Arguing about Voting Rules

Ulle Endriss
Institute for Logic, Language and Computation
University of Amsterdam

joint work with Olivier Cailloux

Talk Outline

Paper and talk focus on the problem of *justifying an election outcome* by means of a sequence of simple arguments:

- example of what a future system might be able to do
- logic for expressing arbitrary arguments about voting rules
- algorithm for justifying Borda outcomes

Example

Not always obvious who should win. For example, for the profile below the *Veto* rule recommends b, while the *Borda* rule recommends a:

Voter 1: $a \succ b \succ c$ Voter 2: $a \succ b \succ c$ Voter 3: $c \succ b \succ a$

Suppose you want to convince a user that a should win . . .

Voter 1: $a \succ b \succ c$ Voter 2: $a \succ b \succ c$ Voter 3: $c \succ b \succ a$

System: Take the *red subprofile*. Here, *a should win*, right? [unanimity]

User: Obviously!

System: Now consider the *green subprofile*. For symmetry [cancellation]

reasons, there should be a three-way tie, right?

Sounds reasonable. User:

System: So, as there was a three-way tie for the green part, [reinforcement]

the red part should decide the overall winner, right?

User: Yes.

To summarise, you agree that a should win. System:

Voting Theory for Variable Electorates

Basic ingredients:

- A: finite set of alternatives
- $\mathcal{L}(\mathcal{A})$: linear orders (*preferences*) on \mathcal{A}
- \mathcal{N} : infinite set of potential *voters*

A *profile* is a partial function $\mathbf{R}: \mathcal{N} \to \mathcal{L}(\mathcal{A})$ (pref's of some voters).

A voting rule f maps any given profile \mathbf{R} to a nonempty set $A \subseteq \mathcal{A}$.

The Logic

Propositional language over atoms $[\mathbf{R} \mapsto A]$, one for each profile \mathbf{R} and each nonempty set A of alternatives, interpreted on voting rules f:

$$f \models [\mathbf{R} \mapsto A] \text{ iff } f(\mathbf{R}) = A$$

Can express anything about voting rules, albeit in a brute force fashion.

For example, the *reinforcement* axiom can be written as the set of all the following formulas with $dom(\mathbf{R}) \cap dom(\mathbf{R'}) = \emptyset$ and $A \cap A' \neq \emptyset$:

$$[\mathbf{R} \mapsto A] \wedge [\mathbf{R'} \mapsto A'] \rightarrow [\mathbf{R} \oplus \mathbf{R'} \mapsto A \cap A']$$

Justifying Election Outcomes

Write $\Delta \models \varphi$ to say that every voting rule f that satisfies all the formulas in Δ also satisfies φ . For example:

- \bullet Δ might be a set of intuitively appealing properties (axioms)
- ullet φ might be a claim about a specific outcome, such as $[{m R}\mapsto f({m R})]$

Theorem 1 (Completeness) $\Delta \models \varphi$ in our logic <u>iff</u> $\Delta \cup \text{Func} \vdash \varphi$ in classical propositional logic, where:

Func =
$$\bigcup_{\mathbf{R}} \left\{ \bigvee_{A} [\mathbf{R} \mapsto A] \right\} \cup \bigcup_{\mathbf{R}} \bigcup_{A \neq A'} \left\{ [\mathbf{R} \mapsto A] \wedge [\mathbf{R} \mapsto A'] \to \bot \right\}$$

Thus, we can prove claims φ about voting rules given assumptions Δ using, say, natural deduction. At least in theory.

In practice, Δ will usually be huge and deciding \vdash is coNP-complete.

Justifying Borda Outcomes in Practice

Main technical contribution of the paper is an algorithm to compute, for any profile R, a proof for $[R \mapsto Borda(R)]$ from some axioms.

Main axioms used are:

- REINFORCEMENT: $[\mathbf{R} \mapsto A] \wedge [\mathbf{R'} \mapsto A'] \rightarrow [\mathbf{R} \oplus \mathbf{R'} \mapsto A \cap A']$
- CANCELLATION: if all majority contests are tied, everyone wins

Main trick is to build a profile $\mathbf{R'}$ with (i) "obvious" winners $f(\mathbf{R})$ and (ii) same weighted majority graph as $k\mathbf{R}$. Claim then follows:

$$kR \oplus \overline{kR} \oplus R'$$

Profile R' is built using REINFORCEMENT on basic profiles such as:

$$\begin{bmatrix} a \succ b \succ c \succ d \\ b \succ a \succ d \succ c \end{bmatrix} \mapsto \{a, b\} \qquad \begin{vmatrix} a \succ b \succ c \succ d \\ d \succ a \succ b \succ c \\ c \succ d \succ a \succ b \\ b \succ c \succ d \succ a \end{vmatrix} \mapsto \{a, b, c, d\}$$

Last Slide

We have seen:

- *logic* for describing *example-based* properties of voting rules
- can be used to *justify outcomes* (in theory very general)
- concrete *algorithm* to compute short justifications for *Borda*

Long-term agenda: arguing about voting rules, beyond justification