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a b s t r a c t

We define and study two versions of the bipartite matching problem in the framework of
two-stage stochastic optimization with recourse. In one version, the uncertainty is in the
second stage costs of the edges, and in the other version, the uncertainty is in the set of
vertices that needs to bematched.We prove lower bounds, and analyze efficient strategies
for both cases. These problems model real-life stochastic integral planning problems, such
as commodity trading, reservation systems and scheduling under uncertainty.
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1. Introduction

Two-stage stochastic optimizationwith recourse is a popularmodel for hedging against uncertainty. Typically, part of the
input to the problem is only known probabilistically in the first stage, when decisions have a low cost. In the second stage,
the actual input is known, but the costs of the decisions are higher. We then face a delicate tradeoff between speculating at
a low cost vs. waiting for the uncertainty to be resolved.
This model has been studied extensively for problems that can be modeled by linear programming (sometimes using

techniques such as Sample Average Approximation (SAA)when the linear program (LP) is too large). Recently there has been
a growing interest in 2-stage stochastic combinatorial optimization problems [1,2,6,12,19–22,24]. Since an LP relaxation
does not guarantee an integer solution in general, one can either try to find an efficient rounding technique [11], or develop
a purely combinatorial approach [5,8]. In order to develop successful algorithmic paradigms in this setting, there is an
ongoing research program focusing on classical combinatorial optimization problems [23]: set cover, minimum spanning
tree, Steiner tree, maximum weight matching, facility location, bin packing, multicommodity flow, minimum multicut,
knapsack, and others. In this paper, we aim to enrich this research program by adding a basic combinatorial optimization
problem to the list: the minimum cost maximum bipartite matching problem. The task is to buy edges of a bipartite graph,
which together contain amaximum-cardinalitymatching in the graph.We examine two variants of this problem. In the first,
the uncertainty is in the second stage edge-costs, that is, the cost of an edge can either grow or shrink in the second stage.
In the second variant, all edges become more expensive in the second stage, but the set of nodes that need to be matched is
not known.
Here are some features of minimum cost maximum bipartite matching that make this problem particularly interesting.

First, it is not subadditive: the union of two feasible solutions is not necessarily a solution for the union of the two instances.
In contrast, most previous work focused on subadditive structures, with the notable exception of Gupta and Pál’s work on
stochastic Steiner Tree [9]. Second, the solutions to two partial instancesmay interferewith one another in away that seems
to preclude the possibility of applying cost-sharing techniques associated with the scenario-sampling based algorithms [9,
10]. This intuitively makes the problem resistant to routine attempts, and indeed, we confirm this intuition by proving a
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Fig. 1. An example in which buying edges speculatively can help.

lower bound which is stronger than what is known1 for the sub-additive problems: in Theorem 5, we prove a hardness of
approximation result in the setting where the second-stage scenarios are generated by choosing vertices independently.
It is therefore natural that our algorithms yield upper bounds which are either rather weak (Theorem 2, Part 1) or quite
specialized (Theorem7). To address this issue, we relax the constraint that the output be amaximummatching, and consider
bicriteria results, where there is a tradeoff between the cost of the edges bought and the size of the resulting matching
(Theorem 2, Part 2, and Theorem 8). This approach may be a way to circumvent hardness for other stochastic optimization
problems, as well.
Although the primary focus of this work is stochastic optimization, another popular objective for the prudent investor is

to minimize, not just the expected future cost, but the maximum future cost, over all possible future scenarios: that is the
goal of robust optimization. We also prove a bicriteria result for robust optimization (Theorem 3.) Guarding oneself against
the worst case is more delicate than just working with expectations. The solution requires a different idea: preventing
undesirable high-variance events by explicitly deciding, against the advice of the LP solution, to not buy expensive edges
(To analyze this, the proof of Theorem 3 involves some careful rounding.) This general idea might be applicable to other
problems as well.
We note that within two-stage stochastic optimization with recourse, matching has been studied before [14]. However,

the problem studied here is very different: there, the goal was to construct a maximum weight matching instead of the
competing objective of large size and small cost; moreover the set of edges bought by the algorithm had to form exactly
a matching instead of just contain a matching. In Fig. 1, we give an example illustrating the difference between requiring
equality with a matching or containment of a matching. If we are allowed to buy edges without committing to use them
later, then the correct strategy is to buy edges {a, c} and {a, d} in the first stage, and then either {b, c} or {b, d} in the second
stage, depending on which scenario materializes. The total cost is 0. If buying an edge commits to use it in the matching,
then the correct strategy is to buy edge {b, d} in the first stage and {a, c} in the second stage, for a total cost of 200: the two
problems have completely different structures.
Ourmain goal in this paper is to further fundamental understanding of the theory of stochastic optimization; however,we

note that a conceivable application of this problem is commodity transactions, which can be viewed as a matching between
supply and demand. When the commodity is indivisible, the set of possible transactions can be modeled as a weighted
bipartite graph matching problem, where the weight of an edge represents the cost or profit of that transaction (including
transportation cost when applicable). A trader tries to maximize profits or minimize total costs, depending on their position
in the transaction. A further tool that a commodity trader may employ to improve their income is timing the transaction.
We model timing as a two-stage stochastic optimization problem with recourse: The trader can limit their risk by buying
an option for a transaction at current information, or they can assume the risk and defer decisions to the second stage.
Two common uncertainties in commodity transactions, price uncertainty and supply and demand uncertainty, correspond
to the two stochastic two-stage matching problems mentioned above: finding minimum weight maximum matching with
uncertain edge costs, and findingmaximummatchingwith uncertainmatching vertices. Similar decision scenarios involving
matchings also show up in a variety of other applications, such as scheduling and reservation systems.
Our results are summarized in the following table. We first prove (Theorem 1) that, with explicit scenarios, the uncertain

