abnormal expression

matrix arising from the application of a given discriminant method m on two

different microarray experimental situations on the same set of genes G and the

same set of reference samples SR, with |G| = k, and where l and p are the cardi-

nality of the respective sets of tumor samples. Consider vA, vB ∈ M
N the two

3Assuming the continuity of F , it can be proved, using functional equation theory, that

the ES property is equivalent to the simpler property of requiring that F satisfies F ( v+w
2

) =
F (v)+F (w)

2
for each pair v, w ∈ MN .
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corresponding microarray games, respectively obtained from AEA,m and BEB ,m

by Definition 3. It is easy to check that the game vA+vB
2 is the microarray game

corresponding to the abnormal expression matrix
⊕p

i=1A
EA,m ⊕

⊕l
i=1B

EB ,m.

Therefore, if l = p, the microarray game vA+vB
2 corresponds to AEA,m⊕BEB ,m.

For r > 2 similar arguments hold too.

The ES property underlies a principle of equivalence of reliability levels

for microarray games arising from equal splitting of the same MES. Let <

G,SD, SR, A
SD , ASR > be an MES and let SD1

, . . . , SDm
form a partition of the

set of samples SD such that |SD1
| = |SD2

| = · · · = |SDm
|. If the ES property

holds, then the relevance index computed on the microarray game correspond-

ing to < G,SD, SR, A,A
SD , ASR > equals the average of the relevant indices

computed on the microarray games arising from the microarray experimental

situations < G,SD1
, SR, A

SD1 , ASR >, . . . , < G, SDm
, SR, A

SDm , ASR >, re-

spectively; differently stated, the relevance index is independent from the equal

splitting partition {SD1
, . . . , SDm

} chosen.

The last property involves the definition of null player of a game (N, v), that

is a player i ∈ N such that v(S ∪ i) = v(S) for each S ⊆ N \ {i}.

Property 5 Let v, w ∈ MN . The solution F has the Null Player (NP) prop-

erty, if for each null player i ∈ N

Fi(v) = 0.

The interpretation of the NP property is straightforward: if a player does

not contribute anything to each coalition S ∈ 2N then he gets null relevance.

Remark 4 It is well known in literature that the Shapley value satisfies the

NP property on each class of TU-games CN ⊆ GN . The ES property directly

follows from Remark 3 together with additivity and homogeneity of the Shapley

value φ on GN , that is φ(αv + βw) = αφ(v) + βφ(w) for each v, w ∈ GN .

Lemma 1 Let v ∈ MN and let S ∈ 2N \ {∅} be a maximal partnership in v.

Then the Shapley value attributes the same relevance index to players in S.
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Proof Let φ(v) be the Shapley value on the game v. For each U ⊆ N such

that i ∈ U the marginal contribution of player i ∈ S is the following

v(U)− v(U \ {i})

= v([U ∩ S] ∪ [U \ S])− v([(U ∩ S) \ {i}] ∪ [U \ S])

=















v(U \ S)− v(U \ S) if U ∩ S 6= S

v(U)− v(U \ S) if U ∩ S = S

=















0 if U ∩ S 6= S

v(U)− v(U \ S) if U ∩ S = S,

where the second equality follows by Definition 4 on partnership S.

Then, the marginal contribution of each player i ∈ S to coalition U is dif-

ferent from zero only if S is a subset of U , which means that by equation (1.2)

the Shapley value of player i is

∑

U⊆N :i∈U
(u−1)!(n−u)!

n! (v(U)− v(U \ {i}))

=
∑

U⊆N :S⊆U
(u−1)!(n−u)!

n! (v(U)− v(U \ S)),

for each i ∈ S, proving that the Shapley value is the same for each player i ∈ S.

Lemma 2 Let v ∈ MN and let S ∈ 2N \ {∅} be a maximal partnership in v.

Then

v(U) = 0

for each U ( S.

Proof Suppose on the contrary v(U) 6= 0. Then, by Definition 3, v(R ∪ U) >

v(R) for each R ⊆ N \ U , which yields a contradiction by Definition 4.

Proposition 2 The Shapley value satisfies the properties PM, PR, PF.

Proof Let v ∈MN and let φ(v) be the Shapley value on the game v.
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i) Let S and T two disjoint partnerships such that v(S) = v(T ) and v(S ∪

T ) = v(N).

If S and T are subsets of the same maximal partnership, then their Shapley

index is the same by Lemma 1, and PM is directly satisfied.

If S and T are subsets of two different maximal partnerships U and V ,

respectively, then S = U and T = V . In fact, suppose on the contrary

that S ⊂ U or T ⊂ V . By condition v(S) = v(T ) and Lemma 2 we have

v(S) = v(T ) = 0, and then, by definition 3, it follows v(S ∪ T ) 6= v(N),

which yields a contradiction.

We still have to prove PM when S and T are two maximal partnerships.

By condition v(S ∪ T ) = v(N) and Definition 3, it turns out that v(U) =

v(U ∩ (S ∪ T )) for each U ⊆ N . By Lemma 2 and Definition 4 v(R) = 0

for each R ⊆ S∪T , with S, T * R. Hence, it is possible to write the game

v in terms of unanimity games in the following way

v =
1

|SD|

(

v(S)(uT + uS) + v(N)uS∪T
)

,

where SD is the number of samples in the corresponding MES. Finally, by

equation 1.3, φi =
v(S)
|S| + v(N)

|S|+|T | for each i ∈ S and φj =
v(S)
|T | +

v(N)
|S|+|T | for

each j ∈ T , which concludes the proof of the PM property of the Shapley

value.

ii) The convexity of microarray games by Proposition 1 guarantees that the

Shapley value φ(v) is in the core of the microarray game v. The PR

property follows directly from intermediate rationality of core allocations.

iii) For each S ∈ 2N \ {∅} such that S is a maximal partnership in v, by

monotonicity of v and the fact that φ(v) is in the core of the microarray

game v we have
∑

i∈S φi(v) ≥ v(S) ≥ 0. On the other hand, by efficiency

of the Shapley value,
∑

i∈N φi(v) = v(N) and then
∑

i∈S φi(v) ≤ v(N),

which proves that the Shapley value satisfies the PF property.

Theorem 1 Let be given a finite set N . The Shapley value on the class MN

of microarray games is the unique relevance index which satisfies the properties

PR, PF, PM, ES and NP.
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Proof We already know by Proposition 2 and Remark 4 that the Shapley value

satisfies the five properties PR, PF, PM, ES and NP. To prove the uniqueness

consider a map ψ :MN → IRN satisfying PR, PF, PM, ES and NP.

Consider the unanimity game (N,uS) ∈ M
N , where S ∈ 2N \ {∅}. First

note that players j ∈ N \ S are null players. Then by NP property, ψj(uS) = 0

for each j ∈ N \ S.

Moreover, it is easy to see that S is a maximal partnership in uS . Then by

Lemma 2, for each pair of nonempty sets U,W ⊆ S such that U ∩W = ∅ and

U ∪W = S, uS(U) = uS(W ) = 0 and uS(U ∪W ) = uS(S) = uS(N). Since PM

property holds for ψ, then ψi(uS) = ψj(uS) for each i, j ∈ S.

It follows that
∑

i∈S ψi(uS) = |S|ψk(uS), with k ∈ S. By PR |S|ψk(uS) ≥ 1

and, by PF |S|ψk(uS) ≤ 1. Hence, ψk(uS) =
1
|S| for each k ∈ S and ψk(uS) = 0

for each k ∈ N \ S.

Finally, we have

ψ(v) = ψ
(

∑

S⊆N:S 6=∅ λ̄SuS
∑

S⊆N:S 6=∅ λ̄S

)

= 1
∑

S⊆N:S 6=∅ λ̄S

∑

S⊆N :S 6=∅ λ̄Sψ(uS)

= 1
|SD|

∑

S⊆N :S 6=∅ λ̄Sψ(uS) =
1
|SD|

∑

S⊆N :S 6=∅
λ̄S
|S| ,

(2.6)

where λ̄S = |{k ∈ {1, . . . , |SD|} : sp(BE,m(k)) = S}|, SD is the set of sam-

ples of an MES corresponding to v (note that
∑

S⊆N :S 6=∅ λ̄S = |SD|), the first

equality follows by equation (2.5) and the second one by the ES property,.

According to equation (1.3), it has been proved that ψ(v) = φ(v), where

φ(v) is precisely the Shapley value on the microarray game v.

2.4 Discussion

In this chapter we introduced an application of cooperative TU-games to gene

expression analysis related with disease onset. An axiomatic characterization

of the Shapley value aimed at identifying a relevance index for genes has been

also presented.

As far as we know, cooperative game theory has been previously used in gene

analysis in a recent work by Kaufman et al.(2004) as an application of the Multi-

perturbation Shapley value Analysis (MSA) (Keinan et al.(2004)). The aim of
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that work was to identify the importance in terms of causal responsibility of some

genes in performing a certain function in yeast cells. In their approach, Kaufman

et al.(2004) evaluate the worth of each coalition as a measure of the biological

system’s performance for a certain function (e.g. the ability of the system to

survive the UV irradiation). In order to obtain such a worth for each coalition,

they carried out a series of experiments where genes of each different subset

of n genes were perturbed concomitantly; on each experiment the performance

score was also measured and the score assigned to the corresponding subset of

perturbed genes, finally obtaining a TU-game. For 2n experiments were needed

to obtain a TU-game, implying the impossibility to deal with the complete

structure of the game, both for practical and computational reasons, authors

suggested two complementary approaches: a) the use of mathematical predictors

on the available data set to predict the missing performance scores (Doudoit

and Fridlyand (2003), Golub et al.(1999)); b) limiting the focus to one and two

dimensional interactions (Grabish and Roubens (1999), Keinan et al.(2004)).

In our application setting, where samples of tumoral individuals are involved,

of course we cannot imagine to perform such perturbation experiments. More-

over, from the computational point of view, the procedure to obtain the Shapley

value of a microarray game is very simple to be implemented. On the other hand,

the interpretation of the Shapley value as a measure of the functional causal con-

tribution of genes in a biological system, as provided by Kaufman et al.(2004)

seems to corroborate our interpretation of the Shapley value as indicator of the

relevance of genes in tumor onset.

Finally, note that an axiomatic characterization of the Shapley value with

the axioms PR, PF, PM, NP, together with the additivity property (see for

instance Shapley (1953)) holds on the more general class of TU-games which

are a positive linear combination of unanimity games.
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Chapter 3

Statistical analysis of the

Shapley value for

microarray games

3.1 Introduction

In Chapter 2, a game theoretical approach, based on a cooperative game in coali-

tional form with the set of genes as set of players, has been used to describe the

strength of each subgroup (coalition) of genes in provoking a condition of inter-

ests and, as a consequence, to incorporate in the successive analysis all possible

genes interaction links related with the condition. On the class of microarray

games, an operative definition of relevance index for genes has been provided

in terms of the well known Shapley value (Shapley (1954)) and the biological

justification of its use has been circumstantiated via a new axiomatic charac-

terization. Since gene expression is a stochastic, or “noisy”, process (Elowitz

(2002), Swain (2002)) and a microarray game is defined on a gene expression

data-set, a microarray game itself follows a stochastic law. For this reason, given

an expression data-set of genes under a condition of interest, in Chapter 2 the

estimates of genes relevance in provoking the condition have been attained by

the Shapley value of the corresponding microarray game, which is defined as

the average game across all the observed single sample based games.

37



38

The first goal of this chapter is to answer the question on how accurate are

the relevance estimates provided in Chapter 2. That question is the prelude

for the second subject of this work, i.e. comparing the relevance of genes under

different biological conditions or responses, for instance two different sub-types

of tumors, or two different treatments etc. In practice, we present an algorithm

to perform statistical inference based on the sampling distributions of the sample

statistic of microarray games and the corresponding statistic of Shapley values.

Section 3.3 describes how to estimate, from the information provided by

a microarray experiment, the average game in the population of cells/samples

under the same biological condition. Section 3.4 introduce the Shapley value

distribution on the population of cells under the same biological condition, and

shows that a good estimate of the average Shapley value in the population of

cells is the Shapley value of a microarray game.

Section 3.3 and 3.4 together introduce the statistical framework to set up the

bootstrap based algorithm presented in Section 3.5. The basic idea of Bootstrap

(Efron (1979); see also Efron and Gong (1983) Efron and Tibshirani (1993)) is

to use re-sample techniques to collect information about the shape, center, and

spread of the sampling distribution of the statistic of interest. This idea is par-

ticularly valuable when it is not possible to assume a given model describing

the gene expression distributions in the population and, consequently, it is not

possible to calculate the parameter of the corresponding sampling distribution.

This is the case of many microarray experiments where gene expression distribu-

tions present high heterogeneity (see for example Grant et al. (2002) concerning

the Golub et al. (1999) leukemia data set). The problem is even more com-

plex dealing with transformations of the gene expression distributions, as in

the present study, where the statistics of microarray games must be considered.

The problem of simultaneous comparison of thousands of null hypothesis is also

tackled in Section 3.5.

Section 3.6 is dedicated to the application of the bootstrap based method

presented in Section 3.5 to the analysis of the well studied 38 leukemia sam-

ples data-set published by Golub et al. (1999). Section 3.7 concludes the work

with some remarks on genes found significant from the application described in

Section 3.6.
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3.2 Preliminary notations

To help the reader in following the argumentations of this chapter, we collect

here the required basic definitions introduced in Chapter 2. Let v ∈ {0, 1}n,

n ∈ {1, 2, . . .}. We define the support of v denoted by sp(v) the set

sp(v) = {i ∈ {1, . . . , n} | vi = 1}.

Let B ∈ {0, 1}n×k, n, k ∈ {1, 2, . . .}, be a boolean matrix. We define the

microarray game corresponding to B as the TU-game (N, v̄) such that N =

{1, . . . , n} and v̄ : 2N → IR+ is such that for each T ∈ 2N \ {∅}, v̄(T ) is the

number of occurrences of the coalition T as a superset of the supports in the

abnormal expression matrix B, in formula

v̄(T ) =
|Θ(T )|

k
(3.1)

where |Θ(T )| is the cardinality of the set

Θ(T ) = {j ∈ {1, . . . , k} | sp(Bj) ⊆ T, sp(Bj) = ∅}

and v̄(∅) = 0. Equivalently, the game (N, v̄) can be represented via the relation

v̄(S) =
∑

j=1,...,k

usp(Bj)(S)

k
(3.2)

for each S ∈ 2N \∅, where (N,usp(Bj)) is the unanimity game on the set sp(Bj).

The class of microarray games will be denoted with the symbolM.

Example 9 Consider the boolean matrix B ∈ {0, 1}4×3 such that

B =













1 0 1

0 1 1

1 1 0

0 0 1













.

