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Theorem 1 (Shapley 1953)

There is a unigue map ¢ defined on GN that satisfies
EFF, SYM, NPP, ADD. Moreover, for any ieN we

have that

W == T W)

HereIl is the set of all permutations a:N — N of N, while me,(v) isthe

marginal contribution of player I according to the permutation g,
which is defined as:
v({o(1), 0(2), . .., 6 0)})-v({o(1), 0(2), ..., 6 (-1)}),

where j is the unigue element of N s.t. 1 = a()).




Unanimity games (1)
»DEF Let Te22{J}. The unanimity gameon T is
defined as the TU-game (N,u,) such that
(1if TcS
Ur(S)= <

\O otherwise

» Note that the class GN of all n-person TU-gamesisa
vector space (obvious what we mean for v+w and
aVv for v\weGN and a.€lR).

» the dimension of the vector space GN is 2"-1

>{u.|Te2W{J}} Isan interesting basis for the vector
space GN.



Unanimity games (2)

Every coalitional game (N, v) can be written as alinear
combination of unanimity games in aunique way, I.e.,

\Y :ZS’;:N:S?ﬁQ )\S(V) uS "
The coefficients A(Vv), for each Se2N, are called unanimity

coefficients of the game (N, v) and are given by the
formula: A((V) = 2 orp (1) (T).



EXAMPLE Two TU-gamesv and w on N={1,2,3}

V(l) =3 7\~1(V) =3 As(V) = 2 srap (F1)70V(T)
V)= A (V) =4
v(i3) =1 - (V) = 1
v(1, 2) =8

2 7”{1 2}(V) =-3-4+8=1
v(1,3)=4 ’

Ay gy (V) = -3-1+4=0

v(2,3)=6 a3 (V)
v(1, 2,3) =10 7\‘{2,3}(V) = -4-1+6=1

Ay 25 (V) = -3-4-1+8+4+6-10=0
V:3U{1}(V)+4U{2}(V)+U{3}(V)+u{1,2}(v)+U{2,3}



Sketch of the Proof of Theoreml

» Shapley value satisfies the four properties (easy).

» Properties EFF, SYM, NPP determine ¢ on the class
of all games av, with v a unanimity game and alR.
> Let Se2N. The Shapley value of the unanimity game
(N,uy) Isgiven by

‘al|S| ifieS

¢(aug=  ~
L0 otherwise

» Since the class of unanimity gamesis abasis for the

vector space, ADD allowsto extend ¢ in aunique
way to GN.




An alternative formulation of the Shapley value

> Let me(v)=v({o’(1),0°(2),....a’()}- v{o’(1),0’(2)...., o’(j-1}),
where j Is the unique element of N s.t. 1 = G’ (]).

> Let S={0’(1),0°(2),...,0°(J-1)}.

> Q: How many other orderings o <I1 do we have in which
{0(1),0(2),...,0(-1)}=Sandi=ac’())?

> A they are precisaly (9)!x(n-s-1)!

> Where s! Isthe number of orderings of Sand (n-s-1)! Isthe
number of orderings of N\(S_{i})

> We can rewrite the formula of the Shapley value as the
following:

0,(V)=Te s S-S DUN! [V(SU{i})-V(S)]



Power indices. ageneral formulation (2)

Vi(V)=2enies R(S) [V(SAT})-V(I)]

» According to the Banzhaf power index, every coalitions has the same
probability to form: p.(S)=1/(2"%), for each Se2"\{ )}, 1S

» According to the Shapley-Shubick power index, compute p.(S)

according to the following procedure to create at random from N a

subset Sto which i does not belong:
» Draw at random a number out of the urn consisting of possible sizes 0,1,2,...,n-
1 where each number has probability 1/n to be drawn
> |f size sischosen, draw a set out of the urn consisting of subsets of N\{i} of
size s, where each set has the same probability, i.e.
1/combinations(n-1,9)
> indeed, p.(S)=(s! (n-s-1)!)/n!



UN Security Council as a weighted majority game

In the last sixty years, game theory has been applied to
political and social problems to assess the power of
interacting agents in forcing a decision

Classical example: UN Security Council: 15 member
states, 5 Permanent members (China,
France, Russian Federation, United
Kingdom, USA) and 10 temporary seats
(held for two-year terms )

Decision Rule: decisions on all substantive matters
need the positive vote of at least nine Nations

but it Is sufficient the negative vote of one among
the permanent members to reject the decision.



