Arguing about voting rules

Olivier Cailloux ¹ Ulle Endriss ²

¹LAMSADE, Paris Dauphine

²ILLC, University of Amsterdam

16th March, 2016

Outline

Context		
Introduction		Our objective

Introduction

Context

- Voting rule: a systematic way of aggregating different opinions and decide
- Multiple reasonable ways of doing this
- Different voting rules have different interesting properties
- None satisfy all desirable properties

Our goal

We want to easily communicate about strength and weaknesses of voting rules.

Context		
Introduction		Our objective
Voting rule		

Alternatives
$$\mathscr{A} = \{ a, b, c, d, ... \}$$

Possible voters $\mathscr{N} = \{ 1, 2, ... \}$
Voters $\varnothing \subset N \subseteq \mathscr{N}$
Profile partial function \mathbf{R} from \mathscr{N} to linear orders on \mathscr{A} .
Voting rule function f mapping each \mathbf{R} to winners $\varnothing \subset A \subseteq \mathscr{A}$.

Context			
	т	wo voting rules	Our objective
Borda			

• Jean-Charles de Borda, 1733-1799

Given a profile **R**:

- count the score of each alternative;
- the highest scores win.
- Score of $a \in \mathscr{A}$ is the number of alternatives it beats.

$$\mathbf{R} = \begin{array}{ccc} a & b & b \\ d & c & a \\ c & a & c \\ b & d & d \end{array}$$

• score *a* is...?

Context			
	Т	wo voting rules	Our objective
Borda			

• Jean-Charles de Borda, 1733-1799

Given a profile **R**:

- count the score of each alternative;
- the highest scores win.
- Score of $a \in \mathscr{A}$ is the number of alternatives it beats.

$$\mathbf{R} = \begin{array}{ccc} a & b & b \\ d & c & a \\ c & a & c \\ b & d & d \end{array}$$

- score *a* is...? 3 + 1 + 2 = 6
- score *b* is 0 + 3 + 3 = 6
- score c is 1 + 2 + 1 = 4
- score *d* is 2 + 0 + 0 = 2

Condorcet's principle

An idea from Marie Jean Antoine Nicolas de Caritat, marquis de Condorcet (1743–1794).

Condorcet's principle

We ought to take the Condorcet winner as sole winner if it exists.

- *a beats b* iff more than half the voters prefer *a* to *b*.
- *a* is a *Condorcet winner* iff *a* beats every other alternatives.

$$\mathbf{R} = \begin{array}{ccc} a & b & b \\ d & c & a \\ c & a & c \\ b & d & d \end{array}$$
. Who wins?

How are voting rules analyzed?

- Examples featuring counter-intuitive results for some voting rules.
- Properties of voting rules, e.g. Borda does not satisfy Condorcet's principle.
- Axiomatization of a voting rule: accepting such principles lead to a unique voting rule.

Our objective

- Different voting rules
- Arguments in favor or against rules
- Dispersed in the literature
- Using mathematical formalism

We propose

- Common language
- Instantiate arguments on concrete examples

Goal: help understand strengths and weaknesses of given rules.

Context	Language	
Outline		

3 Arguing for Borda

4 Goal: Build argumentative and adaptative recommender systems

Context	Language	
Example of	axiom	

- Dominance: if a dominates b in \mathbf{R} , then b may not win.
- We want a language to express this kind of axioms.

Context	Language	
Presentation		
Language		

We use propositional logic (with connectives $\neg, \lor, \land, \rightarrow$).

Atoms

- One atom for each (\mathbf{R}, A) , $\emptyset \subset A \subseteq \mathscr{A}$.
- An atom talks about assigning winners A to **R**.
- Written $[\mathbf{R} \mapsto A]$.

Semantics

Semantics v_f , given a voting rule f:

$$v_f([\mathbf{R} \mapsto A]) = T \text{ iff } f(\mathbf{R}) = A.$$

Context	Language	
Presentation		
L-axioms		

- Now: "translate" axioms into language-axioms.
- An *I-axiom* is a set of formulæ.

