
Chapter 1

PREFERENCE MODELLING

Stefano Moretti
LAMSADE-CNRS, Université Paris Dauphine,
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75775 Paris Cedex 16, France

ozturk@lamsade.dauphine.fr

Alexis Tsoukiàs
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Abstract This chapter provides the reader with a presentation of preference mod-
elling fundamental notions as well as some recent results in this field.
Preference modelling is an inevitable step in a variety of fields: econ-
omy, sociology, psychology, mathematical programming, even medicine,
archaeology, and obviously decision analysis. Our notation and some
basic definitions, such as those of binary relation, properties and or-
dered sets, are presented at the beginning of the chapter. We start
by discussing different reasons for constructing a model or preference.
We then go through a number of issues that influence the construc-
tion of preference models. Different formalisations besides classical logic
such as fuzzy sets and non-classical logics become necessary. We then
present different types of preference structures reflecting the behavior
of a decision-maker: classical, extended and valued ones. It is relevant
to have a numerical representation of preferences: functional represen-
tations, value functions. The concepts of thresholds and minimal rep-
resentation are also introduced in this section. We also deal with the
problem of how to extend a preference relation over a set A of “ob-
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jects” to the set of all subsets of A. In section 8, we briefly explore
the concept of deontic logic (logic of preference) and other formalisms
associated with “compact representation of preferences” introduced for
special purposes. We end the chapter with some concluding remarks.

Keywords: preference modelling, decision aiding, uncertainty, fuzzy sets, ordered
relations, binary relations, preference extensions

Introduction

The purpose of this chapter is to present fundamental notions of
preference modelling as well as some recent results in this field. Ba-
sic references on this issue can be considered: Fishburn, 1970, Krantz
et al., 1971, Roberts, 1979, Fishburn, 1985, Roubens and Vincke, 1985,
Kacprzyk and Roubens, 1988, Tanguiane, 1991, Trotter, 1992, Pirlot
and Vincke, 1997, Fishburn, 1999, Aleskerov et al., 2007.

The chapter is organised as follows: The purpose for which formal
models of preference and more generally of objects comparison are stud-
ied, is introduced in section 1. In section 2, we analyse the information
used when such models are established and introduce different sources
and types of uncertainty. Our notation and some basic definitions, such
as those of binary relation, properties and ordered sets, are presented
in section 3. Besides classical logic, different formalisms can be used
in order to establish a preference model, such as fuzzy sets and non-
classical logics. These are discussed in section 4. In section 5, we then
present different types of preference structures reflecting the behavior
of a decision-maker: classical, extended and valued ones. It appears
relevant to have a numerical representation of preferences: functional
representations, value functions and intervals. These are discussed in
section 6. The concepts of thresholds and minimal representation are
also introduced in this section. In section 7, we present different ap-
proaches to the analysis of the problem of how to extend a preference
relation over a set A of “objects” to the set of all subsets of A. Finally,
after briefly exploring the concept of deontic logic (logic of preference)
and other related issued in section 8, we end the chapter with some
concluding remarks

1. Purpose

Preference modelling is an inevitable step in a variety of fields. Scien-
tists build models in order to better understand and to better represent
a given situation; such models may also be used for more or less oper-
ational purposes (see Bouyssou et al., 2000). It is often the case that
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it is necessary to compare objects in such models, basically in order
to either establish if there is an order between the objects or to estab-
lish whether such objects are “near”. Objects can be everything, from
candidates to time intervals, from computer codes to medical patterns,
from prospects (lotteries) to production systems. This is the reason why
preference modelling is used in a great variety of fields such as economy
(Armstrong, 1939, Armstrong, 1948, Armstrong, 1950, Debreu, 1959),
sociology, psychology (Coombs and Smith, 1973, Chisholm and Sosa,
1966b, Kahneman and Tversky, 1979, Kahneman et al., 1981, Broome,
1991), political science (Barthélemy et al., 1982, Sen, 1986), artificial
intelligence (Doyle and Wellman, 1992), computer science (Scott, 1982,
Trotter, 1992, Fishburn, 1999), temporal logic (see Allen, 1983) and the
interval satisfiability problem (Golumbic and Shamir, 1993; Pe’er and
Shamir, 1997) mathematical programming (Perny and Spanjaard, 2005,
Perny and Spanjaard, 2002), electronic business, medicine and biology
(Benzer, 1962, Carrano, 1988, Karp, 1993, Nagaraja, 1992, Janowitz
et al., 2003), archaeology (Hodson et al., 1971), and obviously decision
analysis.