UN Security Council as a weighted majority game

» Let N=PUT, where P={1,2,3,4,5} is the set of
Permanent members and
T={6,7,8,9,10,11,12,13,14,15} is the set of temorary
seats

> A simple game (N,v) s.t. v(S)=1 if |S|>9 and PcS.

> (N,v) is a weighted majority game, where

»w.=7 for eachieP

»w=1foreachieT
>v(S)=1 < Y. . w >38



temporary seats since January 1st 2007
until January 1st 2009



Reformulations

-] |
Other axiomatic approaches have been provided for the

Shapley value, of which we shall briefly describe those by
Y oung and and by Hart and Mas-Coléll.

PROPERTY 8 (Marginalism, MARG) Amap ¥ : GN- RN
satisfies MARG If, given v,weGN, for any player ieN sit.
V(SUAi}) —v(S) = w(Su{i}) —w(S) for each Se2V,
the following is true:

W(v) = W (w).



EXAMPLE Two TU-gamesv and w on N={ 1,2,3}
-] |

W(D A 3})- W(D) = V(BA3Y)- v(D)=1

v(1) =3 w(l) =2 W HU{ 31)- wi{1}) = V{LA3D- v({L)=1
v(2) =4 w(2) =3 w({ 2} A 3})- WD) = v({2}{3)- v(D)=1
vi3d) =1 w(3) =1

v(1, 2) =8 w(1, 2) =2 |w{1,21{3})- w({1,2}) = v({L,2}A3})- v({1,2)=1

v(1,3)=4 w(l, 3) =3

v(2,3)=6 w(2,3)=5

v(1,2,3)=10 || w(1,2,3)=4

|

W3(v) = Wy(w).



(Young 1988)

_|

neorem 2

nere 1S a unique map YW defined on G(N) that
satisfies EFF, SYM, and MARG. Sucha ¥
coincides with the Shapley value.

_|




Potential

> A quite different approach was pursued by Hart and Mas-Coléll
(1987).

> To each game (N, v) one can associate areal number P(N,v) (or,
simply, P(v)), its potential.

> The “partial derivative” of P Is defined as
D'(P )(N, v) = P(N,v)=P(N\{1},Vjy;)

Theorem 3 (Hart and Mas-Colell 1987) There is a unigue map P,
defined on the set of all finite games, that satisfies:

1) P(D,Vv,) =0,
2) Z._y D'P(N,v) =Vv(N).
Moreover, D'(P )(N, v) = ¢.(v). [¢(v) Isthe Shapley value of V]



> there are formulas for the calculation of the potential.

> For example, P(N,v)=2_._" AJ|S| (Harsanyi dividends)
N

Example =3
V(l) =3 Ay(V) =4
v(2) =4 - P({1,2,3},v)=3+4+1+1/2+1/2=9
V) =
-1 ’ P({1,2},vy, »)=3+4+1/2=15/2
v(3) — ) =1 — L2)
v(1,?2) =8 | P({1,3},v}4)=3+1=4
v(1,3)=4 M13{V)=0 P({2,3},V,p 5)=4+1+1/2=11/2
V(2, 3) =06 7‘{2,3}(V)=1
v(1,2,3)=10 At o 5(V)=0

~

), (V)=P({1,2,3},V)-P({2,3},V,, 5)=9-11/2=7/2
,(V)=P({1,2,3},v)-P({1,3},V, 5)=9-4=5
. (V)=P({L1,2,3},v)-P({1,2},V,, »1)=9-15/2=3/2

o~

~



- Communication networks

= A cooperative game describes a
situation in which all players can freely
communicate with each other.

"Drop this assumption and assume that
communication between players is
restricted to a set of communication
possibilities between players.



Communication networks as undirected graphs:

-] |
An undirected graph is a pair (N,L) where

> N is a set of vertices (later, agents or players)

> L={{i,j} | {i,j}<N, i#j } is the set of edges (bilateral
communication links)

> A communication graph (N,L) should be interpreted as

a way to model restricted cooperation:

> Players can cooperate with each other if they are
connected (directly, or indirectly via a path)

> Indirect communication between two players requires the
cooperation of players on a connecting path.