Context	Language	
Presentation		

Definition (SYM)

For each R consisting of a linear order and its inverse,

$$[\mathbf{R}\longmapsto \mathscr{A}].$$

Context	Language	
Presentation		

Definition (SYM)

For each R consisting of a linear order and its inverse,

$$[\mathbf{R}\longmapsto \mathscr{A}].$$

$$\begin{array}{ll} a & c \\ \boldsymbol{R}_1 = & b & b \\ c & a \end{array}, \text{ constraints? } f(\boldsymbol{R}_1) = \mathscr{A} = \{ a, b, c \}. \\ \end{array}$$

Context	Language	
Presentation		

Definition (SYM)

For each R consisting of a linear order and its inverse,

$$[\mathbf{R}\longmapsto \mathscr{A}].$$

Example

$$\begin{array}{ll} a & c \\ \boldsymbol{R}_1 = & b & b \\ c & a \end{array}, \text{ constraints? } f(\boldsymbol{R}_1) = \mathscr{A} = \{ a, b, c \} . \\ \end{array}$$

Context	Language	
Presentation		

Definition (SYM)

For each R consisting of a linear order and its inverse,

$$[\mathbf{R}\longmapsto \mathscr{A}].$$

Example

$$\begin{array}{ll} a & c \\ \boldsymbol{R}_1 = & b & b \\ c & a \end{array} , \text{ constraints? } f(\boldsymbol{R}_1) = \mathscr{A} = \{ a, b, c \} \\ \end{array}$$

Example

 $\mathbf{R}_2 = egin{array}{c} a & b \\ b & a \\ c & c \end{array}$, constraints? None.

Context	Language	
Presentation		
CI		

Shortcut notations

 $\mathcal{P}_{\varnothing}(\mathscr{A})$ the set of subsets of $\mathscr{A},$ excluding the empty set.

Let $\alpha \subseteq \mathcal{P}_{\emptyset}(\mathscr{A})$ be a set of possible winning alternatives.

Uni-profile clause

```
[\mathbf{R} \stackrel{\boldsymbol{\leftarrow}}{\longmapsto} \alpha] shortcut for:
```

$$\bigvee_{A \in \alpha} [\mathbf{R} \longmapsto A].$$

Intuitive content.

• Called a uni-profile clause.

Dominance I-axiom

Definition (DOM)

L-axiom DOM: for each R,

$$[\mathbf{R} \stackrel{{ \mbox{\boldmath {\scriptsize e}}}}{\longmapsto} \mathcal{P}_{\varnothing}(U_{\mathbf{R}})],$$

with U_R the set of alternatives in R that are not dominated.

Domain knowledge

- We need some formulæ encoding the voting rule concept.
- Define κ as the set of all those formulæ.

Domain knowledge κ

• a voting rule can't select more than one set of winners: for all R and all $\emptyset \subset A \neq B \subseteq \mathcal{A}$,

$$[\mathbf{R}\longmapsto A] \wedge [\mathbf{R}\longmapsto B] \to \bot.$$

 a voting rule must select at least one set of winners: for all *R*,

$$[\mathbf{R} \stackrel{\boldsymbol{\leftarrow}}{\longmapsto} \mathcal{P}_{\emptyset}(\mathscr{A})].$$

Context	Language		
		L-axioms	

Reinforcement axiom

Classical reinforcement axiom: consider R_1 , R_2 ,

- having winners A_1 , A_2 ,
- with $A_1 \cap A_2 \neq \emptyset$;

then winners in $\mathbf{R}_1 + \mathbf{R}_2$ must be $A_1 \cap A_2$.

$$\mathbf{R}_{1} = \begin{array}{c} a & b \\ b & a \\ c & c \end{array}, A_{1} = \{ a, b \},$$

Context	Language		
		L-axioms	

Reinforcement axiom

Classical reinforcement axiom: consider R_1 , R_2 ,

- having winners A_1 , A_2 ,
- with $A_1 \cap A_2 \neq \emptyset$;

then winners in $\mathbf{R}_1 + \mathbf{R}_2$ must be $A_1 \cap A_2$.

$$\mathbf{R}_{1} = \begin{array}{c} a & b \\ b & a \\ c & c \end{array}, A_{1} = \{a, b\}, \mathbf{R}_{2} = \begin{array}{c} a & b & a \\ b & a & c \\ c & c & b \end{array}, A_{2} = \{a\}$$

$$\mathbf{R} = \begin{array}{c} a & b & a & b & a \\ b & a & b & a & c \\ c & c & c & b \end{array}$$

$$\mathbf{R} = \begin{array}{c} a & b & a & b & a \\ b & a & b & a & c \\ c & c & c & c & b \end{array}$$

Context	Language		
		L-axioms	

Reinforcement axiom

Classical reinforcement axiom: consider R_1 , R_2 ,

- having winners A_1 , A_2 ,
- with $A_1 \cap A_2 \neq \emptyset$;

then winners in $\mathbf{R}_1 + \mathbf{R}_2$ must be $A_1 \cap A_2$.