In this chapter, we are going to focus on preference modelling for
decision aiding purposes, although the results have a much wider validity.

Throughout this chapter, we consider the case of somebody (possibly
a decision-maker) who tries to compare objects taking into account dif-
ferent points of view. We denote the set of alternatives A1, to be labelled
a, b, c, ... and the set of points of view J , labelled j = 1, 2, ...,m. In this
framework, a data gj(a) corresponds to the evaluation of the alternative
a from the point of view j ∈ J .

As already mentioned, comparing two objects can be seen as looking
for one of the two following possible situations:
- object a is “before” object b, where “before” implies some kind of order
between a and b, such an order referring either to a direct preference (a is
preferred to b) or being induced from a measurement and its associated
scale (a occurs before b, a is longer, bigger, more reliable, than b);
- object a is “near” object b, where “near” can be considered either as
indifference (object a or object b will do equally well for some purpose),
or as a similarity, or again could be induced by a measurement (a occurs
simultaneously with b, they have the same length, weight, reliability).

The two above-mentioned “attitudes” (see Ngo The, 2002) are not
exclusive. They just stand to show what type of problems we focus on.
From a decision aiding point of view we traditionally focus on the first
situation. Ordering relations is the natural basis for solving ranking or
choice problems. The second situation is traditionally associated with
problems where the aim is to be able to put together objects sharing a
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common feature in order to form “homogeneous” classes or categories
(a classification problem).

The first case we focus on is the ordering relation: given the set A,
establishing how each element of A compares to each other element of A
from a “preference” point of view enables to obtain an order which might
be used to make either a choice on the set A (identify the best) or to
rank the set A. Of course, we have to consider whether it is possible to
establish such an ordering relation and of what type (certain, uncertain,
strong, weak etc.) for all pairs of elements of A. We also have to establish
what “not preference” represents (indifference, incomparability etc.). In
the following sections (namely in section 5), we are going to see that
different options are available, leading to different, so called, preference
structures.

In the second case we focus on the “nearness” relation since the is-
sue here is to put together objects which ultimately are expected to be
“near” (whatever the concept of “near” might represent). In such a
case, there is also the problem how to consider objects which are “not
near”. Typical situations in this case include the problems of group-
ing, discriminating and assigning (Hand, 1981)). A further distinction
in such problems concerns the fact that the categories within which
the objects might be associated could already exist or not and the fact
that such categories might be ordered or not. Putting objects into non
pre-existing non ordered categories is the typical classification problem,
conversely, assigning objects to pre-existing ordered categories is known
as the “sorting” problem (Pawlak and S lowiński, 1994; Zopounidis and
Doumpos, 2002; Perny, 1998).

It should be noted that although preference relations have been natu-
rally associated to ranking and choice problem statements, such a separa-
tion can be argued. For instance, there are sorting procedures (which can
be seen as classification problems) that use preference relations instead
of “nearness” ones (Yu, 1992; Massaglia and Ostanello, 1991; Moscarola
and Roy, 1977). The reason is the following: in order to establish that
two objects belong to the same category we usually either try to check
whether the two objects are “near” or whether they are near a “typi-
cal” object of the category (see for instance Perny, 1998). If, however,
a category is described, not through its typical objects, but through its
boundaries, then, in order to establish if an object belongs to such a
category it might make sense to check whether such an object performs
“better” than the “minimum”, or “least” boundary of the category and
that will introduce the use of a preference relation.

In Ngo The, 2002 it is claimed that decision aiding should not ex-
clusively focus on preference relations, but also on “nearness relations”,
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since quite often the problem statement to work with in a problem for-
mulation is that of classification (on the existence of different problem
statements and their meaning the reader is referred to Vincke, 1992; Roy,
1996; Roy and Bouyssou, 1993; Dias and Tsoukiàs, 2004).