Then sp(B(1)) = {1, 3}, sp(B(2)) = {2, 3} and sp(B(3)) = {1, 2, 4}. By equa-

tion 3.2 the corresponding microarray game ({1, 2, 3, 4}, v) is such that

v =
1

3

(

u{1,3} + u{2,3} + u{1,2,4}
)

.

It follows that v(∅) = v({1}) = v({2}) = v({3}) = v({4}) = v({1, 4}) =

v({2, 4}) = v({1, 2}) = v({3, 4}) = 0; v({1, 3}) = v({2, 3}) = v({1, 3, 4}) =

v({2, 3, 4}) = v({1, 2, 4}) = 1
3 ; v({1, 2, 3}) =

2
3 , v({1, 2, 3, 4}) = 1.

The Shapley value of the microarray game ({1, 2, 3, 4}, v) is ( 5
18 ,

5
18 ,

1
3 ,

1
9 ).
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Let k be the number of cells/arrays. After the application of specific proce-

dure aimed to remove bias and to normalize gene expressions, the data set which

results from a microarray experiment consists of an expression value matrix of

n rows (genes) and k columns (cells / biological samples). Once that the appli-

cation of the discriminant method used to establish whether a gene i shows the

expression property a or not in sample j is performed, for each j ∈ {1, . . . , k}

and i ∈ {1, . . . , n}, the original data set is transformed in a data set that can be

represented by means of an abnormal boolean matrix B ∈ {0, 1}n×k, where the

Bij = 1 if gene i in the sample j shows the expression property a, and Bij = 0

otherwise, for each i ∈ {1, . . . , n} and j ∈ {1, . . . , k}.

3.3 Microarray game as estimation of gene as-

sociations

Let N be a set of genes. The goal of this section and of the next one is twofold:

first we want to show how the game theoretical terminology is well suited to

describe the variability of genes properties across different biological conditions

(e.g. normal or tumoral tissues, under pathogenetically distinct tumor types,

under different treatment etc.) in the population of original cells; second, we

want to introduce the probabilistic background that we need to justify the ap-

plication of inferential methods on the statistics provided as the results of the

game theoretical analysis. We are interested in building a TU-game (N, v) where

the characteristic function v assigns to each coalitions S ⊆ N the frequency of

associations of a given biological condition with a given expression property of

genes realized in the coalition S. Different expression properties for genes might

be considered like, e.g., over-expression, up or down regulation, strong variation

etc.

A key issue for the definition of such game (N, v) is an operational defini-

tion of what we mean for associations between a gene expression property and

a biological condition realized in a coalition S ∈ 2N \ {∅}. In Chapter 2 we

introduced an operational definition to find associations, claiming that a suf-

ficient conditions to realize in a coalition S ⊆ N the association between an

expression property and a biological condition of the original cell is that all the

genes which present such expression property in the cell belongs to the coalition

S (sufficiency principle for groups of genes). Said differently, a group of genes



41

S ⊆ N which contains all the genes showing the expression property coded by

a (e.g. abnormal expression) under the biological condition of the original cell

coded by t (e.g. tumoral cell) is said to realize the association between a and t.

We will call the coalitions which realize the association between the expression

property and the biological condition of the original cell a winning coalition.

Note that if m ≤ n is the number of genes showing the expression property a,

the number of winning coalitions is 2n−m.

Things would be much easier if the set of winning coalitions of two cells un-

der the same biological condition would be always the same. On the contrary, a

difference in terms of expression properties of genes across cells under the same

biological condition is usual, mainly due to individual, environmental and tem-

poral variability. Moreover, all the quantitative methods used to establish the

expression property of genes in a cell introduce some bias which affects the deci-

sion process of gene expression attributions. Further, the high complex network

of regulative relations among genes potentially involved in a biological situation

could amplify each single source of error thousands of times. Last but not least,

the gene expression amount is a continuous variable which hypothetically could

assume whatever value across different individuals, then it is not at all easy to

identify good criteria to discriminate between different expression property (in

Appendix we propose a discretization technique for this purpose).

In order to tackle this problem, we assign to each coalition S ∈ 2N \ {∅} the

expected frequency of cells in the population in which such a coalition S is a

winning coalition, in formula

v(S) = F̄S , (3.3)

where F̄S is the expectation of F S , i.e. the probability distribution on the set

{0, 1}, where 1 means that S is a winning coalition and 0 means that S is not.

Note that according to the sufficiency principle and Remark 1, the probability

distribution FS can be calculated as follows

FS(1) = IP ({i ∈ S|Gi = 0} 6= S)IP ({i ∈ N \ S|Gi = 1} = ∅) (3.4)

where Gi, i ∈ {1, . . . , n}, are n (possibly dependent) random variables on the

set {0, 1}, where 1 means that gene i shows the expression property a and 0

means that the gene i does not show the expression property a; consequently,

IP ({i ∈ S|Gi = 0} 6= S) is the probability that at least one gene i ∈ S shows

the expression property under consideration and IP ({i ∈ N \ S|Gi = 1} = ∅) is
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the probability that no genes in N \ S show the same expression property.

Let k be the number of samples/arrays and n be the number of genes. Con-

sider an abnormal boolean matrix B ∈ {0, 1}n×k. For each S ∈ 2N \ {∅} it is

possible to check whether S contains the support sp(Bj), for each j ∈ {1, . . . , k};

so, via matrix B we actually face 2N − 1 random samples of size k (we define

a random sample of size k as a family of k independent and equally distributed

random variables) from the unknown probability distribution F S on the set

{0, 1}, i.e.

XS
1 , X

S
2 , . . . , X

S
k ∼ F

S , (3.5)

for each S ∈ 2N \ {∅}. Having observed via the boolean matrix B the random

sample XS
1 = xS1 , X

S
2 = xS2 , . . . , X

S
k = xSk for each S ∈ 2N \{∅}, with xSj ∈ {0, 1}

for each j = 1, . . . , k, we can compute the sample average x̄S =
∑

j=1,...,k

xSj
n

for

use as an estimate of the expectation of F S . Then, we can define the TU-game

(N, v̄) where for each S ∈ 2N \ {∅}

v̄(S) = x̄S =
∑

j=1,...,k

xSj
k

(3.6)

and v̄(∅) = 0.

Comparing relations (3.2) and (3.6), it is easy to check that (N, v̄) is the

microarray game corresponding to the boolean matrix B as defined in (3.1).

The random sample XS
1 = xS1 , X

S
2 = xS2 , . . . , X

S
k = xSk provides also an

estimate of the accuracy of v̄(S), for each S ∈ 2N \ {∅}, namely

σ̂S =
[ 1

k(k − 1)

k
∑

j=1

(xSj − x̄
S)2

]
1
2

; (3.7)

σ̂S is the estimated standard error of X̄S = x̄S = v̄(S), the mean squared root

of estimation.

Example 10 Consider the expression matrix presented in Table 3.1. Suppose

we are interested in encoding each gene i ∈ {1, . . . , 8} in each cell/biological

sample j, for each j ∈ {1, . . . , 7} according to a gene expression property. Dif-

ferent discretization operators that, given user defined parameters, can be used to

transform each numerical value from continuous gene expression data into one

boolean value per gene expression property, deciding whether the true or the false

value must be assigned to gene i in cell/biological sample j with respect to the ex-

pression property under consideration (Pensa et al. (2004)). Table 3.2 shows a
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1 2 3 4 5 6 7

gene 1 9 0 -1 -3 0 0 8

gene 2 0 -1 -1 7 0 14 -1

gene 3 -1 -1 -2 4 6 10 13

gene 4 -1 0 0 -1 8 14 0

gene 5 1 0 5 10 0 1 -1

gene 6 0 -1 0 -2 13 8 0

gene 7 -1 14 0 7 1 -1 0

gene 8 0 0 -1 -2 0 8 13

Table 3.1: A toy example of microarray expression matrix with n = 8 genes and

k = 7 cells/biological samples collected under the same biological situation.

1 2 3 4 5 6 7

gene 1 1 0 0 0 0 0 1

gene 2 0 0 0 1 0 1 0

gene 3 0 0 0 1 1 1 1

gene 4 0 0 0 0 1 1 0

gene 5 0 0 1 1 0 0 0

gene 6 0 0 0 0 1 1 0

gene 7 0 1 0 1 0 0 0

gene 8 0 0 0 0 0 1 1

Table 3.2: Boolean matrix obtained via Algorithm 2 on the expression matrix

presented in Table 3.1.

possible boolean matrix derived from the expression data in Table 3.1 via the ap-

plication of the dichotomization algorithm described in Appendix A, considering

the gene ‘over-expression’ as gene expression property and setting the param-

eter d equal to 0. The corresponding microarray game ({1, 2, 3, 4, 5, 6, 7, 8}, v̄)

is reported in Table 3.3. Note that already with n = 8 genes, the number of

possible coalitions is 256 (in general 2n), making already difficult the exhaustive

evaluation of the frequency of each coalition of genes in realizing the association

between the expression property and the biological condition considered.

3.4 The Shapley value of a microarray game

In Chapter 2 it has been proposed the Shapley value of a microarray game as

an index suitable to evaluate the role covered by each gene in realizing the as-

sociation between the expression property and the biological condition of the

original cell considered. In order to support this idea, in that chapter a bio-

logically sound axiomatic characterization of the Shapley value on the class of

microarray games has been proposed. This chapter is aimed to show that the

Shapley value of a microarray game is an unbiased estimator of the game on the
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S v̄(S) σ̂S S v̄(S) σ̂S S v̄(S) σ̂S S v̄(S) σ̂S

1 0.1429 0.1429 2 4 7 0.1429 0.1429 2 3 4 6 0.1429 0.1429 1 4 5 6 7 0.4286 0.2020

2 0.0000 0.0000 2 4 8 0.0000 0.0000 2 3 4 7 0.1429 0.1429 1 4 5 6 8 0.2857 0.1844

3 0.0000 0.0000 2 5 6 0.1429 0.1429 2 3 4 8 0.0000 0.0000 1 4 5 7 8 0.4286 0.2020

4 0.0000 0.0000 2 5 7 0.2857 0.1844 2 3 5 6 0.1429 0.1429 1 4 6 7 8 0.2857 0.1844

5 0.1429 0.1429 2 5 8 0.1429 0.1429 2 3 5 7 0.4286 0.2020 1 5 6 7 8 0.4286 0.2020

6 0.0000 0.0000 2 6 7 0.1429 0.1429 2 3 5 8 0.1429 0.1429 2 3 4 5 6 0.2857 0.1844

7 0.1429 0.1429 2 6 8 0.0000 0.0000 2 3 6 7 0.1429 0.1429 2 3 4 5 7 0.4286 0.2020

8 0.0000 0.0000 2 7 8 0.1429 0.1429 2 3 6 8 0.0000 0.0000 2 3 4 5 8 0.1429 0.1429

1 2 0.1429 0.1429 3 4 5 0.1429 0.1429 2 3 7 8 0.1429 0.1429 2 3 4 6 7 0.2857 0.1844

1 3 0.1429 0.1429 3 4 6 0.1429 0.1429 2 4 5 6 0.1429 0.1429 2 3 4 6 8 0.2857 0.1844

1 4 0.1429 0.1429 3 4 7 0.1429 0.1429 2 4 5 7 0.2857 0.1844 2 3 4 7 8 0.1429 0.1429

1 5 0.2857 0.1844 3 4 8 0.0000 0.0000 2 4 5 8 0.1429 0.1429 2 3 5 6 7 0.4286 0.2020

1 6 0.1429 0.1429 3 5 6 0.1429 0.1429 2 4 6 7 0.1429 0.1429 2 3 5 6 8 0.1429 0.1429

1 7 0.2857 0.1844 3 5 7 0.2857 0.1844 2 4 6 8 0.0000 0.0000 2 3 5 7 8 0.4286 0.2020

1 8 0.1429 0.1429 3 5 8 0.1429 0.1429 2 4 7 8 0.1429 0.1429 2 3 6 7 8 0.1429 0.1429

2 3 0.0000 0.0000 3 6 7 0.1429 0.1429 2 5 6 7 0.2857 0.1844 2 4 5 6 7 0.2857 0.1844

2 4 0.0000 0.0000 3 6 8 0.0000 0.0000 2 5 6 8 0.1429 0.1429 2 4 5 6 8 0.1429 0.1429

2 5 0.1429 0.1429 3 7 8 0.1429 0.1429 2 5 7 8 0.2857 0.1844 2 4 5 7 8 0.2857 0.1844

2 6 0.0000 0.0000 4 5 6 0.1429 0.1429 2 6 7 8 0.1429 0.1429 2 4 6 7 8 0.1429 0.1429

2 7 0.1429 0.1429 4 5 7 0.2857 0.1844 3 4 5 6 0.2857 0.1844 2 5 6 7 8 0.2857 0.1844

2 8 0.0000 0.0000 4 5 8 0.1429 0.1429 3 4 5 7 0.2857 0.1844 3 4 5 6 7 0.4286 0.2020

3 4 0.0000 0.0000 4 6 7 0.1429 0.1429 3 4 5 8 0.1429 0.1429 3 4 5 6 8 0.2857 0.1844

3 5 0.1429 0.1429 4 6 8 0.0000 0.0000 3 4 6 7 0.2857 0.1844 3 4 5 7 8 0.2857 0.1844

3 6 0.0000 0.0000 4 7 8 0.1429 0.1429 3 4 6 8 0.1429 0.1429 3 4 6 7 8 0.2857 0.1844

3 7 0.1429 0.1429 5 6 7 0.2857 0.1844 3 4 7 8 0.1429 0.1429 3 5 6 7 8 0.2857 0.1844

3 8 0.0000 0.0000 5 6 8 0.1429 0.1429 3 5 6 7 0.2857 0.1844 4 5 6 7 8 0.2857 0.1844

4 5 0.1429 0.1429 5 7 8 0.2857 0.1844 3 5 6 8 0.1429 0.1429 1 2 3 4 5 6 0.4286 0.2020

4 6 0.0000 0.0000 6 7 8 0.1429 0.1429 3 5 7 8 0.2857 0.1844 1 2 3 4 5 7 0.5714 0.2020

4 7 0.1429 0.1429 1 2 3 4 0.1429 0.1429 3 6 7 8 0.1429 0.1429 1 2 3 4 5 8 0.4286 0.2020

4 8 0.0000 0.0000 1 2 3 5 0.2857 0.1844 4 5 6 7 0.2857 0.1844 1 2 3 4 6 7 0.4286 0.2020

5 6 0.1429 0.1429 1 2 3 6 0.1429 0.1429 4 5 6 8 0.1429 0.1429 1 2 3 4 6 8 0.5714 0.2020

5 7 0.2857 0.1844 1 2 3 7 0.2857 0.1844 4 5 7 8 0.2857 0.1844 1 2 3 4 7 8 0.4286 0.2020

5 8 0.1429 0.1429 1 2 3 8 0.2857 0.1844 4 6 7 8 0.1429 0.1429 1 2 3 5 6 7 0.5714 0.2020