$$\mathbf{R}_{1} = \begin{bmatrix} a & b \\ b & a \\ c & c \end{bmatrix}, \mathbf{R}_{1} = \{a, b\}, \mathbf{R}_{2} = \begin{bmatrix} a & b & a \\ b & a & c \\ c & c & b \end{bmatrix}, \mathbf{R}_{2} = \{a\}$$

$$\mathbf{R} = \begin{bmatrix} a & b & a & b & a \\ b & a & b & a & c \\ b & a & b & a & c \end{bmatrix}, \mathbf{R}_{2} = \{a\}$$

$$\mathbf{R} = \begin{bmatrix} a & b & a & b & a \\ b & a & b & a & c \\ c & c & c & c & b \end{bmatrix}$$

Reinforcement I-axiom

Classical reinforcement axiom: consider \boldsymbol{R}_1 , \boldsymbol{R}_2 ,

- having winners A_1 , A_2 ,
- with $A_1 \cap A_2 \neq \emptyset$;

then winners in $\mathbf{R}_1 + \mathbf{R}_2$ must be $A_1 \cap A_2$.

Definition (REINF)

For each $\mathbf{R}_1, \mathbf{R}_2, A_1, A_2 \subseteq \mathscr{A}, A_1 \cap A_2 \neq \emptyset$:

$$([\mathbf{R}_1 \longmapsto A_1] \land [\mathbf{R}_2 \longmapsto A_2]) \rightarrow [\mathbf{R}_1 + \mathbf{R}_2 \longmapsto A_1 \cap A_2].$$

Context	Language		
		L-axioms	

Fishburn-against-Condorcet argument

Fishburn (1974, p. 544) argument against the Condorcet principle (see also http://rangevoting. org/FishburnAntiC.html).

Condorcet winner

 $w \text{ VS } \mu, \mu \in \{a, \dots, h\}$?

			nb v	oters		
	31	19	10	10	10	21
1	а	а	f	g	h	h
2	b	b	w	w	w	g
3	С	С	а	а	а	f
4	d	d	h	h	f	w
5	е	е	g	f	g	а
6	w	f	е	е	е	е
7	g	g	d	d	d	d
8	h	h	с	С	С	с
9	f	w	b	b	b	b

Context	Language		
		L-axioms	

Fishburn-against-Condorcet argument

Fishburn (1974, p. 544) argument against the Condorcet principle (see also http://rangevoting. org/FishburnAntiC.html).

Condorcet winner

 $w \text{ VS } \mu, \mu \in \{a, \dots, h\}$? 51/101

			nb v	oters		
	31	19	10	10	10	21
1	а	а	f	g	h	h
2	b	b	w	w	w	g
3	с	с	а	а	а	f
4	d	d	h	h	f	w
5	е	е	g	f	g	а
6	w	f	е	е	е	е
7	g	g	d	d	d	d
8	h	h	с	с	С	с
9	f	w	b	b	b	b

Context	Language		
		L-axioms	

Fishburn-against-Condorcet argument

Fishburn (1974, p. 544) argume against the Condorcet princip (see also http://rangevoting org/FishburnAntiC.html).

Condorcet winner

 $w \text{ VS } \mu, \mu \in \{a, \dots, h\}$? 51/10

1

0 50

50

				nb vo	oters			
n 544) argument		31	19	10	10	10	21	
ondorcet principle	1	а	а	f	g	h	h	
//rangewoting	2	b	b	w	w	w	g	
$\gamma \gamma 1 \text{ ange volting}$.	3	с	с	а	а	а	f	
ntic.ntmi).	4	d	d	h	h	f	w	
er	5	е	е	g	f	g	а	
	6	w	f	е	е	е	е	
$, \dots, h \} ? 51/101$	7	g	g	d	d	d	d	
	8	h	h	С	С	С	с	
	9	f	w	b	b	b	b	
ranl	ks							
$\leq 2 \leq 3 \leq 4 \leq 5$	\leq	6	<u><</u> 7	≤ 8	\leq	9		
30 30 51 51	8	32	82	82	10	1		
50 80 80 101	10)1	101	101	10	1		

w

a

Context	Language		
		L-axioms	

Fishburn-versus-Condorcet I-axiom

Define \boldsymbol{R}_F the profile shown in the previous slide.