Example

_

Consider the undirected graph (N,L) with N={1,2,3,4,5,6,7}
and L={{1,2}, {2,6}, {5,6}, {1,5}, {3,7}, {4,7}}

1 2 ? 4

1 /
- b

Some notations: 5 6 7

N\L={{1,2,5,6},{3,4,7}}
set of components

L, ={{5,6}, {1,5}, {3,7}, {4,7}} N\L,={{1,5,6},{3,4,7},{2}}




Communication situations (Myerson (1977))

- ¢ |
> A communication situation is a triple (N,v,L)

> (N,v) is a n-person TU-game (represents the economic
possibilities of coalitions)

» (N,L) is a communication network (represents restricted
communication possibilities)

> The graph-restricted game (N,Vv') is defined as

VH(T)=2c . V(C)
For each Se2M\{Y}.

Recall that T\L is the set of maximal connected
components in the restriction of granh (N.L)to T



Example

A weighted maority game ({ 1,2,3} ,v) with the winning quote
fixed to 2/3 is considered. The votes of players 1, 2, and 3 are,
respectively, 40%, 20%, and 40%. Then, v(1,3)=v(1,2,3)=1 and
v(S)=0 for the remaining colitions.

The communication network is

+

17 2 3

Then,
vt(1,2,3)=1, and v-(S)=0 for the other coalitions.



Solutions for communication situations
[ e

> Myerson (1977) was the first to study solutions for communication
situations.

> A solution W is a map defined for each communication situation (N,v,L)
with value in RN

PROPERTY 1 Component Efficiency (CE)
For each communication situation (N,v,L) and all CeN\L it holds that
2icc Yi(N,v,L) = v(C).

> Property 1 is an “efficiency” condition that is assumed to hold only for
those coalitions whose players are able to communicate effectively
among them and are not connected to other players. (maximal connected
components)



Solutions for communication situations (2)
S =

PROPERTY 2 Fairness (F) For each communication situation
(N,v,L) and dll {i,j} €L it holds that

Wi(N,v,L) =Wi(N,v,L\M{1, J}}) = Wi(N,v,L)— W.(N,v,L\{{I,] }}).

> Property 2 says that two players should gain or lose in exactly
the same way, when adirect link between them is established
(or deleted).



Myerson value
S =

Theorem (Myerson (1977))

There exists aunique solution u(N,v,L) which satisfies
CE and F on the class of communication situations.
Moreover,

(N, V,L)=¢(v")
where ¢(v*t) I1sthe Shapley value of the graph-restricted
game Vvt.




Example

-] |
A weighted majority game ({ 1,2,3} ,v) with the winning quote
fixed to 2/3 is considered. The votes of players 1, 2, and 3 are,
respectively, 40%, 20%, and 40%. Then, v(1,3)=v(1,2,3)=1 and
v(S)=0 for the remaining colitions.
The communication network is

o
o I
>

1 3
Then,

vt(1,2,3)=1, and v-(S)=0 for the other coalitions.
We have that

d(v)=(1/2,0,1/2) and u(N,v,L)= ¢(v-)=(1/3,1/3,1/3).



Example
I

(N,v,L) communication situation such that L is the following

network and v=u 2 1
{2.4} e '
L
& 4
3 4

Note that, for instance, vt(2,4)=v(2)+v(4)=0.

Easy to note that that vt=u,, , ,+U, 5 4-Uy
Therefore,
w(N,v,L)=¢(vL)=(1/3,2/3,1/3,2/3)-(1/4,1/4,1/4,1/4)
=(1/12,5/12,1/12,5/12)



L
- Section 2. Connection situations

> A connection situation takes place in the presence of a group of
agents N={1,2, ...,n}, each of which needs to be connected directly
or via other agents to a source.

> If connections among agents are costly, then each agent will
evaluate the opportunity of cooperating with other agents in order
to reduce costs.

> If a group of agents decides to cooperate, a configuration of links
which minimizes the total cost of connection is provided by a
minimum cost spanning tree (mcst).

