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�Dominant strategies

�Nash eq. (NE)

�Subgame perfect NE

�NE & refinements

…

�Core

�Shapley

value

�Nucleolus

�τ-value

�PMAS

….

�Nash sol.

�Kalai-

Smorodinsky

….

�CORE

�NTU-value

�Compromise 

value

…

No binding agreements

No side payments

Q: Optimal behaviour in conflict 

situations

binding agreements

side payments are possible (sometimes)

Q: Reasonable (cost, reward)-sharing
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Cooperative games: a simple example
Alone, player 1 (singer) and 2 (pianist) can 

earn 100€ 200€ respect.

Together (duo) 700€

How to divide the (extra) earnings?

I(v)
700

400

600

200

100 300 500 700

x2

x1x1 +x2=700

Imputation set: I(v)={x∈IR2|x1≥100, x2≥200, x1+x2 =700}

Example: ice-cream game

(N,v) such that N={1,2,3} 

v(1)=v(3)=0

v(2)=3

v(1,2)=3

v(1,3)=1

v(2,3)=4

v(1,2,3)=5

Interpretation: kids want to buy ice-cream

1 and 3 cooperate

1 and 3 not enough money � no ice-cream

1 Kg

2 alone 3 Kg

1 and 2 cooperate 3 Kg

2 and 3 cooperate 4 Kg

1,2 and 3 cooperate 5 Kg

Q.1: will do they join their money

In order to buy more ice-cream?

Q.2: if yes, how do they share the 

Ice-cream?
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COOPERATIVE GAME THEORY

Games in coalitional form

TU-game: (N,v)

N={1, 2, …, n} set of players

S⊂N coalition

2N set of coalitions

v: 2N�IR characteristic function

v(S) is the value (worth) of coalition S

DEF. (N,v) with v(∅)=0 is a Transferable Utility (TU)-game with 

player set N.

NB: if N is fixed, (N,v)↔v

NB: if n=|N|, it is also called n-person TU-game…

Other names: game in coalitional form, coalitional game, 

cooperative game with side payments...

Q.1: which coalitions form?

Q.2: If the grand coalition N forms, how to divide v(N)?

(how to allocate the utility or the cost of the grand coalition?)

Many answers! (solution concepts)

One-point concepts:  - Shapley value (Shapley 1953)

- nucleolus (Schmeidler 1969)

-τ-value (Tijs, 1981)

…

Subset concepts: - Core (Gillies, 1954)

- stable sets (von Neumann, Morgenstern, ’44)

- kernel (Davis, Maschler)

- bargaining set (Aumann, Maschler)

…..

DEF. (N,v) is a superadditive game iff

v(S∪T)≥v(S)+v(T) for all S,T with S∩T=∅
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Claim: (N,v) is superadditive

We show that v(S∪T)≥v(S)+v(T) for all S,T∈2N\{∅} with S∩T=∅

3=v(1,2)≥v(1)+v(2)=0+3

1=v(1,3)≥v(1)+v(3)=0+0

4=v(2,3)≥v(2)+v(3)=3+0

5=v(1,2,3) ≥v(1)+v(2,3)=0+4

5=v(1,2,3) ≥v(2)+v(1,3)=3+1

5=v(1,2,3) ≥v(3)+v(1,2)=0+3

Example: ice-cream game

(N,v) such that N={1,2,3} 

v(1)=v(3)=0

v(2)=3

v(1,2)=3

v(1,3)=1

v(2,3)=4

v(1,2,3)=5

The imputation set

DEF. Let (N,v) be a n-persons TU-game. 

