Théorie de la décision et théorie des jeux Master MODO 2016-2017

An introduction to cooperative games

Stefano Moretti

UMR 7243 CNRS Laboratoire d'Analyse et Modélisation de Systèmes pour l'Aide à la décision (LAMSADE) Université Paris-Dauphine

email: <u>stefano.moretti@dauphine.fr</u> Office room: P422

COOPERATIVE GAME THEORY

Games in coalitional form

TU-game: (N,v)N={1, 2, ..., n}set of playersS \subset Ncoalition 2^N set of coalitionsv: $2^N \rightarrow$ IRcharacteristic functionv(S) is the value (worth) of coalition S

DEF. (N,v) with $v(\emptyset)=0$ is a Transferable Utility (TU)-game with player set N. NB: if N is fixed, $(N,v)\leftrightarrow v$ NB: if n=|N|, it is also called *n*-person TU-game... Other names: game in coalitional form, coalitional game, cooperative game with side payments...

Q .1: which coalitions form?
<u>DEF.</u> (N,v) is a <u>superadditive game</u> iff
$v(S \cup T) \ge v(S) + v(T)$ for all S,T with $S \cap T = \emptyset$
Q.2: If the grand coalition N forms, how to divide v(N)? (how to allocate the utility or the cost of the grand coalition?)
Many answers! (solution concepts)
One-point concepts: - Shapley value (Shapley 1953)
- nucleolus (Schmeidler 1969)
- τ -value (Tijs, 1981)
Subset concepts: - Core (Gillies, 1954)
- stable sets (von Neumann, Morgenstern, '44)
- kernel (Davis, Maschler)
- bargaining set (Aumann, Maschler)

Example: ice-cream game (N,v) such that $N = \{1,2,3\}$ v(1)=v(3)=0v(2)=3v(1,2)=3v(1,3)=1v(2,3)=4v(1,2,3)=5Claim: (N,v) is superadditive We show that $v(S \cup T) \ge v(S) + v(T)$ for all $S, T \in 2^N \setminus \{\emptyset\}$ with $S \cap T = \emptyset$ $3=v(1,2)\geq v(1)+v(2)=0+3$ $1=v(1,3)\geq v(1)+v(3)=0+0$ $4=v(2,3)\geq v(2)+v(3)=3+0$ $5=v(1,2,3) \ge v(1)+v(2,3)=0+4$ $5=v(1,2,3) \ge v(2)+v(1,3)=3+1$ $5=v(1,2,3) \ge v(3)+v(1,2)=0+3$

The imputation set

DEF. Let (N,v) be a n-persons TU-game. A vector $x=(x_1, x_2, ..., x_n) \in IR^N$ is called an <u>imputation</u> iff

> (1) x is <u>individual rational</u> i.e. $x_i \ge v(i)$ for all $i \in N$

(2) x is <u>efficient</u> $\Sigma_{i \in N} x_i = v(N)$

[interpretation x_i: payoff to player i]

 $I(v) = \{x \in IR^{N} \mid \sum_{i \in N} x_{i} = v(N), x_{i} \ge v(i) \text{ for all } i \in N \}$ <u>Set of imputations</u>

The core of a gameDEF. Let (N,v) be a TU-game. The core C(v) of (N,v) is thesetC(v)={x \in I(v) | $\Sigma_{i \in S} x_i \ge v(S)$ for all $S \in 2^N \setminus \{\emptyset\}$ }stability conditionsno coalition S has the incentive to split offif x is proposedNote: $x \in C(v)$ iff(1) $\Sigma_{i \in N} x_i = v(N)$ efficiency(2) $\Sigma_{i \in S} x_i \ge v(S)$ for all $S \in 2N \setminus \{\emptyset\}$ stabilityBad news: C(v) can be emptyGood news: many interesting classes of games have a non-empty core.

Example (Game of pirates) Three pirates 1,2, and 3. On the other side of the river there is a treasure (10€). At least two pirates are needed to wade the river... (N,v), N={1,2,3}, v(1)=v(2)=v(3)=0, v(1,2)=v(1,3)=v(2,3)=v(1,2,3)=10 Suppose $(x_1, x_2, x_3) \in C(v)$. Then efficiency $x_1 + x_2 + x_3 = 10$ stability_ $x_1 + x_2 \ge 10$ $x_2 + x_3 \ge 10$ $20=2(x_1 + x_2 + x_3) \ge 30$ Impossible. So $C(v)=\emptyset$. Note that (N,v) is superadditive.

How to share v(N)...

- The Core of a game can be used to exclude those allocations which are not stable.
- But the core of a game can be a bit "extreme" (see for instance the glove game)
- Sometimes the core is *empty* (pirates)
- And if it is not empty, there can be many allocations in the core (which is the best?)