> The problem of finding a mcst may be easily solved thanks to
different algorithms proposed in literature (Boruvka (1926), Kruskal
(1956), Prim (1957), Dijkstra (1959))



_ Minimum Cost SEanninﬁ Tree Situation

Consider a complete weighted graph
80

20
30

— whose vertices represent agents 40
— vertex O is the source 1

— edges represent connections between @

agents or between an agent and the source
source

— numbers close to edges are connection costs



Minimum cost spanning tree (mcst) problem

Optimization problem:

How to connect each node to the source O in
such a way that the cost of construction of a
spanning network (which connects every node
directly or indirectly to the source 0) is
minimum?




Example: The cost game ({1,2,3},c) is defined on the
following connection situation:

S =,
c(1)=24

c(2)=24

c(3)=26

c(1,3)=34

c(1,2)=42

c(2,3)=44

c(1,2,3)=52

The game ({1,2,3}, c) is said mcst game (Bird (1976))



How to divide the total cost? (Bird 1976)

_
18_—~+2) * The predecessor of 1 is 0: the Bird
1) allocation gives to player 1 the cost of {0,1}.
*The predecessor of 2 is 1: the Bird allocation
gives to player 2 the cost of {1,2},
10\ © /20
* The predecessor of 3 is 1: the Bird allocation
gives to player 3 the cost of {1,3}.
3
w(l)=52

Bird allocation w.r.t. to T', (X;, X,, X;)=(24, 18 ,10) Is in the
core of ({1,2,3},c).



The Bird allocation w.r.t .this The Bird allocation w.r.t. this
mcst IS mcst IS

(X, X,, X5)=(24, 18 ,10) (X, X,, X3)=(18, 24 ,10)

Both allocations belong to the core of the mcst game (and
also their convex combination).



(24,24,4)

X, <24
(18,24,10)

(24,2,26) (8,18,26) (2,24,26)



Bird allocation rule
I

It always provides an allocation (given
a connection situation).

In general, not a unique allocation
(each mcst determines a corresponding
Bird allocation...).

Bird allocations are in the core of mcst
games (but are extreme points)



What happens when the structure of the

network changes?
I

Imagine to use a certain rule to allocate costs.

- The cost of edges may increase: if the cost of an edge
increases, nobody should be better off, according to such
a rule (cost monotonicity),

- One or more players may leave the connection situation:
nobody of the remaining players should be better off
(population monotonicity).



Cost monotonicity: Bird allocation behaviour

Bird allocation: (4, 3 ,3) Bird allocation: (3, 5,3)

==p Bird rule does not satisfy cost monotonicity.



Population monotonicity: Bird allocation
behaviour

Bird allocation: (5, 5 ,3) Bird allocation: (3, * ,6)

m—)> Bird rule does not satisfy population monotonicity



Construct & Charge rules

Are based on the following general cost allocation
protocol:

> As soon as a link is constructed in the Kruskal algorithm
procedure:

1) it must be totally charged among agents which are not yet
connected with the source (connection property)

2)  Only agents that are on some path containing the new edge
may be charged (involvement property)
> when the construction of a mcst is completed, each agent
has been charged for a total amount of fractions equal to 1
(total aggregation property).



P-value: Feltkamp (1994), Branzei et al. (2004), Moretti (2008)
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P-value

Make the sum of all edge-by-edge
allocations:

(0,0,0) +
(5,0,5) +
(3,12,3) +
(0,0,0) +
(8, 8, 8) =

P-value = (16,20,16)




Algorithm to calculate the P-value

S
IDEA: charge the cost of an edge constructed during the
Kruskal algorithm only between agents involved, keeping into
account the cardinality of the connected components at that step
and at the previous step of the algorithm:

> At any step of the Kruskal algorithm where a component is
connected to some agents, charge the cost of that edge among
these agents in the following way:

> Proportionally to the cardinality current_step™ if an agent
IS connected to a component which is connected to the
source,

» Otherwise, charge it proportionally to the difference:
cardinality previous step?- cardinality current_step



P-value
I

Always provides a unigue allocation (given a mcst
situation).

It Is In the core of the corresponding mcst game.
Satisfies cost monotonicity.
Satisfies population monotonicity.

on a subclass of connection problems it coincides
with the Shapley value of mcst games



Axiomatic characterization (4 independent axioms)

A solution for mcst situations F:wWN — RN

Property 1. The solution F is efficient (EFF) if for each wew™

Z F (w) =w(I'),

ieN

where I isaminimum cost spanning network on N'.