Definition (Fishburn-versus-Condorcet)

The Fishburn-versus-Condorcet I-axiom FvsC is defined as:

$$[\mathbf{R}_{F} \stackrel{\boldsymbol{\leftarrow}}{\longmapsto} \mathcal{P}_{\varnothing}(\mathscr{A} \setminus \{w\})].$$

Context	Language		
		L-axioms	
I-axiomatiz	zation		

An l-axiomatization is a set of l-axioms.

Definition (Conforming to J)

The rule f conforms to the l-axiomatization J iff v_f assigns the value T to all formulæ in j, for all $j \in J$.

An l-axiomatization is consistent iff there exists a voting rule conformant to it.

Language		
		Arguments
	Language	Language Arguing for Borda L-axioms

Arguments

Definition (Argument)

An argument grounded on J is a pair (*claim*, *proof*),

- J an l-axiomatization,
- *claim* a uni-profile clause (thus of the form $[\mathbf{R} \mapsto^{\in} \alpha]$),
- proof a natural deduction proof of the claim grounded on J.
- The argument shows that for all voting rules f conformant to J, $f(\mathbf{R})$ selects a set of winners among α .
- The argument claims that it is only reasonable to choose the winners among α for R (provided J is accepted).
- Consistent arguments require a consistent l-axiomatization.

Context	Language	
		Arguments

A simple argument

Claim • $\mathbf{R} = \begin{pmatrix} a & b & a & c \\ b & c & b & b \\ c & a & c & a \\ \bullet & \mathbf{J} = \{ \text{DOM}, \text{SYM}, \text{REINF} \}.$

We can prove that for f compliant with J: $[\mathbf{R} \mapsto \{ \{ a \}, \{ b \}, \{ a, b \} \}].$

See how?

Context	Language	
		Arguments

A simple argument

Claim

We can prove that for f compliant with J:

$$[\mathbf{R} \stackrel{\boldsymbol{\leftarrow}}{\longmapsto} \{ \{ a \}, \{ b \}, \{ a, b \} \}].$$

a c

See how? Consider
$$\mathbf{R}_D = \begin{array}{ccc} a & c \\ b & c \end{array}$$
, $\mathbf{R}_S = \begin{array}{ccc} b & b \\ c & a \end{array}$, $\mathbf{R} = \mathbf{R}_D + \mathbf{R}_S$.

a b

Context	Language		Arguing for Borda			General goal
Presentation		L-axioms				Arguments
Example p	roof					
$\boldsymbol{R}_D = \begin{array}{c} a \\ b \\ c \end{array}$	$\begin{array}{c} b \\ c \\ a \end{array}, \mathbf{R}_{S} = \begin{array}{c} a \\ b \\ c \end{array}$	$\begin{pmatrix} c \\ b \\ a \end{pmatrix}$, $\boldsymbol{R} = \boldsymbol{R}_D + $	$\mathbf{R}_{S} = \begin{array}{c} a \\ b \\ c \end{array}$	b a c b a c	с b. а	
I [R _D ⊢	$\stackrel{{\displaystyle \leftarrow}}{\longleftrightarrow} \{ \{ a \}, \{ b \}$	} , { <i>a</i> , <i>b</i> } }] (Do	ом)			
② [R _S ⊢	$\rightarrow \{ a, b, c \}] ($	Sym)				
3 ([R _D)	$\longrightarrow \{a\} \land [R]$	a, b, c]) → [R ⊢	$\rightarrow \{a\}$	(Reinf)	
([R _D)	$\longrightarrow \{b\}] \land [\mathbf{R}]$	a, b, c]) → [R ⊢	→ { <i>b</i> }]	(Reinf)	
([R _D]	$\longrightarrow \{a, b\}] \land$	$[\mathbf{R}_S \longmapsto \{a, b, c\}]$	$[c]) \rightarrow [\mathbf{R} \vdash$	\rightarrow { a	, <i>b</i> }] (Re	INF)
③ [R _D ⊢	$\rightarrow \{a\} \rightarrow [\mathbf{R}]$	$\mathbb{R} \longmapsto \{a\}$] (PR	from 2 &	3)		ŗ
$\mathbf{O} [\mathbf{R}_{D}]$	$\rightarrow \{b\} \rightarrow [R$	$\mathbb{R} \mapsto \{b\} $ (PR	from 2 & 4	4)		
$[R_D +$	$\rightarrow \{a, b\}] \rightarrow$	$[\mathbf{R} \longmapsto \{a, b\}]$	(PR from 2	2 & 5))	
\bigcirc [R_D \vdash	$\rightarrow \{a\}] \lor [\mathbf{R}]$	$b \mapsto \{b\}] \lor [I]$	$\mathbf{R}_D \longmapsto \{a, b\}$	<i>b</i> }] (r	ewrite 1)	
□ [R]	$\rightarrow \{a\}] \lor [\mathbf{R} \vdash$	$\rightarrow \{b\}] \lor [\mathbf{R} \vdash$	$\rightarrow \{a, b\}] ($	PR fr	om 6–9)	
0 [<i>R</i> ⊢∈	$\rightarrow \{ \{ a \}, \{ b \} \}$, { <i>a</i> , <i>b</i> } }] (rew	rite 10)			

Example shortened

Tweak I-axioms to skip steps which will seem intuitive to humans.

