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Abstract. Aggregating preferences for finding a consensus between several agents
is an important issue in many fields, like economics, decision theory and artificial
intelligence. In this paper we focus on the problem of aggregating interval orders
which are special preference structures allowing the introduction of tresholds for
the indifference relation. We propose to solve this problem by first translating
it into a propositional optimization problem, namely the Binate Covering Prob-
lem, then to solve the latter using a MAX-SAT solver. We discuss some properties
of the proposed encoding and provide some hints about its practicability using
preliminary experimental results.
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1 Introduction

Aggregating preferences for finding a consensus between several agents is an important
issue in many fields, like economics, decision theory, and artificial intelligence. Given
the preferences of a set of agents (or voters) over a set of alternatives (or candidates),
where preferences are generally formulated as binary relations such as strict preference,
indifference, etc., preference aggregation aims at determining a collective preference
relation representing as much as possible the individual preferences.

However many works have shown through paradoxes and impossibility theorems
that preference aggregation is not an easy task, the famous ones are Condorcet’s paradox
[3], Arrow’s theorem [2] .

A common approach is to consider a preference relation as a complete preorder
(i.e., a reflexive and transitive relation). In the above results each voter is supposed to
present a complete preoder over the set of alternatives. However, such a model for pref-
erences does not prove adequate to all situations, and other models (generalizing the
complete preorder one) have been pointed out. In particular, different structures have
been introduced for defining thresholds as in the famous example given by Luce [10]
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about a cup of coffee. Indeed, in contrast to the strict preference relation, the indiffer-
ence relation induced by such structures is not necessarily transitive. Semiorders may
form the simplest class of such structures and they appear as a special case of interval
orders. The axiomatic analysis of what we call now interval orders has been given by
Wiener [16], then the term “semiorders” has been introduced by Luce [10] and many
results about their representations are available in the literature (for more details see [5,
13]). Roughly speaking, within an interval order, alternative x1 is strictly preferred to
alternative x2 if and only if the evaluation of x1 is greater than the evaluation of x2 plus
a threshold. It is easy to see that preorders are special cases of interval orders where the
value of threshold is fixed to zero.

In this paper we consider the interval order aggregation problem; to solve it, we
propose a method based on the Kemeny distance which makes use of a translation
into the Binate Covering Problem [4]. More precisely, we consider the case where the
preferences of voters are interval orders and we try to find a final interval order which
will be ”as close as possible” to the set of voter’s preferences. Let us note that having
an interval order as a result of an aggregation is not a drawback for pointing out an
undominated alternative since it is known that when the asymmetric part of a binary
relation is transitive, which is the case of interval orders, there is always at least one
such undominated alternative [14]. Moreover it is natural to ask an interval order as a
result when preferences of voters are interval orders. Finally, as we will show it, even
when the input preferences are preorders, focusing on interval orders as outputs is a
way to get an aggregation which is closer to the given preferences than when preorders
are targeted (just because the set of all interval orders over the! alternatives is a superset
of the set of all preorders over the alternatives).

2 Aggregation as Optimisation

In this paper, we consider a finite set of alternatives A on which preference relations
are applied (|A| = n), we represent with a, b, c, ... specific elements ofA and x1, x2, ...
or x, y, z, . . . variables ranging over the set A. We have a finite set of voters V =
{v1, . . . , vm} (|V | = m). Voters express their preferences by the help of two binary
relations represented in an explicit way as n2-matrices: the notation aPib (resp. aIib)
means that the voter vi prefers strictly alternative a to b (resp. is indifferent between
a and b). #p(a, b) (resp. #i(a, b)) is the number of voters vi for whom aPib (resp.
aIib) holds. We call a profile, the set of voter’s preference relations and denote it by
X = {〈P1, I1〉, 〈P2, I2〉, . . . , 〈Pm, Im〉}; its size is in O(m.n2).

The result of the agregation is also expressed by two relations that we denote by P
and I (P−1 represents the inverse of P : ∀x, y ∈ A, xP−1y iff yPx). aPb (resp. aIb)
means that alternative a is preferred to alternative b (resp. a and b are indifferent) in the
resulting order. We denote it as f(〈P1, I1〉, 〈P2, I2〉, . . . , 〈Pm, Im〉) = 〈P, I〉.