An axiomatic approach (Shapley (1953)

- Similar to the approach of Nash in bargaining: which properties an allocation method should satisfy in order to divide v(N) in a reasonable way?
- Given a subset C of G^N (class of all TU-games with N as the set of players) a *(point map) solution* on C is a map $\Phi: C \rightarrow IR^N$.
- For a solution Φ we shall be interested in various properties...

Symmetry

PROPERTY 1(SYM) Let $v \in G^N$ be a TU-game. Let i, $j \in N$. If $v(S \cup \{i\}) = v(S \cup \{j\})$ for all $S \in 2^{N \setminus \{i,j\}}$, then $\Phi_i(v) = \Phi_j(v)$. EXAMPLE We have a TU-game $(\{1,2,3\},v)$ s.t. v(1) = v(2) = v(3) = 0, v(1, 2) = v(1, 3) = 4, v(2, 3) = 6, v(1, 2, 3) = 20. Players 2 and 3 are symmetric. In fact: $v(\emptyset \cup \{2\}) = v(\emptyset \cup \{3\}) = 0$ and $v(\{1\} \cup \{2\}) = v(\{1\} \cup \{3\}) = 4$ If Φ satisfies SYM, then $\Phi_2(v) = \Phi_3(v)$

Efficiency

<u>PROPERTY 2 (EFF)</u> Let $v \in G^N$ be a TU-game.

 $\sum_{i \in N} \Phi_i(v) = v(N)$, i.e., $\Phi(v)$ is a pre-imputation.

Null Player Property

<u>DEF.</u> Given a game $v \in \mathbf{G}^N$, a player $i \in N$ s.t.

 $v(S \cup i) = v(S)$ for all $S \in 2^N$ will be said to be a null player.

PROPERTY 3 (NPP) Let $v \in G^N$ be a TU-game. If $i \in N$ is a null player, then $\Phi_i(v) = 0$.

EXAMPLE We have a TU-game ($\{1,2,3\}$,v) such that v(1) =0, v(2) = v(3) = 2, v(1, 2) = v(1, 3) = 2, v(2, 3) = 6, v(1, 2, 3)

3) = 6. Player 1 is null. Then $\Phi_1(v) = 0$

Additivity					
<u>PROPERTY 4 (ADD)</u> Given $v, w \in \mathbf{G}^N$,					
$\Phi(\mathbf{v}) + \Phi(\mathbf{w}) = \Phi(\mathbf{v} + \mathbf{w}).$					
. <u>EXAMPLE</u> Two TU-games v and w on N={1,2,3}					
v(1) =3	Φ	w(1) =1	Φ	v+w(1) =4	
v(2) =4		w(2) =0		v+w(2) = 4	
v(3) = 1		w(3) = 1		v+w(3) = 2	
v(1, 2) =8	╋	w(1, 2) =2	=	v+w(1, 2) = 10	
v(1, 3) = 4		w(1, 3) = 2		v+w(1, 3) = 6	
v(2, 3) = 6		w(2, 3) = 3		v+w(2, 3) = 9	
v(1, 2, 3) = 10		w(1, 2, 3) = 4		v+w(1, 2, 3) = 14	

Theorem 1 (Shapley 1953)

There is a unique map ϕ defined on **G**^N that satisfies EFF, SYM, NPP, ADD. Moreover, for any i \in N we have that

$$\phi_i(v) = \frac{1}{n!} \sum_{\sigma \in \Pi} m_i^{\sigma}(v)$$

Here Π is the set of all permutations $\sigma: N \rightarrow N$ of N, while $m^{\sigma}{}_{i}(v)$ is the marginal contribution of player i according to the permutation σ , which is defined as:

v({ σ (1), σ (2), ..., σ (j)})-v({ σ (1), σ (2), ..., σ (j-1)}), where j is the unique element of N s.t. i = σ (j).

 Probabilistic interpretation: (the "room parable") Players gather one by one in a room to create the "grand coalition", and each one who enters gets his marginal contribution. Assuming that all the different orders in which they enter are equiprobable, the Shapley value gives to each player her/his expected payoff. 				
Example	Permutation	1	2	3
(N,v) such that $N-(1,2,3)$	1,2,3	0	3	2
v(1)=v(3)=0, v(2)=3,	1,3,2	0	4	1
	2,1,3	0	3	2
v(1,2)=3, v(1,2)=1	2,3,1	1	3	1
v(1,3)=1, v(2,3)=4,	3,2,1	1	4	0
v(1,2,3)=5.	3,1,2	1	4	0
	Sum	3	21	6
	φ(ν)	3/6	21/6	6/6

Unanimity games (2)

► Every coalitional game (N, v) can be written as a linear combination of unanimity games in a unique way, i.e., $v = \sum_{s \in 2^N} \lambda_s(v)u_s$.