2. Nature of Information

As already mentioned, the purpose of our analysis is to present the
literature associated with objects comparison for either a preference or
a nearness relation. Nevertheless, such an operation is not always as
intuitive as it might appear. Building up a model from reality is always
an abstraction (see Bouyssou, 1989). This can always be affected by the
presence of uncertainty due to our imperfect knowledge of the world, our
limited capability of observation and/or discrimination, the inevitable
errors occurring in any human activity etc. (Roy, 1988). We call such
an uncertainty exogenous. Besides, such an activity might generate un-
certainty since it creates an approximation of reality, thus concealing
some features of reality. We call this an endogenous uncertainty (see
Tsoukiàs, 1997).

As pointed out in Vincke, 2001, preference modelling can be seen
as either the result of direct comparison (asking a decision-maker to
compare two objects and to establish the relation between them) from
which it might be possible to infer a numerical representation, or as the
result of the induction of a preference relation from the knowledge of
some “measures” associated to the compared objects.

In the first case, uncertainty can arise from the fact that the decision-
maker might not be able to clearly state a preference relation for any
pair of actions. We do not care why this may happen, we just consider
the fact that the decision-maker may reply when asked if “x is preferred
to y”: yes, no, I do not know, yes and no, I am not sure, it might be, it
is more preference than indifference, but ... etc.. The problem in such
cases is how to take such replies into account when defining a model of
preferences.

In the second case, we may have different situations such as: incom-
plete information (missing values for some objects), uncertain informa-
tion (the value of an object lies within an interval to which an uncertainty
distribution might be associated, but the precise value is unknown), am-
biguous information (contradictory statements about the present state
of an object). The problem here is how to establish a preference model
on the basis of such information and to what extent the uncertainty as-
sociated with the original information will be propagated to the model
and how.
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Such uncertainties can be handled through the use of various for-
malisms (see section 4 of this chapter). Two basic approaches can be
distinguished (see also Dubois and Prade, 2001).
1. Handling uncertain information and statements. In such a case,
we consider that the concepts used in order to model preferences are
well-known and that we could possibly be able to establish a preference
relation without any uncertainty, but we consider this difficult to do in
the present situation with the available information. A typical example
is the following: we know that x is preferred to y if the price of x is
lower than the price of y, but we know very little about the prices of x
and y. In such cases we might use an uncertainty distribution (classical
probability, ill-known probabilities, possibility distributions, see Fish-
burn, 1970; Cohen and Jaffray, 1980; Jaffray and Wakker, 1993; Dubois
and Prade, 1988) in order to associate a numerical uncertainty with each
statement.
2. Handling ambiguous concepts and linguistic variables. With such a
perspective we consider that sentences such as “x is preferred to y” are
ill-defined, since the concept of preference itself is ill-defined, indepen-
dently from the available information. A typical example is a sentence
of the type: “the largest the difference of price between x and y is, the
strongest the preference is”. Here we might know the prices of x and y

perfectly, but the concept of preference is defined through a continuous
valuation. In such cases, we might use a multi-valued logic such that any
preferential sentence obtains a truth value representing the “intensity of
truth” of such a sentence. This should not be confused with the con-
cept of “preference intensity”, since such a concept is based on the idea
of “measuring” preferences (as we do with temperature or with weight)
and there is no “truth” dimension (see Krantz et al., 1971; Roberts,
1979; Rescher, 1969; Keeney and Raiffa, 1976). On the other hand such
a subtle theoretical distinction can be transparent in most practical cases
since often happens that similar techniques are used under different ap-
proaches.

3. Notation and Basic Definitions

The notion of binary relation appears for the first time in De Morgan’s
study (De Morgan, 1864) and is defined as a set of ordered pairs in
Peirce’s works (Peirce, 1880, Peirce, 1881, Peirce, 1883). Some of the
first work dedicated to the study of preference relations can be found in
Dushnik and Miller, 1941 and in Scott and Suppes, 1958 (more in general
the concept of models of arbitrary relations will be introduced in Tarski,
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1954, Tarski, 1955). Throughout this chapter, we adopt Roubens’ and
Vincke’s notation (Roubens and Vincke, 1985).

Definition 3.1 (Binary Relation). Let A be a finite set of elements (a,
b, c,...,n), a binary relation R on the set A is a subset of the cartesian
product A×A, that is, a set of ordered pairs (a, b) such that a and b are
in A: R ⊆ A×A.