The pair 〈P, I〉 is called a preference structure if and only if P is asymmetric, I
is reflexive and symmetric, P ∪ I is complete and P ∩ I is empty. Such a pair is an
interval order if and only if it is a preference structure and satisfies a property called
Ferrers relation.1
1 ∀x, y, z, t ∈ A, xPy ∧ yIz ∧ zP t ⇒ xPt.



Definition 1. Let P and I be binary relations on A × A, 〈P, I〉 is an interval order if
and only if

i) P ∪ I ∪ P−1 = A × A (completeness) ,
ii) P ∩ I = (exclusivity),
iii) P is asymmetric, I is symmetric and reflexive,
iv) P.I.P ⊂ P (Ferrers relation).

The numerical representation of interval orders is as in the following:

Proposition 1. [5] Let P and I be binary relations on A × A, 〈P, I〉 is an interval
order if and only if there exist a mapping g from A to IR and a mapping q from IR to
IR+ such that for any x, y ∈ A, we have:

xPy ⇔ g(x) > g(y) + q(g(y)).
xIy ⇔ g(x) ≤ g(y) + q(g(y)).

Interval orders are quasi-orders (i.e., orders with a transitive asymmetric part). Gib-
bard ([6]) has showed that Arrow’s theorem can be generalized to the case of quasi-
orders, hence we have this impossibility result for interval orders. Pirlot and Vincke
([13]) have focused also on this theorem with a special attention to interval orders. Be-
fore presenting this theorem we first need the following definitions in order to state it
formally:

weak unanimity an aggregation procedure satisfies the weak unanimity condition if
and only if, for all voters vi ∈ V and for all a, b ∈ A, aPib =⇒ aPb;

non-dictatorship an aggregation procedure satisfies the non-dictatorship condition if
and only if, for no voter vi ∈ V such that for all possible preferences of other voters
and for all alternatives a and b aPib =⇒ aPb;

independence of irrelevant alternatives an aggregation procedure satisfies the inde-
pendence of irrelevant alternatives condition if and only if ∀(〈P1, I1〉, . . . , 〈Pm, Im〉),
(〈P ′

1, I
′
1〉, . . . , 〈P

′
m, I ′m〉), ∀a, b ∈ A,

(〈P1, I1〉, . . . , 〈Pm, Im〉)/{a, b} = (〈P ′
1, I

′
1〉, . . . , 〈P

′
m, I ′m〉)/{a, b} =⇒

(〈P, I〉), /{a, b} = (〈P ′, I ′〉)/{a, b}
where 〈P, I〉 is the result on (〈P1, I1〉, . . . , 〈Pm, Im〉) , and 〈P, I〉/{a, b} is the
restriction of 〈P, I〉 to {a, b}, etc.

Theorem 1 (Generalized Arrow’s Theorem). [13] If |A| ≥ 4, if X is the set of all
n-tuples of interval orders on A and if Y is the set of all interval orders on A, then
there is no (X-Y )-aggregation procedure2 satisfying simultaneously weak unanimity,
non-dictatorship and independence conditions.

Note that if all the considered relations are complete preorders, Theorem 1 is exactly
Arrow’s theorem with |A| ≥ 3. We need four alternatives for interval orders because of
the definition of Ferrers relation.

There exist a number of papers addressing the aggregation issue for binary relations
as an optimization problem. Typically, a 0/1 linear program is targeted. Contrastingly,
2 X represents here the set of voter’s preferences and Y the resulting order.



in our approach, we associate to each profile of binary relations an instance of BCP, the
so-called Binate Covering Problem [4], where the set of constraints is not any set of 0/1
linear inequations but a SAT instance. This problem has been studied for decades by the
circuit community where it is important for logic synthesis (minimizing the number of
components needed to perform a given operation).

From a theoretical standpoint, like 0/1 linear programming, BCP is an NP-hard op-
timization problem (and the associated decision problem is in NP) (see e.g. [12]). In
practice, each clause can be translated into an equivalent 0/1 linear inequation, but the
converse does not hold. The specific format of the constraints considered in BCP (com-
pared to 0/1 linear programs) enables us to take advantage of the power of existing
MAX-SAT solvers in order to solve its instances in a more efficient way from the practi-
cal side.