matching vertices case is, in fact, a special case of the uncertain edge costs case. Then, it suffices to prove upper bounds
for the more general variant and lower bounds for the restricted one. For the problem of minimizing the expected cost of
the solution, we show an approximability lower bound of Ω(log n). We then describe an algorithm that finds a maximum
matching in the graph at a cost which is an n2-approximation for the optimum. We then show that by relaxing the demand
that the algorithm constructs a maximum matching, we can ‘‘beat’’ the lower bound: at a cost of at most 1/β times the
optimum, we can match at least n(1 − β) vertices. Furthermore, we show that a similar bicriteria result holds also for the
robust version of the problem, i.e., when we wish to minimize the worst-case cost.
With independent choices in the second-stage scenarios, our main contribution is the lower bound. The reduction of

Theorem 1 does not apply, but we prove, for both types of uncertainty, that it is NP-hard to approximate the problemwithin
better than a certain constant factor. We also prove an upper bound for a special case of the uncertain matching vertices
variant.

1 To the best of our knowledge, all previous hardness results hold only when the second stage scenarios are given explicitly, i.e., when only certain
combinations of parameter settings are possible.
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Input: Explicit Scenarios Independent Choices
Criteria: Expected Cost Worst-Case Cost Expected Cost
Uncertain • n2-approximation of the cost
edge to get a maximummatching factor 1/β NP-hard to
costs [Theorem 2, part 1] approximation approximate

• 1/β-approximation of the cost of the cost within a
to match at least n(1− β) to match at least certain
vertices [Theorem 2, part 2] n(1− β) vertices constant
• Same hardness results as [Theorem 3] [Theorem 6]
below [Theorem 1]

Uncertain •Ω(log n) approximability
matching lower bound As above • As above
vertices [Theorem 4, Part 1] [Theorem 1] [Theorem 5]

• NP-hard already for • approximation for
two scenarios a special case

[Theorem 4, Part 2] [Theorem 7]
• Same upper bounds as
above [Theorem 1]

2. Explicit scenarios

In this section, we assume that we have an explicit list of possible scenarios for the second stage.
Uncertain edge costs. Given a bipartite graph G = (A, B, E), we can buy edge e in the first stage at cost Ce ≥ 0, or we can

buy it in the second stage at cost C se ≥ 0 determined by the scenario s. The input has an explicit list of scenarios, and known
edge costs (cse) in scenario s. For uncertain edge costs, without loss of generality, we can assume that |A| = |B| = n and that
G has a perfect matching. Indeed, there is an easy reduction from the case where the maximum matching has size k: just
create a new graph by adding a set A′ of n− k vertices on the left side, a set B′ of n− k vertices on the right side, and edges
between all vertex pairs in A′ × B and in A× B′, with cost 0.
In the stochastic optimization setting, the algorithm also has a known second stage distribution: scenario s occurs with

probability Pr(s). The goal is, in time polynomial in both the size of the graph and the number of scenarios, to minimize the
expected cost; if E1 denotes the set of edges bought in the first stage and Es2 the set of edges bought in the second stage under
scenario s, then:

OPT1 = min
E1,Es2

∑
s∈S

Pr(s)

∑
e∈E1

Ce +
∑
e∈Es2

C se

 : ∀s, E1 ∪ Es2 contains a perfect matching
 .

Stochastic optimization with uncertain edge costs has been studied for many problems, see for example [10,17].
In the robust optimization setting, the goal is to minimize the maximum cost (instead of the expected cost):

OPT2 = min
E1,Es2

maxs∈S
∑
e∈E1

Ce +
∑
e∈Es2

C se .

 : ∀s, E1 ∪ Es2 contains a perfect matching
 .

Robust optimization with uncertain edge costs has also been studied for many problems, see for example [4].
Uncertain activated vertices. In this variant of the problem, there is a known distribution over scenarios s, each being

defined by a set Bs ⊂ B of active vertices that are allowed to be matched in that scenario. Each edge costs ce today (before
Bs is known) and τ ce tomorrow, where τ > 1 is the inflation parameter. As in Expression (1), the goal is to minimize the
expected cost, i.e.,

OPT3 =

{
C(E1)+ τ

∑
s∈S

Pr(s)C(Es2) : ∀s, E1 ∪ E
s
2 contains a maximummatching of (A, Bs, E ∩ (A× Bs))

}
.

