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Theorem 1 (Shapley 1953)
There is a unique map  defined on GN that satisfies

EFF, SYM, NPP, ADD. Moreover, for any iN we
have that
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Here  is the set of all permutations σ:N →N  of N, while mσ
i(v) is the

marginal contribution of player i according to the permutation σ,
which is defined as:
v({σ(1), σ(2), . . . , σ (j)})− v({σ(1), σ(2), . . . , σ (j −1)}),
where j is the unique element of N s.t. i = σ(j).



Unanimity games (1)
DEF Let T2N\{}. The unanimity game on T is

defined as the TU-game (N,uT) such that

1 if TS
uT(S)=

0 otherwise
Note that the class GN of all n-person TU-games is a

vector space (obvious what we mean for v+w and
v for v,wGN and IR).
 the dimension of the vector space GN is 2n-1
{uT|T2N\{}} is an interesting basis for the vector

space GN.



Unanimity games (2)
Every coalitional game (N, v) can be written as a linear
combination of unanimity games in a unique way, i.e.,

v =S:N : S λS(v)uS .

The coefficients λS(v), for each S2N, are called unanimity
coefficients of the game (N, v) and are given by the
formula: λS(v) = TS:T (−1)s−t v(T ).



.EXAMPLE Two TU-games v and w on N={1,2,3}

v(1) =3

v(2) =4

v(3) = 1

v(1, 2) =8

v(1, 3) = 4

v(2, 3) = 6

v(1, 2, 3) = 10

1(v) =3

2(v) =4

3(v) = 1

{1,2}(v) =-3-4+8=1

{1,3}(v) = -3-1+4=0

{2,3}(v) = -4-1+6=1

{1,2,3}(v) = -3-4-1+8+4+6-10=0
v=3u{1}(v)+4u{2}(v)+u{3}(v)+u{1,2}(v)+u{2,3}

(v)

λS(v) = TS:T (−1)s−t v(T )



Sketch of the Proof of Theorem1
Shapley value satisfies the four properties (easy).
Properties EFF, SYM, NPP determine  on the class

of all games αv, with v a unanimity game and αIR.
Let S2N. The Shapley value of the unanimity game

(N,uS) is given by

/|S|   if iS

i(αuS)=

0   otherwise
Since the class of unanimity games is a basis for the

vector space, ADD allows to extend  in a unique
way to GN.



 Let mσ’
i(v)=v({σ’(1),σ’(2),…,σ’(j)})− v({σ’(1),σ’(2),…, σ’(j −1)}),

where j is the unique element of N s.t. i = σ’(j).
 Let S={σ’(1), σ’(2), . . . , σ’(j-1)}.
 Q: How many other orderings  do we have in which

{σ(1), σ(2), . . . , σ (j-1)}=S and i = σ’(j)?
 A: they are precisely (s)!(n-s-1)!
 Where s! Is the number of orderings of S and (n-s-1)! Is the

number of orderings of N\(S{i})
 We can rewrite the formula of the Shapley value as the

following:

An alternative formulation of the Shapley value

i(v)=SN:iS  s!(n-s-1)!/n! [v(S{i})-v(S)]



Power indices: a general formulation (2)

i(v)=SN:iS pi(S) [v(S{i})-v(S)]

 According to the Banzhaf power index, every coalitions has the same
probability to form: pi(S)=1/(2n-1), for each S2N\{}, iS

 According to the Shapley-Shubick power index, compute pi(S)
according to the following procedure to create at random from N a
subset S to which i does not belong:
 Draw at random a number out of the urn consisting of possible sizes 0,1,2,…,n-

1 where each number has probability 1/n to be drawn
 If size s is chosen, draw a set out of the urn consisting of subsets of N\{i} of

size s, where each set has the same probability, i.e.
1/combinations(n-1,s)

 indeed, pi(S)=(s! (n-s-1)!)/n!



UN Security Council as a weighted majority game

In the last sixty years, game theory has been applied to
political and social problems to assess the power of
interacting agents in forcing a decision

Classical example: UN Security Council: 15 member
states, 5 Permanent members (China,
France, Russian Federation, United
Kingdom, USA) and 10 temporary seats
(held for two-year terms )

Decision Rule: decisions on all substantive matters
need the positive vote of at least nine Nations
but it is sufficient the negative vote of one among
the permanent members to reject the decision.



