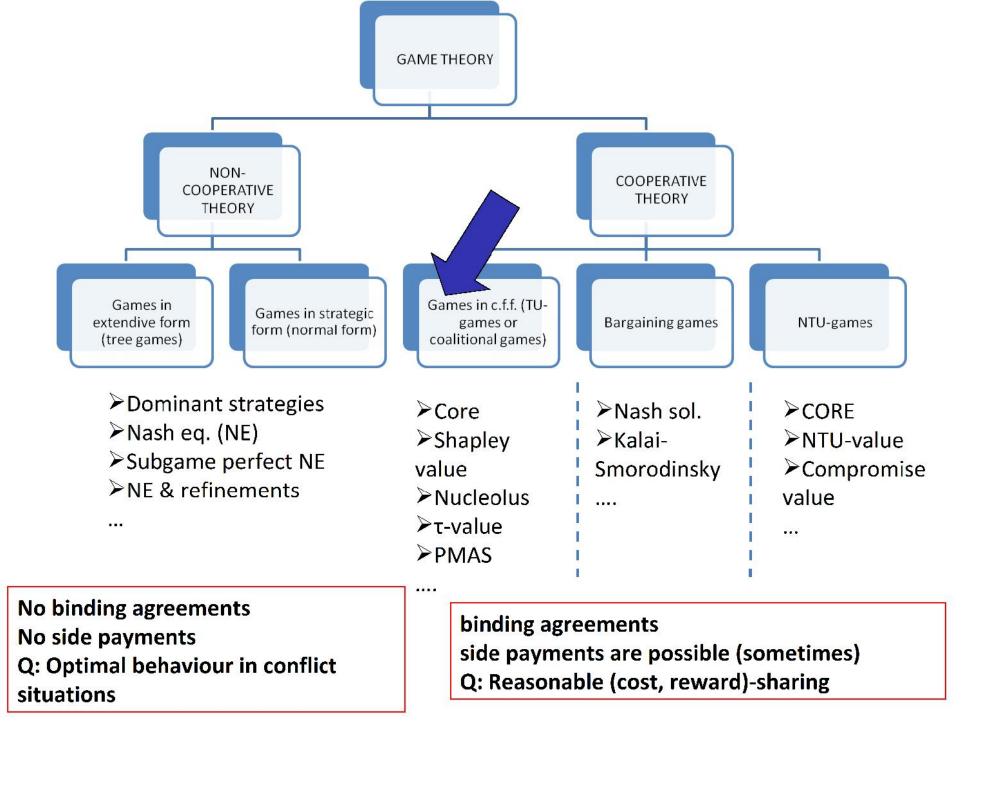
THEORIE DES JEUX ALGORITHMIQUE

Laurent Gourves and Stefano Moretti

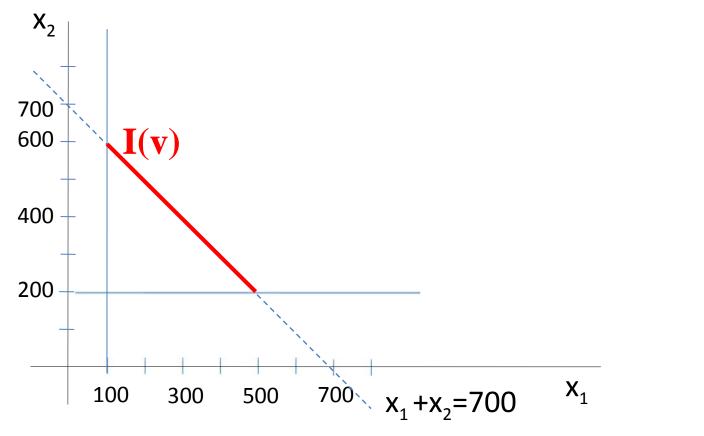
LAMSADE, CNRS-Paris Dauphine stefano.moretti@dauphine.fr B222 Tel.:0144054371



Cooperative games: a simple example

Alone, player 1 (singer) and 2 (pianist) canearn $100 \in 200 \in$ respect.Together (duo) $700 \in$

How to divide the (extra) earnings?