Stochastic optimization with uncertain activated vertices has also been previously studied for many problems, see for
example [9]. There is a similar expression for robust optimization with uncertain activated vertices.
Theorem 1 (Reduction). The two-stage stochastic matching problem with uncertain activated vertices and explicit second-stage
scenarios (OPT3) reduces to the case of uncertain edge costs and explicit second-stage scenarios (OPT1).
Proof. We give an approximation preserving reduction. Given an instance with stochastic matching vertices, we transform
it to an instance of the problem with stochastic edge-costs, as follows. Assume that our input graph is G = (A, B, E) where
A = {a1, . . . , a|A|} and B = {b1, . . . , b|B|}. We first add a set A′ = a′1, . . . , a

′

|B| of |B| new vertices to A, and connect each a
′

i
with bi by an edge. In other words, we generate the graph G′ = (A ∪ A′, B, E ∪ {(a′i, bi) : 1 ≤ i ≤ |B|}).
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For the edges between A and B, edge costs are the same as in the original instance, in the first stage as well as the second
stage. The costs on the edges between A′ and B create the effect of selecting the activated vertices: for each (a′i, bi), the first-
stage cost is n2W , and the second-stage cost is n2W if b is active and 0 otherwise. Here,W is the maximum cost of an edge,
nW is an upper bound on the cost of the optimal solution, and n2W is large enough that any solution containing this edge
cannot be an optimal, or even an n-approximate solution. Hence, a second-stage cost of 0 for (a′i, bi) allows bi to be matched
with a′i for free, while a cost of nW forces bi to be matched with a vertex from A. This concludes the reduction. �

From Theorem 1, it follows that our algorithms for uncertain edges costs (Theorems 2 and 3) imply corresponding
algorithms for uncertain activated vertices, and that our lower bounds for uncertain activated vertices (Theorem 4) imply
corresponding lower bounds for uncertain edge costs.

Theorem 2 (Stochastic Optimization Upper Bound). (1) There is a polynomial-time deterministic algorithm for stochastic
matching (OPT1) that constructs a perfect matching whose expected cost is at most 2n2 · OPT1.

(2) Given β ∈ (0, 1), there is a polynomial-time randomized algorithm for stochastic matching (OPT1) that returns a matching
whose cardinality, with probability 1−e−n (over the random choices of the algorithm), is at least (1−β)n, and whose overall
expected cost is O(OPT1/β).

In particular, for any ε > 0 we get a matching of size (1 − ε)n and cost O(OPT/ε) in expectation. Note that by Theorem 4,
we have to relax the constraint on the size anyway if we wish to obtain a better-than-log n approximation on the cost, so
Part 2 of the Theorem is, in a sense, our best option.
The proof follows the general paradigm applied to stochastic optimization in recent papers such as [11]: formulate the

problem as an integer linear program; solve the linear relaxation and use it to guide the algorithm; and use LP duality
(König’s theorem, for our problem) for the analysis.
To define the integer program, let Xe indicate whether edge e is bought in the first stage, and for each scenario s, let Z se

(resp. Y se ) indicate whether edge e is bought in the first stage (resp. in the second stage) and ends up in the perfect matching
when scenario smaterializes. We obtain:

min
∑
s∈S

Pr(s)

(∑
e

CeXe +
∑
e

C seY
s
e

)
s.t.


∑
e:v∈e

(Z se + Y
s
e ) = 1 ∀v ∈ A ∪ B, s ∈ S

Z se ≤ Xe ∀e ∈ E, s ∈ S
Xe, Y se , Z

s
e ∈ {0, 1} ∀e ∈ E, s ∈ S.

The algorithm solves the standard LP relaxation:

min
∑
s∈S

Pr(s)

(∑
e

CeXe +
∑
e

C seY
s
e

)
s.t.


∑
e:v∈e

(Z se + Y
s
e ) = 1 ∀v ∈ A ∪ B, s ∈ S

Z se ≤ Xe ∀e ∈ E, s ∈ S
≤ Xe, Y se , Z

s
e ≤ 1 ∀e ∈ E, s ∈ S.

(1)

Now the proof of the two parts of the theorem diverges:
Proof of part 1. Here is the algorithm.

Solve the Linear Program (1). Let (Xe, Z se, Y
s
e ) denote the optimal solution.

First stage: buy every edge e such that Xe ≥ 1/(2n2).
Second stage: under scenario s, buy every edge e such that Y se ≥ 1/(2n

2).
Output: a maximummatching of the set of edges bought.
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For the analysis, we see that the expected cost is

∑
s∈S

Pr(s)

 ∑
e:Xe≥1/(2n2)

Ce +
∑

e:Y se≥1/(2n2)

C se

 ≤ 2n2∑
s∈S

Pr(s)

[∑
e

CeXe +
∑
e

C seY
s
e

]
= 2n2OPT.

It only remains to prove that for every scenario s, the output is a perfect matching.

Lemma 1 (Hall’s Theorem). A bipartite graph with vertex set (A, B) contains a perfect matching if and only if every subset U of
A has at least |U| neighbors in B.

To apply Hall’s theorem, fix a subset U of A and let N(U) = {w ∈ B|∃v ∈ S, P{v,w} ≥ 1/n2}, where Pe = Z se + Y
s
e . Note

that if P{v,w} ≥ 1/n2, then at least one of Z s{v,w} or Y
s
{v,w} must be greater than or equal to 1/(2n

2), and so, the algorithm
must have bought edge {v,w} under scenario s: thus N(U) is contained in the set of neighbors of U in the graph. Now, since
(Pe) is a fractional perfect matching, we have

∑
e∈U×B Pe = |U| and

∑
e∈U×N(U) Pe ≤ |N(U)|. By definition of N(U), we have∑

e∈U×(B\N(U)) Pe ≤ |U|(n− |N(U)|)(1/n
2), and so

|U| ≤ |N(U)| +
|U|(n− |N(U)|)

n2
< |N(U)| + 1.

Since |N(U)| is an integer, it must therefore be greater than or equal to |U|.
Hence by Hall’s theorem there is a matching of size n.

Proof of part 2. Here is the algorithm.

Solve the Linear Program (1). Let (Xe, Z se, Y
s
e ) denote the optimal solution.

