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Cooperative games: a simple example
Alone, player 1 (singer) and 2 (pianist) can

earn 100€ 200€ respect.
Together (duo) 700€

How to divide the (extra) earnings?

I(v)
700

400

600

200

100 300 500 700

x2

x1x1 +x2=700

Imputation set: I(v)={xIR2|x1100, x2200, x1+x2 =700}



COOPERATIVE GAME THEORY
Games in coalitional form
TU-game: (N,v) or v
N={1, 2, …, n} set of players
SN coalition
2N set of coalitions

DEF. v: 2NIR with v()=0 is a Transferable Utility (TU)-game with
player set N.
NB: (N,v)v
NB2: if n=|N|, it is also called n-person TU-game, game in coalitional
form, coalitional game, cooperative game with side payments...
v(S) is the value (worth) of coalition S

Example
(Glove game)  N=LR, LR=
iL (iR) possesses 1 left (right) hand glove
Value of a pair: 1€
v(S)=min{| LS|, |RS|} for each coalition S2N\{} .



Example
(flow games)

source

4,1
10,3

l1

5,2

N={1,2,3}

S=  {1} {2} {3} {1,2} {1.3} {2,3} {1,2,3}

v(S) 0 0 0 0 0 4 5 9

sink

l2

l3

capacity owner

1€: 1 unit source sink



Example
(Three cooperating communities)

source

1

2

3

100

30

30

80
40

90

N={1,2,3}

v(S)=iSc(i) – c(S)

S=  {1} {2} {3} {1,2} {1.3} {2,3} {1,2,3}

c(S) 0 100 90 80 130 110 110 140

v(S) 0 0 0 0 60 70 60 130



DEF. (N,v) is a superadditive game iff

v(ST)v(S)+v(T) for all S,T with ST=

Q.1: which coalitions form?
Q.2: If the grand coalition N forms, how to divide v(N)?

(how to allocate costs?)

Many answers! (solution concepts)
One-point concepts: - Shapley value (Shapley 1953)

- nucleolus (Schmeidler 1969)
- τ-value (Tijs, 1981)
…

Subset concepts: - Core (Gillies, 1954)
- stable sets (von Neumann, Morgenstern, ’44)
- kernel (Davis, Maschler)
- bargaining set (Aumann, Maschler)
…..



Show that v is superadditive and c is subadditive.

Example
(Three cooperating communities)

source

1

2

3

100

30

30

80
40

90

N={1,2,3}

v(S)=iSc(i) – c(S)

S=  {1} {2} {3} {1,2} {1.3} {2,3} {1,2,3}

c(S) 0 100 90 80 130 110 110 140

v(S) 0 0 0 0 60 70 60 130



Claim 1: (N,v) is superadditive
We show that v(ST)v(S)+v(T) for all S,T2N\{} with ST=
60=v(1,2)v(1)+v(2)=0+0
70=v(1,3)v(1)+v(3)=0+0
60=v(2,3)v(2)+v(3)=0+0
60=v(1,2)v(1)+v(2)=0+0
130=v(1,2,3) v(1)+v(2,3)=0+60
130=v(1,2,3) v(2)+v(1,3)=0+70
130=v(1,2,3) v(3)+v(1,2)=0+60

Claim 2: (N,c) is subadditive
We show that c(ST)c(S)+c(T) for all S,T2N\{} with ST=
130=c(1,2)  c(1)+c(2)=100+90
110=c(2,3)  c(2)+v(3)=100+80
110=c(1,2)  c(1)+v(2)=90+80
140=c(1,2,3)  c(1)+c(2,3)=100+110
140=c(1,2,3)  c(2)+c(1,3)=90+110
140=c(1,2,3)  c(3)+c(1,2)=80+130



Example
(Glove game)  (N,v) such that N=LR, LR= 
v(S)=min{| LS|, |RS|} for all S2N\{}

Claim: the glove game is superadditive.