UN Security Council as a weighted majority game

Let N=PT, where P={1,2,3,4,5} is the set of
Permanent members and
T={6,7,8,9,10,11,12,13,14,15} is the set of temorary
seats
A simple game (N,v) s.t. v(S)=1 if |S|9 and PS.
(N,v) is a weighted majority game, where
wi=7 for each iP

wi=1 for each iT

v(S)=1  iS wi > 38



Po
wer 19.6%

Po
wer  0.2%

temporary seats since January 1st  2007
until January 1st  2009



Reformulations

Other axiomatic approaches have been provided for the

Shapley value, of which we shall briefly describe those by

Young and and by Hart and Mas-Colell.

PROPERTY 8 (Marginalism, MARG) A map Ψ : GN→ℝN

satisfies MARG if, given v,wGN, for any player iN s.t.

v(S{i}) −v(S) = w(S{i}) −w(S) for each S2N,

the following is true:

Ψi(v) = Ψi(w).



EXAMPLE Two TU-games v and w on N={1,2,3}

v(1) =3

v(2) =4

v(3) = 1

v(1, 2) =8

v(1, 3) = 4

v(2, 3) = 6

v(1, 2, 3) = 10

w(1) =2

w(2) =3

w(3) = 1

w(1, 2) =2

w(1, 3) = 3

w(2, 3) = 5

w(1, 2, 3) = 4

w({3})- w() = v({3})- v()=1

w({1}{3})- w({1}) = v({1}{3})- v({1})=1

w({2}{3})- w() = v({2}{3})- v()=1

w({1,2}{3})- w({1,2}) = v({1,2}{3})- v({1,2)=1

Ψ3(v) = Ψ3(w).



Theorem 2
There is a unique map Ψ defined on G(N) that

satisfies EFF, SYM, and MARG. Such a Ψ
coincides with the Shapley value.

(Young 1988)



Potential

 A quite different approach was pursued by Hart and Mas-Colell
(1987).

 To each game (N, v) one can associate a real number P(N,v) (or,
simply, P(v)), its potential.

 The “partial derivative” of P is defined as

Di(P )(N, v) = P(N,v)−P(N\{i},v|N\{i})

Theorem 3 (Hart and Mas-Colell 1987) There is a unique map P,

defined on the set of all finite games, that satisfies:

1) ∅P( , v0) = 0,

2) iN DiP(N,v) = v(N).

Moreover, Di(P )(N, v) = i(v). [(v) is the Shapley value of v]



 there are formulas for the calculation of the potential.

 For example, P(N,v)=S2
N S/|S| (Harsanyi dividends)

Example
v(1) =3

v(2) =4

v(3) = 1

v(1, 2) =8

v(1, 3) = 4

v(2, 3) = 6

v(1, 2, 3) = 10

1(v) =3

2(v) =4

3(v) = 1

{1,2}(v) =1

{1,3}(v)=0

{2,3}(v)=1

{1,2,3}(v)=0

P({1,2,3},v)=3+4+1+1/2+1/2=9

P({1,2},v|{1,2})=3+4+1/2=15/2

P({1,3},v|{1,3})=3+1=4

P({2,3},v|{2,3})=4+1+1/2=11/2

1(v)=P({1,2,3},v)-P({2,3},v|{2,3})=9-11/2=7/2
2(v)=P({1,2,3},v)-P({1,3},v|{1,3})=9-4=5
3(v)=P({1,2,3},v)-P({1,2},v|{1,2})=9-15/2=3/2



 A cooperative game describes a
situation in which all players can freely
communicate with each other.
Drop this assumption and assume that
communication between players  is
restricted to a set of communication
possibilities between players.

Communication networks



An undirected graph is a pair (N,L) where
 N is a set of vertices (later, agents or players)
 L={ {i,j} | {i,j}N, ij } is the set of edges (bilateral

communication links)
 A communication graph (N,L) should be interpreted as

a way to model restricted cooperation:
 Players can cooperate with each other if they are

connected (directly, or indirectly via a path)
 Indirect communication between two players requires the

cooperation of players on a connecting path.