Imputation set: $I(v) = \{x \in IR^2 | x_1 \ge 100, x_2 \ge 200, x_1 + x_2 = 700\}$

COOPERATIVE GAME THEORY

Games in coalitional form

TU-game: (N,v) or v	
$N = \{1, 2,, n\}$	set of players
S⊂N	coalition
2 ^N	set of coalitions

<u>DEF.</u> v: $2^{N} \rightarrow IR$ with v(\emptyset)=0 is a Transferable Utility (TU)-game with player set N.

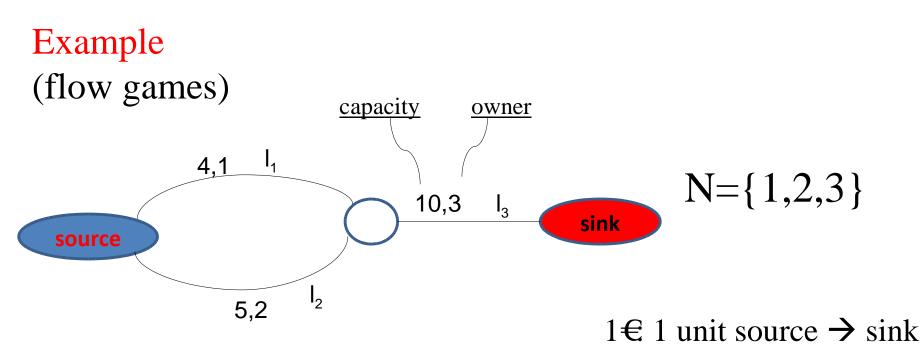
NB: (N,v) \leftrightarrow v

NB2: if n=|N|, it is also called n-person TU-game, game in coalitional form, coalitional game, cooperative game with side payments...

- v(S) is the value (worth) of coalition S Example
 - (Glove game) N=L \cup R, L \cap R=Ø
 - $i \in L$ ($i \in R$) possesses 1 left (right) hand glove

Value of a pair: 1€

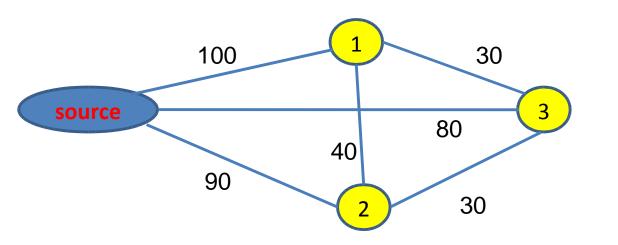
 $v(S)=min\{|L \cap S|, |R \cap S|\} \text{ for each coalition } S \in 2^{\mathbb{N}} \setminus \{\emptyset\} \text{ .}$

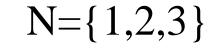


<i>[</i> 1]	1 21	101	J1 21	J1 2l	12 21	J1 2 21	

S=	à	{1}	{2}	{3}	{1,2}	{1.3}	{2,3}	{1,2,3}
v(S)	0	0	0	0	0	4	5	9

(Three cooperating communities)





S	5=	à	{1}	{2}	{3}	{1,2}	{1.3}	{2,3}	{1,2,3}
С	:(S)	0	100	90	80	130	110	110	140
v	ν(S)	0	0	0	0	60	70	60	130

$$v(S) = \sum_{i \in S} c(i) - c(S)$$

<u>DEF.</u> (N,v) is a <u>superadditive game</u> iff

```
v(S \cup T) \ge v(S) + v(T) for all S,T with S \cap T = \emptyset
```

Q.1: which coalitions form?Q.2: If the grand coalition N forms, how to divide v(N)? (how to allocate costs?)

Many answers! (solution concepts) One-point concepts: - Shapley value (Shapley 1953) - nucleolus (Schmeidler 1969)

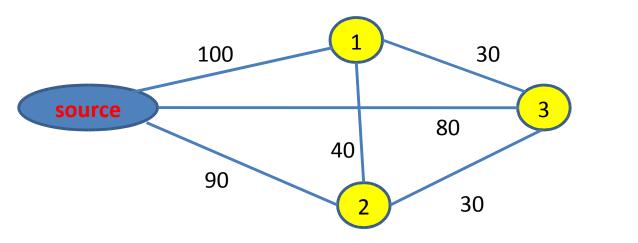
. . .