➤ The coefficients $\lambda_{s}(v)$, for each $S \in 2^{N}$, are called unanimity coefficients of the game (N, v) and are given by the formula: $\lambda_{s}(v) = \sum_{T \in 2^{s}} (-1)^{s-t} v(T)$.

An alternative formulation

Let $m^{\sigma'}(v)=v(\{\sigma'(1),\sigma'(2),...,\sigma'(j)\})-v(\{\sigma'(1),\sigma'(2),...,\sigma'(j-1)\}),$ where j is the unique element of N s.t. $i = \sigma'(j)$.

► Let S={ $\sigma'(1), \sigma'(2), \ldots, \sigma'(j)$ }.

- > Q: How many other orderings $\sigma \in \Pi$ do we have in which { σ (1), σ (2), ..., σ (j)}=S and i = σ '(j)?
- A: they are precisely (|S|-1)!×(|N|-|S|)!
- Where (|S|-1)! Is the number of orderings of S\{i} and (|N|-|S|)! Is the number of orderings of N\S
- We can rewrite the formula of the Shapley value as the following:

$$\phi_i(v) = \sum_{S \in 2^N : i \in S} \frac{(s-1)!(n-s)!}{n!} (v(S) - v(S \setminus \{i\}))$$

Convex games (1)

<u>DEF.</u> An n-persons TU-game (N,v) is convex iff $v(S)+v(T) \le v(S \cup T)+v(S \cap T)$ for each $S,T \in 2^N$.

This condition is also known as *supermodularity*. It can be rewritten as

 $v(T)-v(S \cap T) \le v(S \cup T)-v(S)$ for each $S,T \in 2^N$

For each $S,T \in 2^N$, let $C = (S \cup T) \setminus S$. Then we have: $v(C \cup (S \cap T)) - v(S \cap T) \le v(C \cup S) - v(S)$

Interpretation: the marginal contribution of a coalition C to a disjoint coalition S does not increase if S becomes smaller

Convex games (2)

The searce of the supermodularity is equivalent to $v(S \cup \{i\})-v(S) \le v(T \cup \{i\})-v(T)$

for all $i \in N$ and all $S,T \in 2^N$ such that $S \subseteq T \subseteq N \setminus \{i\}$ > interpretation: player's marginal contribution to a large coalition is not smaller than her/his marginal contribution to a smaller coalition (which is stronger than superadditivity)

Clearly all convex games are superadditive ($S \cap T = \emptyset$...)

➢A superadditive game can be not convex (try to find one)
➢An important property of convex games is that they are (*totally*) balanced, and it is "easy" to determine the core (coincides with the Weber set, i.e. the convex hull of all marginal vectors...)

Minimum Cost Spanning Tree Situations
 Consider a complete weighted graph
 whose vertices represent agents
 vertex 0 is the source
 edges represent connections between agents or between an agent and the source
 numbers close to edges are connection costs

P-value

>Always provides a unique allocation (given a most situation).

>It is in the core of the corresponding most game.

>Satisfies cost monotonicity.

>Satisfies population monotonicity.

>on a subclass of connection problems it coincides with the Shapley value of mcst games

≻...

Weighted Majority Games

Suppose that four parties receive these vote shares: Party A, 27%; Party B, 25%; Party C, 24%; Party 24%.

Seats are apportioned in a 100-seat parliament according some apportionment formula. In this case, the apportionment of seats is straight-forward:

Party A:	27 seats	Party C:	24 seats
Party B:	25 seats	Party D:	24 seats

Suppose a simple majority is required (at least 51 seats) to be winning

United States presidential election (3)				
A game (N,v), where N =51 (the number of states plus Washington D.C.), each one with a weight given by the number of electors				
$\succ v(S)=1 \iff \sum_{i \in S} w_i > 270$				
➢ In 1977, weights are between 3 (smallest states				
and Washington D.C.) and 45 (California)				
State	Electors	Shapley	Banzhaf	
California	45	0.08831	0.38694	
Washington DC	3	0.005412	0.02402	
Florida	17	0.03147	0.13736	
Montaa	4	0.00723	0.03202	

Power indices: a general formulation

Let (N,v) be a simple game (assume v is *monotone*: for each $S,T \in 2^N$. $S \subseteq T \Rightarrow v(S) \leq v(T)$)

Let $p_i(S)$, for each $S \in 2^N \setminus \{\emptyset\}$, $i \notin S$, be the probability of coalition $S \cup \{i\}$ to form (of course $\sum_{S \subseteq N: i \notin S} p_i(S)=1$)

A power index $\psi_i(v)$ is defined as the probability of player i to be pivotal in v according to p:

 $\psi_i^{p}(v) = \sum_{S \subseteq N: i \notin S} p_i(S) \left[v(S \cup \{i\}) - v(S) \right]$