Communication networks as undirected graphs:



Example

Some notations:

N\L={{1,2,5,6},{3,4,7}}
set of components

L-2 ={{5,6}, {1,5}, {3,7}, {4,7}} N\L-2={{1,5,6},{3,4,7},{2}}

Consider the undirected graph (N,L) with N={1,2,3,4,5,6,7}
and L={{1,2}, {2,6}, {5,6}, {1,5}, {3,7}, {4,7}}

1 2 3 4

765



 A communication situation is a triple (N,v,L)
 (N,v) is a n-person TU-game (represents the economic

possibilities of coalitions)
 (N,L) is a communication network (represents restricted

communication possibilities)
 The graph-restricted game (N,vL) is defined as

vL(T)=CT\Lv(C)

For each S2N\{}.

Recall that T\L is the set of maximal connected
components in the restriction of graph (N,L) to T

Communication situations (Myerson (1977))



Example

A weighted majority game ({1,2,3},v) with the winning quote
fixed to 2/3 is considered. The votes of players 1, 2, and 3 are,
respectively, 40%, 20%, and 40%. Then, v(1,3)=v(1,2,3)=1 and
v(S)=0 for the remaining colitions.
The communication network is

1 2 3

Then,
vL(1,2,3)=1, and vL(S)=0 for the other coalitions.



 Myerson (1977) was the first to study solutions for communication

situations.

 A solution Ψ is a map defined for each communication situation (N,v,L)
with value in ℝN.

PROPERTY 1 Component Efficiency (CE)

For each communication situation (N,v,L) and all CN\L it holds that

iC Ψi(N,v,L) = v(C).

 Property 1 is an “efficiency” condition that is assumed to hold only for
those coalitions whose players are able to communicate effectively

among them and are not connected to other players. (maximal connected

components)

Solutions for communication situations



PROPERTY 2 Fairness (F) For each communication situation

(N,v,L) and all {i,j}L it holds that

Ψi(N,v,L) −Ψi(N,v,L\{{i, j}}) = Ψj(N,v,L)− Ψj(N,v,L\{{i, j }}).

 Property 2 says that two players should gain or lose in exactly

the same way, when a direct link between them is established

(or deleted).

Solutions for communication situations (2)



Theorem  (Myerson (1977))

There exists a unique solution (N,v,L) which satisfies

CE and F on the class of communication situations.

Moreover, 

(N,v,L)=(vL)

where (vL) is the Shapley value of the graph-restricted

game vL.

Myerson value



Example

A weighted majority game ({1,2,3},v) with the winning quote
fixed to 2/3 is considered. The votes of players 1, 2, and 3 are,
respectively, 40%, 20%, and 40%. Then, v(1,3)=v(1,2,3)=1 and
v(S)=0 for the remaining colitions.
The communication network is

1 2 3

Then,
vL(1,2,3)=1, and vL(S)=0 for the other coalitions.
We have that
(v)=(1/2,0,1/2) and (N,v,L)= (vL)=(1/3,1/3,1/3).



Example

(N,v,L) communication situation such that L is the following
network and v=u{2,4}

Note that, for instance, vL(2,4)=v(2)+v(4)=0.

Easy to note that that vL=u{1,2,4}+u{2,3,4}-uN

Therefore,

(N,v,L)=(vL)=(1/3,2/3,1/3,2/3)-(1/4,1/4,1/4,1/4)

=(1/12,5/12,1/12,5/12)

2 1

43

L



Section 2. Connection situations
 A connection situation takes place in the presence of a group of

agents N={1,2, …,n}, each of which needs to be connected directly
or via other agents to a source.

 If connections among agents are costly, then each agent will
evaluate the opportunity of cooperating with other agents in order
to reduce costs.

 If a group of agents decides to cooperate, a configuration of links
which minimizes the total cost of connection is provided by a
minimum cost spanning tree (mcst).