6 7 0.1429 0.1429 1 2 4 5 0.2857 0.1844 5 6 7 8 0.2857 0.1844 1 2 3 5 6 8 0.4286 0.2020

6 8 0.0000 0.0000 1 2 4 6 0.1429 0.1429 1 2 3 4 5 0.2857 0.1844 1 2 3 5 7 8 0.7143 0.1844

7 8 0.1429 0.1429 1 2 4 7 0.2857 0.1844 1 2 3 4 6 0.2857 0.1844 1 2 3 6 7 8 0.4286 0.2020

1 2 3 0.1429 0.1429 1 2 4 8 0.1429 0.1429 1 2 3 4 7 0.2857 0.1844 1 2 4 5 6 7 0.4286 0.2020

1 2 4 0.1429 0.1429 1 2 5 6 0.2857 0.1844 1 2 3 4 8 0.2857 0.1844 1 2 4 5 6 8 0.2857 0.1844

1 2 5 0.2857 0.1844 1 2 5 7 0.4286 0.2020 1 2 3 5 6 0.2857 0.1844 1 2 4 5 7 8 0.4286 0.2020

1 2 6 0.1429 0.1429 1 2 5 8 0.2857 0.1844 1 2 3 5 7 0.5714 0.2020 1 2 4 6 7 8 0.2857 0.1844

1 2 7 0.2857 0.1844 1 2 6 7 0.2857 0.1844 1 2 3 5 8 0.4286 0.2020 1 2 5 6 7 8 0.4286 0.2020

1 2 8 0.1429 0.1429 1 2 6 8 0.1429 0.1429 1 2 3 6 7 0.2857 0.1844 1 3 4 5 6 7 0.5714 0.2020

1 3 4 0.1429 0.1429 1 2 7 8 0.2857 0.1844 1 2 3 6 8 0.2857 0.1844 1 3 4 5 6 8 0.5714 0.2020

1 3 5 0.2857 0.1844 1 3 4 5 0.2857 0.1844 1 2 3 7 8 0.4286 0.2020 1 3 4 5 7 8 0.5714 0.2020

1 3 6 0.1429 0.1429 1 3 4 6 0.2857 0.1844 1 2 4 5 6 0.2857 0.1844 1 3 4 6 7 8 0.5714 0.2020

1 3 7 0.2857 0.1844 1 3 4 7 0.2857 0.1844 1 2 4 5 7 0.4286 0.2020 1 3 5 6 7 8 0.5714 0.2020

1 3 8 0.2857 0.1844 1 3 4 8 0.2857 0.1844 1 2 4 5 8 0.2857 0.1844 1 4 5 6 7 8 0.4286 0.2020

1 4 5 0.2857 0.1844 1 3 5 6 0.2857 0.1844 1 2 4 6 7 0.2857 0.1844 2 3 4 5 6 7 0.5714 0.2020

1 4 6 0.1429 0.1429 1 3 5 7 0.4286 0.2020 1 2 4 6 8 0.1429 0.1429 2 3 4 5 6 8 0.4286 0.2020

1 4 7 0.2857 0.1844 1 3 5 8 0.4286 0.2020 1 2 4 7 8 0.2857 0.1844 2 3 4 5 7 8 0.4286 0.2020

1 4 8 0.1429 0.1429 1 3 6 7 0.2857 0.1844 1 2 5 6 7 0.4286 0.2020 2 3 4 6 7 8 0.4286 0.2020

1 5 6 0.2857 0.1844 1 3 6 8 0.2857 0.1844 1 2 5 6 8 0.2857 0.1844 2 3 5 6 7 8 0.4286 0.2020

1 5 7 0.4286 0.2020 1 3 7 8 0.4286 0.2020 1 2 5 7 8 0.4286 0.2020 2 4 5 6 7 8 0.2857 0.1844

1 5 8 0.2857 0.1844 1 4 5 6 0.2857 0.1844 1 2 6 7 8 0.2857 0.1844 3 4 5 6 7 8 0.4286 0.2020

1 6 7 0.2857 0.1844 1 4 5 7 0.4286 0.2020 1 3 4 5 6 0.4286 0.2020 1 2 3 4 5 6 7 0.7143 0.1844

1 6 8 0.1429 0.1429 1 4 5 8 0.2857 0.1844 1 3 4 5 7 0.4286 0.2020 1 2 3 4 5 6 8 0.7143 0.1844

1 7 8 0.2857 0.1844 1 4 6 7 0.2857 0.1844 1 3 4 5 8 0.4286 0.2020 1 2 3 4 5 7 8 0.7143 0.1844

2 3 4 0.0000 0.0000 1 4 6 8 0.1429 0.1429 1 3 4 6 7 0.4286 0.2020 1 2 3 4 6 7 8 0.7143 0.1844

2 3 5 0.1429 0.1429 1 4 7 8 0.2857 0.1844 1 3 4 6 8 0.4286 0.2020 1 2 3 5 6 7 8 0.7143 0.1844

2 3 6 0.0000 0.0000 1 5 6 7 0.4286 0.2020 1 3 4 7 8 0.4286 0.2020 1 2 4 5 6 7 8 0.4286 0.2020

2 3 7 0.1429 0.1429 1 5 6 8 0.2857 0.1844 1 3 5 6 7 0.4286 0.2020 1 3 4 5 6 7 8 0.7143 0.1844

2 3 8 0.0000 0.0000 1 5 7 8 0.4286 0.2020 1 3 5 6 8 0.4286 0.2020 2 3 4 5 6 7 8 0.7143 0.1844

2 4 5 0.1429 0.1429 1 6 7 8 0.2857 0.1844 1 3 5 7 8 0.5714 0.2020 N 1.0000 0.0000

2 4 6 0.0000 0.0000 2 3 4 5 0.1429 0.1429 1 3 6 7 8 0.4286 0.2020 ∅ 0.0000 0.0000

Table 3.3: The microarray game corresponding to the boolean matrix in Table

3.2.
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entire population of original cells defined in (3.3).

Given a TU-game (N, v) as defined by relation (3.3), from equation (1.2) it

turns out that to calculate the Shapley value of player i ∈ N in v corresponds

to calculate the expected marginal contribution, over all orderings, of gene i

in realizing the association between the expression property and the considered

biological condition of the original cell in the coalition of players who precede

i. On the other hand, note that formula (1.2) is computationally intractable

due to the number coalitions (2n with n = |N |) that must be considered for

each i ∈ N . Luckily, formula (1.3) can be used to reduce the computational

complexity to polynomial dimension in the number of genes n.

Let PT be the probability distribution on the set {0, 1} where 1 means that

all the genes in T show the expression property considered and no genes outside

of T show the same expression property and 0 means that not all the genes in T

show the expression property or at least one gene in N \ T show the expression

property, for each S ∈ 2N \ {∅}. Then, for each S ∈ 2N \ {∅}, the probability

FS(1) can be calculated as follows

FS(1) = IP ({i ∈ S|Gi = 0} 6= S)IP ({i ∈ N \ S|Gi = 1} = ∅)

=
∑

T∈2S\{∅}

(

IP ({i ∈ T |Gi = 1} = T )IP ({i ∈ N \ T |Gi = 1} = ∅)
)

=
∑

T∈2S\{∅} P
T (1).

(3.8)

In fact, IP ({i ∈ T |Gi = 1} = T ) is the probability the exactly all the genes

in T show the expression property under consideration, for each T ∈ 2N \ {∅}.

Moreover, it is easy to see that

F̄S = FS(1) =
∑

T∈2S\{∅} P̄
T , (3.9)

where P̄S is the expectation of the probability distribution P S for each

S ∈ 2N \ {∅}.

Consequently, it is possible to decompose the characteristics function v(S)

for each S ∈ 2N \ {∅} using the basis of unanimity games in such a way that

v =
∑

S∈2N\{∅}

(

P̄SuS
)

, (3.10)

where uS is the unanimity game on coalition S.

Then, via formula (1.3), one can calculate the Shapley value of the game v

as follows

φi(v) =
∑

S∈2N\{∅}:i∈S

P̄S

|S|
, (3.11)
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where |S| is the cardinality of the set S.

In an analogous way to what we presented in the last section, given a boolean

matrix B ∈ {0, 1}n×k corresponding to a microarray experiment with n genes

and k samples, we can check whether sp(Bj) = S, for each S ∈ 2N \ {∅},

finally deriving 2N − 1 random samples of size k from the unknown probability

distribution PS on the set {0, 1}, in formula

ZS1 , Z
S
2 , . . . , Z

S
k ∼ P

S , (3.12)

for each S ∈ 2N \{∅} and with zSj ∈ {0, 1} for each j = 1, . . . , k such that zSj = 1

if in the j-th sample the set of genes which show the expression property under

consideration coincide with S (i.e. sp(Bj) = S) and with zSj = 0 otherwise.

Having observed via the boolean matrix B the random samples ZS
1 = zS1 , Z

S
2 =

zS2 , . . . , Z
S
k = zSk for each S ∈ 2N \{∅}, we can compute the sample average z̄S =

∑k
j=1 z

S
j

k
for use as an estimate of the expectation of P S for each S ∈ 2N \ {∅} .

Since any linear combination of unbiased estimators is unbiased for the same

linear combination of the parameters (by the linearity of the expectations),

an unbiased estimator of the Shapley value φ(v) in the TU-game (N, v) is by

relation (3.11) the following one

φ̄i(v) =
∑

S∈2N\{∅}:i∈S

z̄S

|S|
, (3.13)

for each i ∈ N .

Now, we want to show that the unbiased estimator φ̄i(v) of the Shapley

value in the game (N, v) equals the Shapley value φi(v̄) of the microarray game

(N, v̄). First consider, for each j ∈ {1, . . . , k}, the random variables ZS
j , for

each S ∈ 2N \ {∅} can be transformed to form other random variables Y i
j , for

each i ∈ N , giving a random sample of size k such that

Y i
1 , Y

i
2 , . . . , Y

i
k ∼ Q

i, (3.14)

with Y i
j =

∑

S∈2N\{∅}:i∈S

ZSj
|S| , for each j ∈ {1, . . . , k} and for each i ∈ N .

Remark 5 Note that for each j ∈ {1, . . . , k} and each pair of coalition S, T ∈

2N \ {∅} with S 6= T , the realizations of events ZS
j = 1 and ZTj = 1 are

incompatible, then realizations of Y i
j , for each j ∈ {1, . . . , k} and each i ∈ N ,

take values on the set {1, 12 ,
1
3 , . . . ,

1
n
, 0}.
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As a consequence of Remark 5, Qi is a probability distribution on the set

{1, 12 ,
1
3 , . . . ,

1
n
, 0} such that

Qi(
1

t
) =

∑

S∈2N\{∅}:i∈S,|S|=t

PS(1), (3.15)

for each t ∈ {1, . . . , n}, and Qi(0) = 1−
∑

t∈{1,...,n}Q
i( 1
t
).

Now, having observed the random samples Y i
1 =

∑

S∈2N\{∅}:i∈S
zS1
|S| = yi1, Y

i
2 =

∑

S∈2N\{∅}:i∈S
zS2
|S| = yi2, . . . , Y

i
k =

∑

S∈2N\{∅}:i∈S
zSk
|S| = yik for each i ∈ N , we

can compute the sample average ȳi =
∑k
j=1 y

i
j

k
for use as an estimate of the

expectation of Qi for each i ∈ N . Note that by relation (3.13),

ȳi =
∑

S∈2N\{∅}:i∈S

z̄S

|S|
= φ̄i(v) (3.16)

for each i ∈ N .

Note also that each observation of the random variable Y i
j , for each j ∈

{1, . . . , k}, corresponds to the Shapley value of player i ∈ N in the corresponding

microarray game observed as realizations of the random variables XS
j , for each

S ∈ 2N \ {∅}.

Moreover note that

φi(v̄) =

= φi
(
∑k

j=1

usp(Bj)

k
)
)

=
∑

j∈{1,...,k}:i∈sp(Bj)

(

1
|sp(Bj)|k

)

=
∑k

j=1
1
k

(

∑

S∈2N\{∅}:i∈S

zSj
|S|

)

=
∑k
j=1 y

i
j

k

= φ̄i(v),

(3.17)

for each i ∈ N , where the first equality follows from relation (3.2), the second

one follows from relation (1.3), the third one from Remark 5 and the fourth one

from relation (3.16).

Relation (3.17) means that the estimation of Shapley value φ̄(v) on the TU-

game v coincide with the Shapley value of the microarray game v̄

We can also provide an estimate of the accuracy of φ̄i(v) for each i ∈ N ,

namely

σ̂φ̄i(v) =
[ 1

k(k − 1)

j=1
∑

k

(yij − ȳ
i)2
]
1
2

; (3.18)

σ̂φ̄i(v) for each i ∈ N is the estimated standard error of Ȳ i = ȳi = φ̄i(v).



48

gene i φi(v̄) σ̂φi

gene 1 0.19047619 0.13363062

gene 2 0.06428571 0.03915020

gene 3 0.15952381 0.05526212

gene 4 0.07619048 0.04797486

gene 5 0.17857143 0.13223131

gene 6 0.07619048 0.04797486

gene 7 0.17857143 0.13223131

gene 8 0.07619048 0.04797486

Table 3.4: Shapley value of the microarray game presented in Table 3.3 and its

estimate of the accuracy.

Example 11 Consider the boolean matrix B of Table 3.2 and the corresponding

microarray game (N, v̄) in Table 3.3 of Example 10. The Shapley value of the

microarray game (N, v̄) and its estimated standard error is reported in Table 3.4.

Note that the most relevant gene according to the Shapley value φ(v̄) is gene 1

directly followed by gene 5 and gene 7 with the same relevance and gene 3, with

a lower Shapley value than genes 1,5 and 7. Note that gene 3 has a standard

error much lower than gene 1,5 and 7 (about 33% of its Shapley value against

the 66% of the respective Shapley values for genes 1,5,and 7) so its relevance

index, although a bit smaller, could be more reliable than the higher relevance

index observed on the other genes.

Next section shows that in comparing Shapley values of single genes in microar-

ray games corresponding to different biological conditions of the original cells,

the observed variability of the Shapley value across the biological samples plays

an important role.

3.5 Test statistics

Consider a boolean matrix B ∈ {0, 1}n×k corresponding to a data set from an

expression microarray experiment with n genes and k cells/biological samples

which has been dicretized according to a discriminant method (for example the

algorithm provided in the Appendix).

Suppose that samples can be partitioned in two groups, according to two

different biological conditions of the original cells (let us say condition 1 and

2) where samples are collected. Without loss of generality, let F 1 = {1, . . . , h}

be the group of samples under condition 1 and let F 2 = {h + 1, . . . , k} be the

group of samples under condition 2, for some h ∈ {1, . . . , k − 1}.
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Let BF 1

∈ {0, 1}n×h and BF 2

∈ {0, 1}n×(k−h) be the two matrix obtained

from B such that BF 1

j = Bj for each j ∈ {1, . . . , h} and BF 1

j = Bj+h for each

j ∈ {1, . . . , k − h}.