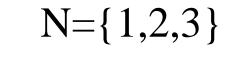
- -value (Tijs, 1981)

Subset concepts:

- Core (Gillies, 1954)
- stable sets (von Neumann, Morgenstern, '44)
- kernel (Davis, Maschler)
- bargaining set (Aumann, Maschler)

(Three cooperating communities)





S=	à	{1}	{2}	{3}	{1,2}	{1.3}	{2,3}	{1,2,3}
c(S)	0	100	90	80	130	110	110	140
v(S)	0	0	0	0	60	70	60	130

 $v(S) = \Sigma_{i \in S} c(i) - c(S)$

Show that v is superadditive and c is subadditive.

```
Claim 1: (N,v) is superadditive
We show that v(S \cup T) \ge v(S) + v(T) for all S, T \in 2^N \{ \emptyset \} with S \cap T = \emptyset
60 = v(1,2) \ge v(1) + v(2) = 0 + 0
70 = v(1,3) \ge v(1) + v(3) = 0 + 0
60 = v(2,3) \ge v(2) + v(3) = 0 + 0
60 = v(1,2) \ge v(1) + v(2) = 0 + 0
130 = v(1,2,3) \ge v(1) + v(2,3) = 0 + 60
130 = v(1,2,3) \ge v(2) + v(1,3) = 0 + 70
130 = v(1,2,3) \ge v(3) + v(1,2) = 0 + 60
```

```
Claim 2: (N,c) is subadditive
We show that c(S \cup T) \le c(S) + c(T) for all S, T \in 2^N \setminus \{\emptyset\} with S \cap T = \emptyset
130 = c(1,2) \le c(1) + c(2) = 100 + 90
110 = c(2,3) \le c(2) + v(3) = 100 + 80
110 = c(1,2) \le c(1) + v(2) = 90 + 80
140 = c(1,2,3) \le c(1) + c(2,3) = 100 + 110
140 = c(1,2,3) \le c(2) + c(1,3) = 90 + 110
140 = c(1,2,3) \le c(3) + c(1,2) = 80 + 130
```

(Glove game) (N,v) such that $N=L\cup R$, $L\cap R=\emptyset$ v(S)=min{| $L\cap S$ |, $|R\cap S|$ } for all $S \in 2N \setminus \{\emptyset\}$

Claim: the glove game is superadditive.

```
Suppose S,T \in 2^{\mathbb{N}} \{ \emptyset \} with S \cap T = \emptyset. Then
```

```
\begin{split} v(S)+v(T)&=\min\{|L\cap S|, |R\cap S|\} + \min\{|L\cap T|, |R\cap T|\}\\ &=\min\{|L\cap S|+|L\cap T|, |L\cap S|+|R\cap T|, |R\cap S|+|L\cap T|, |R\cap S|+|R\cap T|\}\\ &\leq\min\{|L\cap S|+|L\cap T|, |R\cap S|+|R\cap T|\}\\ &\text{since } S\cap T=\varnothing\\ &=\min\{|L\cap (S\cup T)|, |R\cap (S\cup T)|\}\\ &=v(S\cup T). \end{split}
```

The imputation set

<u>**DEF.**</u> Let (N,v) be a n-persons TU-game. A vector $x=(x_1, x_2, ..., x_n) \in IR^N$ is called an <u>imputation</u> iff

> (1) x is <u>individual rational</u> i.e. $x_i \ge v(i)$ for all $i \in N$

(2) x is <u>efficient</u> $\Sigma_{i \in N} x_i = v(N)$

[interpretation x_i: payoff to player i]