 The problem of finding a mcst may be easily solved thanks to
different algorithms proposed in literature (Boruvka (1926), Kruskal
(1956), Prim (1957), Dijkstra (1959))



Minimum Cost Spanning Tree Situation

Consider a complete weighted graph

1

2

3

– whose vertices represent agents

source

– vertex 0 is the source

0
– edges represent connections between
agents or between an agent and the source

40

30

10

50

20

– numbers close to edges are connection costs

80



Minimum cost spanning tree (mcst) problem

Optimization problem:
How to connect each node to the source 0 in
such a way that the cost of construction of a
spanning network (which connects every node
directly or indirectly to the source 0) is
minimum?



2
1

0

18

24 24

26
10 20

3

Example: The cost game ({1,2,3},c) is defined on the
following connection situation:

The game ({1,2,3}, c) is said mcst game (Bird (1976))

c(1)=24
c(2)=24

c(3)=26

c(1,3)=34

c(1,2)=42
c(2,3)=44

c(1,2,3)=52



2
1

0

18

24 24

26
10 20

3

• The predecessor of 1 is 0: the Bird
allocation gives to player 1 the cost of {0,1}.

•The predecessor of 2 is 1: the Bird allocation
gives to player 2 the cost of {1,2};

• The predecessor of 3 is 1: the Bird allocation
gives to player 3 the cost of {1,3}.

w()=52
Bird allocation w.r.t. to , (x1, x2, x3)=(24, 18 ,10) is in the
core of ({1,2,3},c).

How to divide the total cost? (Bird 1976)



The Bird allocation w.r.t. this
mcst is

(x1, x2, x3)=(18, 24 ,10)

The Bird allocation w.r.t .this
mcst is

(x1, x2, x3)=(24, 18 ,10)

2
1

0

18

24 24

26
10 20

3

2
1

0

18

24 24

26
10

3

20

Both allocations belong to the core of the mcst game (and
also their convex combination).
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(24,24,4)

(2,24,26)(24,2,26)

I(N,c)

(x1,x2,x3) s.t.

x1+x2+x3=52

x124

x224

x3 26
(18,24,10)(24,18,10)

(8,18,26)

Core(N,c)

(8,24,20)

x1+x242

x2+x344

x1+x234

Bird 1 Bird 2



Bird allocation rule

 It always provides an allocation (given
a connection situation).

 In general, not a unique allocation
(each mcst determines a corresponding
Bird allocation…).

 Bird allocations are in the core of mcst
games (but are extreme points)



What happens when the structure of the
network changes?

Imagine to use a certain rule to allocate costs.
- The cost of edges may increase: if the cost of an edge
increases, nobody should be better off, according to such
a rule (cost monotonicity);
- One or more players may leave the connection situation:
nobody of the remaining players should be better off
(population monotonicity).



Cost monotonicity: Bird allocation behaviour

2
1

0

3

4 5

8
3 4

3

2
1

0

3

6 5

8
3 4

3

Bird allocation: (4, 3 ,3) Bird allocation: (3, 5 ,3)

Bird rule does not satisfy cost monotonicity.



Population monotonicity: Bird allocation
behaviour

Bird allocation: (5, 5 ,3) Bird allocation: (3, * ,6)

2
1

0

5

7 5

6
3 7

3

1

0

7

6
3

3

Bird rule does not satisfy population monotonicity



Construct & Charge rules

Are based on the following general cost allocation
protocol:

 As soon as a link is constructed in the Kruskal algorithm
procedure:

1) it must be totally charged among agents which are not yet
connected with the source (connection property)

2) Only agents that are on some path containing the new edge
may be charged (involvement property)

 when the construction of a mcst is completed, each agent
has been charged for a total amount of fractions equal to 1
(total aggregation property).
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1

0

18

24 24

26
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2
1

0

3

,0 (1,1,1)tbs =

(0,0,0)

There are no
edge costs to
share.

2
1

0

3

,1 1 1
( ,1, )
2 2

tbs =

10

(5,0,5)

1 and 3 share
cost 10
equally.

P-value: Feltkamp (1994), Branzei et al. (2004), Moretti (2008)



2
1

0

3

,2 1 1 1
( , , )
3 3 3

tbs =

(3,12,3)

18

2 is connected to 1 and
3 who were already
connected: 2 pays 2/3
of 18 whereas the
remaining is shared
equally between 1 and
3.

2
1

0

3
,3 1 1 1

( , , )
3 3 3

tbs =

(0,0,0) 20

Oops… there is
a cycle: nobody
want it.