Let v̄1, v̄2 ∈ M be the microarray games corresponding to the abnormal

expression matrix BF 1

and BF 2

, respectively. Let φ(v̄1) be the Shapley value

on the game v̄1 and let φ(v̄2) be the Shapley value on the game v̄2.

We want to answer the following question: is the Shapley value of the gene i

in determining the association between the expression property under consider-

ation and condition 1 significantly different from the Shapley value of the same

gene i in determining the association between the expression property under

consideration and condition 2, for each i ∈ N?

Consider the following observed difference of Shapley values

δi(φ(v̄
1), φ(v̄2)) := |φi(v̄

1)− φi(v̄
2)|, (3.19)

for each i ∈ N , where φi(v̄
1) is the Shapley value of gene i in the microarray

game corresponding to the boolean matrix BF 1

and φi(v̄
2) is the Shapley value

of gene i in the microarray game corresponding to the boolean matrix BF 2

.

Our goal in this section is to propose a method that can test the null hypoth-

esis that a gene has no differences of Shapley values between the two conditions

1 and 2. In fact we want to test the null hypothesis that δi(φ(v̄
1), φ(v̄2)) = 0

against the alternative hypothesis that δi(φ(v̄
1), φ(v̄2)) 6= 0.

Let PS
1 , for each S ∈ 2N \ {∅}, be the probability distribution on the set

{0, 1} in the population of original cells in condition 1. As we already said in

Section 3, the event 1, which can happen with probability P S
1 (1) = IP ({i ∈

S|Gi = 1} = S)IP ({i ∈ N \ S|Gi = 1} = ∅), means that all the genes in S show

the expression property considered and no genes outside of S show the same

expression property; the event 0 means that not all the genes in S show the

expression property or at least one gene in N \ S show the expression property.

Let PS
2 , for each S ∈ 2N \ {∅}, be the probability distribution on the set {0, 1}

in the population of original cells in condition 2, with an analogous meaning.

Consider the random samples of size h from the unknown probability distri-

bution PS
1 on the set {0, 1}

Z1,S
1 , Z1,S

2 , . . . , Z1,S
h ∼ PS

1 , (3.20)

for each S ∈ 2N \ {∅} and with z1,Sj ∈ {0, 1} for each j = 1, . . . , k such that

z1,Sj = 1 if in the j-th sample the set of genes which show the expression property
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under consideration coincide with S (i.e. if sp(BF 1

j ) = S) and z1,Sj = 0 if

sp(BF 1

j ) 6= S.

Similarly, consider the random samples of size k − h from the unknown

probability distribution P S
2 on the set {0, 1}

Z2,S
1 , Z2,S

2 , . . . , Z2,S
k−h ∼ P

S
2 . (3.21)

for each S ∈ 2N \ {∅} and with z2,Sj ∈ {0, 1} for each j ∈ {1, . . . , k} such

that z2,Sj = 1 if in the j-th sample the set of genes which show the expression

property under consideration coincide with S (sp(BF 2

j ) = S) and z2,Sj = 0 if

sp(BF 2

j ) 6= S.

Then the transformed random samples

Y f,i
1 , Y f,i

2 , . . . , Y f,i
k−h ∼ Q

i
f . (3.22)

introduced in (3.23) are such that Y g,i
j =

∑

S∈2N\{∅}:i∈S

Z
g,S
j

|S| for each j ∈

{1, . . . , k − h}, i ∈ N and f ∈ {1, 2}, and where

Qi
f (

1

t
) =

∑

S∈2N\{∅}:i∈S,|S|=t

PS
f , (3.23)

for each t ∈ {1, . . . , n} and f ∈ {1, 2}.

Suppose that there are no evidences in favor of a priori assumptions concern-

ing neither the parametric nature of probability QS
1 and QS

2 , nor the equality

between the two probability distributions QS
1 and QS

2 under the null hypothesis.

In such a situation we found appropriate to use a test procedure based

on a non parametric bootstrap methods of re-sampling with replacement (see

Efron and Tibshirani (1993), Efron and Gong (1983) as general introduction

to bootstrap methods; see Bickel (2002) as a bootstrap application to microar-

ray analysis), which is able to test the null hypothesis of no difference between

two means of two random samples without assuming under the null hypothe-

sis that the probability distributions in the populations are the same. In this

respect, remember that via relation (3.17), the Shapley value of gene i of the

microarray game corresponding to BF 1

is the mean of the random sample Y 1,i
j ,

j ∈ {1, . . . , h}, and the Shapley value of the microarray game corresponding to

BF 2

is the mean of the random sample Y 2,i
j , j ∈ {1, . . . , k− h}, for each i ∈ N .

We describe the nonparametric approach to estimate the (un-adjusted for

multiple comparisons) p-values in the next algorithm:
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Algorithm 1 (Multiple hypotheses test for Shapley differences)

INPUT: a boolean matrix B ∈ {0, 1}n×k, n, k ∈ {1, 2, . . .}, with n rows (genes)

and k columns (samples); a partition {F 1, F 2} of the set of k samples; an integer

number m of Monte Carlo bootstrap re-samples (with replacement).

OUTPUT: a bootstrap statistics of Shapley value differences for each one of the

n genes; a vector of n (un-adjusted for multiple comparisons) estimated p-values.

step 1 : Compute the observed Shapley value difference δi(φ(v̄
1), φ(v̄2)) for

each i ∈ N ;

step 2 : Fix m as the number of Monte Carlo bootstrap re-samples (with re-

placement).

step 3 : for r : 1 to m
{

step 4.r Let sr,1 = (sr,1j )j∈{1,...,h} ∈ {1, . . . , h}
h and s

r,2 = (sr,2j )j∈{1,...,h}

∈ {1, . . . , k − h}k−h be the vectors representing the r-th bootstrap re-

sample (with replacement) on the cells/biological samples in condition

1 and 2, respectively.

step 5.r Consider the new boolean matrix Bs
r,1

∈ {0, 1}n×h such that

Bs
r,1

j = Bs
r,1
j
for each j ∈ {1, . . . , h} and the boolean matrix Bs

r,2

∈

{0, 1}n×(k−h) such that Bs
r,2

j = Bs
r,2
j
for each j ∈ {1, . . . , h− j}.

step 6.r Compute the bootstrap Shapley value difference

δri (φ(v̄
1
r), φ(v̄

2
r)) :=

∣

∣

(

φi(v̄
1
r)− φ(v̄

1)
)

−
(

φi(v̄
2
r)− φ(v̄

2)
)∣

∣, (3.24)

for each i ∈ N , where v̄1r , v̄
2
r ∈ MG are the microarray games corre-

sponding to the boolean matrix Bs
r,1

and Bs
r,2

, respectively;
}

step 7 : for each i ∈ N , compute the (un-adjusted for multiple comparisons)

estimate Achieved Significance Level (ASL) or p-value pi of each gene

i ∈ N in the following way =

pi =
1

m

∣

∣

∣{r ∈ {1, . . . ,m} : δri (φ(v̄
1
r), φ(v̄

2
r)) ≥ δi(φ(v̄

1), φ(v̄2))}
∣

∣

∣. (3.25)

Remark 6 In order to preserve the ties among genes in each sample, on step

5.r, the entire columns of the boolean matrix B are re-sampled according to the

vectors sr,1 and sr,2 defined on step 4.r, for each r ∈ {1, . . . ,m}.
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Remark 7 Subtracting φ(v̄1r) and φ(v̄2r) in (3.24 from the Shapley values in

the game defined on matrix Bsr,1 and Bsr,2 , respectively, makes the bootstrap

Shapley values correspond to the null hypotheses that δi(φ(v̄
1) = 0 (Efron and

Tibshirani (1993), Bickel (2002)).

Note that the estimated p-values provided by bootstrap methods (with replace-

ment) are less exact than p-values obtained from permutation tests (without

replacement) (see e.g. Dudoit et al.(2002)) but, as we already mentioned, can

be used to test the null hypothesis of no differences between the means of two

statistics (Efron and Tibshirani (1993)) without assuming that the distributions

are otherwise equal (see also Bickel (2002)).

Applying the previous algorithm to a microarray game, thousands of null

hypothesis can be tested separately; so we need to consider the problem of mul-

tiple comparison. In fact, if n is the number of statistical tests, each performed

at level α, if the tests are independent, the expected number of false positive

is αn, which is very large for large n. It is possible to alleviate this problem

by adjusting the individual p-value of the tests for multiplicity. Several meth-

ods have been proposed in literature to tackle this problem (see for a summary

Amaratunga and Cabrera (2004)), mainly assuming independence of the test

statistics. In Algorithm 1, test statistics are likely not independent; in fact they

are statistics on the Shapley value distribution in the population of genes, which

should be representative of the relevance of each gene (interacting with many

others) in determining the association between the genes expression property

of groups of genes and the biological condition of the original cell under con-

sideration. On the other hand the problem of multiplicity is still there, but

to establish its entity is even harder with respect to the case of test statistics

independency.

Moreover, given the very high number of null hypothesis tested in a typi-

cal microarray game, aggressively adjusting the p-values for multiplicity could

seriously impede the ability of the test to find genes with respective relevance

index which are truly different under the two biological conditions at hand.

Traditional statistical procedures often control the family-wise error rate

(FWER), i.e. the probability that at least one of the true null hypothesis is

rejected. Classical p-value adjustment methods for multiple comparisons which

control FWER have been found to be too conservative in analyzing differen-

tial expression in large-screening microarray data, and the False Discovery Rate
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(FDR), i.e. the expected proportion of false positives among all positives, has

been recently suggested as an alternative for controlling false positives (Ben-

jamini and Hochberg (1995), Dudoit et al. (2002)). It is not possible at this

moment to express similar considerations suitable for the game theoretical con-

text in which we are moving.

For all these reasons, in the sequel we separately present the results provided

by our method controlling for the FDR and for the FWER, respectively, facing

the problem of possible dependent statistical tests. One possible approach is

to make estimation for both FDR and FWER using again re-sampling methods

(Bickel (2002), Jain et al. (2005)).

Let V (c) be the average number of bootstrap Shapley value differences equal

to or greater than c, in formula

V (c) =
1

m

m
∑

r=1

∣

∣

∣{i ∈ N : δri (φ(v̄
1
r), φ(v̄

2
r)) ≥ c}

∣

∣

∣, (3.26)

with the convention that the cardinality of the empty set is zero, i.e. |∅| = 0.

Let R(c) be the average number of observed Shapley value differences equal to

or greater than c, in formula

R(c) =
∣

∣

∣{i ∈ N : δi(φ(v̄
1), φ(v̄2)) ≥ c}

∣

∣

∣. (3.27)

The simplest way to estimate FDR at the a threshold value c is obtained via

the following relation (Bickel (2002), Jain et al. (2005))

F̂DR(c) =
V (c)

R(c)
, (3.28)

to control the estimated FDR at a level ε, let γ be the minimum value of

δi(φ(v̄
1), φ(v̄2)) for which F̂DR(δi(φ(v̄

1), φ(v̄2))) ≤ ε and reject the j-th null

hypothesis if δi(φ(v̄
1), φ(v̄2)) ≥ γ.

For what concerns controlling the FWER, as we already said different ap-

proach have been proposed. Here we present a method to adjust the p-values

obtained in step 7 of Algorithm 1 according to a procedure introduced in Bickel

(2002). For each i ∈ N , consider the adjusted p-value p̃i defined as follows

p̃i =
1

m

∣

∣

∣{r ∈ {1, . . . ,m} : maxj∈N
(

δrj (φ(v̄
1
r), φ(v̄

2
r))

)

≥ δi(φ(v̄
1), φ(v̄2))}

∣

∣

∣;

(3.29)

given the FWER α′, reject the i-th null hypothesis if p̃i ≤ α
′.
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1 2 3 4 5 6 7

gene 1 9 -1 8 0 -3 0 1

gene 2 7 14 -1 -2 0 0 -1

gene 3 -1 -2 -1 4 6 10 13

gene 4 0 8 14 -1 -1 0 0

gene 5 5 1 10 0 0 1 -1

gene 6 13 0 8 0 0 -1 -2

gene 7 1 14 7 0 0 -1 -1

gene 8 8 0 13 0 -2 -1 0

Table 3.5: Another toy example of microarray expression matrix with n = 8

genes and k = 7 samples and the same expression values as in Table 3.1.

1 2 3 4 5 6 7

gene 1 1 0 1 0 0 0 0

gene 2 1 1 0 0 0 0 0

gene 3 0 0 0 1 1 1 1

gene 4 0 1 1 0 0 0 0

gene 5 1 0 1 0 0 0 0

gene 6 1 0 1 0 0 0 0

gene 7 0 1 1 0 0 0 0

gene 8 1 0 1 0 0 0 0

Table 3.6: Boolean matrix obtained by the application of Algorithm 2 to the

expression matrix in Table 3.5.

Example 12 Consider another toy example of microarray expression matrix

with n = 8 genes and k = 7 samples Note that the expression vector of each gene

i ∈ {1, . . . , 8} takes the same values of the corresponding i-th expression vector

in Table 3.1 (in other terms, the values in the i-th row, for each i ∈ {1, . . . , 8}, in

Table 3.1 are obtained as a permutations of the values in the i-th row in Table

3.1. So, no genes con be considered abnormally expressed with respect their

expression profiles in Table 3.1 and 3.5, respectively. Following the terminology

used in this section, we will refer to this new situation as the condition 2, whereas

the situation introduced in Example 10 will be referred as condition 1.

If we apply the same discriminant method used in Example 10 on Table 3.1,

i.e. Algorithm 2 described in Appendix A with the same input parameters, we

find the same cutoffs used to obtain the Boolean matrix in Table 3.2. Given the

new form of the expression matrix in Table 3.5, the corresponding boolean matrix

will be the one presented in Table 3.6. We escape the presentation of the table

representing the microarray game corresponding to the new boolean matrix in

Table 3.6. Instead we directly present, the table of the Shapley values and their

estimated standard errors in Table 3.7. Comparing the respective Shapley value

for each gene i ∈ {1, . . . , 8} in Tables 3.4 and 3.7, it is interesting to see that in
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gene i φi(v) σ̂φi

gene 1 0.05238095 0.03181045

gene 2 0.07619048 0.04797486

gene 3 0.57142857 0.18898224

gene 4 0.07142857 0.04636239

gene 5 0.05238095 0.03181045

gene 6 0.05238095 0.03181045

gene 7 0.07142857 0.17857143

gene 8 0.05238095 0.07619048

Table 3.7: Shapley value of the microarray game corresponding to the boolean

matrix presented in Table 3.6 and its accuracy.

gene i p-value

gene 1 0.364

gene 2 0.838

gene 3 0.032

gene 4 0.939

gene 5 0.420

gene 6 0.746

gene 7 0.444

gene 8 0.715

Table 3.8: Un-adjusted for multiple comparisons p-values obtained by Algorithm

1 applied to the microarray expression matrix presented in Table 3.1 and 3.5.

this new situations only genes 2 and 3 increase their respective Shapley values.