Let α = 8 ln(2)/β .
First stage: buy every edge e independently with probability 1− e−Xeα .
Second stage: under scenario s, buy every edge e independently with probability 1− e−Y seα .
Output: a maximummatching of the set of edges bought.

For the analysis, we see that the expected cost of the output is

∑
e

(
Ce(1− e−Xeα)+

∑
s

Pr(s)C se(1− e
−Y seα)

)
.

Using the upper bound 1 − e−Z ≤ Z , we deduce that this quantity is at most α times the objective function of our linear
program, i.e. at most α times OPT.
Let β ′ = β/2 where we recall that the goal of the theorem is to have a matching of expected size n− βn. We will prove

that with high probability, the output has cardinality at least n(1− β ′). Indeed, assume that the output has cardinality less
than n(1− β ′).

Lemma 2 (König’s Theorem [15]). In a bipartite graph, the cardinality of a maximum matching equals the cardinality of a
minimum vertex cover.

We apply König’s theorem: there exists a set of vertices, of cardinality less than n(1− β ′), which covers all of E1 ∪ Es2.
Fix a subsetV ofA∪B of cardinality less than n(1−β ′). For any edge e that remains uncovered byV , the probability that the

algorithm does not buy e is e−Xeαe−Y
s
eα ≤ e−Peα , where Pe = Z se+Y

s
e . Thus the probability that V is a vertex cover is bounded

by
∏
e:e∩V=∅ e

−Peα = e−
∑
e:e∩V=∅ Peα . By the LP constraints and the fact that G is bipartite, (Pe)e is a convex combination of

perfect matchings, each of which has at most |V | edges adjacent to V , hence has at least β ′n edges not covered by V . Thus
the sum of Pe, over edges e left uncovered by V , is at least β ′n. So, the probability that V is a vertex cover is bounded by
e−αβ

′n.
By the union bound, the probability that there exists such a vertex cover is at most 22ne−αβ

′n
= e−(αβ

′
−2 ln 2)n. Thus

the output matching has size n(1 − β ′) with probability at least (1 − e−(αβ
′
−2 ln 2)n), and the expected size is at least

(1− e−(αβ
′
−2 ln 2)n)(n(1− β ′)) ≥ n(1− β). �

Theorem 3 (Robust Optimization). Given β ∈ (0, 1), there is a polynomial-time randomized algorithm for robust matching
(OPT2)with t scenarios that returns a matching s.t. with probability at least 1− 2/n (over the random choices of the algorithm),
the following holds: In every scenario, the algorithm incurs cost O(OPT2(1+ln(t)/ ln(n))/β) and outputs amatching of cardinality
at least (1− β)n.
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Proof. Wedetail this proof,which is themost interesting one in this section. The integer programming formulation is similar
to the one used to prove Theorem 2. More specifically, let Xe indicate whether edge e is bought in the first stage, and for each
scenario s, let Z se (resp. Y

s
e ) indicate whether edge e is bought in the first stage (resp. in the second stage) and ends up in the

perfect matching when scenario smaterializes. We obtain:

minW s.t.


∑
e:v∈e

(Z se + Y
s
e ) = 1 ∀v ∈ A ∪ B and ∀s ∈ S

Z se ≤ Xe ∀e ∈ E and s ∈ S∑
e
[CeXe + C seY

s
e ] ≤ W ∀s ∈ S

Xe, Y se , Z
s
e ∈ {0, 1} ∀e ∈ E and s ∈ S.

The algorithm solves the standard LP relaxation:

minW s.t.


∑
e:v∈e

(Z se + Y
s
e ) = 1 ∀v ∈ A ∪ B and ∀s ∈ S

Z se ≤ Xe ∀e ∈ E and s ∈ S∑
e
[CeXe + C seY

s
e ] ≤ W ∀s ∈ S

0 ≤ Xe, Y se , Z
s
e ≤ 1 ∀e ∈ E and s ∈ S.

(2)

Solve the Linear Program (2). Letw, (xe), (yse), (z
s
e) denote the optimal solution.

Let α = 8 ln(2)/β and T = 3 ln n.
First stage:
Relabel the edges so that c1 ≥ c2 ≥ · · · .
Let t1 be maximum such that x1 + x2 + · · · + xt1 ≤ T .
For every j > t1, buy edge jwith probability 1− e−xjα .
(Do not buy any edge j ≤ t1.)

Second stage: under scenario s,
Relabel the remaining edges so that cs1 ≥ c

s
2 ≥ · · · .

Let t2 be maximum such that ys1 + y
s
2 + · · · + y

s
t1 ≤ T .

For every j > t2, buy edge jwith probability 1− e
−ysjα .

(Do not buy any edge j ≤ t2.)
Output: a maximummatching of the set of edges bought.