2
1

0

3 ,4 (0,0,0)tbs =

24 (8,8,8)

Players are
connected to
0: share the
total cost of
the last edge
(=24) equally



P-value

2
1

0

18

24 24

26
10 20
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Make the sum of all edge-by-edge
allocations:

(0, 0, 0) +
(5, 0, 5) +
(3,12,3) +
(0, 0, 0) +
(8, 8, 8) =

P-value = (16,20,16)



Algorithm to calculate the P-value

 At any step of the Kruskal algorithm where a component is
connected to some agents, charge the cost of that edge among
these agents in the following way:
 Proportionally to the cardinality_current_step-1 if  an agent

is connected to a component which is connected to the
source,

 Otherwise, charge it proportionally to the difference:
cardinality_previous_step-1 - cardinality_current_step-1

IDEA: charge the cost of an edge constructed during the
Kruskal algorithm only between agents involved, keeping into
account the cardinality of the connected components at that step
and at the previous step of the algorithm:



P-value

Always provides a unique allocation (given a mcst
situation).
It is in the core of the corresponding mcst game.
Satisfies cost monotonicity.
Satisfies population monotonicity.
on a subclass of connection problems it coincides
with the Shapley value of mcst games
…



Axiomatic characterization (4 independent axioms)

Property 1. The solution F is efficient (EFF) if for each 'NwW

( ) ( ),i
i N

F w w


 

where  is a minimum cost spanning network on N'.

w()=52

( ) (16,20,16)tP w M ws s= =

Example:
2

1

0

18

24
24

26
10

3

20

': N NF WA solution for mcst situations



Example:

Property 2. The solution F has the Equal Treatment (ET) property if for each 'NwW
and for each i,jN with ( ) ( )i jC w C w

( ) ( ).i jF w F w

2

1

0

0

4
9

8
6

3

11

P(w)=(2,2,6)t



Example:

Property 3. The solution F has the Upper Bounded Contribution (UBC) property if
for each 'NwW  and every (w,N')-component C{0}

\{0}
\{0}

( ) min ({ ,0}).i
i C

i C

F w w i






2

1

0

4

0
9

8
6

3

11

P(w)=(0,4,6)t

Note that 1 is dummy
in the corresponding
mcst game



F(                            )

F(                           )

F(                          )

Property 4. The solution F has the Cone-wise Positive Linearity (CPL) property if for
each

'NE  , for each pair of mcst situations ˆ,w w K  and for each pair ˆ, 0   , we

have

ˆ ˆˆ ˆ( ) ( ) ( ).F w w F w F w     
Example:



 It is possible to prove that the P-value satisfies the four
properties EFF, ET, UBC and CPL.

To prove the uniqueness consider a solution for mcst
situation F  which satisfies EFF, ET, UBC and CPL:

first look at the simple mcst situations (0-1 cost of
edges): on such simple situation, EFF, ET and UBC imply
F=P-value;

it is possible to decompose each mcst situation as a linear
combination of simple mcst problems;

 by CPL it follows that the F=P-value on each mcst
situation.

Theorem 1. The P-value is the unique solution which
 satisfies the properties EFF, ET, UBC and CPL on
 the class 'NW  of mcst situations.



- Classical centrality measures are appropriate
under the assumption that nodes failures occur
independently...
…and the system is sensible to the failure of
each single node.
On the contrary, in biological complex networks,
assuming that the failure of the nodes (genes/
proteins) is independent is not realistic and the
consequence on the system can be appreciated
only if many nodes fail.

Genes interaction and centrality



http://www.vrtuosi.com

Jeong, Mason, Barabasi, Oltvai. Lethality and centrality in protein networks. Nature 2001;411:41-42.



Addressed questions

Q1: can we use the same game theoretic models to
measure the relevance of interacting genes (or
proteins) in response to certain biological conditions?

Q2: how to combine the information provided by
biological networks with the attribution of relevance,
keeping into account the interaction of genes?