Gene 3 increases its Shapley value of about four times even if its expression

vector is exactly the same of Table 3.1 (expression values for row 3 in Table 3.1

have not been permuted in Table 3.5).

Applying the test method described in Algorithm 1 to the boolean matrix

in Table 3.6 with 1000 re-samples, we estimated the table of (un-adjusted for

multiple comparisons) p-values presented in Table 3.8

Performing the control of the estimated FDR as introduced in relation (3.28)

at a level ε = 0.05, the unique null hypothesis of no Shapley value differences

between condition 1 and 2 that can be rejected is the one for gene 3. The

same conclusion is inferred performing the control for the adjusted p-values as

introduced in relation (3.29) at a FWER α′ = 0.05.

3.6 Analysis of real data

This section is devoted to the presentation of the results from the application of

Algorithm 1 to the gene expression data-set (3051 genes and 38 tumor mRNA

samples, 27 acute lymphoblastic leukemia (ALL) cases and 11 acute myeloid
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leukemia (AML)) from the leukemia microarray study of Golub et al. (1999).

Pre-processing was done as described in Dudoit et al. (2002), implemented by

the R Development Core Team (2004) code in the Bioconductor packagemulttest

(Gentleman et al. (2204)).

The resulting real-valued expression matrix (3051 rows, 38 columns) has

been dichotomized according to Algorithm 2 described in Appendix A. Sorting

the real-valued expression data of each gene (see step 2 in Algorithm 2), it has

been observed that many genes presented at most three very low values with

respect the average expression. One consequence was that the thresholds for

binarization selected by Algorithm 2 took the position very close to the big jump

corresponding to such low-bound outliers. For this reason, it has been decided

to exclude the three lowest value of each row in the application of Algorithm 2

and hence to set the low-bound outliers parameter d = 3. Thresholds selected by

Algorithm 2 for nine genes have been presented in Figure 3.1. The output from

the application of Algorithm 2 was stored in a boolean matrix B ∈ {0, 1}3051×38.

Algorithm 1 has been applied to the boolean matrix B, with the partition

{F 1, F 2} of the 38 samples such that all the 11 AML samples belong to the set

F 1 and the remaining 27 ALL samples belong to the set F 2. The number of

bootstrap re-samples with replacement was m = 1000. Figure 3.2 shows, for

five genes, the histograms of the Shapley values observed in the two classes of

samples and the corresponding bootstrap statistic of Shapley differences.

Figure 3.3 shows the QQ plot of the observed Shapley value differences and

the expected Shapley value differences produced by Algorithm 1. The graph

shows 70 genes whose difference in terms of Shapley values is greater than

0.0004614116 and 77 genes whose difference in terms of Shapley values is lower

than −0.0004614116, for a total number of 147 genes which corresponds to the

number of rejected null hypothesis when the estimated FDR is controlled at a

level 0.05, according with relation (3.28).

Figure 3.4 shows the plotting of the corrected p-values controlling the FWER

at a level of 0.05 using the procedure introduced via relation (3.29). The set of

40 null hypothesis rejected in this case is a subset of the set of 147 rejected null

hypothesis controlling the estimated FDR at level 0.05. In Table 3.9 are reported

details for the identification of the 40 genes corresponding to the rejected null

hypothesis controlling the FWER at the level of 0.05, together with the Shapley

value observed in the game built on the 11 AML samples (fourth column),
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the Shapley value observed in the game built on the 27 ALL samples (fifth

column) and the corresponding adjusted p-value provided by the FWER control

at the level 0.05. Similar information is provided in Table 3.10, concerning the

remaining 107 rejected null hypothesis when the control is performed on the

estimated FDR at a level of 0.05.

The Shapley values distributions observed in the two sample groups have

been plotted in Figure 3.5.

3.7 Discussion

In this chapter, a new method to analyze the relevance of genes in the mech-

anisms which provoke a biological condition or a response of interest has been

described, based on the game theoretical model introduced in Chapter 2. The

main novelty of the approach, with respect the model of Chapter 2, is that the

present method considers the stochastic process governing the gene expression

observations and its level of influence in determining differences of the observed

relevance index of genes under two distinct biological conditions or responses of

interest.

An application of the method to the gene expression data set from the

leukemia microarray study by Golub et al. (1999) is presented.

Preliminary examination of the literature concerning the role of the signifi-

cant genes presented in Table 3.8 provides evidence of the effective capacity of

Algorithm 2 in selecting genes with an effective role in pathogenesis of subtypes

of leukemia. For example, over-expression of the TCL1 oncogene has been shown

to play a causative role in T cell leukemias of humans and mice (Narducci et

al. (2002). IFI 16 gene product is a nucleoprotein expressed in association with

the differentiation of myeloid precursor cell lines (Dawson and Trapani (1995)).

Other genes were already known as leukemia markers. As already observed

by Golub et al. (1999), CD33 and MB-1 encode cell surface proteins for which

monoclonal antibodies have been demonstrated to be useful in distinguishing

lymphoid from myeloid lineage cells.

Other markers of hematopoietic lineage provided in Table 3.8, observed again

by Golub et al. (1999) and related to cancer pathogenesis, are Cyclin D3, which

encodes proteins critical for S-phase cell cycle progression, and zyxin, which

encodes proteins for adhesion.
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SPTAN1 is involved in secretion and it interacts with calmodulin in a calcium-

dependent manner and has been indicated as good marker for ALL in two studies

using gene expression data to distinguish subtypes of leukemia (Armstrong et

al. (2002), Tan et al. (2005)).

LYN is an oncogene and Hasegawa et al. (2001) proved that the expression of

Cd19, which is also in Table 3.8, is required for the development of autoimmunity

in Lyn deficient mice. Note that the Shapley value of LYN is 0.000729 in the

AML microarray game and it is 0 in the ALL microarray game, whereas the

Shapley value of Cd19 is more or less the opposite with respect to LYN.
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3.8 Figures and Tables
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Figure 3.1: Sorted expression values (on the y-axis) corresponding to 38 sam-

ples (labels on the x-axis) for nine genes of the Golub et al. (1999) data-set.

Dichotomization thresholds (y-coordinate of circles placed on the right vertical

straight line) have been selected by Algorithm 2. Real-valued expressions which

are strictly lower than the threshold have been labelled by 0, whereas expression

values higher than or equal to the threshold have been labelled by 1. Values on

the left side of the index labelled by the left vertical straight line have not been

taken into account in the algorithmic computation of the thresholds.
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Figure 3.2: In the first two columns of the figure, the histograms of the Shapley

values observed for genes in AML and ALL samples, respectively, have been

given, for five genes. The last column shows the corresponding histograms of

Shapley value differences obtained via the bootstrap procedure described in

Algorithm 1 under the null hypothesis of no difference between the Shapley

values computed under the two conditions AML and ALL. The vertical straight

line indicates the mean of the respective distributions.
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ID Gene name Gene code Shapley value in

AML samples

Shapley value

in ALL sam-

ples

Adjusted

p-value

1 FAH Fumarylacetoacetate M55150 at 0.000939 0 0

2 Cytoplasmic dynein light chain 1 (hdlc1) mRNA U32944 at 0 0.000925 0

3 Leukotriene C4 synthase (LTC4S) gene U50136 rna1 at 0.000937 0 0

4 Zyxin X95735 at 0.001142 0 0

5 CCND3 Cyclin D3 M92287 at 0 0.000896 0.001

6 CD22 CD22 antigen X59350 at 0.000105 0.000981 0.001

7 Interleukin 8 (IL8) gene M28130 rna1 s at 0.001039 0.000132 0.001

8 MYL1 Myosin light chain (alkali) M31211 s at 0 0.000898 0.001

9 CYSTATIN A D88422 at 0.000935 8.86E-05 0.002

10 GLUTATHIONE S-TRANSFERASE, MICROSOMAL U46499 at 0.000935 8.08E-05 0.002

11 PROTEASOME IOTA CHAIN X59417 at 0 0.000852 0.002

12 INTERLEUKIN-8 PRECURSOR Y00787 s at 0.001039 0.000174 0.002

13 DF D component of complement (adipsin) M84526 at 0.000832 0 0.003

14 Phosphotyrosine independent ligand p62 for the Lck SH2 domain mRNA U46751 at 0.000829 0 0.003

15 Small Nuclear Ribonucleoprotein, Polypeptide C, Alt. Splice 2 HG1322-

HT5143 s at

0.000204 0.001021 0.004

16 Inducible protein mRNA L47738 at 0.000207 0.001013 0.005

17 PEPTIDYL-PROLYL CIS-TRANS ISOMERASE, MITOCHONDRIAL PRE-

CURSOR

M80254 at 0.000829 4.56E-05 0.007

18 GB DEF = (lambda) DNA for immunoglobin light chain D88270 at 0 0.000764 0.01

19 ATP6C Vacuolar H+ ATPase proton channel subunit M62762 at 0.000935 0.000168 0.01

20 MB-1 gene U05259 rna1 at 0 0.000764 0.01

21 CD19 gene M84371 rna1 s at 0 0.000764 0.01

22 DHPS Deoxyhypusine synthase U26266 s at 0.00021 0.000975 0.01

23 ANPEP Alanyl (membrane) aminopeptidase (aminopeptidase N, aminopep-

tidase M, microsomal aminopeptidase, CD13)

M22324 at 0.000837 7.87E-05 0.011

24 MAJOR HISTOCOMPATIBILITY COMPLEX ENHANCER-BINDING

PROTEIN MAD3

M69043 at 0.000928 0.000171 0.011

25 Dihydropyrimidinase related protein-2 U97105 at 0.000305 0.001061 0.013

26 Interferon-gamma induced protein (IFI 16) gene M63838 s at 0.00031 0.001054 0.017

27 LYN V-yes-1 Yamaguchi sarcoma viral related oncogene homolog M16038 at 0.000729 0 0.021

28 CD33 CD33 antigen (differentiation antigen) M23197 at 0.000729 0 0.021

29 IGB Immunoglobulin-associated beta (B29) M89957 at 0 0.000726 0.021

30 CTSD Cathepsin D (lysosomal aspartyl protease) M63138 at 0.000723 0 0.023

31 SPTAN1 Spectrin, alpha, non-erythrocytic 1 (alpha-fodrin) J05243 at 0.000423 0.001144 0.025

32 GB DEF = Neurotensin receptor X70070 at 0.000928 0.000207 0.025

33 TCL1 gene (T cell leukemia) extracted from H.sapiens mRNA for Tcell

leukemia/lymphoma 1

X82240 rna1 at 0 0.000722 0.025

34 KIAA0097 gene D43948 at 0 0.000718 0.026

35 NF-IL6-beta protein mRNA M83667 rna1 s at 0.000829 0.000129 0.035

36 ALDR1 Aldehyde reductase 1 (low Km aldose reductase) X15414 at 0.000407 0.001106 0.036

37 Gal-beta(1-3/1-4)GlcNAc alpha-2.3-sialyltransferase X74570 at 0.00104 0.000339 0.036

38 Spermidine/spermine N1-acetyltransferase (SSAT) gene U40369 rna1 at 0.000829 0.000132 0.038

39 KIAA0200 gene D83785 at 0.000104 0.000798 0.039

40 Nuclear factor NF45 mRNA U10323 at 0.000205 0.000895 0.045

Table 3.9: Genes with adjusted p-values for FWER control lower than 0.05.
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Figure 3.3: QQ plot of the observed Shapley value differences and the expected

Shapley value differences produced by Algorithm 1. Null hypothesis of genes

with observed Shapley values difference outside the interval between the two

horizontal straight lines have been rejected controlling the FDR at the level

0.05.
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ID Gene name Gene code Shapley value in

AML samples

Shapley value

in ALL sam-

ples

Adjusted

p-value

41 TCF12 Transcription factor 12 (HTF4, helix-loop-helix transcription factors

4)

M83233 at 0 0.000671 0.075

42 Transcription factor (CBFB) mRNA, 3’ end L20298 at 0.000304 0.00097 0.08

43 Fc-epsilon-receptor gamma-chain mRNA M33195 at 0.000834 0.000169 0.083

44 ANX1 Annexin I (lipocortin I) X05908 at 0.001041 0.000379 0.088

45 SERYL-TRNA SYNTHETASE X91257 at 0.000312 0.000971 0.092

46 GTF2E2 General transcription factor TFIIE beta subunit, 34 kD X63469 at 0.000313 0.000967 0.101

47 KIAA0235 gene, partial cds D87078 at 0.00011 0.000755 0.113

48 PIM1 Pim-1 oncogene M16750 s at 0.000724 8.16E-05 0.116

49 Adenosine triphosphatase, calcium Z69881 at 0.000424 0.001064 0.12

50 V-ERBA RELATED PROTEIN EAR-1 M24900 at 0.000928 0.000287 0.12

51 KIAA0067 gene D31891 at 0.000208 0.000843 0.131

52 CD24 signal transducer mRNA and 3’ region L33930 s at 0 0.000634 0.131

53 FTH1 Ferritin heavy chain L20941 at 0.000724 9.05E-05 0.133

54 Orphan receptor mRNA, partial cds U07132 at 0.000929 0.000299 0.139

55 IRF2 Interferon regulatory factor 2 X15949 at 0 0.000629 0.141

56 CA2 Carbonic anhydrase II Y00339 s at 0.000627 0 0.148

57 MEF2A gene (myocyte-specific enhancer factor 2A, C9 form) extracted from

Human myocyte-specific enhancer factor 2A (MEF2A) gene, first coding

U49020 cds2 s at 0 0.000626 0.15

58 CST3 Cystatin C (amyloid angiopathy and cerebral hemorrhage) M27891 at 0.000625 0 0.153

59 TRANSFORMATION-SENSITIVE PROTEIN IEF SSP 3521 M86752 at 0.000311 0.000936 0.153

60 Azurocidin gene M96326 rna1 at 0.000624 0 0.154

61 MANB Mannosidase alpha-B (lysosomal) U05572 s at 0.000624 0 0.154

62 ZNF91 Zinc finger protein 91 (HPF7, HTF10) L11672 at 0.000521 0.001144 0.156

63 LGALS3 Lectin, galactoside-binding, soluble, 3 (galectin 3) (NOTE: redefi-

nition of symbol)