Suppose S,T2N\{} with ST=. Then

v(S)+v(T)= min{| LS|, |RS|} + min{| LT|, |RT|}
=min{| LS|+|LT|,|LS|+|RT|,|RS|+|LT|,|RS|+|RT|}
min{| LS|+|LT|, |RS|+|RT|}
since ST=
=min{| L(S  T)|, |R  (S T)|}
=v(S T).



The imputation set

DEF. Let (N,v) be a n-persons TU-game.
A vector x=(x1, x2, …, xn)IRN is called an imputation iff

(1) x is individual rational i.e.
xi  v(i) for all iN

(2) x is efficient
iN xi = v(N)

[interpretation  xi: payoff to player i]

I(v)={xIRN | iN xi = v(N), xi  v(i) for all iN}
Set of imputations



Example
(Glove game)  (N,v) such that N=LR, LR= 
v(S)=min{| LS|, |RS|} for all S2N\{}

Claim: the glove game is superadditive.

Suppose S,T2N\{} with ST=. Then

v(S)+v(T)= min{| LS|, |RS|} + min{| LT|, |RT|}
=min{| LS|+|LT|,|LS|+|RT|,|RS|+|LT|,|RS|+|RT|}
min{| LS|+|LT|, |RS|+|RT|}
since ST=
=min{| L(S  T)|, |R  (S T)|}
=v(S T).



Example
(N,v) such that
N={1,2,3},
v(1)=v(3)=0,
v(2)=3,
v(1,2,3)=5.

x3

x2

X1

(5,0,0)

(0,5,0)

(0,0,5)

x1+x 2+x3=5

(x1,x2,x3)

(2,3,0)

(0,3,2)

I(v)

I(v)={xIR3 | x1,x30, x23, x1+x2+x3=5}



Claim: (N,v) a n-person (n=|N|) TU-game. Then

I(v)  v(N)iNv(i)
Proof
()
Suppose xI(v). Then
v(N) = iNxi  iNv(i)

EFF IR
()
Suppose v(N)iNv(i). Then the vector
(v(1), v(2), …, v(n-1), v(N)- i{1,2, …,n-1}v(i))
is an imputation.

v(n)



The core of a game

DEF. Let (N,v) be a TU-game. The core C(v) of (N,v) is the
set
C(v)={xI(v) | iS xi  v(S) for all S2N\{}}

stability conditions
no coalition S has the incentive to split off
if x is proposed

Note: x  C(v)  iff
(1) iN xi = v(N) efficiency
(2) iS xi  v(S) for all S2N\{} stability

Bad news: C(v) can be empty
Good news: many interesting classes of games have a non-
empty core.



Example
(N,v) such that
N={1,2,3},
v(1)=v(3)=0,
v(2)=3,
v(1,2)=3,
v(1,3)=1
v(2,3)=4
v(1,2,3)=5.

Core elements satisfy the
following conditions:

x1,x30, x23, x1+x2+x3=5

x1+x23, x1+x31, x2+x34

We have that

5-x33x32

5-x21x24

5-x14x11

C(v)={xIR3 | 1x10,2x30, 4x23, x1+x2+x3=5}



Example
(N,v) such that
N={1,2,3},
v(1)=v(3)=0,
v(2)=3,
v(1,2)=3, v(1,3)=1
v(2,3)=4
v(1,2,3)=5.

x3

x2

X1

(5,0,0)

(0,5,0)

(0,0,5)

x1+x 2+x3=5
(2,3,0)

(0,3,2)

C(v)
(0,4,1)

(1,3,1)

(1,4,0)

C(v)={xIR3 | 1x10,2x30, 4x23, x1+x2+x3=5}



Example (Game of pirates) Three pirates 1,2, and 3. On the other
side of the river there is a treasure (10€). At least two pirates are
needed to wade the river…
(N,v), N={1,2,3}, v(1)=v(2)=v(3)=0,
v(1,2)=v(1,3)=v(2,3)=v(1,2,3)=10

Suppose (x1, x2, x3)C(v). Then

efficiency x1+ x2+ x3=10
x1+ x2 10

stability  x1+    x3 10
x2+ x3 10

20=2(x1+ x2+ x3) 30 Impossible. So C(v)=.