A vector x=(x1, x2, …, xn)∈IRN is called an imputation iff

(1) x is individual rational i.e. 

xi ≥ v(i) for all i∈N

(2) x is efficient

Σi∈N xi = v(N)

[interpretation  xi: payoff to player i]

I(v)={x∈IRN | Σi∈N xi = v(N), xi ≥ v(i) for all i∈N}

Set of imputations
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Example

(N,v) such that 

N={1,2,3}, 

v(1)=v(3)=0, 

v(2)=3, 

v(1,2,3)=5.

x3

x2

X1

(5,0,0)

(0,5,0)

(0,0,5)

x1
+x2

+x3
=5

(2,3,0)

(0,3,2)

I(v)

I(v)={x∈∈∈∈IR3 | x1,x3≥≥≥≥0, x2≥≥≥≥3, x1+x2+x3=5}

5 Kg

3 Kg
2 Kg

, , )(

player1 player2 player3

The core of a game

DEF. Let (N,v) be a TU-game. The core C(v) of (N,v) is the 

set

C(v)={x∈I(v) | Σi∈S xi ≥ v(S) for all S∈2N\{∅}}

stability conditions

no coalition S has the incentive to split off if 

x is proposed

Note: x ∈ C(v)  iff

(1) Σi∈N xi = v(N) efficiency

(2) Σi∈S xi ≥ v(S) for all S∈2N\{∅} stability

Bad news: C(v) can be empty

Good news: many interesting classes of games have a non-

empty core.
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Example

(N,v) such that 

N={1,2,3}, 

v(1)=v(3)=0, 

v(2)=3,

v(1,2)=3, 

v(1,3)=1

v(2,3)=4

v(1,2,3)=5.

Core elements satisfy the 

following conditions:

x1,x3≥0, x2≥3, x1+x2+x3=5

x1+x2≥3, x1+x3≥1, x2+x3≥4

We have that

5-x3≥3⇔x3≤2

5-x2≥1⇔x2≤4

5-x1≥4⇔x1≤1

C(v)={x∈IR3 | 1≥x1≥0,2≥x3≥0, 4≥x2≥3, x1+x2+x3=5}

Example

(N,v) such that 

N={1,2,3}, 

v(1)=v(3)=0, 

v(2)=3,

v(1,2)=3, v(1,3)=1

v(2,3)=4

v(1,2,3)=5.

x3

x2

X1

(5,0,0)

(0,5,0)

(0,0,5)

x1
+x2

+x3
=5

(2,3,0)

(0,3,2)

C(v)
(0,4,1)

(1,3,1)

(1,4,0)

C(v)={x∈IR3 | 1≥x1≥0,2≥x3≥0, 4≥x2≥3, x1+x2+x3=5}
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Example (Game of pirates) Three pirates 1,2, and 3. On the other 

side of the river there is a treasure (10€). At least two pirates are 

needed to wade the river…

(N,v), N={1,2,3}, v(1)=v(2)=v(3)=0, 

v(1,2)=v(1,3)=v(2,3)=v(1,2,3)=10

Suppose (x1, x2, x3)∈C(v). Then

efficiency x1+ x2+ x3=10

x1+ x2 ≥10

stability x1+x3 ≥10 

x2+ x3 ≥10 

20=2(x1+ x2+ x3) ≥30 Impossible. So C(v)=∅. 

Note that (N,v) is superadditive.

Example

(Glove game with L={1,2}, R={3}) 

v(1,3)=v(2,3)=v(1,2,3)=1, v(S)=0 otherwise

Suppose (x1, x2, x3)∈C(v). Then

x1+ x2+ x3=1 x2=0 

x1+x3 ≥1 x1+x3 =1 

x2≥0 

x2+ x3 ≥1 x1=0 and x3=1

So C(v)={(0,0,1)}. 

(1,0,0)

(0,0,1)

(0,1,0)

I(v)
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How to share v(N)…

�The Core of a game can be used to exclude those 

allocations which are not stable.

�But the core of a game can be a bit “extreme” (see 

for instance the glove game)

�Sometimes the core is empty (pirates)

�And if it is not empty, there can be many 

allocations in the core (which is the best?)

An axiomatic approach (Shapley (1953)

�Similar to the approach of Nash in bargaining: 

which properties an allocation method should 

satisfy in order to divide v(N) in a reasonable way? 

�Given a subset C of GN (class of all TU-games with 

N as the set of players) a (point map) solution on C

is a map Φ:C→IRN. 

�For a solution Φ we shall be interested in various 

properties…
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Symmetry

PROPERTY 1(SYM) Let v∈GN be a TU-game.

Let i, j∈Ν. If v(S∪{i}) = v(S∪{j}) for all S∈2N\{i,j}, 

then Φi(v) = Φj (v).