M57710 at 0.000622 0 0.158

64 PFC Properdin P factor, complement M83652 s at 0.000622 0 0.158

65 Pre-Mrna Splicing Factor Sf2p33, Alt. Splice Form 1 HG3546-

HT3744 s at

9.76E-05 0.000719 0.158

66 Nuclear Factor Nf-Il6 HG3494-

HT3688 at

0.00062 0 0.159

67 PRKAR1A CAMP-dependent protein kinase regulatory subunit type I M33336 at 0.000321 0.000926 0.195

68 BZIP protein NF-IL3A (IL3BP1) mRNA U26173 s at 0.000726 0.000127 0.217

69 ORF, Xq terminal portion D16469 at 0.000937 0.000339 0.219

70 SMT3A protein X99584 at 0.000935 0.000343 0.237

71 SNRPN Small nuclear ribonucleoprotein polypeptide N J04615 at 0.000512 0.001102 0.243

72 ARHG Ras homolog gene family, member G (rho G) X61587 at 0.001142 0.000555 0.255

73 AFFX-HUMTFRR/M11507 M at (endogenous control) AFFX-

HUMTFRR/M11507 M at

0.000627 4.39E-05 0.282

74 SELL Leukocyte adhesion protein beta subunit M15395 at 0.000625 4.21E-05 0.284

75 SPI1 Spleen focus forming virus (SFFV) proviral integration oncogene spi1 X52056 at 0.000834 0.000254 0.288

76 MCM3 Minichromosome maintenance deficient (S. cerevisiae) 3 D38073 at 0.000524 0.0011 0.304

77 NFKB2 Nuclear factor of kappa light polypeptide gene enhancer in B-cells 2

(p49/p100)

S76638 at 0.000614 4.21E-05 0.321

78 Epican, Alt. Splice 1 HG2981-

HT3125 s at

0.001039 0.00047 0.337

79 BLK Protein-tyrosine kinase blk S76617 at 0 0.000556 0.391

80 Protein phosphatase 2A 74 kDa regulatory subunit (delta or B subunit)” L76702 at 0.000208 0.017788

81 DGUOK Deoxyguanosine kinase U41668 at 0.000425 0.000975 0.421

82 HMOX1 Heme oxygenase (decycling) 1 X06985 at 0.001142 0.000592 0.422

83 Novel T-cell activation protein X94232 at 0.000518 0.001064 0.438

84 Clone CIITA-8 MHC class II transactivator CIITA mRNA U18259 at 0 0.000545 0.442

85 KIAA0063 gene D31884 at 0.001142 0.000599 0.444

86 ORF mRNA M68864 at 0.00052 0.001063 0.445

87 K+ channel beta 2 subunit mRNA U33429 at 0.000621 8.08E-05 0.461

88 HS1 binding protein HAX-1 mRNA, nuclear gene encoding mitochondrial

protein

U68566 at 0.00031 0.00085 0.461

89 PIM1 Pim-1 oncogene M54915 s at 0.000621 8.16E-05 0.461

90 ACADM Acyl-Coenzyme A dehydrogenase, C-4 to C-12 straight chain M91432 at 0.00052 0.001054 0.482

91 Serine palmitoyltransferase (LCB2) mRNA, partial cds U15555 at 0.00062 8.68E-05 0.483

92 MEF2C MADS box transcription enhancer factor 2, polypeptide C (myocyte

enhancer factor 2C)

L08895 at 0.000105 0.000639 0.483

Table 3.10: Genes corresponding to rejected null hypothesis (together with genes

in Table 3.9) when controlling the estimated FDR at the level 0.05 (follows).
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Figure 3.4: Plot of the corrected p-values controlling the FWER at a level of

0.05. The null hypothesis of genes with p̃ below the horizontal straight line have

been rejected.
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93 OAT Ornithine aminotransferase (gyrate atrophy) M29927 at 0.001037 0.000505 0.487

94 ATM Ataxia telangiectasia mutated (includes complementation groups A, C

and D)

U33841 at 0.000104 0.000634 0.495

95 Ionotropic ATP receptor P2X5a mRNA U49395 at 0.000104 0.000633 0.499

96 Major Histocompatibility Complex, Dg HG1872-

HT1907 at

0.000827 0.000298 0.504

97 SELL Leukocyte adhesion protein beta subunit X64072 s at 0.001039 0.00051 0.504

98 Chromosome segregation gene homolog CAS mRNA U33286 at 0.000104 0.000632 0.507

99 Mac25 HG987-HT987 at 0.001039 0.000514 0.518

100 Estrogen sulfotransferase mRNA U20499 at 0.000619 0.001144 0.518

101 Macmarcks HG1612-

HT1612 at

0.000621 0.001144 0.527

102 CATHEPSIN G PRECURSOR J04990 at 0.00052 0 0.543

103 IL2RG Interleukin 2 receptor gamma chain D11086 at 0.000626 0.001144 0.554

104 GB DEF = Beta-2 integrin alphaD subunit (ITGAD) gene, exons 25-30, and

partial cds

U40279 at 0.000718 0.000201 0.556

105 Oncoprotein 18 (Op18) gene M31303 rna1 at 0.00063 0.001144 0.577

106 Folylpolyglutamate synthetase mRNA M98045 at 0.00021 0.000724 0.579

107 Epican, Alt. Splice 11 HG2981-

HT3127 s at

0.000514 0 0.58

108 Putative enterocyte differentiation promoting factor mRNA, partial cds U62136 at 0.000631 0.001144 0.581

109 PPGB Protective protein for beta-galactosidase (galactosialidosis) M22960 at 0.000513 0 0.582

110 HLA CLASS I HISTOCOMPATIBILITY ANTIGEN, F ALPHA CHAIN PRE-

CURSOR

X17093 at 0 0.000512 0.587

111 Adult heart mRNA for neutral calponin D83735 at 0.000935 0.000425 0.59

112 CaM kinase II isoform mRNA U81554 at 0.001142 0.000632 0.591

113 MST1R Protein-tyrosine kinase RON X70040 at 0.001142 0.000634 0.602

114 OBF-1 mRNA for octamer binding factor 1 Z49194 at 0 0.000508 0.602

115 POLYPOSIS LOCUS PROTEIN 1 M73547 at 0 0.000508 0.605

116 DLX7 Distal-less homeobox 7 U73328 at 0.001142 0.000635 0.611

117 HKR-T1 S50223 at 0 0.000506 0.619

118 DNA-dependent protein kinase catalytic subunit (DNA-PKcs) mRNA U47077 at 0 0.000504 0.623

119 Butyrophilin (BTF5) mRNA U90552 s at 0 0.000503 0.629

120 Clone 23721 mRNA sequence U79291 at 0 0.000501 0.635

121 GB DEF = Cystic fibrosis antigen mRNA M26311 s at 0.000935 0.000434 0.636

122 Transcription factor SIM2 long form mRNA U80457 at 0.000214 0.000713 0.644

123 PRG1 Proteoglycan 1, secretory granule X17042 at 0.001142 0.000644 0.647

124 SNCA Synuclein, alpha (non A4 component of amyloid precursor) U46901 at 0.000623 0.000125 0.649

125 Carboxyl Methyltransferase, Aspartate, Alt. Splice 1 HG1400-

HT1400 s at

0.000518 0.001012 0.663

126 ATP6E ATPase, H+ transporting, lysosomal (vacuolar proton pump) 31kD X71490 at 9.76E-05 0.00059 0.668

127 Autoantigen DFS70 mRNA, partial cds U94319 at 0.000105 0.000592 0.685

128 Tryptase-III mRNA, 3’ end M33493 s at 0.000524 3.88E-05 0.693

129 PRKCB1 Protein kinase C, beta 1 X06318 at 0.000105 0.000586 0.716

130 Lysophosphatidic acid acyltransferase-beta mRNA U56418 at 0.001038 0.000558 0.722

131 CSNK1D Casein kinase 1, delta U29171 at 0.000524 4.49E-05 0.723

132 KIAA0030 gene, partial cds D21063 at 0.000629 0.001106 0.727

133 LPAP gene X97267 rna1 s at 0.000629 0.001106 0.73

134 RSU-1/RSP-1 mRNA L12535 at 0.001142 0.000666 0.734

135 TCRB T-cell receptor, beta cluster M12886 at 0.000415 0.000891 0.735

136 PHB Prohibitin S85655 at 0.000207 0.000683 0.735

137 DAGK1 Diacylglycerol kinase, alpha (80kD) X62535 at 0.00063 0.001106 0.735

138 TFIID subunit TAFII55 (TAFII55) mRNA U18062 at 0.000627 0.001102 0.736

139 Transcriptional activator hSNF2b D26156 s at 0 0.000471 0.748

140 LGALS1 Ubiquinol-cytochrome c reductase core protein II J04456 at 0.000937 0.000467 0.751

141 Non-histone chromosomal protein (NHC) mRNA U90549 at 0.00063 0.001101 0.751

142 PRKCD Protein kinase C, delta D10495 at 0.000514 4.56E-05 0.755

143 GLUL Glutamate-ammonia ligase (glutamine synthase) M63438 s at 0.001142 0.000674 0.755

144 Low-Mr GTP-binding protein (RAB32) mRNA, partial cds U59878 at 0.000927 0.000461 0.761

145 GOT2 Glutamic-oxaloacetic transaminase 2, mitochondrial (aspartate

aminotransferase 2)

M22632 at 0 0.000466 0.764

146 DNA-binding protein ABP/ZF mRNA U82613 at 0.000208 0.00067 0.777

147 MHC-encoded proteasome subunit gene LAMP7-E1 gene (proteasome sub-

unit LMP7) extracted from H.sapiens gene for major histocompatibility com-

plex encoded proteasome subunit LMP7

Z14982 rna1 at 0.00052 0.000981 0.777

Follows Table 3.10.
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Figure 3.5: Shapley values on AML and ALL corresponding to 147 rejected null

hypothesis controlling the FDR at the level of 0.05. Dots labelled with numbers

correspond to genes with adjusted p-values p̃ lower than 0.05. Numerical labels

refer to ID numbers in Table 3.9 and 3.10.



Chapter 4

Other games on gene

expression data

4.1 Minimum cost spanning tree and gene ex-

pression

Microarray games are based on a dichotomization process applied to a real-

valued expression matrix. In this chapter we present an alternative class of

cooperative games where the dichotomization process is not required. On the

other hand, a different way to asses the value of each coalition must be used

to avoid the arbitrariness in choosing the cutoffs to dichotomize the expression

data. First, a method based on the framework of Minimum Cost Spanning

Trees (MCSTs) has been introduced to represent the interaction structure of

the involved genes. In gene expression analysis Xu et al. (2001) and Speer

et al. (2003) have already used MCSTs representation as starting point for

clustering algorithms. Here we exploit the MCSTs representation of a gene

expression data-set to construct a corresponding MCST game.

Similarly to the case of microarray games, the objective of this different

class of games is again to evaluate the genes relevance in provoking a biological

condition or response of interest. With this goal, the approach here is to describe

the overall level of similarity (or dissimilarity) of each sub-group of genes with

a reference vector of expressions representing a pre-selected gene (or a group of

67
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pre-selected genes) which is assumed not to be involved in the processes related

to the biological condition or response of interest under studying. Differently

stated, observed fluctuations in the expression values of a reference gene across

the samples, should uniquely be ascribed to experimental random noise.

Note that the concept of association between expression properties and bi-

ological conditions realized in coalitions of genes, in this context must be re-

formulated to catch the idea of association between real valued gene expression

vectors and biological conditions. The smaller the overall level of similarity of

a coalition with a reference gene expression vector is, the higher the level of

association of real valued gene expression vectors with the biological condition

or response of interest should be.

To avoid the arbitrariness related to the dichotomization cutoffs is not the

only advantage of this new approach. In comparison with the microarray game

model, this new model based on MCSTs also improves the resolution of the

analysis. For example, it is well known that genes that are co-regulated by

common transcription factors have similar expression patterns. A characteristic

function based on levels of similarity among genes is highly representative of the

influence of different transcription factors in all possible clusters of co-regulated

genes. With respect to microarray games, the application of a relevance index

to games based on MCST representation would be more efficient in selecting

those genes who are able to regulate other genes.

4.1.1 Preliminary notations

Here we introduce some basic notions on graph theory. An (undirected) graph is

a pair < V,E >, where V is a set of vertices or nodes and E is a set of edges e of

the form {i, j} with i, j ∈ V , i 6= j. The complete graph on a set V of vertices is

the graph < V,EV >, where EV = {{i, j}|i, j ∈ V and i 6= j}. A path between

i and j in a graph < V,E > is a sequence of nodes (i0, i1, . . . , ik), where i = i0

and j = ik, k ≥ 1, and such that {is, is+1} ∈ E for each s ∈ {0, . . . , k − 1}.

A path (i0, i1, . . . , ik) is without cycles if there do not exist a, b ∈ {0, 1, . . . , k},

a 6= b, such that ia = ib.

Now, we consider MCST situations. In an MCST situation a set N =

{1, . . . , n} of agents is involved willing to be connected as cheap as possible to a

source denoted by 0. In the sequel we use the notation S ′ for S ∪ {0}, for each

S ⊆ N . An MCST situation can be represented by a tuple < N ′, EN ′ , w >,
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where < N ′, EN ′ > is the complete graph on the set N ′ of nodes or vertices,

and w : EN ′ → IR+ is a map which assigns to each edge e ∈ EN ′ a nonnegative

number w(e) representing the weight or cost of edge e. We call w a weight

function.

The cost of a network Γ ⊆ EN ′ is w(Γ) =
∑

e∈Γ w(e). A network Γ is a

spanning network on S′ ⊆ N ′ if for every e ∈ Γ we have e ∈ ES′ and for every

i ∈ S there is a path in Γ from i to the source. Given a spanning network

Γ on N ′ we define the set of edges of Γ with nodes in S ′ ⊆ N ′ as the set

EΓ
S′ = {{i, j}|{i, j} ∈ Γ and i, j ∈ S ′}.

For any MCST situation w ∈ WN ′ it is possible to determine at least one

spanning tree on N ′, i.e. a spanning network without cycles on N ′, of minimum

cost; each spanning tree of minimum cost is called an MCST for N ′ in w or,

shorter, an MCST for w. Two famous algorithms for the determination of

minimum cost spanning trees are the algorithm of Prim (1957) and the algorithm

of Kruskal (1956).

The characteristic function of the minimum cost spanning tree game (G, cw)

(or simply cw) (Bird (1976); see also Granot and Huberman (1981), Feltkamp

(1995)), corresponding to a MCST situation < G′, w > based on a gene expres-

sion data-set X, is defined by

cw(S) = min{w(Γ)|Γ is a spanning network on S ′} (4.1)

for every S ∈ 2G\{∅}, with the convention that cw(∅) = 0.