To our knowledge there is a limited number of studies related to the aggregation of
interval orders. Pirlot and Vincke [13] have shown that the schemes that work well for
complete preorders such as lexicographic procedure or Borda’s sum of ranks do not lean
themselves easily to the generalization with interval orders. They proposed two types of
aggregation procedures: one consisting in aggregating numerical representations into a
”global evaluation” function, and the other inspired from pairwise comparison methods.

In this paper we propose a hybrid approach consisting in finding an interval order
being optimal in the sense of minimal Kemeny distance [8] to the input profile. In-
tuitively, ranking the alternatives according to Kemeny’s rule can be seen as the best
compromise since on average it gives the ”closest” social preference to the individual
preferences. Our idea can be summarized as in the following:

1. Determine all pairwise comparisons for which all the voters have the same opinion
and build a partial order that preserves those comparisons.

2. Search within the set of feasible interval orders in order to find a closest one to the
input profile.

The first step can be easily achieved the following way:
∀vi ∈ V, ∀x, y ∈ A, xPiy, =⇒ xPy,
∀vi ∈ V, ∀x, y ∈ A, xIiy, =⇒ xIy.

The resulting 〈P, I〉 is a partial order.

From partial order to interval orders Naturally this step provides in the majority of
cases many interval orders. The worst case that we may expect is when the partial order
provided in the first step is empty. In this case we have to find all the interval orders con-
taining n objects (n being the cardinality of A). This case gives an idea on the number
of interval orders that we may have. Stanley [15] has precised the number of interval
orders with n elements; for this he has made use of relations between interval orders
and hyperplanes arrangement. The coefficient of the following polynomial provides the
number of interval orders:

z =
∑

k≥0 ck
xk

k!

z = 1 + x + 3x2

2! + 19x3

3! + 195x4

4! + 2831x5

5! + 53703x6

6! + 1264467x7

7! + . . .



z is the unique power series satisfying z′

z
= y2, z(0) = 1 where 1 = y(2 − exy).

The value ck of the serie z is the number of interval orders on k alternatives. This
number grows exponentially on the number of alternatives: for instance, with just 7
alternatives we have more than one million interval orders. However, we will see in the
following that we do not need to represent those interval orders explicitly. We denote
by 〈P (1), I(1)〉,〈P (2), I(2)〉, . . . these interval orders.

Discriminating interval orders In our approach, the distance of an interval order 〈P (i), I(i)〉
to the input profile X , D(〈P (i), I(i)〉, X), will be calculated as the sum of its distance
to each voter’s order 〈Pj , Ij〉.
Let us denote this distance by d(〈P (i), I(i)〉, 〈Pj , Ij〉):

D(〈P (i), I(i)〉, X) =
∑

〈Pj ,Ij〉∈X

d(〈P (i), I(i)〉, 〈Pj , Ij〉)

The distance d is computed using the difference between pairwise comparisons in
the following way:

d(〈P (i), I(i)〉, 〈Pj , Ij〉) =
∑

(x,y)∈A2

δ〈P (i),I(i)〉,〈Pj,Ij〉(x, y)

δ(〈P (i),I(i)〉,〈Pj ,Ij〉)(x, y) =







p2p if (xP (i)y and yPjx) or (yP (i)x and xPjy)
0 if (xP (i)y and xPjy) or (xI(i)y and xIjy)
p2i otherwise

Here p2p and p2i are nonnegative constant numbers. The rationale for this definition
of d is to put a penalty when there is a discrepancy of preference relation between the
comparison given by a voter and the one of the interval order. Naturally, a discrepancy of
a strict preference (for instance xPy) to the inverse of this preference (yPx) is at least as
problematic as a discrepancy of a strict preference (for instance xPy) to an indifference
(xIy) for this reason we suggest that p2p ≥ p2i. Even more one can impose the strict
inequality (p2p > p2i) which will guarantee to have as a result aIb when the profile
with three voters is aP1b, aI2b and bP3a. Note that the distance used by Hudry ([7])
imposes p2p = p2i = 1 and provides as a result three interval orders (aPb, bPa and
aIb) for this example.