EXAMPLE

We have a TU-game ({1,2,3},v) s.t. v(1) = v(2) = v(3) = 0, 

v(1, 2) = v(1, 3) = 4, v(2, 3) = 6, v(1, 2, 3) = 20.

Players 2 and 3 are symmetric. In fact: 

v(∅∪{2})= v(∅∪{3})=0 and v({1}∪{2})=v({1}∪{3})=4

If Φ satisfies SYM, then Φ2(v) = Φ3(v)

Efficiency 

PROPERTY 2 (EFF) Let v∈GN be a TU-game. 

∑ i∈NΦi(v) = v(N), i.e., Φ(v) is a pre-imputation.

Null Player Property 

DEF. Given a game v∈GN, a player i∈N s.t. 

v(S∪i) = v(S) for all S∈2N will be said to be a null player.

PROPERTY 3 (NPP) Let v∈GN be a TU-game. If i∈N is a 

null player, then Φi(v) =0.

EXAMPLE We have a TU-game ({1,2,3},v) such that v(1) 

=0, v(2) = v(3) = 2, v(1, 2) = v(1, 3) = 2, v(2, 3) = 6, v(1, 2,

3) = 6. Player 1 is null. ThenΦ1(v) = 0 
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EXAMPLE We have a TU-game ({1,2,3},v) such that 

v(1) =0, v(2) = v(3) = 2, v(1, 2) = v(1, 3) = 2, v(2, 3) 

= 6, v(1, 2, 3) = 6. On this particular example, if Φ

satisfies NPP, SYM and EFF we have that

Φ1(v) = 0 by NPP

Φ2(v)= Φ3(v) by SYM

Φ1(v)+Φ2(v)+Φ3(v)=6 by EFF

So  Φ=(0,3,3)

But our goal is to characterize Φ on GN. One more 

property is needed.

Additivity

PROPERTY 4 (ADD) Given v,w ∈GN, 

Φ(v)+Φ(w)=Φ(v +w).

.EXAMPLE Two TU-games v and w on N={1,2,3}

v(1) =3

v(2) =4 

v(3) = 1

v(1, 2) =8 

v(1, 3) = 4

v(2, 3) = 6 

v(1, 2, 3) = 10

w(1) =1 

w(2) =0 

w(3) = 1 

w(1, 2) =2 

w(1, 3) = 2

w(2, 3) = 3

w(1, 2, 3) = 4

+

v+w(1) =4 

v+w(2) =4 

v+w(3) = 2 

v+w(1, 2) =10 

v+w(1, 3) = 6

v+w(2, 3) = 9 

v+w(1, 2, 3) = 14

=

Φ Φ
Φ
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Theorem 1 (Shapley 1953) 

There is a unique map φ defined on GN that satisfies EFF, 

SYM, NPP, ADD. Moreover, for any i∈N we have that

)(
!

1
)( vm

n
v ii ∑ Π∈

=
σ

σφ

Here Π is the set of all permutations σ:N→N  of N, while mσi(v) is 

the marginal contribution of player i according to the permutation σ, 

which is defined as: 

v({σ(1), σ(2), . . . , σ (j)})− v({σ(1), σ(2), . . . , σ (j −1)}),

where j is the unique element of N s.t. i = σ(j).

Example

(N,v) such that 

N={1,2,3}, 

v(1)=v(3)=0, 

v(2)=3,

v(1,2)=3, 

v(1,3)=1,

v(2,3)=4,

v(1,2,3)=5.

Permutation 1 2 3

1,2,3 0 3 2

1,3,2 0 4 1

2,1,3 0 3 2

2,3,1 1 3 1

3,2,1 1 4 0

3,1,2 1 4 0

Sum 3 21 6

 φ(v) 3/6 21/6 6/6

Probabilistic interpretation: (the “room parable”)

�Players gather one by one in a room to create the “grand coalition”, and each 

one who enters gets his marginal contribution.