We note that this construction and the rounding used in the analysis are almost identical to the construction used in
strip-packing [13]. The analysis of the cost of the edges bought is the difficult part. We first do a slight change of notation.
The cost can be expressed as the sum of at most 2m random variables (at most m in each stage). Let a1 ≥ a2 ≥ · · · be
the multiset {ce} ∪ {cse}, along with the corresponding probabilities pi (pi = 1 − e

−xeα if ai = ce is a first-stage cost, and
pi = 1− e−y

s
eα if ai = cse is a second-stage cost.) Let Xi be the binary variable with expectation pi. Clearly, the cost incurred

by the algorithm can be bounded above by X =
∑
i>t∗ aiXi, where t

∗ is maximum such that p1 + · · · + pt∗ ≤ T .
To prove a high-probability bound on X , we will partition [1, 2m] into intervals to define groups. The first group is just

[1, t∗], and the subsequent groups are defined in greedy fashion, with group [j, `] defined by choosing `maximum so that∑
i∈[j,`] pi ≤ T . Let G1,G2, . . . ,Gr be the resulting groups. We have:

X ≤
∑
`≥2

∑
i∈G`

aiXi ≤
∑
`≥2

∑
i∈G`

(max
G`
ai)Xi ≤

∑
`≥2

∑
i∈G`

(min
G`−1
ai)Xi ≤

∑
`≥1

(min
G`
ai)

∑
i∈G`+1

Xi.

On the other hand, (using the inequality 1− e−Z ≤ Z), the optimal value OPT∗ of the LP relaxation satisfies:

αOPT∗ ≥
∑
i

aipi ≥
∑
`≥1

∑
i∈G`

(min
G`
ai)pi ≥

∑
`≥1

(min
G`
ai)(T − 1).

It remains, for each group G`, to apply a standard Chernoff bound to bound the sum of the Xi’s in G`, and use union bounds
to put these results together and yield the statement of the theorem, as follows.

Lemma 3 (Chernoff). Let X =
∑
1≤i≤N Xi be a sum of independent binary random variables, with with expected value E(Xi) for

all i, and let σ 2 denote the variance of X. Then Pr(X − E(X) ≥ kσ) ≤ e−k
2/4 for any k ∈ [0, 2σ ].

We apply the Chernoff bound separately for each group with k = 2
√
3 ln n+ ln t , where t is the number of scenarios. For

a given group G`, we have σ 2 =
∑
i∈G`
pi(1− pi) ≤

∑
pi ≤ T ; thus, the event that

∑
i∈G`
Xi is less than 2

√
T (3 ln n+ ln t)

has probability at least 1− 1/(n3t). The total number of groups is at most 2m ≤ n2, so with probability at least 1− 1/(nt),
the event holds for every group; then we have

X ≤
∑
`≥1

(min
G`
ai)2

√
T (3 ln n+ ln t) ≤ 2αOPT∗

(
1+

ln t
3 ln n

)
T
T − 1

≤ 3αOPT∗
(
1+

ln t
3 ln n

)
.
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Fig. 2. Reduction from minimum set cover.

In other words, with probability at least 1− 1/(nt) the cost is bounded by 3αOPT∗(1+ ln t
3 ln n ). Now, recall that t is the total

number of scenarios. By the union bound, it holds that with probability at least 1−1/n, we have that, for every scenario, the
cost of the algorithm is bounded by 3αOPT∗(1+ ln t

3 ln n ). But recall that, by assumption in this section, the number of scenarios
is polynomial in n: then ln(t) = O(ln n), and the part of the theorem about the cost follows.
For analysis of the size, it is easy to extend the proof of Theorem 2 so as to show that the output matching has size at

least n(1 − β/2) with probability at least 1 − e−(αβ/2−ln 4)n+2αT . Since α = o(n/ ln n), we have 2αT = o(n ln 4). From our
lower bound on αβ , it follows easily that this probability is at least 1 − 1/(nt), where t is the number of scenarios. Using
the union bound over all scenarios proves that with probability at least 1− 1/n, we have that for every scenario the size of
the matching satisfies the stated bound of the theorem. �

We note that the proof of Theorem 3 can also be extended to the setting of Theorem 2 to prove a high probability result:
for scenario s, with probability at least 1−2/n over the randomchoices of the algorithm, the algorithm incurs costO(OPTs/β)
and outputs a matching of cardinality at least (1− β)n, where OPTs =

∑
E1
Ce +

∑
Es2
C se .

Finally, we can show two hardness of approximation results for the explicit scenario case.

Theorem 4 (Stochastic Optimization Lower Bound). (1) There exists a constant c > 0 such that Expression OPT3 (Eq. (1)) is
NP-hard to approximate within a factor of c ln n.

(2) Expression OPT3 (Eq. (1)) is NP-hard to compute, even when there are only two scenarios and τ is bounded.

Proof. Part 1. We will prove that when τ ≥ n2, Expression (1) is at least as hard to approximate as Minimum Set Cover:
given a universe S = {s1, . . . , sn} of elements and a collection C = {c1, . . . , ck} of subsets of S, find a minimum-cardinality
subset SC of C such that for every 1 ≤ i ≤ n, si ∈ cj for some cj ∈ SC. It is known that there exists a constant c > 0 such
that approximating Minimum Set-Cover to within a factor of c ln n is NP-hard [18].
Given an instance (S = {s1, . . . , sn}; C = {c1, . . . , ck}) of Minimum Set-Cover, we construct an instance of the two-stage

matching problem with stochastic matching vertices as follows. The construction is illustrated in Fig. 2. The graph contains
|S| + 3|C | vertices: for every element si ∈ S there is a vertex ui; for every set cj ∈ C , there are three vertices xj, yj, and zj
connected by a path (xj, yj), (yj, zj). For every set cj and element si which belongs to cj, we have the edge (zj, ui). It is easy
to see that the graph is bipartite. The first-stage edge costs are 1 for an (xi, yi) edge costs and 0 for the other edges. The
second-stage costs are equal to the first-stage costs, multiplied by τ . There are n equally likely second-stage scenarios: in
scenario i the vertices in {y1, . . . , yk} ∪ {ui} are active.
Consider a set cover SC for the input instance. In the first stage, buy edge (xj, yj) for each set cj ∈ SC. In the second

stage, let i be the scenario and let cj be a set in the set cover that contains the element si. Buy the edge (zj, ui) and every edge
(yj′ , zj′) for j′ 6= j. The edges bought contain a matching that matches all active vertices, and the total cost equals |SC|.
On the other hand, assume that the edges bought in the first stage do not correspond to a set cover of the input instance.