We propose to represent the set of interval orders to be implicitly considered in the
second step using propositional constraints (clauses). Then, computing the interval or-
ders closest to the profile is encoded as minimizing an objective function. Accordingly,
we reduce our interval order optimization problem to the BCP one.

3 Translation into the Binate Covering Problem

We first need propositional variables vxPy and vxIy to represent all pairs of the form
xPy (∀x .= y ∈ A) and xIy (∀x, y ∈ A, x ≤ y). As a consequence,n2−n+ n×(n−1)

2 +

n = 3×n2−n
2 variables must be considered. For instance, for 4 alternatives, we need 22

propositional variables. For 16 alternatives, we need 376 propositional variables.



3.1 Implicit representation of interval orders

Structural constraints The following constraints express that the result of the aggre-
gation must be an interval order. They do not depend on the voters.

– P ∪ I is complete: ∀x < y ∈ A vxPy ∨ vxIy ∨ vyPx,
– P is asymmetric: ∀x < y ∈ A, ¬(vxPy ∧ vyPx) ≡ ¬vxPy ∨ ¬vyPx,
– P and I are exclusive: ∀x .= y ∈ A, ¬(vxPy ∧ vxIy) ≡ ¬vxPy ∨ ¬vxIy ,
– I is symmetric by construction because a single propositional variable vxIy repre-
sents both xIy and yIx.

– I is reflexive: ∀x ∈ A, vxIx is forced to be true,
– P ∪ I is Ferrers: ∀x, y, z, t ∈ A, x .= y, z .= t, x .= t, y .= t, x .= z (vxPy ∧ vyIz ∧

vzPt) ⇒ vxPt,

Note that we need to generate 2n(n− 1) + n + n(n− 1)(n− 2)2 = n(n3 − 5n2 +
10n − 5) structural constraints plus the unit clauses needed to preserve unanimity (see
below). For 4 alternatives, it means at least 76 constraints. For 16 alternatives, it means
at least 47536 constraints. The O(n4) space required by the above encoding is clearly
dominated by the cost of ensuring Ferrers condition.

Unanimity constraints Those additional constraints encode unanimity for both P and
I . They are generated according to the votes. Since they force the truth value of some
variables, they simplify in practice the computation of the best interval order.

– Unanimity for P : ∀x .= y ∈ A, if#p(x, y) = |V | then xPy is forced to be true,
– Unanimity for I: ∀x .= y ∈ A, if#i(x, y) = |V | then xIy is forced to be true.

3.2 Distance between interval orders and the profile

The coefficient associated to each variable is computed according the individual penalty
δ defined earlier and the number of voters that disagree with the interval order.

– ∀x, y ∈ A, satisfying I(x, y) entails that voters that strictly prefer x to y or y to x
disagree with that fact, with a simple individual penalty of p2i. As a consequence,
the coefficient of the variables is exactly p2i(#p(x, y) + #p(y, x)),

– ∀x, y ∈ A, satisfying P (x, y) entails that voters that are indifferent between x
and y disagree with that fact with a simple penalty of p2i, while the voters that
strictly prefer y to x disagree with that fact with an individual penalty of p2p. So
the coefficient of those variables is exactly p2i#i(x, y) + p2p ∗ #p(y, x).

The objective function of the binate covering problem associated withX is denoted
by scoreX(〈P, I〉) and is

∑

x≤y∈A

p2i(#p(x, y) + #p(y, x))vxIy +
∑

x )=y∈A

(p2i#i(x, y) + p2p ∗ #p(y, x))vxPy .

Thus the space needed to represent the objective function is in O(n2.log2(m)).
Interestingly, the space needed by the encoding (constraints and objective function)



is only logarithmic in the number of voters. This renders the approach feasible for a
large number of voters. On the other hand, the space needed by the encoding is in
O(n4); considering that MAX-SAT solvers are currently able to solve some instances
with millions of variables, it might be possible to solve aggregation problems up to
roughly 40 alternatives (which leads to 2 millions of clauses using the above encoding).

The result of the aggregation step is any interval order which minimizes the value
of the objective function. An important issue is to determine whether it makes sense to
use of sophisticated SAT engine (or 0/1 linear program solver) to solve those specific
BCP instances stemming from a translation from instances of the aggregation problem.
[7] gave a positive answer to this query, by identifying the complexity of the following
decision problem: SCORE:

Input: A finite profileX of binary relations 〈P, I〉 on A and a nonnegative integer k.
Question:Does there exist an interval order 〈P, I〉 onA such that scoreX(〈P, I〉) ≤ k?