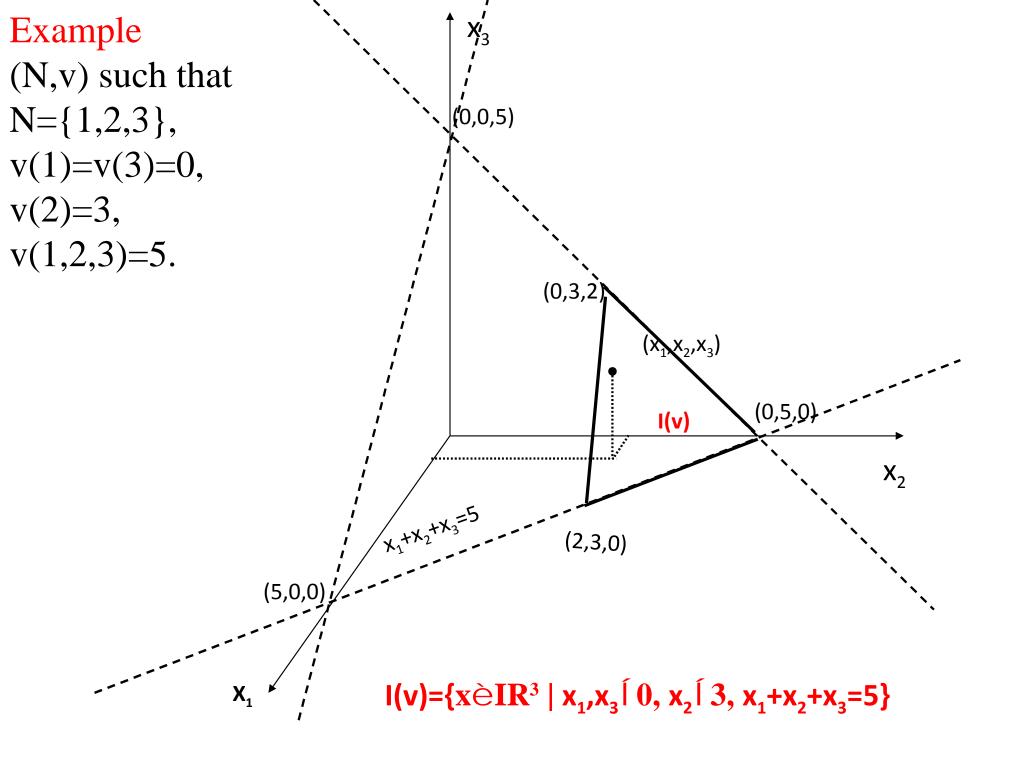
 $I(v) = \{x \in IR^{N} \mid \sum_{i \in N} x_{i} = v(N), x_{i} \ge v(i) \text{ for all } i \in N \}$ Set of imputations

(Glove game) (N,v) such that $N=L\cup R$, $L\cap R=\emptyset$ v(S)=min{| $L\cap S$ |, $|R\cap S|$ } for all $S \in 2N \setminus \{\emptyset\}$

Claim: the glove game is superadditive.

```
Suppose S,T \in 2^{\mathbb{N}} \{ \emptyset \} with S \cap T = \emptyset. Then
```

```
\begin{split} v(S)+v(T)&=\min\{|L\cap S|, |R\cap S|\} + \min\{|L\cap T|, |R\cap T|\}\\ &=\min\{|L\cap S|+|L\cap T|, |L\cap S|+|R\cap T|, |R\cap S|+|L\cap T|, |R\cap S|+|R\cap T|\}\\ &\leq\min\{|L\cap S|+|L\cap T|, |R\cap S|+|R\cap T|\}\\ &\text{since } S\cap T=\varnothing\\ &=\min\{|L\cap (S\cup T)|, |R\cap (S\cup T)|\}\\ &=v(S\cup T). \end{split}
```



Claim: (N,v) a n-person (n=|N|) TU-game. Then

$$I(v) \neq \emptyset \qquad \Leftrightarrow v(N) \ge \sum_{i \in N} v(i)$$

Proof

 (\Rightarrow) Suppose $x \in I(v)$. Then $v(N) = \sum_{i \in N} x_i \geq \sum_{i \in N} v(i)$ $EFF \qquad IR$ (\Leftarrow) Suppose $v(N) \ge \sum_{i \in N} v(i)$. Then the vector

 $(v(1), v(2), ..., v(n-1), v(N) - \sum_{i \in \{1,2,...,n-1\}} v(i))$ is an imputation.