�Assuming that all the different orders in which they enter are equiprobable, 

the Shapley value gives to each player her/his expected payoff.
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Example

(N,v) such that 

N={1,2,3}, 

v(1)=v(3)=0, 

v(2)=3,

v(1,2)=3, v(1,3)=1

v(2,3)=4

v(1,2,3)=5.

x3

x2

X1

(5,0,0)

(0,5,0)

(0,0,5)

x1
+x2

+x3
=5

(2,3,0)

(0,3,2)

C(v)

Marginal vectors

123�(0,3,2)

132�(0,4,1)

213�(0,3,2)

231�(1,3,1)

321�(1,4,0)

312�(1,4,0)

(0,4,1)

(1,3,1)

(1,4,0)

 φ φ φ φ(v)=(0.5, 3.5,1)

Unanimity games (1)

�DEF Let T∈2N\{∅}. The unanimity game on T is 
defined as the TU-game (N,uT) such that

1 is T⊆S

uT(S)=

0 otherwise

�Note that the class GN of all n-person TU-games is a 
vector space (obvious what we mean for v+w and 
 αv for v,w∈GN and α∈IR).

� the dimension of the vector space GN is 2n-1

�{uT|T∈2N\{∅}} is an interesting basis for the vector 
space GN.
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Unanimity games (2)

�Every coalitional game (N, v) can be written as a 

linear combination of unanimity games in a unique 

way, i.e., v =∑S∈2
NλS(v)uS . 

�The coefficients λS(v), for each S∈2N, are called 

unanimity coefficients of the game (N, v) and are 

given by the formula: λS(v) = ∑T∈2
S (−1)s−t v(T ).

Sketch of the Proof of Theorem1

�Shapley value satisfies the four properties (easy).

�Properties EFF, SYM, NPP determine φ on the class 

of all games αv, with v a unanimity game and 

α∈IR.

�Let S∈2N. The Shapley value of the unanimity game 

(N,uS) is given by 

α/|S|   if i∈S

φi(αuS)=

0 otherwise

�Since the class of unanimity games is a basis for the 

vector space, ADD allows to extend φ in a unique 

way to GN.
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�Let mσ’
i(v)=v({σ’(1),σ’(2),…,σ’(j)})− v({σ’(1),σ’(2),…, σ’(j −1)}), 

where j is the unique element of N s.t. i = σ’(j).

�Let S={σ’(1), σ’(2), . . . , σ’(j)}.

�Q: How many other orderings σ∈Π do we have in which 

{σ(1), σ(2), . . . , σ (j)}=S and i = σ’(j)?

�A: they are precisely (|S|-1)!×(|N|-|S|)! 

�Where (|S|-1)! Is the number of orderings of S\{i} and (|N|-

|S|)! Is the number of orderings of N\S

�We can rewrite the formula of the Shapley value as the 

following:

( )∑ ∈∈
−

−−
=

SiSi N iSvSv
n

sns
v

:2
}){\()(

!

)!()!1(
)(φ

An alternative formulation

Convex games (1)

DEF. An n-persons TU-game (N,v) is convex iff

v(S)+v(T)≤v(S ∪T)+v(S∩T)     for each S,T∈2N.

This condition is also known as supermodularity. It can be 

rewritten as

v(T)-v(S∩T)≤v(S ∪T)-v(S)    for each S,T∈2N

For each S,T∈2N, let C=(S∪T)\S. Then we have:

v(C∪(S∩T))-v(S∩T)≤v(C ∪S)-v(S)

Interpretation: the marginal contribution of a coalition C to a 

disjoint coalition S does not increase if S becomes smaller
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Convex games (2)
�It is easy to show that supermodularity is equivalent to

v(S ∪{i})-v(S)≤v(T∪{i})-v(T) 

for all i∈N and all S,T∈2N such that S⊆T ⊆ N\{i}

�interpretation: player's marginal contribution to a large 

coalition is not smaller than her/his marginal contribution to a

smaller coalition (which is stronger than superadditivity)

�Clearly all convex games are superadditive (S∩T=∅…)

�A superadditive game can be not convex (try to find one)

�An important property of convex games is that they are 

(totally) balanced, and it is “easy” to determine the core 

(coincides with the Weber set, i.e. the convex hull of all 

marginal vectors…)

Example

(N,v) such that 

N={1,2,3}, 

v(1)=v(3)=0, 

v(2)=3,

v(1,2)=3, v(1,3)=1

v(2,3)=4

v(1,2,3)=5.