In a nutshell Hudry showed that SCORE is NP-complete as soon as the number of
voters m is ”sufficiently” large compared to the number n of alternatives, even in the
restricted case when X consists of linear orders only, provided that p2p = p2i = 1.
This justifies to take advantage of algorithms running in exponential time (as MAX-SAT
solvers) in the worst case, since polynomial time ones are hardly expected.

Hudry’s NP-hardness result extends easily to our framework when the parameters
p2p and p2i are such that p2p = p2i since linear orders are interval orders; on the other
hand, the membership to NP of the SCORE probllem is obvious in our setting: in order
to determine that an instance of this decision problem is positive, it is enough to guess
a binary relation 〈P, I〉 onA (its size isO(n2)), then to check that it is an interval order
(this can be easily achieved in polynomial time in the size of the relation), and finally
to compute in polynomial time scoreX(〈P, I〉) in order to compare it with k.

Our MAX-SAT algorithm for the BCP problem is a branch-and-bound algorithm.
During the search, each time a (partial) assignment is found that satisfies all the con-
straints, the corresponding score is computed (each unassigned variable is set to 0) and
a constraint which eliminates all the assignments leading to a greater bound is added,
so that whenever a partial assignment leads to a score which is worse than this bound,
a backtrack occurs. Its worst-case time complexity is simply exponential in the number
of variables under consideration (hence linear in the size ofX) and its space complexity
is linear in the size of the constraints (hence quadratic in the size ofX).

3.3 Examples

As a matter of illustration, let us consider the following examples. For these examples
we suppose that p2i = 1 and p2p = 2.

Example 1. Consider first a case with 5 voters and 4 alternatives with the preferences
of voters shown in Table 1.
These preferences of voters can be compactly represented in a matrix where ∀xi, xj ,
P (xi, xj) = α means that there are α voters who prefer alternative xi to alternative



V1 a b c d

a I P P P

b P−1 I I P

c P−1 I I P

d P−1 P−1 P−1 I

V2 a b c d

a I P I P

b P−1 I P−1 P

c I P I P

d P−1 P−1 P−1 I

V3, V4, V5 a b c d

a I P P P

b P−1 I I P

c P−1 I I P

d P−1 P−1 P−1 I

Table 1. Pairwise comparisons on 4 alternatives given by 5 voters

xj . Table 2 represents the matrix related to the previous example. Accordingly, this
matrix contains all the information needed for running our aggregation procedure. Our
method find as a result the following interval order: aPb, cPa, dPa, cPb, dPb, cPd
(its distance to the profile is 12).

P a b c d

a 0 5 1 2
b 0 0 0 2
c 3 4 0 5
d 3 3 0 0

Table 2. The number of voters agreeing for a strict preference

Example 2. Here is a second example; Table 3 shows the pairwise comparisons given
by three voters on three alternatives (a, b, c).

V1 a b c

a I P I

b P−1 I P−1

c I P I

V2 a b c

a I P P

b P−1 I I

c P−1 I I

V3 a b c

a I I I

b I I I

c I I I

Table 3. The profile of Example 2

The result of our aggregation procedure provides a unique interval order as close as
possible to the input profile. It is not a preorder (a is preferred to b and all the other
comparisons are indifference), despite the fact that each preference relation in the input
profile is a preorder.

3.4 More than one solution is often the case

Clearly enough, there is no guarantee in general that a unique interval order 〈P, I〉 ex-
ists, leading to a minimal value s∗ for the objective function scoreX(〈P, I〉). This prob-
lem is inherent to the fact that voters may have different preferences, and it may happen
in very simple scenarios, for instance when A consists of two alternatives a and b and
X consists of two interval orders 〈P1, I1〉 and 〈P2, I2〉 on A so that aP1b and aI2b: in



such a case, both 〈P1, I1〉 and 〈P2, I2〉 lead to the minimal value s∗ = p2i, but not to the
same sets of undominated alternatives. Nevertheless, this plurality is problematic since
decisions made using only one of such optimal interval orders are not necessarily ro-
bust, in the sense that the choice of another optimal interval order could question them.
Typically decisions are made by comparing alternatives or determining undominated
ones. While robustness is a complex notion, a sufficient condition for a comparison to
be robust is when it holds for every optimal interval order, and similarly an alternative is
robustly undominated when it is undominated for all optimal interval orders. Formally,
the following decision problems have to be considered: NEC-COMP(R):