Let i be an elementwhich is not covered. Then in scenario i, the algorithmwill have tomatch uiwith some zj such that ui ∈ cj,
and then it will have to buy the edge (xj, yj) at cost n2. Thus the expected cost is at least n2/n = n. Thus the minimum of
Expression (1) is exactly equal to the cardinality of the minimum set cover of the input instance.
Part 2. By reduction from the NP-hard SimultaneousMatchings problem [7]:We are given a bipartite graph G = (X, Y , E)

and two subsets Z1, Z2 of X , such that G has a matching that matches every vertex of Zi for each i = 1, 2. We need to find a
minimum cardinality edge-setM ⊆ E such that for each i = 1, 2, the restriction ofM to Zi × Y is a Zi-perfect matching.
Given an instance of the Simultaneous Matchings problem, we create an instance of our problem as follows. The graph

is G′ = (Y , X, E). Each edge has cost 1 in the first stage τ in the second stage. There are two equally-likely second-stage
scenarios: in scenario i, the vertices of Zi are active. We show that the instance we created has a solution of cost≤ |X | if and
only if the Simultaneous Matching instance has a solution of cardinality |X |.
For the first direction, assume that the Simultaneous Matching instance has a solutionM of cardinality |X |, and consider

an algorithm that buys the edges ofM in the first stage. The bought edges contain amatching for each second-stage scenario,
so the total cost is equal to the first-stage cost, i.e., |X |. Conversely, assume that themaximum simultaneousmatching in the
graph has cardinality smaller than |X | and assume that an algorithm bought the edge-setM1 in the first stage. If |M1| = |X |,
then in at least one of the second-stage scenarios, the matching we can create with the edges ofM1 does not match all of
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Fig. 3. The graph obtained from the 3-set-cover(2) instance {s1, s2, s3}, {s1, s3, s4}, {s2, s5, s6}, {s4, s5, s6}.

the active vertices, so with probability 1/2 we will have to buy at least one edge in the second stage, at cost τ . Finally, if
|M1| < |X | then there are |X | − |M1| vertices in X that are not incident on any edge inM1. In the second stage, each of
these vertices will be active with probability at least 1/2, and in this case wewill buy an edgematching it at cost τ . The total
cost, then, is at least |M1| + (|X | − |M1|)τ/2 > |X |. �

3. Implicit scenarios

Instead of having an explicit list of scenarios for the second stage, it is common to have instead an implicit description:
in the case of uncertain activated vertices, a natural stochastic model is the one in which each vertex is active in the second
stagewith some probability p, independently of the status of the other nodes. Due to independence, we get that although the
total number of possible scenarios can be exponentially large, there is a succinct description consisting of simply specifying
the activation probability of each node. In this case, we can no longer be certain that the second-stage graph contains a
perfect matching, even if the input graph does, so the requirement is, as stated above, to find the largest possible matching.
We first prove an interesting lower bound.

3.1. Lower bounds

Theorem 5. Stochastic optimization with uncertain vertex set is NP-hard to approximate within a certain constant, even with
independent vertex activation.

Proof. Wedetail this proof,which is themost interesting of our lower bounds.Wewill use a reduction fromMinimum3-Set-
Cover(2), the special case of Minimum Set-Cover where each set has cardinality 3 and each element belongs to two sets [16].
This variant is NP-hard to approximate to within a factor of 100/99 [3]. We will prove that approximating Expression (1) to
within a factor ofβ is at least as hard as approximating 3-set-cover(2) towithin a factor ofγ = β(1+(3p2(1−p)+2p3)τ ). The
theorem follows by setting p to be a constant in the interval [0, 0.0033] and τ = 1/p, because then 3p(1−p)+2p2 < 1/99.
Given an instance (S = {s1, . . . , sn}; C = {c1, . . . , ck}) of 3-set-cover(2), we construct an instance of the two-stage

matching problem with uncertain activated vertices as follows (see Fig. 3). The graph contains 2|S| + 3|C | vertices: for
every element si ∈ S there are two vertices ui, u′i connected by an edge; for every set cj ∈ C , there are three vertices xj, yj,
and zj connected by a path (xj, yj), (yj, zj). For every set cj and element si which belongs to cj, we have the edge (zj, ui). It
is easy to see that the graph is bipartite. The first-stage edge costs are 1 for an (xj, yj) or (ui, u′i) edge and 0 for the other
edges. The second-stage costs are equal to the first-stage costs, multiplied by τ . In the second-stage scenarios, each vertex
ui is active with probability p and each yi is active with probability 1.
If p > 1/τ , then buying all (ui, u′i) edges in the first stage at cost n is optimal. To see why, assume that an algorithm

spends n′ < n in the first stage. In the second stage, the expected number of active vertices that cannot be matched is at
least (n− n′)p and the expected cost of matching them is τ(n− n′)p > (n− n′). We assume in the following that p ≤ 1/τ .
Consider a minimum set cover SC of the input instance. Assume that in the first stage we buy (at cost 1) the edge (xj, yj)