Check it is convex

x3

x2

X1

(5,0,0)

(0,5,0)

(0,0,5)

x1
+x2

+x3
=5

(2,3,0)

(0,3,2)

C(v)

Marginal vectors

123�(0,3,2)

132�(0,4,1)

213�(0,3,2)

231�(1,3,1)

321�(1,4,0)

312�(1,4,0)

(0,4,1)

(1,3,1)

(1,4,0)

C(v)={x∈IR3 | 1≥x1≥0,2≥x3≥0, 4≥x2≥3, x1+x2+x3=5}
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Section 2. Connection 
situations

31

http://www.vrtuosi.com

� A connection situation takes place in the presence of a group of 
agents N={1,2, …,n}, each of which needs to be connected directly 
or via other agents to a source. 

� If connections among agents are costly, then each agent will 
evaluate the opportunity of cooperating with other agents in order 
to reduce costs. 

� If a group of agents decides to cooperate, a configuration of links 
which minimizes the total cost of connection is provided by a 
minimum cost spanning tree (mcst). 

� The problem of finding a mcst may be easily solved thanks to 
different algorithms proposed in literature (Boruvka (1926), Kruskal
(1956), Prim (1957), Dijkstra (1959))

Minimum Cost Spanning Tree Situations

Consider a complete weighted graph

1

2

3

– whose vertices represent agents

source

– vertex 0 is the source

0
– edges represent connections between 

agents or between an agent and the source

40

30

10

50

20

– numbers close to edges are connection costs

80
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Minimum cost spanning tree (mcst) problem

Optimization problem:

How to connect each node to the source 0 in 

such a way that the cost of construction of a 

spanning network (which connects every node 

directly or indirectly to the source 0) is 

minimum?

ExampleN={1,2,3},EN’={{1,0},{2,0},{2,1},{3,0},{3,1},{3,2}}

cost function shown on graphs

2

1

0

18

24
24

26

10 20

3

Kruskal algorithm

2

1

0

18

24
24

26

10

3

Prim algorithm

20
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2

1

0

18

24
24

26

10 20

3

c(1)=24

c(3)=26

c(2)=24

c(1,3)=34

c(2,3)=44

c(1,2)=42

c(1,2,3)=52

Example: mcst cost game ({1,2,3},c) defined on the 

following connection situation:

2

1

0

18

24
24

26

10 20

3

Example: The cost game ({1,2,3},c) is defined on the 

following connection situation:

The game ({1,2,3}, c) is said mcst game (Bird (1976))

c(1)=24

c(2)=24

c(3)=26

c(1,3)=34

c(1,2)=42

c(2,3)=44

c(1,2,3)=52
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2

1

0

18

24
24

26

10 20

3

• The predecessor of 1 is 0: the Bird 

allocation gives to player 1 the cost of {0,1}. 

•The predecessor of 2 is 1: the Bird allocation 
gives to player 2 the cost of {1,2};

• The predecessor of 3 is 1: the Bird allocation 
gives to player 3 the cost of {1,3}.

w(Γ)=52

Bird allocation w.r.t. to Γ, (x1, x2, x3)=(24, 18 ,10) is in the 
core of ({1,2,3},c).

How to divide the total cost? (Bird 1976)

The Bird allocation w.r.t. this 
mcst is

(x1, x2, x3)=(18, 24 ,10)

The Bird allocation w.r.t .this 

mcst is

(x1, x2, x3)=(24, 18 ,10)

2

1

0

18

24
24

26

10 20

3

2

1

0

18

24
24

26

10

3

20

Both allocations belong to the core of the mcst game (and 

also their convex combination).
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2

1

0

18

24
24

26

10 20

3

(24,24,4)

(2,24,26)(24,2,26)

I(N,c)

(x1,x2,x3) s.t.

x1+x2+x3=52

x1≤24

x2 ≤24

x3 ≤26
(18,24,10)(24,18,10)

(8,18,26)

Core(N,c)

(8,24,20)

x1+x2≤42

x2+x3≤44

x1+x2≤34

Bird 1 Bird 2

Bird allocation rule

� It always provides an allocation (given 
a connection situation).