Input: A finite profileX of binary relations 〈P, I〉 on A and two alternatives a, b from
A.
Question: Is it the case that every interval order 〈P, I〉 onA satisfying scoreX(〈P, I〉) =
s∗ is such that aRb? (where R = P or R = I)?

NEC-UNDOM:
Input: A finite profileX of binary relations 〈P, I〉 on A and an alternative a from A.
Question: Is it the case that for every interval order 〈P, I〉 onA such that scoreX(〈P, I〉) =
s∗, we have a(P ∪ I)b for every b ∈ A?

Those decision problems are ”mildly” hard, since they belong to the complexity
classΘp

2 , consisting of all decision problems which can be solved in deterministic poly-
nomial time using logarithmically many calls to an NP oracle. In order to prove the
membership of NEC-COMP(R) and NEC-UNDOM to Θp

2 , we consider the complemen-
tary problems and show them in Θp

2 as well (this class is closed under complementa-
tion). We have already seen that SCORE is in NP. Now, the value of s∗ can be computed
by binary searching it within the bounds 0 andm.n2.max(p2p, p2i)which is a (rough)
upper bound of s∗, and has a value linear in the size of X since max(p2p, p2i) is a
constant. Hence, s∗ can be computed in deterministic polynomial time using logarith-
mically many calls to an NP oracle (used to solve the SCORE instances encountered
during the search, associated to the successive values of k) . Once this is done, it re-
mains to guess a binary relation 〈P, I〉 on A using a last call to the NP oracle, check
that it is an interval order such that scoreX(〈P, I〉) = s∗, and finally check that aR̄b
(resp. that there exists a b ∈ A such that bPa). We conjecture that NEC-COMP(R) and
NEC-UNDOM areΘp

2-complete. Noticeably, when s∗ is part of the input, the complexity
of NEC-COMP(R) and NEC-UNDOM falls down to coNP. From the practical side, when
several instances of NEC-COMP(R) or NEC-UNDOM sharing the same profile X are to
be solved, it can prove useful to compute s∗ once for all during a pre-processing phase,
then to exploit it in order to solve those instances in a more efficient way.

4 Some Theoretical Results

We analyze here some expected properties for aggregation procedures such as respect
of unanimity, independance, majority, etc., and our objective is to determine whether or



not our approach satisfies some of them. We begin by the properties at work in Arrow’s
theorem:

Universality An aggregation procedure is universal if it accepts all configurations for
the input profile. Since the input of our procedure can be any finite set of interval
orders, we can conclude that our procedure is universal.

Transitivity Arrow’s theorem imposes the transitivity of the preference and the indif-
ference relation. Our procedure provides an interval order which has a transitive
preference relation P but the indifference relation I is not necessarily transitive.
However as we mentioned in the introduction, in order to find an undominated al-
ternative, transitivity of P is enough.

Weak-unanimity Our procedure satisfies the weak unanimity condition since unanim-
ity is imposed by our formulation as a hard constraint to be respected.

Non-dictatorship Our procedure obviously satisfies the non-dictatorship condition.
Independence Our procedure does not satisfy the condition of independence of ir-

relevant alternatives: let us show it on a new example. The set of alternatives is
A = {a, b, c, d} and we have two different profilesX andX ′ which have the same
votes on the subset A′ = {c, d} of A:

Example 3. Table 3 shows the compact matrix of each profile. Our procedure con-

X a b c d

a 0 0 0 1
b 0 0 6 2
c 4 0 0 6
d 8 6 4 0

X ′ a b c d

a 0 3 0 0
b 3 0 0 3
c 8 1 0 6
d 2 2 4 0

Table 4. The compact matrix of profileX and X ′ 4

cludes that for the profile X there are two optimum solutions, in the first one c
is indifferent to d and in the second one d is preferred to c. However, even if the
profile X ′ has the same votes for the comparison between c and d, our procedure
concludes forX ′ that c is preferred to d.