The ingredients of the model

 Players are genes
 A decision rule is created on the data-set to establish

which groups (coalitions) of genes are winning.
 Example: First we define a criterion to establish which

genes are abnormally expressed on each array

3.586gene3

2.453gene2

1.121gene1

array1

1gene3

1gene2

0gene1

array1



Decision rule

A
A group of genes is winning on a single array if all
genes that have abnormal expressions belong to
that group

1gene3

1gene2

0gene1

array1
Both groups {gene2, gene3} and
group {gene1, gene2, gene3} are
winning.



•coalition {gene2, gene3} is winning two times out of three;

•coalition {gene1, gene2} is winning one time out of three;

•And so on for each coalition...

Array1 Array2 Array3

gene3

gene2

gene1

1

1

0

array1

0

1

1

array2

1

0

0

array3

…



Example

101g3

011g2

010g1

Array3Array2Array1
The corresponding microarray game

<{g1,g2,g3},v> such that

v()=v({g1})=v({g2})=0

v({g1,g3})=v({g1,g2})=v({g3})=1/3

v({g2,g3})=2/3

v({g1,g2,g3})=1.

We look for an index which is able to resume all the
information about coalitions in a single attribution of
relevance for each individual gene



Axioms for a relevance index on microarray games

Prop.2:Equal Splitting (ES)
Each sample should receive the same level of reliability. So the
power of a gene on two samples should be equal to the sum of the
power on each sample divided by two.

1
0
0
s1

0
1
1
s2

g3
g2
g1

01g3
10g2
10g1
s2s1

1

2

3

’1

’2

’3

, →
(1+’1)/2

(2+ ’2)/2

(3+ ’3)/2

Property 1: Null Gene (NG)
A gene which does not contribute to change the worth of any
coalition of genes, should receive zero power.



Partnership of genes

A group of genes S such that does not exist a proper () subset of S
which contributes in changing the worth of genes outside S.

101g3

110g2

110g1

s3s2s1

Example

These two sets are
partnerships of
genes in the
corresponding
Microarray game



Property 3: Partnership Monotonicity (PM)

(N,v) a microarray game. If two partnerships of
genes S and T, with |T||S| are such that they are
-disjoint (ST=),
-equivalent (v(S)=v(T))
-exhaustive (v(ST)=v(N)),
then genes in the smaller partnership S must
receive more relevance then genes in T.



Example

i ≥ k

For each
i1,2

k3,4,5

01g3
10g2
10g1
s2s1

01g5
01g4

1

2

3

4

5



Property 5: Partnership Feasibility (PF)
The total amount of power index received from players of a
partnership S should not be greater than v(N)

Property 4: Partnership Rationality (PR)
The total amount of power index received from players of a
partnership S should not be smaller than v(S)

Theorem (Moretti, Patrone, Bonassi (2007)):

The Shapley value is the unique solution which satisfies NG,
ES, PM, PR, PF on the class of microarray games.

Other properties concerning partnership



Players gather one by one in a room to create
the “grand coalition”, and each one who
enters gets his marginal contribution.

Assuming that all the different orders in which
they enter are equiprobable, the Shapley
value gives to each player her/his expected
payoff.

Shapley value (Shapley (1953))





Example

101g3

011g2

010g1

Array3Array2Array1
The corresponding microarray game

<{g1,g2,g3},v> such that

v()=v({g1})=v({g2})=0

v({g1,g3})=v({g1,g2})=v({g3})=1/3

v({g2,g3})=2/3

v({g1,g2,g3})=1.

The Shapley value is

Shg1=1/6  Shg2=1/3  Shg3=1/2







genes 3 and 5 are intermediary genes not
necessary to connect abnormal genes 1
and 8, and therefore they receive a null
level of centrality both from  and
betweenness centrality

1 2 3 4 5 6 7 8

node  degree Betws.
1 -0.33 1 0

2 0.17 3 6

3  0 2 0

4 0.17 4 12

5 0 2 0

6 0.17 3 10

7 0.17 2 6

8 -0.33 1 0

all genes between 2 and 7 are
needed to connect the abnormally
expressed genes 1 and 8,  centrality
behaves similar to degree centrality

1 2 3 4 5 6 7 8

node  degree Betws.
1 -0.38 1 0

2 0.13 2 6

3  0.13 2 10

4 0.13 2 12

5 0.13 2 12

6 0.13 2 10

7 0.13 2 6

8 -0.38 1 0