 $\geq v(n)$

The core of a game

<u>DEF.</u> Let (N,v) be a TU-game. The core C(v) of (N,v) is the set

$$\begin{split} C(v) = & \{x \in I(v) \mid \Sigma_{i \in S} \; x_i \geq v(S) \text{ for all } S \in 2N \setminus \{\emptyset\} \} \\ & \qquad \text{stability conditions} \\ & \text{no coalition } S \text{ has the incentive to split off} \\ & \text{if } x \text{ is proposed} \\ \hline \underline{Note} : x \in C(v) \text{ iff} \\ & (1) \; \Sigma_{i \in N} \; x_i = v(N) \; efficiency \\ & (2) \; \Sigma_{i \in S} \; x_i \geq v(S) \text{ for all } S \in 2N \setminus \{\emptyset\} \; stability \end{split}$$

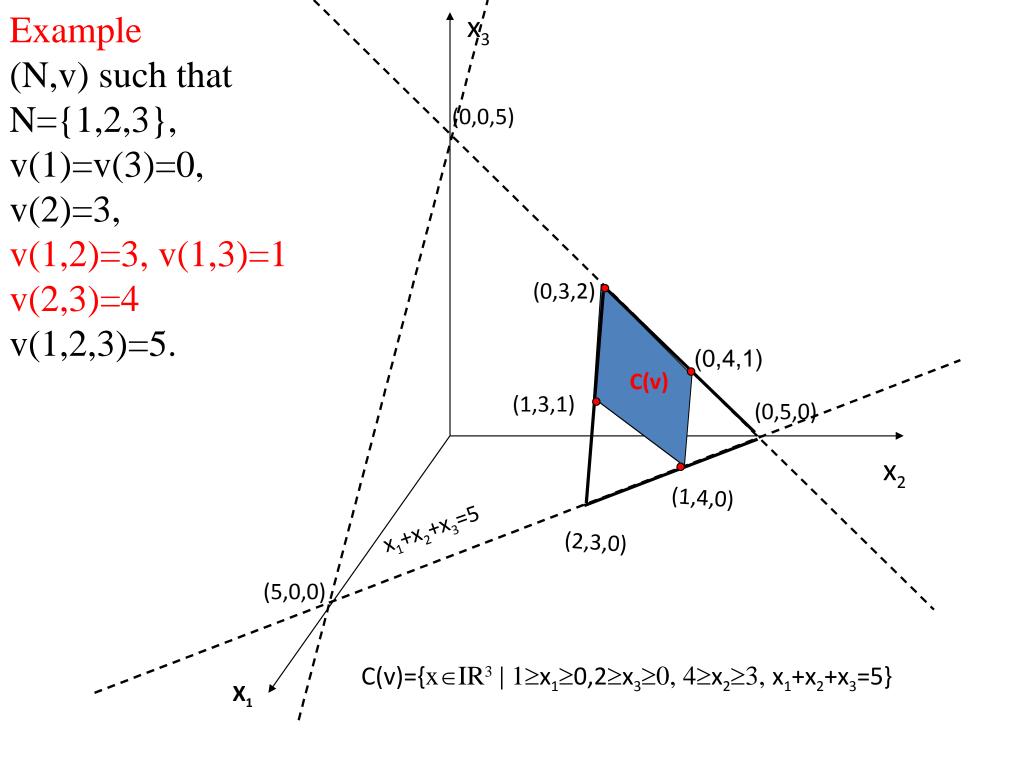
Bad news: C(v) can be empty

Good news: many interesting classes of games have a nonempty core.

(N,v) such that N= $\{1,2,3\},\$ v(1)=v(3)=0, v(2)=3, v(1,2)=3, v(1,3)=1 v(2,3)=4 v(1,2,3)=5.

Core elements satisfy the following conditions: $x_1, x_3 \ge 0, x_2 \ge 3, x_1 + x_2 + x_3 = 5$ $x_1 + x_2 \ge 3$, $x_1 + x_3 \ge 1$, $x_2 + x_3 \ge 4$ We have that $5-x_3 \ge 3 \Leftrightarrow x_3 \le 2$ $5-x_2 \ge 1 \Leftrightarrow x_2 \le 4$ $5-x_1 \ge 4 \Leftrightarrow x_1 \le 1$

 $C(v) = \{x \in IR^3 \mid 1 \ge x_1 \ge 0, 2 \ge x_3 \ge 0, 4 \ge x_2 \ge 3, x_1 + x_2 + x_3 = 5\}$



Example (Game of pirates) Three pirates 1,2, and 3. On the other side of the river there is a treasure (10 \oplus). At least two pirates are needed to wade the river...