Definition (Reinforcement-sets)

For each \mathbf{R}_1 , \mathbf{R}_2 , $\alpha_1, \alpha_2 \subseteq \mathcal{P}_{\emptyset}(\mathscr{A})$, $\alpha_2 \neq \emptyset, \varrho \in \alpha_1 \times \alpha_2$: $([\mathbf{R}_1 \stackrel{\leftarrow}{\longmapsto} \alpha_1] \land [\mathbf{R}_2 \stackrel{\leftarrow}{\longmapsto} \alpha_2]) \rightarrow [\mathbf{R}_1 + \mathbf{R}_2 \stackrel{\leftarrow}{\longmapsto} \bigcup_{A_1 \in \alpha_1, A_2 \in \alpha_2} \{A_1 \cap A_2\}].$

- $((1) \land (2)) \rightarrow [\mathbf{R} \stackrel{\leftarrow}{\longmapsto} \{ \{ a \}, \{ b \}, \{ a, b \} \}] (\mathsf{Reinf-sets})$
- $\left[\boldsymbol{R} \stackrel{\boldsymbol{\leftarrow}}{\longmapsto} \left\{ \left\{ a \right\}, \left\{ b \right\}, \left\{ a, b \right\} \right\} \right]$

Soundness and completeness

Consider an I-axiomatization J and a claim $c = [\mathbf{R} \mapsto \alpha]$.

Theorem (Soundness)

If there exists an argument (c, proof) grounded on J, the claim holds given J.

Theorem (Completeness)

If the claim holds given J, then there exists an argument (c, proof) grounded on J.

This is easily obtained from the soundness and completeness of natural deduction in propositional logic.

Outline

Arguing for Borda

4 Goal: Build argumentative and adaptative recommender systems

Argument building for Borda

Write f_B for the Borda rule.

- We want to produce an argument justifying Borda's output.
- Given \mathbf{R} , we want an argument with claim $[\mathbf{R} \mapsto f_B(\mathbf{R})]$.
- Basis: Young (1974)'s axiomatization of the Borda rule.
- Our l-axiomatization uses three simple profile types plus REINF.

Elementary profile

Fix an arbitrary linear order k on \mathscr{A} . Given $A \subseteq \mathscr{A}$, define \mathbf{R}_{e}^{A} .

Cyclic profiles

Given S a complete cycle in \mathscr{A} , define \mathbf{R}_c^S .

Definition (Cyclic profile)

 \mathbf{R}_c^S is the profile composed by all $|\mathscr{A}|$ possible linearizations of S as preference orderings.

$$\mathbf{R}_{c}^{\langle a,b,c,d \rangle} = \begin{array}{cccc} a & b & c & d \\ b & c & d & a \\ c & d & a & b \\ d & a & b & c \end{array}$$

Borda I-axiomatization

- ELEM for all $A: [\mathbf{R}_e^A \mapsto A]$. CYCL for all $S: [\mathbf{R}_e^S \mapsto \mathscr{A}]$.
- **REINF** as previously but generalized to any number of summed profiles.
- CANC cancellation: when all pairs of alternatives (a, b) in a profile are such that a is preferred to b as many times as b to a, the set of winners must be \mathscr{A} .

Context	Arguing for Borda	
		Example
An example		

Consider $\mathcal{A} = \{a, b, c, d\}$ and a profile **R** defined as:

$$\mathbf{R} = \begin{array}{c} a & c \\ b & b \\ d & a \\ c & d \end{array}$$

Context	Arguing for Borda	
		Example
An example		

Consider $\mathcal{A} = \{a, b, c, d\}$ and a profile **R** defined as:

$$\mathbf{R} = \begin{array}{c} a & c \\ b & b \\ d & a \\ c & d \end{array}$$

We want to justify that $f_B(\mathbf{R}) = \{a, b\}.$

Context	Arguing for Borda	
		Example
Sketch		

• Consider any $\mathbf{R}' = q_1 \mathbf{R}_e^{a,b} + q_2 \mathbf{R}_e^{a,b,c} + \sum_{S \in S} q_S \mathbf{R}_c^S$, $q_1, q_2, q_S \in \mathbb{N}, S$ some set of cycles.