For an ordered pair (a, b) which belongs to R, we indifferently use the
notations:

(a, b) ∈ R or aRb or R(a, b)

Let R and T be two binary relations on the same set A. Some set
operations are:

The Inclusion : R ⊆ T if aRb −→ aTb

The Union : a(R ∪ T )b iff aRb or(inclusive) aTb

The Intersection : a(R ∩ T )b iff aRb and aTb

The Relative product : a(R.T )b iff ∃c ∈ A : aRc and cT b

(aR2b iff aR.Rb)

When such concepts apply we respectively denote (Ra), (Rs), (R̂)
the asymmetric, the symmetric and the complementary part of binary
relation R:

aRab iff aRb and not(bRa)

aRsb iff aRb and bRa

aR̂b iff not(aRb) and not(bRa)

The complement (Rc), the converse (the dual)(R) and the co-dual
(Rcd) of R are respectively defined as follows:

aRcb iff not(aRb)

aRb iff bRa

aRcdb iff not(bRa)
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The relation R is called

reflexive, if aRa, ∀a ∈ A

irreflexive, if aRca, ∀a ∈ A

symmetric, if aRb −→ bRa, ∀a, b ∈ A

antisymmetric, if (aRb, bRa) −→ a = b, ∀a, b ∈ A

asymmetric, if aRb −→ bRca, ∀a, b ∈ A

complete, if (aRb or bRa), ∀a 6= b ∈ A

strongly complete, if aRb or bRa, ∀a, b ∈ A

transitive, if (aRb, bRc) −→ aRc, ∀a, b, c ∈ A

negatively transitive, if (aRcb, bRcc) −→ aRcc, ∀a, b, c ∈ A

negatively transitive, if aRb −→ (aRc or cRb), ∀a, b, c ∈ A

semitransitive, if (aRb, bRc) −→ (aRd or dRc), ∀a, b, c, d ∈ A

Ferrers relation, if (aRb, cRd) −→ (aRd or cRb), ∀a, b, c, d ∈ A

The equivalence relation E associated with the relation R is a reflex-
ive, symmetric and transitive relation, defined by:

aEb iff ∀a ∈ A

{

aRc ⇐⇒ bRc

cRa ⇐⇒ cRb

A binary relation R may be represented by a direct graph (A,R)
where the nodes represent the elements of A, and the arcs, the relation
R. Another way to represent a binary relation is to use a matrix MR;
the element MR

ab of the matrix (the intersection of the line associated to
a and the column associated to b) is 1 if aRb and 0 if not(aRb).

Example 3.1. Let R be a binary relation defined on a set A, such that
the set A and the relation R are defined as follows:
A = {a, b, c, d} and R = {(a, b), (b, d), (b, c), (c, a), (c, d), (d, b)}

The graphical and matrix representation of R are given in figures 1.1
and 1.2.

4. Languages

Preference models are formal representations of comparisons of ob-
jects. As such they have to be established through the use of a formal
and abstract language capturing both the structure of the world be-
ing described and the manipulations of it. It seems natural to consider
formal logic as such a language. However, as already mentioned in the
previous sections, the real world might be such that classical formal logic
might appear too rigid to allow the definition of useful and expressive
models. For this purpose, in this section, we introduce some further for-
malisms which extend the expressiveness of classical logic, while keeping
most of its calculus properties.
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Figure 1.1. Graphical representation of R

a b c d

a 0 1 0 0

b 0 0 1 1

c 1 0 0 1

d 0 1 0 0

Figure 1.2. Matrix representation of R

4.1 Classic Logic

The interested reader can use two references: Mendelson, 1964; van
Dalen, 1983 as introductory books to the use and the semantics of clas-
sical logic. All classic books mentioned in this chapter, implicitly or
explicitly use classical logic, since binary relations are just sets and the
calculus of sets is algebraically equivalent to truth calculus. Indeed the
semantics of logical formulas as established by Tarski, 1954, Tarski, 1955,
show the equivalence between membership of an element to a set and
truth of the associate sentence.

Building a binary preference relation, a valuation of any proposition
takes the values {0, 1}:

µ(aRb)= 1 iff aRb is true
µ(aRb)= 0 iff aRb is false.