Example:
18 (2)
(L)
w(I)=52
10 20

P(w)=M"w "~ =(16,20,16)"




Property 2. The solution F has the Equal Treatment (ET) property if for each wew™
and for each i,jeN with C (w) =C;(w)

F (w) = F; (w).

Example:

P(w)=(2,2,6)




Property 3. The solution F has the Upper Bounded Contribution (UBC) property if
for each wew" and every (w,N")-component C={ 0}

Z F (w) < minw({i,0}).

icC\{0} 'CHO)

P(w)=(0,4,6)

Note that 1 is dummy
In the corresponding
mcst game




Property 4. The solution F has the Cone-wise Positive Linearity (CPL) property if for
each s ez, for each pair of mcst situations w,we K* and for each pair a,a >0, we

have

Flaw+aw) =aF(w)+&F (W).

o LT
+
(ot

‘SnniE

Example:




Theorem 1. The P-value is the unique solution which
satisfies the properties EFF, ET, UBC and CPL on

the class wN of mcst situations.

" |t is possible to prove that the P-value satisfies the four
properties EFF, ET, UBC and CPL.

*"To prove the unigueness consider a solution for mcst
situation F which satisfies EFF, ET, UBC and CPL.:

=first look at the simple mcst situations (0-1 cost of
edges): on such simple situation, EFF, ET and UBC imply
F=P-value;

"[t is possible to decompose each mcst situation as a linear
combination of simple mcst problems;

= by CPL it follows that the F=P-value on each mcst
situation.



- Genes interaction and centrality

- Classical centrality measures are appropriate
under the assumption that nodes failures occur
Independently...

...and the system is sensible to the failure of
each single node.

On the contrary, in biological complex networks,
assuming that the failure of the nodes (genes/
proteins) Is independent is not realistic and the
consequence on the system can be appreciated
only If many nodes fail.



Jeong, Mason, Barabasi, Oltvai. Lethality and centrality in protein networks. Nature 2001;411:41-42.

Lethality and centrality In protein networks

The most highly connected proteins in the cell are the most important for its survival.

the basis of their individual actions as

catalysts, signalling molecules, or
building blocks in cells and microorgan-
isms. But our post-genomic view is expand-
ing the protein’s role into an element in a
network of protein-protein interactions as
well, in which it has a contextual or cellular
function within functional modules'?. Here
we provide quantitative support for this
idea by demonstrating that the phenotypic
consequence of a single gene deletion in the
yeast Saccharomyces cerevisiae is affected to
a large extent by the topological position of
its protein product in the complex hierar-
chical web of molecular interactions.

The S. cerevisiae protein—protein inter-
action network we investigate has 1,870
proteins as nodes, connected by 2,240 iden-
tified direct physical interactions, and is
derived from combined, non-overlapping
data™, obtained mostly by systematic two-
hybrid analyses’. Owing to its size, a com-
plete map of the network (Fig. la),
although informative, in itself offers little
insight into its large-scale characteristics.

Pmteins are traditionally identified on

A sa b

Figure 1 Characteristics of the yeast proteome. a, Map of protein-protein interactions. The largest cluster, which contains —78% of all
proteins, is shown. The colour of a node signifies the phenotypic effect of removing the comesponding protein {red, lethal; green, non-
Iethal; orange, slow growth; yellow, unknown). b, Connectivity distribution AK) of interacting yeast proteins, giving the probability that a




Addressed guestions

Q1: can we use the same game theoretic models to
measure the relevance of interacting genes (or
proteins) in response to certain biological conditions?

Q2: how to combine the information provided by
biological networks with the attribution of relevance,
keeping into account the interaction of genes?



The ingredients of the model

N
O Players are genes

O A decision rule is created on the data-set to establish
which groups (coalitions) of genes are winning.

O Example: First we define a criterion to establish which
genes are abnormally expressed on each array

arrayl arrayl
genel | 1.121 genel 0
gene2 | 2.453 - gene2
gene3 | 3.586 gene3=




Decision rule
I

A group of genes is winning on a single array if all
genes that have abnormal expressions belong to
that group

arrayl

genel

0

gene2

1

gene3

1

Both groups { gene2, gene3} and
group { genel, gene2, gene3} are
winning.



genel 0 1 0
gene2 1 1 0
gene3 1 0 1

ecoalition { gene2, gene3} iswinning two times out of three;
ecoalition { genel, gene2} iswinning one time out of three;

*And so on for each coalition...