Note that (N,v) is superadditive.



Example
(Glove game with L={1,2}, R={3})
v(1,3)=v(2,3)=v(1,2,3)=1,  v(S)=0 otherwise

Suppose (x1, x2, x3)C(v). Then

x1+ x2+ x3=1  x2=0
x1+x3 1  x1+x3 =1
x20
x2+ x3 1  x1=0 and x3=1

So C(v)={(0,0,1)}.

(1,0,0)

(0,0,1)

(0,1,0)

I(v)



Example
(flow games)

sourc
e

4,1
10,3

l1

5,2

N={1,2,3}

S=  {1} {2} {3} {1,2} {1.3} {2,3} {1,2,3}

v(S) 0 0 0 0 0 4 5 9

sink

l2

l3

capacity owner

1€: 1 unit source sink
Min cut

Min cut {l1, l2}. Corresponding core element (4,5,0)



Convex games (1)

DEF. An n-persons TU-game (N,v) is convex iff
v(S)+v(T)v(ST)+v(ST)     for each S,T2N.

This condition is also known as supermodularity. It can be
rewritten as

v(T)-v(ST)v(ST)-v(S)    for each S,T2N

For each S,T2N, let C=(ST)\S. Then we have:
v(C(ST))-v(ST)v(CS)-v(S)

Interpretation: the marginal contribution of a coalition C to a
disjoint coalition S does not increase if S becomes smaller



Convex games (2)
It is easy to show that supermodularity is equivalent to

v(S{i})-v(S)v(T{i})-v(T)

for all iN and all S,T2N such that ST  N\{i}
interpretation: player's marginal contribution to a large

coalition is not smaller than her/his marginal contribution to a

smaller coalition (which is stronger than superadditivity)
Clearly all convex games are superadditive (ST=…)
A superadditive game can be not convex (try to find one)

An important property of convex games is that they are

(totally) balanced, and it is “easy” to determine the core
(coincides with the Weber set, i.e. the convex hull of all

marginal vectors…)



Example
(N,v) such that
N={1,2,3},
v(1)=v(3)=0,
v(2)=3,
v(1,2)=3, v(1,3)=1
v(2,3)=4
v(1,2,3)=5.
Check it is convex

x3

x2

X1

(5,0,0)

(0,5,0)

(0,0,5)

x1+x 2+x3=5
(2,3,0)

(0,3,2)

C(v)

Marginal vectors

123(0,3,2)

132(0,4,1)

213(0,3,2)

231(1,3,1)

321(1,4,0)

312(1,4,0)

(0,4,1)

(1,3,1)

(1,4,0)

C(v)={xIR3 | 1x10,2x30, 4x23, x1+x2+x3=5}



How to share v(N)…

The Core of a game can be used to exclude those
allocations which are not stable.
But the core of a game can be a bit “extreme” (see

for instance the glove game)
Sometimes the core is empty (pirates)
And if it is not empty, there can be many

allocations in the core (which is the best?)



An axiomatic approach (Shapley (1953)
Similar to the approach of Nash in bargaining:

which properties an allocation method should
satisfy in order to divide v(N) in a reasonable way?
Given a subset C of GN (class of all TU-games with

N as the set of players) a (point map) solution on C
is a map Φ:C →IRN.
For a solution Φ we shall be interested in various

properties…



Symmetry
PROPERTY 1(SYM) Let vGN be a TU-game.

Let i, jN.If v(S{i}) = v(S{j}) for all S2N\{i,j},

then Φi(v) = Φj (v).

EXAMPLE

We have a TU-game ({1,2,3},v) s.t. v(1) = v(2) = v(3) = 0,

v(1, 2) = v(1, 3) = 4, v(2, 3) = 6, v(1, 2, 3) = 20.