We consider now some other properties that an aggregation procedure should prefer-
ably satisfy.

Anonymity The result of the aggregation depends only on the preferences of voters
(and for instance, not on the age, sex or seniority of candidates). Let P be the set
of permutations of A, π one element of P . We denote by π(R), the binary relation
such as π(a)π(R)π(b) ⇐⇒ aRb. An aggregation procedure is anonymous if and
only if ∀π ∈ P ,f(R1, R2, . . . , Rm) = π(f(π(R1),π(R2), . . . ,π(Rm))).
It is easy to see that our procedure is anonymous.

Loyalty If there is just one voter the procedure must provide as a result the same pref-
erence as her:m = 1 =⇒ f(R1) = {a ∈ A : aR1b, ∀b ∈ A}. Again, it is easy to
check that our procedure satisfies the loyalty condition



Majority condition If there is a majority of voters who prefers a to b then the result of
the aggregation procedure must agree with this comparison: f satisfies themajority
condition if and only if ∀(R1, R2, . . . , Rm) ∈ X, ∀a, b ∈ A

#p(a, b) > #p(b, a) =⇒ aPb,

#p(a, b) = #p(b, a) =⇒ aIb.

Our aggregation procedure does not satisfy the majority condition as the following
example shows it.

Example 4. Table 5 gives the number of votes for pairwise comparisons between
four alternatives given by 11 voters

P a b c d

a 0 6 5 1
b 2 0 8 3
c 6 2 0 1
d 4 3 3 0

Table 5. The number of voters agreeing for a strict preference

Even if the majority of voters prefer c to a, the result of our procedure concludes
that a is preferred to c (the output is the interval order such that aPb, aPc, aId,
aIa, bPc, bId, bIb, cId, cIc, dId and its distance to the profile is 39).

5 Conclusion

In this paper, we have presented an optimization-based approach to interval orders ag-
gregation. In this approach, to every profile of interval orders, one associates an instance
of a propositional optimization problem (namely the Binate Covering Problem); solv-
ing the latter gives in a straightforward way an interval order (the ”closest” to the input
profile in some sense), which is considered as the aggregation looked for. Among other
things, we have computed an upper bound of the size of the BCP instance associated
to every profile (showing that it is only logarithmic in the number of voters), identified
some properties satisfied (or not) by the aggregation approach. An interesting feature of
such an optimization-based approach to aggregation is that it can be easily tuned to fit
with other preference structures (e.g. preorders, semiorders, etc.). Indeed, it is enough
to point out the corresponding hard constraints. Investigating in more depth such exten-
sions is a perspective for further research.

The Binate Covering Problem can be seen as a very specific case of an Integer Lin-
ear Program in which case efficient ILP frameworks exist (e.g. CPLEX). However, it
looks that tools dedicated to Boolean reasoning are better suited to solve such prob-
lems: Weighted Partial MAX SAT [1] and Pseudo Boolean Optimization [11] engines
are currently receiving a lot of attention since international evaluations are organized
regularly and many systems are freely available for the research community.



We designed a proof of concept tool based on the SAT4J library[9], a library of
Boolean search engines dedicated to solving SAT, MAX SAT and Pseudo Boolean
problems. That tool can be downloaded from http://sat4j.ow2.org/.

In order to have an idea of the applicability of our approach on a real scenario, we
used the publicly available results of the SAT RACE 20063. It is a competitive event
between 16 SAT solvers on a set of 100 benchmarks. Here each benchmark is a voter
and each solver is an alternative. A given benchmark b prefers the SAT solver x to the
SAT solver y iff x solved b faster than y. A given benchmark b is indifferent between
the SAT solvers x and y iff none of x and y solved b or both of them solved b but
with a roughly the same CPU time (the difference is less than 1 second). By definition,
each vote is an interval order. Computing the aggregation of such votes means solving
a binate covering problem with 376 variables and 47536 clauses. Our aggregator takes
less than one second to generate the BCP from the compact matrix. SAT4J takes one
second to find a solution, but fails to prove it is optimal even after running for several
hours.

We plan to test several MAXSAT and Pseudo Boolean engines on aggregation of
real interval orders instances (including LP based ones).
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