� In general, not a unique allocation 
(each mcst determines a corresponding 
Bird allocation…).

� Bird allocations are in the core of mcst
games (but are extreme points)
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What happens when the structure of the 

network changes?

� Imagine to use a certain rule to allocate costs.

� The cost of edges may increase: if the cost of an edge 

increases, nobody should be better off, according to such 

a rule (cost monotonicity);

� One or more players may leave the connection situation: 

nobody of the remaining players should be better off 

(population monotonicity).

Cost monotonicity: Bird allocation behaviour

2

1

0

3

4
5

8

3 4

3

2

1

0

3

6
5

8

3 4

3

Bird allocation: (4, 3 ,3) Bird allocation: (3, 5 ,3)

Bird rule does not satisfy cost monotonicity.
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Population monotonicity: Bird allocation 

behaviour

Bird allocation: (5, 5 ,3) Bird allocation: (3, * ,6)

2

1

0

5

7
5

6

3 7

3

1

0

7

6

3

3

Bird rule does not satisfy population monotonicity

Construct & Charge rules

Are based on the following general cost allocation 

protocol:

� As soon as a link is constructed in the Kruskal algorithm 

procedure: 

1) it must be totally charged among agents which are not yet 

connected with the source (connection property)

2) Only agents that are on some path containing the new edge 

may be charged (involvement property) 

� when the construction of a mcst is completed, each agent 

has been charged for a total amount of fractions equal to 1 

(total aggregation property).
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2

1

0

18

24
24

26

10 20

3

2

1

0

3

,0 (1,1,1)t
b

σ =

(0,0,0)

There are no 

edge costs to 

share.

2

1

0

3

,1 1 1
( ,1, )
2 2

tbσ =

10

(5,0,5)

1 and 3 share 

cost 10 

equally.

P-value: Feltkamp (1994), Branzei et al. (2004), Moretti (2008)

2

1

0

3

,2 1 1 1
( , , )
3 3 3

t
b

σ =

(3,12,3)

18

2 is connected to 1 and 

3 who were already 

connected: 2 pays 2/3 

of 18 whereas the 

remaining is shared 

equally between 1 and 

3.

2

1

0

3

,3 1 1 1
( , , )
3 3 3

t
b

σ =

(0,0,0)
20

Oops… there is 

a cycle: nobody 

want it.

2

1

0

3
,4 (0,0,0)t

b
σ =

24 (8,8,8)

Players are 

connected to 

0: share the 

total cost of 

the last edge 

(=24) equally
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P-value

2

1

0

18

24
24

26

10 20

3

Make the sum of all edge-by-edge allocations:

(0, 0, 0) +

(5, 0, 5) +

(3,12,3) +

(0, 0, 0) +
(8, 8, 8) =

P-value = (16,20,16)

Algorithm to calculate the P-value

� At any step of the Kruskal algorithm where a component is 
connected to some agents, charge the cost of that edge among 
these agents in the following way:

� Proportionally to the cardinality_current_step-1 if  an agent 
is connected to a component which is connected to the 
source,

� Otherwise, charge it proportionally to the difference: 
cardinality_previous_step-1 - cardinality_current_step-1

IDEA: charge the cost of an edge constructed during the 

Kruskal algorithm only between agents involved, keeping into 

account the cardinality of the connected components at that step

and at the previous step of the algorithm:
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P-value

�Always provides a unique allocation (given a mcst

situation).

�It is in the core of the corresponding mcst game.

�Satisfies cost monotonicity.

�Satisfies population monotonicity.

�on a subclass of connection problems it coincides 
with the Shapley value of mcst games 

�…

Weighted Majority Games

Suppose that four parties receive these vote shares: 

Party A, 27%; Party B, 25%; Party C, 24%; Party 
24%.

Seats are apportioned in a 100-seat parliament according 
some apportionment formula.  In this case, the 
apportionment of seats is straight-forward:

Party A:  27 seats Party C:   24 seats

Party B:  25 seats Party D:   24 seats

Suppose a simple majority is required (at least 51 seats) 
to be winning
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The Shapley-Shubik Index
Suppose coalition formation starts at the top of each ordering, moving 

downward to form coalitions of increasing size.