Players 2 and 3 are symmetric. In fact:

v({2})= v({3})=0 and v({1}{2})=v({1}{3})=4

If Φ satisfies SYM, then Φ2(v) = Φ3(v)



Efficiency
PROPERTY 2 (EFF) Let vGN be a TU-game.

 iNΦi(v) = v(N), i.e., Φ(v) is a pre-imputation.

Null Player Property
DEF. Given a game vGN, a player iN s.t.

v(Si) = v(S) for all S2N will be said to be a null player.

PROPERTY 3 (NPP) Let vGN be a TU-game. If iN is a

null player, then Φi(v) =0.

EXAMPLE We have a TU-game ({1,2,3},v) such that v(1) =0,

v(2) = v(3) = 2, v(1, 2) = v(1, 3) = 2, v(2, 3) = 6, v(1, 2, 3) =

6. Player 1 is null. Then Φ1(v) = 0



EXAMPLE We have a TU-game ({1,2,3},v) such that

v(1) =0, v(2) = v(3) = 2, v(1, 2) = v(1, 3) = 2, v(2, 3)

= 6, v(1, 2, 3) = 6. On this particular example, if Φ
satisfies NPP, SYM and EFF we have that

Φ1(v) = 0 by NPP

Φ2(v)= Φ3(v) by SYM

Φ1(v)+Φ2(v)+Φ3(v)=6 by EFF

So  Φ=(0,3,3)

But our goal is to characterize Φ on GN. One more

property is needed.



Additivity
PROPERTY 4 (ADD) Given v,w GN,

Φ(v)+Φ(w)=Φ(v +w).

.EXAMPLE Two TU-games v and w on N={1,2,3}

v(1) =3

v(2) =4

v(3) = 1

v(1, 2) =8

v(1, 3) = 4

v(2, 3) = 6

v(1, 2, 3) = 10

w(1) =1

w(2) =0

w(3) = 1

w(1, 2) =2

w(1, 3) = 2

w(2, 3) = 3

w(1, 2, 3) = 4

+

v+w(1) =4

v+w(2) =4

v+w(3) = 2

v+w(1, 2) =10

v+w(1, 3) = 6

v+w(2, 3) = 9

v+w(1, 2, 3) = 14

=

Φ Φ
Φ



Theorem 1 (Shapley 1953)
There is a unique map  defined on GN that satisfies EFF,

SYM, NPP, ADD. Moreover, for any iN we have that

)(
!

1
)( vm

n
v ii  





Here  is the set of all permutations σ:N →N  of N, while mσ
i(v) is the

marginal contribution of player i according to the permutation σ,
which is defined as:
v({σ(1), σ(2), . . . , σ (j)})− v({σ(1), σ(2), . . . , σ (j −1)}),
where j is the unique element of N s.t. i = σ(j).



Example
(N,v) such that
N={1,2,3},
v(1)=v(3)=0,
v(2)=3,
v(1,2)=3,
v(1,3)=1,
v(2,3)=4,
v(1,2,3)=5.

Permutation 1 2 3
1,2,3 0 3 2
1,3,2 0 4 1
2,1,3 0 3 2
2,3,1 1 3 1
3,2,1 1 4 0
3,1,2 1 4 0

Sum 3 21 6

(v) 3/6 21/6 6/6

Probabilistic interpretation: (the “room parable”)
Players gather one by one in a room to create the “grand coalition”, and each
one who enters gets his marginal contribution.
Assuming that all the different orders in which they enter are equiprobable,
the Shapley value gives to each player her/his expected payoff.



Example
(N,v) such that
N={1,2,3},
v(1)=v(3)=0,
v(2)=3,
v(1,2)=3, v(1,3)=1
v(2,3)=4
v(1,2,3)=5.

x3

x2

X1

(5,0,0)

(0,5,0)

(0,0,5)

x1+x 2+x3=5
(2,3,0)

(0,3,2)

C(v)

Marginal vectors

123(0,3,2)

132(0,4,1)

213(0,3,2)

231(1,3,1)

321(1,4,0)

312(1,4,0)

(0,4,1)

(1,3,1)

(1,4,0)

(v)=(0.5, 3.5,1)