(N,v), N= $\{1,2,3\}$, v(1)=v(2)=v(3)=0, v(1,2)=v(1,3)=v(2,3)=v(1,2,3)=10

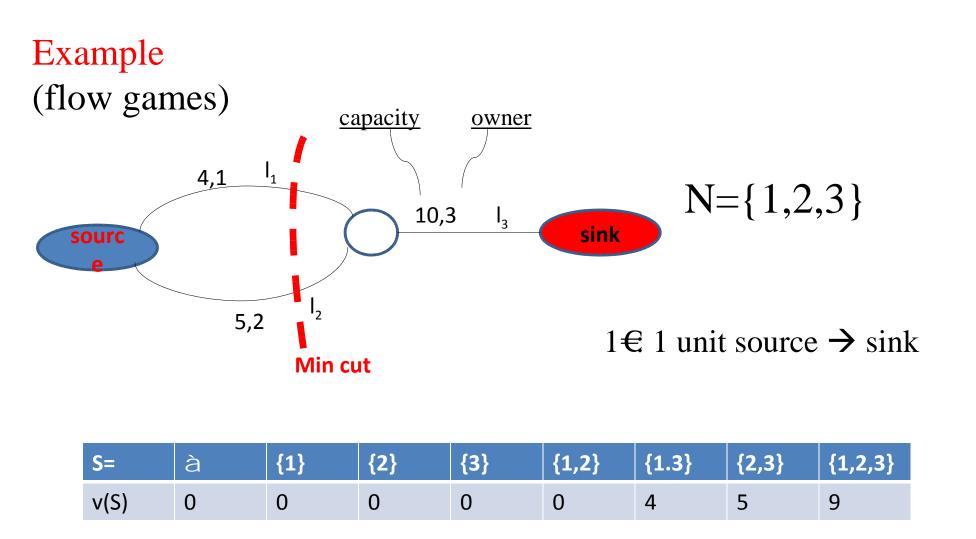
Suppose $(x_1, x_2, x_3) \in C(v)$. Then efficiency $x_1 + x_2 + x_3 = 10$ $x_1 + x_2 \ge 10$ stability $x_1 + x_3 \ge 10$ $x_2 + x_3 \ge 10$

 $20=2(x_1+x_2+x_3) \ge 30$ Impossible. So C(v)= \emptyset .

Note that (N,v) is superadditive.

(Glove game with L= $\{1,2\}$, R= $\{3\}$) v(1,3)=v(2,3)=v(1,2,3)=1, v(S)=0 otherwise

Suppose $(x_1, x_2, x_3) \in C(v)$. Then $x_1 + x_2 + x_3 = 1$ $x_2 = 0$ $x_1 + x_3 = 1$ $x_1 + x_3 \ge 1$ $x_2 \ge 0$ $x_{2} + x_{3} \ge 1$ $x_1 = 0$ and $x_3 = 1$ So $C(v) = \{(0,0,1)\}.$ (0,0,1) I(v)(1,0,0) (0,1,0)



Min cut $\{I_1, I_2\}$. Corresponding core element (4,5,0)

Convex games (1)

<u>DEF.</u> An n-persons TU-game (N,v) is convex iff v(S)+v(T)≤v(S \cup T)+v(S \cap T) for each S,T∈2^N.

This condition is also known as *supermodularity*. It can be rewritten as

 $v(T)-v(S \cap T) \le v(S \cup T)-v(S)$ for each $S,T \in 2^N$

For each $S,T \in 2^N$, let $C = (S \cup T) \setminus S$. Then we have: $v(C \cup (S \cap T)) - v(S \cap T) \le v(C \cup S) - v(S)$

Interpretation: the marginal contribution of a coalition C to a disjoint coalition S does not increase if S becomes smaller