4.1.2 MCST situations based on a gene expression data-

set

Consider a microarray experiment on a finite set G′ = {1, . . . , g} ∪ {0} of genes

studied in k different samples where gene 0 is the reference gene, that is the

vector of expression values of a gene that should be constantly not expressed

across the different samples. Let X = (xi)i∈G′ be a set of expression vectors

xi = (xi1, . . . , xik) ∈ IR
k, representing the expression value of gene i ∈ G′ across

k samples. Let x0 = (x01, . . . , x0k) be the expression vector of the reference

gene. Such a vector could be obtained averaging the expression vectors of a set

of invariant genes (see Chapter 5.5 in Amaratunga and Cabrera (2004) for a

definition of invariant genes).
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We define a MCST situation based on a gene expression data-set X as the

tuple < G′, w >, where each edge {u, v} ∈ EG′ has a weight that is equal to the

dissimilarity measure d(xu,xv), where d : X × X → IR+ states quantitatively

how dissimilar xu and xv are to each other. Note that we do not require that a

dissimilarity function would be a metric on X. 1

We simply require that function d satisfies at least the property of symmetry

and non-negativity on X.

Consider the microarray MCST game (G, cd) (or simply cd), corresponding

to a MCST situation < G′, w > based on a gene expression data-set X (and

with weight function w corresponding to the dissimilarity measure d on X), is

defined by

cd(S) =
min{w(Γ)|Γ is a spanning network on S ′}

min{w(Γ)|Γ is a spanning network on G′}
(4.2)

for every S ∈ 2G\{∅}, with the convention that cd(∅) = 0. We chose to divide

the cost of the MCST on each coalition S ∈ 2G\{∅} by the cost of the MCST

on the great coalition G′ in order to make possible the comparison of MCST

games based on gene expression data-sets obtained from experiments performed

on different sets of samples. Alternatively to definition (4.2), one can obtain the

MCST game cd directly by definition (4.1) as the MCST game corresponding

to the MCST situation (G′, ŵ), where

ŵ({u, v}) =
w({u, v})

min{w(Γ)|Γ is a spanning network on G′}
.

In the next example we present two different approaches to the analysis of

microarray MCST games, whose essential differences follows from the kind of

information known on data-sets.

Example 13 Consider the real-valued expression matrix X in Table 4.1, on

genes G′ = {0, 1, 2, 3}, where 0 is the reference gene, and all genes are collected

from 7 samples, such that samples 1, 2, 3, 4 come from the biological condition 1

and samples 5, 6, 7 come from the biological condition 2. Therefore, we can split

1A metric m on a set N is a function m : N × N → IR+, such that for each i, j ∈ N we

have
m(i, j) ≥ 0 and m(i, i) = 0 (non-negativity);

m(i, j) = m(j, i) (symmetry);

m(i, k) ≤ m(i, j) +m(j, k) (triangle inequality);

if i 6= j then m(i, j) > 0 (positivity for distinguished points);
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samples: 1 2 3 4 5 6 7

genes

0 0.2 0.3 -0.1 0 0.1 -0.2 0.05

1 9 -3 2 -1 -2 8 -1

2 2.9 3 2.8 3.2 3.1 2.6 3.4

3 -1 -1 -2 -4 6 4 3

Table 4.1: A toy gene expression matrix on 4 genes (0 is the invariant gene) and

7 samples; {1, 2, 3, 4} are samples under the biological condition 1 and {5, 6, 7}

are samples under the biological condition 2

the matrix in Table 4.1 in two sub-matrix X1 and X2 such that

X1 =













0.2 0.3 −0.1 0

9 −3 2 −1

2.9 3 2.8 3.2

−1 −1 −2 −4













, X2 =













0.1 −0.2 0.05

−2 8 −1

3.1 2.6 3.4

6 4 3













In this example we use the Euclidean distance as dissimilarity measure, i.e. for

each u, v ∈ G′ we consider the metrics e1 and e2 on X1 and X2, respectively,

such that for each t ∈ {1, 2}

et({xtu,x
t
v}) =

(

∑

j∈{1,...,kt}

(xtuj − x
t
vj)

2
)
1
2 , (4.3)

where k1 = 4 and k2 = 3.

The (approximated) values of e1(x1u,x
1
v) between each pair of genes u, v ∈

{0, 1, 2, 3} is represented by the weights of the edges in the following completed

graph.

The microarray MCST game (G, ce1), corresponding to the MCST situation

under the biological condition 1, is such that ce1({1}) = 0.6, ce1({2}) = 0.36,

ce1({3}) = 0.3, ce1({1, 2}) = 0.95, ce1({1, 3}) = 0.9, ce1({2, 3}) = 0.65, ce1({1, 2,

3}) = 1.

The (approximated) values of e2(x2u,x
2
v) between each pair of genes u, v ∈

{0, 1, 2, 3} is represented by the weights of the edges in the following completed

graph.

The microarray MCST game (G, ce2), corresponding to the MCST situation un-

der the biological condition 2, is such that (G, ce2) is ce2({1}) = 0.5, ce2({2}) =
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Figure 4.1: The MCST situation under the biological condition 1. The thick

lines show the MCST on G′.
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Figure 4.2: The MCST situation under the biological condition 2. The thick

lines show the MCST on G′.

0.31, ce2({3}) = 0.46, ce2({1, 2}) = 0.81, ce2({1, 3}) = 0.96, ce2({2, 3}) = 0.5,

ce2({1, 2, 3}) = 1.

Example 14 Consider again the toy data-set in Table 1, but now suppose that

no information about sample labels with respect to biological conditions 1 and 2.

Then, using again the Euclidean distance, The (approximated) values of

e(xu,xv) between each pair of genes u, v ∈ {0, 1, 2, 3} is represented by the

weights of the edges in the following completed graph.

The microarray MCST game (G, ce) is such that (G, ce) is ce({1}) = 0.43,

ce({2}) = 0.26, ce({3}) = 0.31, ce({1, 2}) = 0.69, ce({1, 3}) = 0.74, ce({2, 3}) =

0.57, ce({1, 2, 3}) = 1.

Another useful dissimilarity measure to use with microarray data (see for

instance chapter 9.2.1 in Amaratunga and Cabrera (2004)) is the function

ρ(xu, xv) = 1− |r(xu, xv)|, (4.4)

where |r(xu,xv)| is absolute value of the Pearson correlation coefficient defined
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Figure 4.3: An MCST situation with three genes. The thick lines show the

MCST on G′.

as

r(xu,xv) =

∑

k=1,...,k(xuk − x̄u)(xvk − x̄v)
(

∑

j=1,...,k(xuj − xu)
2
∑

j=1,...,k(xvj − x̄v)
2
)

1
2

, (4.5)

for each pair u, v ∈ G′, where x̄u =
∑

k=1,...,k xuk and x̄v =
∑

k=1,...,k xvk. The

dissimilarity measure ρ takes values in the interval [0, 1] and increases toward

its maximum value of 1 the less linearly correlated xu and xu are. On the other

hand, ρ is not a metric. 2

The (approximated) values of ρ(xu,xv) between each pair of genes u, v ∈

{0, 1, 2, 3} is represented by the weights of the edges in the following completed

graph.
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Figure 4.4: An MCST situation with three genes. The thick lines show the

MCST on G′.

The corresponding microarray MCST game (G, cρ) is cρ({1}) = 0.41, cρ({2}) =

2Take for example vectors a = (1, 0, 0), b = (0, 1, 0), c = (−1, 1, 0) ∈ IR3 and note that

ρ(a, b) = 0.5 > ρ(a, c) + ρ(c, b) = 0.2679492, i.e. the triangle inequality is not satisfied. Of

course function ρ does not satisfy neither the positivity for distinguished points condition,

since for example ρ((1, 2), (2, 4)) = 0.
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0.30, cρ({3}) = 0.36, cρ({1, 2}) = 0.64, cρ({1, 3}) = 0.77, cρ({2, 3}) = 0.69,

cρ({1, 2, 3}) = 1.

Given a microarray MCST game (G, cρ) based on a microarray gene expres-

sion data-set, it is possible to apply a one-point solution for TU-games. For

example, we could calculate the Shapley value of ce1 , ce2 and cρ.

Example 15 The following table shows the Shapley values of games ce1 , ce2

and cρ in Example 13 and Example 17. Note that in the case where it is known

player: 1 2 3

φ(ce1) 0.48 0.28 0.24

φ(ce2) 0.5 0.18 0.32

φ(ce) 0.43 0.26 0.31

φ(cρ) 0.36 0.27 0.37

Table 4.2: Shapley value φ() of four different microarray MCST games.

the partition of samples with respect to the biological conditions, gene 1 has an

high Shapley value in both microarray MCST games ce1 and ce2 , whereas gene

2 and 3 have an opposite behavior under the two conditions (when one of them

has high Shapley value, the other one has a low Shapley value). If we look at

the differences of Shapley values between the two conditions 1 and 2, we observe

for gene 1 a difference close to zero, and for gene 2 and 3 differences closed to

0.1. In conclusion, gene 1 seems heavily involved in the mechanisms regulating

both conditions; on the contrary, the Shapley values of genes 2 and 3 seem to

differentiate more the two conditions.

Looking at the game ce, corresponding to the MCST situation on the whole

data-set, it appears that genes 2 and 3 increases their relevance with respect to

gene 1, obtaining more or less the respective maximum between the two sepa-

rated games ce1 and ce2 . This effect is even more evident when the dissimilarity

measure ρ, which is aimed to measure linear correlation among expression vec-

tors, is used and the corresponding microarray MCST game cρ is analyzed. In

fact, note that gene 3 obtains a slightly greater Shapley value of gene 1. In our

opinion, the correct interpretation of this fact is that on the whole data-set the

Shapley value is able to provide hints about those genes which are able to dis-

criminate well among two or more unknown different biological conditions under
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which samples are collected. In other terms, our conjecture is that the Shapley

value on microarray MCST games is able to select genes which change much

across the samples both in terms of expression values and in terms of similarity

with the other genes.

Of course, it is not possible to justify the use of the Shapley value as relevance

index for genes on the basis of few examples. Even less correct would be to

claim that the Shapley value is able to quantify the gene relevance on the class

of microarray MCST games merely on the basis of the properties introduced in

Chapter 2, which were defined just for another class of TU-games, the class of

microarray games.

One possible way to proceed is again to propose sound properties, possibly

with a biological meaning, that a relevance index applied on the class of mi-

croarray MCST games should satisfy and then to axiomatically characterize the

Shapley value on the class of microarray MCST games, analogously to what we

did in Chapter 2 for microarray games.

In any case, recall that to calculate the Shapley value for microarray MCST

games is not easy for computational reasons. In fact, with the exception of

few cases where the weight function of the MCST situation satisfies certain

properties, to calculate the Shapley value of microarray MCST games with

n players requires the computation of 2n−1 marginal contribution, which is

a very big value when n takes the size of the number of genes analyzed in

a conventional microarray experiments. In these cases a possible alternative

which is polynomially computable is the solution called P -value by Branzei et

al. (2004), already introduced in Feltkamp et al. (1994) as Equal Remaining

Obligations rule and studied in Branzei et al. (2004), Tijs et al. (2004) also in

connection with the Shapley value and other solutions in Tijs et al. (2005) and

Moretti et al. (2005). Of course, it remains the open question on the justification

of the use of the P -value as relevance index for microarray MCST games, whose

answer could be provided once again by the property driven approach. In next

example we show the normalized version of P -value on the four games introduced

in Examples 13 and 17, without giving a formal definition of the P -value. For a

formal definition of the P -value solution see for example Branzei et al. (2004).

Example 16 The following table shows the P -values of games ce1 , ce2 and cρ

in Example 13 and Example 17. Relevance index provided by the P -value so-
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player: 1 2 3

P (ce1) 0.47 0.29 0.24

P (ce2) 0.5 0.25 0.25

P (ce) 0.43 0.26 0.31

P (cρ) 0.33 0.30 0.36

Table 4.3: P -value P () of four different microarray MCST games.

lution seems to flatten the observed differences of Shapley values among genes

calculated in Example 15.

4.1.3 Future work

Concerning the class of MCST games, there are many possible directions that

can be addressed. First of all, it would be important to improve the understand-

ing of the model potentiality, in particular with respect the “good” dissimilarity

measure to be used and the meaning of the reference gene. For example, the

problem of finding a good estimate of the reference gene is still an open question

and, apparently, it is strongly related to the problem of data normalization in

the pre-processing analysis of microarray games.

As we already stressed in the previous section, another point that should

deserve more attention is the axiomatic characterization of different relevance

index on the class of MCST games. The property driven approach would have

a very important role in practice, for the selection of a proper relevance index.

This approach would be useful also to make better interpretations of the results.

For example, it is not clear at this moment why the P -value, at least on few

small examples, shows such a flattening behavior as shown in Example 16.

To study the connections with the statistical method introduced in Chapter

2, it would be useful to understand whether a procedure similar to Algorithm

1 for finding significant Shapley value differences between two biological con-

ditions can be maintained also for MCST games or, alternatively, which new

assumptions should be introduced in order to achieve the same purposes.

With respect to practice, finally, the applications of the model to real data

should be necessary to make a comparison with the results provided by microar-

ray games.
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4.2 Microarray games and the classification prob-

lem

As we already noted in the previous chapters, the goal of many analytical meth-

ods applied to gene expression data-sets is to develop a classification rule, that

is a criterium to predict, as accurately as possible, the true class of samples.

For example, suppose that some samples are collected from a class of tumors

and some other from normal tissues, and their labels with respect to these two

classes is known. The idea is to use in some way the information available ei-

ther on single genes or on combination of genes as classifiers for classifying the

samples into the right classes. Since most of genes contribute to add noise and

to obfuscate the separation between classes, only few genes are able to perform

almost correct discriminations. In order to select the set of genes with the best

performance in classifying samples, the analytical method must solve a very

hard problem: maximize the proportion of correct classification and minimize

the number of misclassification in the data-set under consideration.

In this section we try to answer to the following interesting question: is the

Shapley value of a microarray game of any help in studying the ability of genes

in well classifying tumor samples according to a certain classification rule?

First note that the Shapley value of a microarray game seems meaningless

as classification power index, since a microarray game does not consider any

classification information in its characteristics function. On the other hand,

intuitions based on the results provided by the application of the Shapley value

on microarray games seem to go in the direction of a quite positive answer.

In the attempt to yield an analytical explanation of this fact, first of all we

need to introduce a very simple classification rule based on boolean data.

For simplicity, we will consider only two classes, let us say the biological

conditions 1 and 2. Moreover, we will refer to a dichotomized gene expression

data-set. Let B1 ∈ {0, 1}n×k1 and B2 ∈ {0, 1}n×k2 be two boolean matrix,

where n is the number of genes, k1 is the number of samples under the biological

condition 1 (for example, samples from normal tissues), k2 is the number of

samples under the biological condition 2 (for example, samples from tumoral

tissues) and if Bt
ij = 1 for some i ∈ {1, . . . , n} = N , j ∈ {1, . . . , kt} and

t ∈ {1, 2}, then it means that gene i in sample j and condition t shows a certain

expression property (for example, it is over-expressed) and if Bt
ij = 0 then it
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means that gene i in sample j and condition t does not show such expression

property.