At some point a winning coalition formed.

The “grand coalition” {A,B,C,D} is certainly winning.

For each ordering, identify the pivotal player who, when added to the players 
already in the coalition, converts a losing coalition into a winning coalition. 

Given the seat shares of parties A, B, C, and D before the election, the pivotal 
player in each ordering is identified by the arrow (<=).  

The Shapley-Shubik Index (cont.)

Voter i’s Shapley-Shubik power index value SS(i) is simply:

Number of orderings in which the voter i is pivotal 
Total number of orderings

Clearly such power index values of all voters add up to 1.

Counting up, we see that A is pivotal in 12 orderings and each 
of B, C, and D is pivotal in 4 orderings. Thus:

Voter SS Power
A 1/2 = .500
B 1/6 = .167
C 1/6 = .167 
D 1/6 = .167

So according to the Shapley-Shubik index, Party A has 3 times 
the voting power of each other party.

Lloyd Shapley and Martin Shubik, American Political Science Review, 1955.
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UN Security Council

• 15 member states:

– 5 Permanent members: China, France, Russian 

Federation, United Kingdom, USA

– 10 temporary seats (held for two-year terms ) 

(http://www.un.org/)

UN Security Council decisions

• Decision Rule: substantive resolutions need the 

positive vote of at least nine Nations but…

…it is sufficient the negative vote of one among 

the permanent members to reject the decision.

• How much decision power each Nation inside the 

ONU council to force a substantive decision?

• Game Theory gives an answer using the Shapley-

Shubik power index:
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UN Security Council as a weighted majority game

�Let N=P∪T, where P={1,2,3,4,5} is the set of 

Permanent members and 

T={6,7,8,9,10,11,12,13,14,15} is the set of 

temporary seats

�A simple game (N,v) s.t. v(S)=1 if |S|≥9 and P⊂S.

�(N,v) is a weighted majority game, where 

�wi=7 for each i∈P

�wi=1 for each i∈T

�v(S)=1  ⇔ ∑i∈S wi≥ 39

Power
≅ 19.6%

Power
≅ 0.2%

temporary seat 2015-2016

Shapley-Shubik index



29

United States presidential elections

� are indirect elections in which voters will select 
presidential electors who in turn will elect a new 
president and vice president through the electoral 
college. 

� electors directly elect the President (and Vice President).

�Once chosen, the electors can vote for anyone, but – with 
rare exceptions– they vote for their designated 
candidates 

� Each state is allocated a number of Electoral College 
electors equal to the number of its Senators and 
Representatives in the U.S. Congress (i.e. by population). 

�Additionally, Washington, D.C. is given a number of 
electors equal to the number held by the smallest state.

United States presidential election (3)

�A game (N,v), where |N|=51 (the number of states plus 

Washington D.C.), each one with a weight given by the 

number of electors

�v(S)=1  ⇔ ∑i∈S wi > 270

�In 1977, weights are between 3 (smallest states 

and Washington D.C.)  and 45 (California)

0.032020.007234Montaa

0.137360.0314717Florida

0.024020.0054123Washington DC 

0.386940.0883145California

BanzhafShapleyElectorsState
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United States presidential elections

� are indirect elections in which voters will select presidential 
electors who in turn will elect a new president and vice 
president through the electoral college.

� In this indirect election the power of each voter in 
California and Montana is the following 

≅ 7.8476 x 10-9

≅ 3.4516 x 10-9

Owen, G. (1995) Game Theory. 3rd edn. Academic Press. Calculations of indices for the situation in 1970

Power indices: a general formulation

Let (N,v) be a simple game (assume v is monotone: for each 

S,T ∈2N. S⊆T⇒ v(S) ≤v(T))

Let pi(S), for each S∈2N\{∅}, i∉S, be the probability of 

coalition S∪{i} to form (of course ∑S⊆N:i∉S pi(S)=1)

A power index ψi(v) is defined as the probability of player i 

to be pivotal in v according to p:

ψi
p(v)=∑S⊆N:i∉S pi(S) [v(S∪{i})-v(S)]