for every set cj ∈ SC. In the second stage, let I be the set of active vertices and find, in a way to be described shortly, a
matching MI between a subset I ′ of I and the vertex-set {zj : cj ∈ SC}, using (zj, ui)-edges from the graph. Buy the edges
in MI (at cost 0). For every i ∈ I \ I ′, buy the edge (ui, u′i) at cost τ . Now, all active ui vertices are matched, and it remains
to ensure that the y-vertices are matched as well. Assume that yj is unmatched. If zj is matched with some ui node, this is
because cj ∈ SC, so we bought the edge (xj, yj) in the first stage and can now use it at no additional cost. Otherwise, we buy
the edge (yj, zj) at cost 0. The second stage has cost equal to τ times the cardinality of I \ I ′ and the first stage has cost equal
to the cardinality of the set cover. The matchingMI is found in a straightforward manner: given SC, each element chooses
exactly one set among the sets covering it, and, if it turns out to be active, will only try to be matched to that set. Each set in
the set cover will be matched with one element, chosen arbitrarily among the active vertices who try to be matched with it.
To calculate the expected cost of matching the vertices of I − I ′, consider a set in SC. It has 3 elements, and is chosen by

at most 3 of them. Assume that it is chosen by all 3. With probability (1 − p)3 + 3p(1 − p)2, at most one of them is active
and no cost is incurred in the second stage. With probability 3p2(1− p), two of them are active and a cost of τ is incurred.
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With probability p3, all three of them are active and a cost of 2τ is incurred, for an expected cost of (3p2(1− p)+ 2p3)τ . If
the set is chosen by two elements, the expected cost is at most p2τ , and if it is chosen by fewer, the expected cost is 0. Thus
in all cases the expected cost of matching I \ I ′ is bounded by |SC|(3p2(1−p)+2p3)τ . With a cost of |SC| for the first stage,
we get that the total cost of the solution is at most |SC|(1+ (3p2(1− p)+ 2p3)τ ).
On the other hand, let M1 be the set of cost-1 edges bought in the first stage. Let an (xi, yi) edge represent the set ci

and let a (ui, u′i) edge represent the singleton set {si}. Now, assume thatM1 does not correspond to a set cover of the input
instance. Let x be the number of elements which are not covered by the sets corresponding toM1 and let X be the number
of active elements among those x. In the second stage, the algorithm will have to match each uncovered element vertex ui,
either by its (ui, u′i) edge (at cost n) or by a (zj, ui) edge for some set cj where si ∈ cj. In the latter case, if would have to buy
the edge (xi, yi), again at cost n. The second stage cost, therefore, is at least Xn. But the expected value of X is x/n, thus the
total expected cost is at least |M1|+x. Since we could completeM1 into a set cover by adding at most one set per uncovered
element, we have x+ |M1| ≥ |SC|.
In summary, we get that Expression (1) satisfies

|SC| ≤ OPT ≤ |SC|(1+ (3p2(1− p)+ 2p2)τ ).

This means that if we can approximate our problemwithin a factor of β , thenwe can approximateMinimum 3-Set-Cover(2)
within a factor of γ = β(1+ (3p2(1− p)+ 2p3)τ ), and the theorem follows. �

Using similar ideas, we prove the following related result.

Theorem 6. The case of uncertain, independent, edge costs is NP-hard to approximate within a certain constant.

Proof. Once again, we use a reduction from 3-set-cover(2). Consider an instance of 3-set-cover(2). We define a graph that,
for every element si ∈ S, contains two vertices ui and u′i joined by an edge (ui, u

′

i). For every set cj ∈ C , it contains three
vertices xj, yj, and zj and the path (xj, yj), (yj, zj). Additionally, for every set cj and element si such that si ∈ cj, we have the
edge (zj, ui).
The edge-costs are as follows. In the first stage, the (xj, yj) and (ui, u′i) edges have cost 1 and all other edges have cost 0. In

the second stage, an (xj, yj) edge has cost τ , and each (ui, u′i) edge has cost τ with probability p and 0 with probability 1− p.
The other edges have a second-stage cost of 0. Note that when the edge (ui, u′i) has cost 0 in the second stage, then ui can
be matched at cost 0. This is equivalent to ui being inactive in the uncertain matching targets case, and therefore the rest of
the proof is similar to the proof of Theorem 5. �

3.2. Upper bound in a special case

We can show that when ce = 1 for all e ∈ E, it is possible to construct a perfect matching cheaply when the graph has
certain properties. We study the case in which B is significantly larger than A.

Theorem 7. Assume that the graph contains n vertex-disjoint stars s1, . . . , sn such that star si contains d =

max{1, ln(τp)}/ln(1/(1− p))+ 1 vertices from B and is centered at some vertex of A. Then there is an algorithm whose running
time is polynomial in n, and which returns a maximum-cardinality matching of the second stage graph, whose expected cost is
O(OPT3 ·min{1, ln(τp)}).

To prove this theorem, let A = {a1, . . . , an} and B = {b1, . . . , bm}. Let B2 be the vertices which are active in the second
stage. Here is the algorithm.

First stage:
If τp ≤ e then
buy nothing

else
buy E1, the set of nd edges in the stars.

Second stage: complete the set of edges into a perfect matching in the cheapest way possible.
Output: the perfect matching.

To analyze the algorithm, we say that ai ismiserable if none of the vertices in si are active and that it is poor if exactly one
vertex in si is active. Let Am be the set of miserable vertices and Ap the set of poor vertices. The following Lemma is the key
of the analysis to constructing a perfect matching, and so we give its proof in detail.