The corresponding microarray game

g, |0 |1 |0 <{g,,8,,8,},v> such that
g |1 |1 |0 vId=v{el=v({g,})=0
g, |1 |0 | 1] vig.ed=vig,eh=vie)=1/3

v({g,8;})=2/3

V({gl'g21g3})=1-

We look for an index which is able to resume all the
iInformation about coalitions in a single attribution of
relevance for each individual gene



Axioms for a relevance index on microarray games

Property 1: Null Gene (NG)
A gene which does not contribute to change the worth of any
coalition of genes, should receive zero power.

Prop.2:Equal Splitting (ES)
Each sample should receive the same level of reliability. So the
power of a gene on two samples should be equal to the sum of the
power on each sample divided by two.

sl 52 sl |s2
gl 0 [V: 1|V gl| 0 | 1 | witw)r2
g2 0 |V2 1|V 62| 0| 1| w2
g3 1 |vs 0 | v, 83| 1|0 | @ty



Partnership of genes
_

A group of genes S such that does not exist a proper (<) subset of S
which contributes in changing the worth of genes outside S.

Example

| sl |s2|s3
These two sets are gl\‘\. o | 111

partnerships of
genesin the < \8 2 O |1 |1
corresponding LA

Microarray game

S -




Property 3: Partnership Monotonicity (PM)
- ¢ |

(N,v) amicroarray game. If two partnerships of
genesSand T, with [T|>|S| are such that they are
-digoint (SNT=Y),

-equivalent (v(S)=v(T))

-exhaustive (V(SuT)=V(N)),

then genes in the smaller partnership S must
recelve more relevance then genesin T.



Example

S1 SZ
Vilgl]0 1 Wi Y
v, [g2|0 |1
Vs [g3|1 (0 For each
Valgd| 1|0 le{1,2}
vs [g511 ] 0 ke {3,4,5)




Other properties concerning partnership
N

Property 4: Partnership Rationality (PR)
The total amount of power index received from players of a

partnership S should not be smaller than v(S)

Property 5: Partnership Feasibility (PF)
The total amount of power index received from players of a
partnership S should not be greater than v(N)

Theorem (Moretti, Patrone, Bonassi (2007)):

The Shapley value is the unique solution which satisfies NG,
ES, PM, PR, PF on the class of microarray games.




Shapley value (Shapley (1953))
N

Players gather one by one in a room to create
the “grand coalition”, and each one who
enters gets his marginal contribution,

Assuming that all the different orders in which

they enter are equiprobable, the Shapley
value gives to each player her/his expected

payoff.
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The corresponding microarray game

0 <{g,,8,,8,},v> such that

0 v()=v({g,})=v({g,})=0

Arrayl | Array2 | Array3
g, |0 | 1
g, |1 |1
g. |1 |0

1 v({g,.8;})=v({g1,82})=v({g,})=1/3

v({g,.8:})=2/3

V({gl'g21g3})=1-

The Shapley value is

Sh,,=1/6 Sh_,=1/3 Sh_=1/2




Data Restrict the interaction possibilities

arrayl N
; 0 . (1) .
g ! #

(hiulugiﬁ;I network)

g2 1
g3 1
A priori game Graph-restricted game g Centrality
S v @lv) S W QW) o{w)-¢(v)
{g1} 0 O fg1} 0 1/3 1/3
{82} 0 1/2 {g2} 0 1/3 -1/6
{g3} 0 1/2 {g3} 0 1/3 -1/6
{g1,82} 0 {g1,92} 0
{g1,83} 0 {g1,93} 0
{g2,g3} 1 {g2.g3} O
1

{g1,82,83} 1 {g1,92,93}



e ¢ G C ----|
all genes between 2 and 7 are
needed to connect the abnormally ----

expressed genes 1 and 8, y centrality

behaves similar to degre’e centrality ----
8 -0.38 1 0
node g degree Betws.
1+ 0% 1 0
2 0.17 3 6
T s —o——@ BN I R
4 0.17 4 12
genes 3 and 5 are intermediary genes not 5 o 2 0

necessary to connect abnormal genes 1

6 0.17 3 10
o on el by ressueanl G E I e
8 -0.33 1 0

level of centrality both from gand
betweenness centrality