The reader will note that all notations introduced in the previous
section are based on the above concept. He/she should also note that
when we write “a preference relation P is a subset of A×A”, we introduce
a formal structure where the universe of discourse is A×A and P is the
model of the sentence “x in relation P with y”, that is, P is the set of
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all elements of A× A (ordered pairs of x and y) for which the sentence
is true.

The above semantic can be in sharp contrast with decision analysis ex-
perience. For this purpose we will briefly introduce two more semantics:
fuzzy sets and four-valued logic.

4.2 Fuzzy Sets

In this section, we provide a survey of basic notions of fuzzy set theory.
We present definitions of connectives and several valued binary relation
properties in order to be able to use this theory in the field of decision
analysis. Basic references for this section include Zimmermann, 1985,
Dubois and Prade, 1988, S lowiński, 1998, Fodor and Roubens, 1994.

Fuzzy sets were first introduced by Zadeh (Zadeh, 1965, Zadeh, 1975).
The concept and the associated logics were further developed by other re-
searchers: Gougen, 1969, Kaufmann, 1975, Kaufmann and Gupta, 1985,
Mizumoto and Tanaka, 1976a, Mizumoto and Tanaka, 1976b, Nahmias,
1976, Nguyen et al., 1978, Dubois and Prade, 1978.

Fuzzy measures can be introduced for two different uses: either they
can represent a concept imprecisely known (although well defined) or
a concept which is vaguely perceived such as in the case of a linguistic
variable. In the first case they represent possible values, while in the
second they are better understood as a continuous truth valuation (in
the interval [0, 1]). To be more precise:
- in the first case we associate a possibility distribution (an ordinal dis-
tribution of uncertainty) to classical logic formulas;
- in the second case we have a multi-valued logic where the semantics
allow values in the entire interval [0, 1].
A fuzzy set can be associated either with the set of alternatives con-
sidered in a decision aiding model (consider the case where objects are
represented by fuzzy numbers) or with the preference relations. In deci-
sion analysis we may consider four possibilities 2:

Alternatives with crisp values and crisp preference relations

Alternatives with crisp values and fuzzy preference relations

Alternatives with fuzzy values and crisp preference relations (de-
fuzzification, Li and Lee, 1988 with gravity center, Yager, 1981
with means interval)

Alternatives with fuzzy values and fuzzy preference relations (pos-
sibility graphs, Dubois and Prade, 1983; four fuzzy dominance
index, Roubens and Vincke, 1988); in this chapter we are going to
focus on fuzzy preference relations
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In the following we introduce the definitions required for the rest of
the chapter.

Definition 4.1 (Fuzzy Set). A fuzzy set (or a fuzzy subset) F on a set
Ω is defined by the result of an application:

µF : Ω −→ [0, 1]

where ∀x ∈ Ω, µ(x) is the membership degree of x to F.

Definition 4.2 (Negation). A function n: [0, 1] −→ [0, 1] is a negation
if and only if it is non-increasing and :
n(0) = 1 and n(1) = 0

If the negation n is strictly decreasing and continuous then it is called
strict.

In the following we investigate the two basic classes of operators, the
operators for the intersection (triangular norms called t-norms) and the
union (triangular conorms called t-conorms or s-norms) of fuzzy sets:

Definition 4.3 (t-norm). A function T: [0, 1]2 −→ [0, 1] is a triangular
norm (t-norm), if and only if it satisfies the four conditions:

Equivalence Condition: T (1, x) = x ∀x ∈ [0, 1]
T is commutative: T (x, y) = T (y, x) ∀x, y ∈ [0, 1]
T is nondecreasing in both elements: T (x, y) ≤ T (u, v) for all 0 ≤ x ≤
u ≤ 1 and 0 ≤ y ≤ v ≤ 1
T is associative: T (x, T (y, z)) = T (T (x, y), z) ∀x, y, z ∈ [0, 1]

The function T defines a general class of intersection operators for
fuzzy sets.