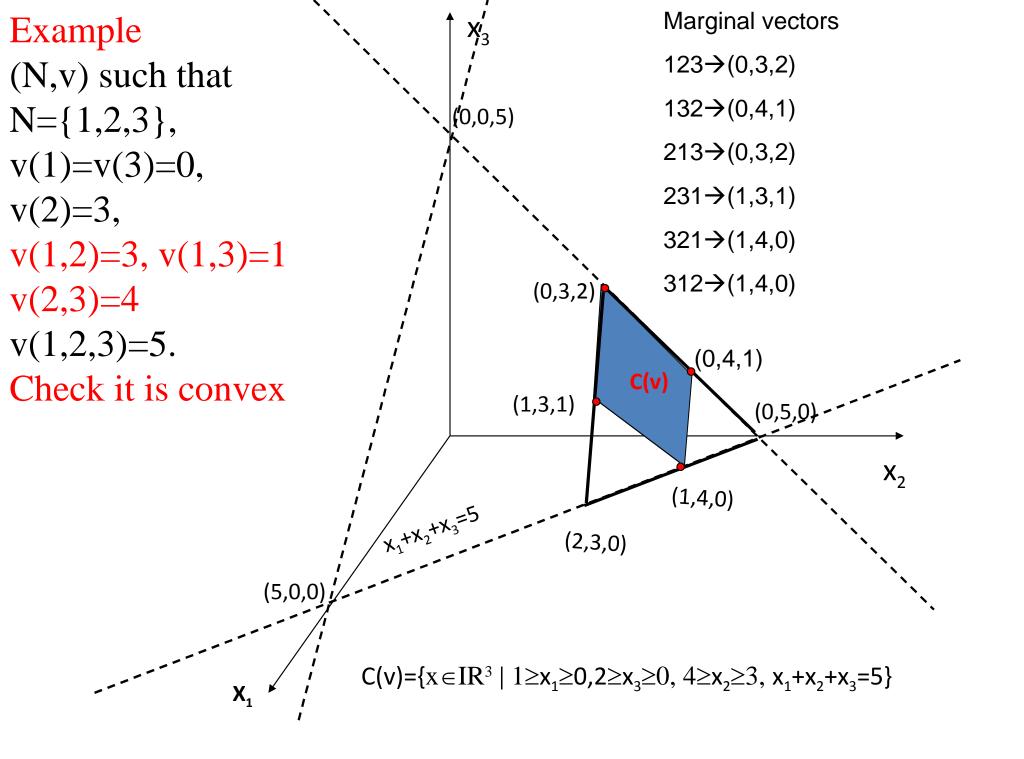
Convex games (2)

Fit is easy to show that supermodularity is equivalent to $v(S \cup \{i\})-v(S) \le v(T \cup \{i\})-v(T)$

for all $i \in N$ and all $S, T \in 2^N$ such that $S \subseteq T \subseteq N \setminus \{i\}$

interpretation: player's marginal contribution to a large coalition is not smaller than her/his marginal contribution to a smaller coalition (which is stronger than superadditivity)

Clearly all convex games are superadditive (S∩T=Ø...)
A superadditive game can be not convex (try to find one)
An important property of convex games is that they are (*totally*) balanced, and it is "easy" to determine the core (coincides with the Weber set, i.e. the convex hull of all marginal vectors...)



How to share v(N)...

- The Core of a game can be used to exclude those allocations which are *not stable*.
- But the core of a game can be a bit "extreme" (see for instance the glove game)
- Sometimes the core is *empty* (pirates)
- And if it is not empty, there can be many allocations in the core (*which is the best*?)

An axiomatic approach (Shapley (1953)

- Similar to the approach of Nash in bargaining: which properties an allocation method should satisfy in order to divide v(N) in a reasonable way?
- Siven a subset C of G^N (class of all TU-games with N as the set of players) a *(point map) solution* on C is a map : C IR^N.
- ➢ For a solution we shall be interested in various properties...

Symmetry

<u>PROPERTY 1</u>(SYM) Let $v \in G^N$ be a TU-game.

- Let $i, j \in \Box$ If $v(S \cup \{i\}) = v(S \cup \{j\})$ for all $S \in 2^{N \setminus \{i,j\}}$,
 - then $_{i}(v) = _{j}(v)$.