Lemma 4. There exists a maximum-cardinality matching M∗ in G2 such that

|M∗ \ E1| ≤ 2|Am| + |Ap|.
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Fig. 4. Illustration of the proof of Lemma 4.

Proof. LetM∗ be amaximummatching inG2 that has themaximumnumber of edges from E1. LetM be amaximummatching
that uses only edges from E1. The edge-setM⊕M∗ is a collection of vertex-disjoint odd-length paths, each of which connects
a vertex ai of Awith a vertex bj of B and is denoted P(ai, bj); both ai and bj are unmatched inM . Since vertex ai is unmatched
in M , it must be that it is miserable. For each other vertex ak ∈ A ∩ P(ai, bj), let (ak, bk) be the matching edge in M and
(ak, bk+1) be the matching edge inM∗. If ak is not poor, then there is another vertex bk′ in the star centered on ak, which is
active but not matched inM . If bk′ is not matched inM∗, then (M∗ \ {(ak, bk+1)}) ∪ {(ak, bk′)}would be another maximum
matching in G2 with one more edge from E1, contradicting the definition ofM∗. Thus bk′ is matched inM∗, but not inM . Let
P(ai′ , bk′) be the path ofM ⊕ M∗ that bk′ belongs to: ai′ is miserable. In this way, we can associate every rich A-vertex that
lies on an alternating path with a unique miserable node. We get that the total number of vertices of Awhich are along the
paths ofM ⊕M∗ is at most |Am| + |Ap| + |Am|, hence the lemma.
Fig. 4 illustrates the proof. It shows an alternating path starting at the unmatched, miserable vertex a ∈ A to a rich vertex

d ∈ A. For every rich A-vertex along the path (except for the last), such as the vertex b in the example, there is another
alternating path that ends in this node’s star. Hence, we can charge the miserable vertex at the head of that path (f in the
example) for this rich internal node. �

The following two lemmas are not difficult.

Lemma 5. If τp ≥ e, then the expected number of miserable vertices is E|Am| = n(1 − p)/(τp), and the expected number of
poor vertices is E|Ap| = nd/τ . Otherwise, the expected number of miserable vertices is E(|Am|) = n(1− p)/e.

Proof. If τp ≥ e, then a vertex in A is miserable with probability (1 − p)d = (1 − p)e− ln(τp) = (1 − p)/(τp).
Hence, the expected number of miserable vertices is n times that quantity. Similarly, a vertex in A is poor with probability
dp(1−p)d−1 = dp/(τp) = d/τ . If τp < e, then a vertex in A is miserable with probability (1−p)/e. The lemma follows. �

Lemma 6. The optimal cost is at least (n− E(|Am|))min(τ , 1/p).

Proof. Because of the disjoint star structure, the cardinality Z2 of the maximum-cardinality matching in G2 is certainly at
least n− E(|Am|) in expectation. Let F be the set of edges bought by OPT in the first stage and BF denote the set of endpoints
of those edges on the B side. The number of edges of F which can be used in the maximum matching is certainly at most∑
b∈BF

χ(b active), and so, the cost paid by OPT in the second stage is at least τ(Z2 −
∑
b∈BF

χ(b active)). Thus:

OPT ≥ min{|F | + τ(n− E(|Am|))− τp|F |, |F |}.

If τp ≤ 1 then this expression is minimized for |F | = 0, when its value is OPT ≥ τ(n− E(|Am|)). Otherwise, the expression
is minimized for |F | = (n− E(|Am|))/p. �

Assume that τp > e. From Lemmas 4 and 5, it follows that the algorithm has average cost n(d+ 2(1− p)/p+ d). From
Lemmas 5 and 6, it follows that the optimum cost is at least n(1 − 1/(τp))/p. It follows that the approximation ratio is
bounded by

p(d+ 2(1− p)/p+ d)
(1− 1/(τp))

= O(1+ dp) = O
(
ln(τp)

p
ln(1/(1− p))

)
= O(ln(τp)).

On the other hand, assume that τp ≤ e. Then the algorithm has cost at most nτ and OPT has cost at least (n− E(|Am|))τ/2.
Since E|Am| = n/e, this isΩ(nτ) and so the approximation ratio is O(1).
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3.3. Generalization: The black box model

With independently activated vertices, the number of scenarios is extremely large, and so solving an LP of the kind
described in previous sections is prohibitively time-consuming. However, in such a situation there is often a black box
sampling procedure that provides, in polynomial time, an unbiased sample of scenarios; then one can use the SAA method
to simulate the explicit scenarios case, and, if the edge cost distributions have bounded second moment, one can extend
the analysis so as to obtain a similar approximation guarantee. The main observation is that the value of the LP defined
by taking a polynomial number of samples of scenarios tightly approximates the the value of the LP defined by taking all
possible scenarios. An analysis similar to [5] gives:

Theorem 8. Consider a two-stage edge stochastic matching problem with (1) a polynomial time unbiased sampling procedure,
and (2) edge cost distributions whose second moment is bounded. For any constants ε > 0 and δ, β ∈ (0, 1), there is a
polynomial-time randomized algorithm that outputs a matching whose cardinality is at least (1 − β)n and, with probability
at least 1 − δ (over the choices of the black box and of the algorithm), incurs expected cost O(OPT/β) (where the expectation is
over the space of scenarios).
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