Definition 4.4 (t-conorm). A function S: [0, 1]2 −→ [0, 1] is a (t-
conorm), if and only if it satisfies the four conditions:

Equivalence Condition: S(0, x) = x ∀x ∈ [0, 1]
S is commutative: S(x, y) = S(y, x) ∀x, y ∈ [0, 1]
S is nondecreasing in both elements: S(x, y) ≤ S(u, v) for all 0 ≤ x ≤
u ≤ 1 and 0 ≤ y ≤ v ≤ 1
S is associative: S(x, S(y, z)) = S(S(x, y), z) ∀x, y, z ∈ [0, 1]

T-norms and t-conorms are related by duality. For suitable negation
operators3 pairs of t-norms and t-conorms satisfy the generalisation of
the De Morgan law:

Definition 4.5 (De Morgan Triplets ). Suppose that T is a t-norm, S
is a t-conorm and n is a strict negation. 〈T, S, n〉 is a De Morgan triple
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if and only if:

n(S(x, y)) = T (n(x), n(y))

Such a definition extends De Morgan’s law to the case of fuzzy sets.
There exist different proposed De Morgan triplets: Dombi, 1982, Frank,
1979, Schweizer and Sklar, 1983, Yager, 1980, Dubois and Prade, 1980,
Weber, 1983, Yu, 1985.

The more frequent t-norms and t-conorms and negations are presented
in table 1.1.

Table 1.1. Principal t-norms, t-conorms and negations

Names t-norms t-conorms

Zadeh min(x, y) max(x, y)
probabilistic x ∗ y x+ y − xy
Lukasiewicz max(x+ y − 1, 0) min(x+ y, 1)
Hamacher(γ > 0) (xy)/ (x+ y + xy − (1− γ)xy)/

(γ + (1− γ)(x+ y − xy)) (1− (1− γ)xy)

Yager(p > 0) max(1− ((1− x)p + (1− y)p)1/p, 0) min((xp + yp)1/p, 1)
Weber(λ > −1) max((x+ y − 1 + λxy)/(1 + λ), 0)) min(x+ y + λxy, 1)
drastic x if y = 1 x if y = 0

y if x = 1 y if x = 0
0 ifnot 1 ifnot

We make use of De Morgan’s triplet 〈T, S, n〉 in order to extend the
definitions of the operators and properties introduced above in crisp
cases. First, we give the definitions of the operators of implication IT
and equivalence ET :

IT (x, y) = sup{z ∈ [0, 1] : T (x, z) ≤ y}

ET (x, y) = T (IT (x, y), IT (y, x)

Since preference modelling makes use of binary relations, we extend
the definitions of binary relation properties to the valued case. For the
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sake of simplicity µ(R(x, y)) will be denoted R(x, y): a valued binary
relation R(x, y) is (∀a, b, c, d ∈ A)

reflexive, if R(a, a) = 1
irreflexive, if R(a, a) = 0
symmetric, if R(a, b) = R(b, a)
T-antisymmetric, if a 6= b −→ T (R(a, b), R(b, a)) = 0
T-asymmetric, if T (R(a, b), R(b, a)) = 0
S-complete, if a 6= b −→ S(R(a, b), R(b, a)) = 1
S-strongly complete, if S(R(a, b), R(b, a)) = 1
T-transitive, if T (R(a, c), R(c, b)) ≤ R(a, b)
negatively S-transitive, if R(a, b) ≤ S(R(a, c), R(c, b))
T-S-semitransitive, if T (R(a, d), R(d, b)) ≤ S(R(a, c), R(c, b))
T-S-Ferrers relation, if T (R(a, b), R(c, d)) ≤ S(R(a, d), R(c, b))

Different instances of De Morgan triplets will provide different defini-
tions for each property.

The equivalence relation is one of the most-used relations in decision
analysis and is defined in fuzzy set theory as follows:

Definition 4.6 (Equivalence Relation). A function E :[0, 1]2 −→ [0, 1]
is an equivalence if and only if it satisfies:
E(x, y) = E(y, x) ∀ x, y ∈ [0, 1]
E(0, 1) = E(1, 0) = 0
E(x, x) = 1 ∀ x ∈[0, 1]
x ≤x’ ≤ y’ ≤ y =⇒ E(x, y) ≤ E(x’, y’)

In section 5.3 and chapter 11, some results obtained by the use of
fuzzy set theory are represented.