Consider the following classification rule based on the subset of genes in

S ∈ 2N \ {∅}:

< if there exists i ∈ S such that Bt
ij = 1, then classify sample j ∈ {1, . . . , kt}

under the biological condition t ∈ {1, 2} in class 1 >. (F)

Let rc(S) be the rate of correct classifications provided by the classification

rule (F) applied on the data-set (Bt)t∈{1,2} using the set of genes S ∈ 2N \ {∅}

and let rm(S) be the rate of misclassifications made via the classification rule

(F) applied on the data-set (Bt)t∈{1,2} using the set of genes S. Then we define

the classification game (N, d1) as the TU-game on N with the characteristic

function d : 2N → [−1, 1] such that

d1(S) = rc(S)− rm(S), (4.6)

for each S ∈ 2N \ {∅}.

Remark 8 We can provide an alternative definition of classification game using

dual unanimity games, which will be useful later. Recall that a dual unanimity

game (N,u∗T ), T ∈ 2N , is a TU-game described by uT (S) = 1 if R ∩ T 6= ∅ and

uR(T ) = 0, otherwise.

Relation (4.6) can straightforwardly be rewritten as follows

d1(S) =
|Ω(S)|

k1
−
|∆(S)|

k2
(4.7)

where |Ω(T )| is the cardinality of the set

Ω(S) = {j ∈ {1, . . . , k1}|sp(B
1
j ) ∩ S 6= ∅}

and v̄(∅) = 0 and |∆(S)| is the cardinality of the set

∆(S) = {j ∈ {1, . . . , k2}|sp(B
2
j ) ∩ S 6= ∅}

and d1(∅) = 0. Equivalently, the game (N, d1) can be represented via the

relation

d1(S) =
∑

j=1,...,k1

u∗
sp(B1

j )
(S)

k1
−

∑

j=1,...,k2

u∗
sp(B2

j )
(S)

k2
(4.8)
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for each S ∈ 2N \ ∅, where (N,u∗sp(Bj)
) is the dual unanimity game on the set

sp(Bt
j), t ∈ {1, 2}.

Remark 9 One could use the classification rule:

< if there exists i ∈ S such that Bt
ij = 1, then classify sample j ∈ {1, . . . , kt}

under the biological condition t ∈ {1, 2} in class 2 >, (•)

for each S ∈ 2N \ ∅, and define the classification game (N, d2) according to

relation (4.6) or (4.7). Note that d2(S) = −d1(S) for each coalition S ∈ 2N \ ∅.

A well known results for TU-games is that the Shapley value of a unanimity

game on T ∈ 2N \ {∅} is equal to the Shapley value of the dual unanimity game

on T (see for example Tijs et al. (2003)). In formula,

φi(uT ) = φi(u
∗
T ) =

1

|T |
, (4.9)

for each i ∈ N , where φ(uT ) is the Shapley value on the unanimity game uT and

φ(u∗T ) is the Shapley value on the dual unanimity game u∗T , for each T ∈ 2N\{∅}.

Relation (4.9) makes Proposition 3 straightforward.

Proposition 3 Let B1 ∈ {0, 1}n×k1 and B2 ∈ {0, 1}n×k2 be two boolean ma-

trix. Let (N, v1) be the microarray game corresponding to B
1 and Let (N, v2)

be the microarray game corresponding to B2. Moreover, Let (N, d1) be the clas-

sification game corresponding to Bt, t ∈ {1, 2} and to classification rule (F).

Then

φ(d1) = φ(v1)− φ(v2). (4.10)

Proof It follows directly by relations (1.3), (4.9), (3.2) and (4.8).

By Remark 9 follows that the absolute value |φi(d1)| = |φi(v1) − φi(v2)|

provides an indication of the ability of gene i in discriminating the two classes

1 and 2, for each i ∈ N . Note that, in order to test the null hypothesis that

|φi(v1)−φi(v2)| = 0, a bootstrap procedure was introduced in Chapter 2. Note

also that, if it exists i ∈ N such that the coalition S is the unique coalition which

classifies correctly all the samples under condition 1 and does not misclassifies

any samples under condition 2, then φi(d1) = maxi∈Nφi(d1) for each i ∈ S.
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Example 17 Consider the following boolean matrix

B1 =













1 0 1

0 1 1

1 1 0

0 0 1













, B2 =













1 1 0 1

1 0 0 0

0 0 1 0

0 1 0 1













.

Then sp(B1
1) = {1, 3}, sp(B

1
2) = {2, 3}, sp(B

1
3) = {1, 2, 4} and sp(B

2
1) = {1, 2},

sp(B2
2) = {1, 4}, sp(B

2
3) = {3} and sp(B

2
4) = {1, 4}.

The classification game ({1, 2, 3, 4}, d1) corresponding to Bt, t ∈ {1, 2} and

to classification rule (F) is such that d1({2}) = d1({3}) =
2
3−

1
4 = 5

12 ; d1({4}) =
1
3 −

2
4 = − 1

6 ; d1({1}) = d1({1, 4}) = d1({2, 4}) = 2
3 −

3
4 = − 1

12 ; d1({1, 2}) =

d1({3, 4}) = d1({1, 3}) = 1− 3
4 = 1− 1

4 ; d1({2, 3}) = 1− 2
4 = 1

2 ; d1({1, 2, 4}) =

1− 3
4 = 1

4 ; d1({1, 3, 4}) = d1({2, 3, 4}) = d1({1, 2, 3}) = d1({1, 2, 3, 4}) = 0.

The Shapley value of the classification game ({1, 2, 3, 4}, d1) is (− 7
72 ,

11
72 ,

6
72 ,

− 10
72 ). The maximum classification power is allocated to gene 3 and 2.

4.2.1 Future work

Classification games provide a different interpretation of microarray games, in

terms of the classification information contained in the characteristics function.

Of course all these argumentations are coherent with the classification rule (F)

(or, alternatively, with the classification rule (•)). These classification rules are

simple methods to classify samples (even if to evaluate the performance of the

classification rule (F) on each coalition is not at all simple when the number

of genes is high; once again this problem can be partially avoided during the

Shapley value computations thanks to Proposition 3 and the considerations

made in Chapter 2 on microarray games). It would be very interesting to

study classification games corresponding to more complex classification rules,

for example based on Support Vector Machines (Cortes and Vapnik (1995))

and other supervised classification technique applied to each coalition of genes.

In this context, the Shapley value of classification games based on different

classification rules could be also informative in comparing the validity of different

classifiers.
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4.3 Analysis of gene expression data from Real

Time PCR

In this section we present a brief description of very preliminary results provided

by a gene expression analysis concerning 19 samples collected from neurob-

lastic tumors, in particular 10 neuroblastoma (Schwannian stroma-poor) (NB-

SP) samples and 9 Ganglioneuroblastoma intermixed (Schwannian stroma-rich)

(GNBi-SR). The goal of this analysis was to screen and to give a priority level

to genes according to their connections in differentiating and provoking NB-SP

and GNBi-SR tumors.

The analysis is divided in two parts. In the first one, the expression values

of 22283 genomic sequences from the 19 samples have been assessed using the

Human Genome U133A GeneChip microarray technology (Affymetrix, Inc, CA,

USA).

The second part of the analysis is based on the same samples, but the data

collection has not yet concluded at this moment. In this case, the data collection

of only 126 genes is done by means of quantitative Real Time PCR (Polymerase

Chain Reactions), a very accurate (and much more expensive with respect to

GeneChip Affymetrix microarray technology) method to evaluate gene expres-

sions on a gene-by-gene basis. Real Time PCR is commonly used in biomedical

literature as a confirmation of microarray results (see for example Amaratunga

et al. (2004)).

In both the analysis, all data have been collected by the Unit of Translational

Paediatric Oncology of the National Institute for Cancer Research (IST) and

the Laboratory of Italian Neuroblastoma Foundation of the Advanced Biotech-

nology Center (ABC), both located in Genoa (Italy). For more details on the

connections among the neuroblastic tumors under studying and for a statistical

pre-analysis on a smaller data-set see our previous work in Coco et al. (2005).

From the first analysis, concerning microarray gene expression data, the

raw data have been pre-processed using the function expresso in the package

affy in Bioconductor libraries (Gentleman et al. (2004)), normalizing using the

Variance Stabilization Normalization (vsn) method (Huber et al. (2002)).

On the microarray normalized data-set we performed two different proce-

dures. The first procedure has been based on the application of the Statistical

Analysis of Microarray (SAM) (Storey and Tibshirani (2003)), in order to find
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genes which are significantly differential expressed between the two conditions

NB-SP and GNBi-SR. Controlling the FDR at a level approximately equal to

zero (0.000005), the SAM method called 88 genes as significant.

The second procedure has been based on the game theoretical approach

described in Chapter 2. For each one of the two conditions NB-SP and GNBi-

SR, a microarray game has been constructed and the corresponding Shapley

value has been computed on it. Then, for each gene, the absolute value of the

observed difference of Shapley values of the two microarray games has been

calculated. We selected the first 49 genes with the highest absolute value of

Shapley difference. The overlap of genes selected by the two methods (SAM

and microarray game) was of 11 genes. Note that at the time when this analysis

has been performed, Algorithm 1 described in Chapter 2 was not yet completed.

Here the number 49 reflects the constraint, due to practical reasons, implying

that only 126 genes could be validated in the following analysis based on Real

Time PCR.

4.3.1 Future work

As we already said, a Real Time PCR analysis has been planned to be used to

confirm the results obtained by the two statistical procedure in the first part of

the analysis, concerning microarray data.

Here we briefly anticipate the results of the validation procedure, at this

moment performed on only 15 of the 19 samples (the remaining 4 samples are

currently under experiment in the laboratories).

For what concerns the set of genes called significant by the SAM method, up

to now we can only report that the agreement rate between the Real Time PCR

technology and the GeneChip Affymetrix technology in indicating the condition

(GNBi-SR or NB-SP) where the average expression value of the genes is greater

is about 98%.

For what concerns the set of genes selected applying microarray games, a

similarly high rate of agreement has been observed. On the other hand, we want

to point out that in this case genes have been selected according to their Shapley

values on microarray games, and that the Shapley value of a microarray game

keeps into account both the expression values of genes and their cooperative

interactions. For these reasons in our opinion the more accurate information

about the agreement in average expression values provided by Real Time PCR
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is not enough to confirm the results obtained by means of the game theoretical

method. In this direction, we find reasonable to apply Algorithm 1 to the

dataset of 49 genes analyzed by Real Time PCR and to observe how many

genes effectively show their Shapley values significantly different between the

two conditions. A first attempt of application of Algorithm 1 to the Real Time

PCR expression data-set concerning those 49 genes, suggests the rejection of 46

null hypothesis of no differences in terms of Shapley values when controlling the

FDR at a level of 0.05. In our opinion, this is a quite positive response in the

direction of the validation of the microarray game analysis.
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Figure 4.5: QQ plot of the observed Shapley value differences and the expected

Shapley value differences produced by Algorithm 1. Application of Algorithm 1

to the Real Time PCR expression data-set concerning 49 selected genes suggests

the rejection of 46 null hypothesis. Null hypothesis of genes with Shapley values

difference observed on Real Time PCR data which are outside the interval be-

tween the two continuous horizontal straight lines have been rejected controlling

the FDR at the level 0.05.



Appendix A

Dichotomization algorithm

In this appendix we face the problem of transforming real-valued gene expres-

sions into binary values. This problem can be solved using a procedure which

selects thresholds. In Shmulevich and Zhang (2002) an algorithm to find an

individually selected threshold for each normalized gene expression vector is

presented. For each gene expression vector, the basic idea of such an algorithm

is to sort all the real-valued expression values and to locate the threshold in

correspondence of the smallest separation between two successive sorted val-

ues which is greater than a predefined value, called the ‘big jump’. In their

algorithm implementation, the author used as predefined value in given a gene

expression vector the length of the interval between to successive sorted values

in the ‘the worst case’, that is when all the values in the gene expression vector

are equally spaced between the maximum and the minimum.

Since the case in which the sorted true values are equally spaced between the

maximum and the minimum is in fact the most critical one to be binarized, we

think that the ‘big jump’ used by Shmulevich and Zhang (2002) is very sensitive

to small fluctuations on the observed values due to random noise. Therefore, we

present a different version of the algorithm, where the ‘big jump’ is calculated via

an iterative procedure. As formally explained in the following pseudo-code, at

each iteration, the algorithm provide a candidate value directly proportional to

difference between the maximum and the minimum and inversely proportional

to the number of iterations already done. Our algorithm fixes the ‘big jump’

as the biggest ‘candidate value’ smaller than some separations between two
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successive sorted values.

Algorithm 2 (Dichotomize) INPUT: a real-valued expression matrix G ∈

IRn×k, with n rows (i.e. genes) and k columns (i.e. samples); a low-bound outlier

parameter d.

OUTPUT: a boolean matrix B ∈ {0, 1}n×k, n, k ∈ {1, 2, . . .}.

step 1 : Si ← sort(Gi,1, . . . , Gi,k), ∀i ∈ N ;

step 2 : for j : 1 to k − 1 do

Di,j ← sort(Si,j+1 − Si,j), ∀i ∈ N ;

end do

step 3 : for l : 1 + d to k do

ti,l =
Si,k−Si,1

l−1 , ∀i ∈ N ;

end do

step 4 t∗i = maxl∈{1+d,...,k}{ti,l : ∃j ∈ {1, . . . , k}s.t. ∈ Di,j > ti,l} ∀i ∈ N ;

step 5 mi = min{j ∈ {1, . . . , k} : Di,j > t∗i }, ∀i ∈ N ;

step 3 : for j : 1 to k do

if Gi,j ≥ Si,mi+1 then

Bi,j ← 1;

else

Bi,j ← 0;

end if

end do

In Figure 3.6 the threshold selected by Algorithm 2 on the expressions of gene 1

in Example 10 is shown, together with the threshold selected via the application

of the algorithm in Shmulevich and Zhang (2002). Note that the ‘big jump’

selected by Algorithm 2 is four times the ‘big jump’ selected by the algorithm

in Shmulevich and Zhang (2002). The parameter d has been settled to 1 (no

low-bound outliers have been detected).
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Figure A.1: Real-valued expressions of gene 1 in Example 10 corresponding

to column index 1, . . . , 7 of Table 3.1 (continuous line) and sorted by value

(dotted line). The dashed horizontal straight line indicates the dichotomization

threshold selected by Algorithm 2 and the filled (unfilled) points correspond

to the samples where gene 1 is labelled with value 1 (0), according to such a

threshold. The continuous horizontal straight line indicates the dichotomization

threshold selected by the algorithm introduced in Shmulevich and Zhang (2002).
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