EXAMPLE

- We have a TU-game ($\{1,2,3\},v$) s.t. v(1) = v(2) = v(3) = 0, v(1, 2) = v(1, 3) = 4, v(2, 3) = 6, v(1, 2, 3) = 20.
- Players 2 and 3 are symmetric. In fact:
- $v(\emptyset \cup \{2\}) = v(\emptyset \cup \{3\}) = 0$ and $v(\{1\} \cup \{2\}) = v(\{1\} \cup \{3\}) = 4$
- If satisfies SYM, then $_2(v) = _3(v)$

Efficiency

PROPERTY 2 (EFF) Let $v \in G^N$ be a TU-game.

 $\sum_{i \in N} (v) = v(N)$, i.e., (v) is a pre-imputation.

Null Player Property

<u>DEF.</u> Given a game $v \in \mathbf{G}^N$, a player $i \in N$ s.t.

 $v(S \cup i) = v(S)$ for all $S \in 2^N$ will be said to be a null player.

PROPERTY 3 (NPP) Let $v \in G^N$ be a TU-game. If $i \in N$ is a null player, then $_i(v) = 0$.

EXAMPLE We have a TU-game ($\{1,2,3\},v$) such that v(1) = 0, v(2) = v(3) = 2, v(1, 2) = v(1, 3) = 2, v(2, 3) = 6, v(1, 2, 3) = 6. Player 1 is null. Then $_1(v) = 0$ **EXAMPLE** We have a TU-game ($\{1,2,3\},v$) such that v(1) =0, v(2) = v(3) = 2, v(1, 2) = v(1, 3) = 2, v(2, 3) = 6, v(1, 2, 3) = 6. On this particular example, if satisfies NPP, SYM and EFF we have that

 $_1(v) = 0$ by NPP

- $_2(v) = _3(v)$ by SYM
- $_{1}(v) + _{2}(v) + _{3}(v) = 6 by EFF$
- So =(0,3,3)
- But our goal is to characterize on G^N . One more property is needed.

Additivity

<u>**PROPERTY 4 (ADD)</u>** Given $v, w \in \mathbf{G}^N$,</u>

(v)+(w)=(v+w).

.<u>EXAMPLE</u> Two TU-games v and w on N={1,2,3}

		(1) 1		(1)
v(1) =3		w(1) =1		v+w(1) = 4
v(2) =4		w(2) =0		v+w(2) =4
v(3) = 1		w(3) = 1		v+w(3) = 2
v(1, 2) =8	╋	w(1, 2) =2	=	v+w(1, 2) =10
v(1, 3) = 4		w(1, 3) = 2		v+w(1, 3) = 6
v(2, 3) = 6		w(2, 3) = 3		v+w(2, 3) = 9
v(1, 2, 3) = 10		w(1, 2, 3) = 4		v+w(1, 2, 3) = 14

Theorem 1 (Shapley 1953)

There is a unique map ϕ defined on **G**^N that satisfies EFF, SYM, NPP, ADD. Moreover, for any $i \in N$ we have that

$$W_i(v) = \frac{1}{n!} \sum_{\dagger \in \Pi} m_i^{\dagger}(v)$$

Here Π is the set of all permutations $:N \quad N \text{ of } N,$ while m $_i(v)$ is the marginal contribution of player i according to the permutation $\ ,$ which is defined as:

 $v(\{ (1), (2), \ldots, (j)\}) - v(\{ (1), (2), \ldots, (j-1)\}),$ where j is the unique element of N s.t. i = (j).

Probabilistic interpretation: (the "room parable")

 \geq Players gather one by one in a room to create the "grand coalition", and each one who enters gets his marginal contribution.

➢Assuming that all the different orders in which they enter are equiprobable, the Shapley value gives to each player her/his expected payoff.

Example	Permutation	1	2	3
(N,v) such that $N = \{1,2,3\},\$	1,2,3	0	3	2
v(1)=v(3)=0,	1,3,2	0	4	1
v(2)=3,	2,1,3	0	3	2
v(1,2)=3,	2,3,1	1	3	1
v(1,3)=1, v(2,3)=4,	3,2,1	1	4	0
v(1,2,3)=5.	3,1,2	1	4	0
	Sum	3	21	6
	φ(v)	3/6	21/6	6/6