• In
$$\mathbf{R}'$$
, $W = \{a, b\}$ must win.

- Find $k \in \mathbb{N}$ such that $\overline{kR} + R'$ cancel.
- Then kR has winners W. (Skipping details.)
- Then **R** has winners W.

Our task: find \mathbf{R}' a combination of elementary and cyclic profiles such that $\overline{k\mathbf{R}} + \mathbf{R}'$ cancel.

Good news: this is always possible.

Application on the example

Define
$$\mathbf{R}' = \mathbf{R}_e^{a,b} + 2\mathbf{R}_e^{a,b,c} + \mathbf{R}_c^{\langle c,b,a,d \rangle} + \mathbf{R}_c^{\langle b,d,c,a \rangle}$$
.
(a) $[\mathbf{R}_e^{a,b} \longmapsto \{a,b\}]$ (ELEM)
(c) $[\mathbf{R}_e^{a,b,c} \longmapsto \{a,b,c\}]$ (ELEM)
(c) $[\mathbf{R}_c^{\langle c,b,a,d \rangle} \longmapsto \mathscr{A}]$ (CYCL)
(c) $[\mathbf{R}_c^{\langle b,d,c,a \rangle} \longmapsto \mathscr{A}]$ (CYCL)
(c) $[\mathbf{R}' \longmapsto \{a,b\}]$ (REINF, 1, 2, 3, 4)
(c) $[4\mathbf{R} + \overline{4\mathbf{R}} \longmapsto \mathscr{A}]$ (CANC)
(c) $[4\mathbf{R} + \overline{4\mathbf{R}} + \mathbf{R}' \longmapsto \{a,b\}]$ (REINF, 5, 6)
(c) $[4\mathbf{R} \longmapsto \{a,b\}]$ (REINF, 7, 8)
(c) $[\mathbf{R} \longmapsto \{a,b\}]$ (REINF, 9)

Context		General goal
Disagreeing about Borda		

Outline

Arguing for Borda

4 Goal: Build argumentative and adaptative recommender systems

Context			General goal
Disagreeing about Borda	Argumentative systems	Adaptive systems	Conclusion

Counter-argument against Borda

Counter-argument against Borda?

Context			General goal
Disagreeing about Borda	Argumentative systems	Adaptive systems	Conclusion

Counter-argument against Borda

Counter-argument against Borda?

Not Condorcet-consistent!

	а	b	b	
R —	d	С	а	
<u> </u>	С	а	С	•
	b	d	d	

- Argument against Borda: use a COND l-axiom
- Then?

Context			General goal
Disagreeing about Borda	Argumentative systems	Adaptive systems	Conclusion

Counter-argument against Borda

Counter-argument against Borda?

Not Condorcet-consistent!

R =	а	b	b	
	d	С	а	
	С	а	С	
	b	d	d	

- Argument against Borda: use a COND l-axiom
- Then?
- Counter-argue with FvsC.

Context			General goal
Disagreeing about Borda	Argumentative systems	Adaptive systems	Conclusion

Building argumentative recommender systems

General goal

- Recommend complex objects
- Recommend and argue

Complex objects

- Voting rule
- Planning
- Strategy (game, negociation, ...)
- Travel itinerary

Multi-level argumentation:

- NOT persuasion
- NOT predicting the natural user choice

Olivier Cailloux (Paris Dauphine)

Context			General goal
Disagreeing about Borda	Argumentative systems	Adaptive systems	Conclusion

Building adaptive recommender systems

Role of preference models

- Capture the alternatives to be recommended
- Determine the best argumentation strategy

Context		General goal
Disagreeing about Borda		Conclusion
Conclusion		

- A language to express desirable properties of voting rules.
- We can then instanciate concrete arguments (example-based).
- May render some arguments in the specialized literature accessible to non experts.
- Extensions may permit to *debate* about voting rules.
- Provides a way to study appreciation of arguments.

Thank you for your attention!

Bibliography I

- Fishburn, P. C. (1974). Paradoxes of voting. *The American Political Science Review*, 68(2):537–546.
- Young, H. P. (1974). An axiomatization of borda's rule. *Journal of Economic Theory*, 9(1):43–52.