4.3 Four-valued Logics

When we compare objects, it might be the case that it is not possi-
ble to establish precisely whether a certain relation holds or not. The
problem is that such a hesitation can be due either to incomplete infor-
mation (missing values, unknown replies, unwillingness to reply etc.) or
to contradictory information (conflicting evaluation dimensions, conflict-
ing reasons for and against the relation, inconsistent replies etc.). For
instance, consider the query “is Anaxagoras intelligent?” If you know
who Anaxagoras is you may reply “yes” (you came to know that he is
a Greek philosopher) or “no” (you discover he is a dog). But if you
know nothing you will reply “I do not know” due to your ignorance (on
this particular issue). If on the other hand you came to know both that
Anaxagoras is a philosopher and a dog you might again reply “I do not
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know”, not due to ignorance, but to inconsistent information. Such dif-
ferent reasons for hesitation can be captured through four-valued logics
allowing for different truth values for four above-mentioned cases. Such
logics were first studied by Dubarle in 1963 (appeared in Dubarle, 1989)
and introduced in the literature in Belnap, 1976 and Belnap, 1977. Fur-
ther literature on such logics can be found in Bergstra et al., 1995, Fages
and Ruet, 1997, Font and Moussavi, 1993, Fitting, 1991, Kaluzhny and
Muravitsky, 1993, Thomason and Horty, 1987, Arieli and Avron, 1998,
Tsoukiàs, 2002, Arieli et al., 2011.

In the case of preference modelling, the use of such logics was first
suggested in Tsoukiàs, 1991 and Doherty et al., 1992. Such logics extend
the semantics of classical logic through two hypotheses:
- the complement of a first order formula does not necessarily coincide
with its negation;
- truth values are only partially ordered (in a bilattice), thus allowing
the definition of a boolean algebra on the set of truth values.

The result is that using such logics, it is possible to formally charac-
terise different states of hesitation when preferences are modelled (see
Tsoukiàs and Vincke, 1995, Tsoukiàs and Vincke, 1997). Further more,
using such a formalism, it becomes possible to generalise the concor-
dance/discordance principle (used in several decision aiding methods)
as shown in Tsoukiàs et al., 2002 and several characterisation problems
can be solved (see for instance Tsoukiàs and Vincke, 1998). More re-
cently (see Perny and Tsoukiàs, 1998, Fortemps and S lowiński, 2002,
Arieli et al., 2006, Deschrijver et al., 2007, Öztürk and Tsoukiàs, 2007,
Öztürk and Tsoukiàs, 2008, Turunen et al., 2010) it has been suggested
to use the extension of such logics for continuous valuations.

5. Preference Structures

Definition 5.1 (Preference Structure). A preference structure is a col-
lection of binary relations defined on the set A and such that:
- for each couple a, b in A; at least one relation is satisfied
- for each couple a, b in A; if one relation is satisfied, another one cannot
be satisfied.

In other terms a preference structure defines a partition4 of the set
A × A. In general it is recommended to have two other hypotheses
with this definition (also denoted as fundamental relational system of
preferences):

Each preference relation in a preference structure is uniquely char-
acterised by its properties (symmetry, transitivity, etc..)
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For each preference structure, there exists a unique relation from
which the different relations composing the preference structure
can be deduced. Any preference structure on the set A can thus
be characterised by a unique binary relation R in the sense that
the collection of the binary relations are defined through the com-
binations of the epistemic states of this characteristic relation5.
For instance aPb if and only if aRb and not bRa.

5.1 〈P, I〉 Structures

The most traditional preference model considers that the decision-
maker confronted with a pair of distinct elements of a set A, either:

- clearly prefers one element to the other,
or
- does not express a preference among them.
The subset of ordered pairs (a, b) belonging to A × A such that the

statement “a is preferred to b” is true, is called preference relation and
is denoted by P .

The subset of pairs (a, b) belonging to A×A such that the statement
“a and b are not preferred” is true, is called (in this case) indifference
relation and is denoted by I (I being considered the complement of P ∪
P−1 with respect to A×A). We will see later on in Section 5.2.2 that this
relation can be further decomposed in indifference and incomparability.

In the literature, there are two different ways of defining a specific
preference structure:
- the first defines it by the properties of the binary relations of the
relation set;
- the second uses the properties of the characteristic relation. In the rest
of the section, we give definitions in both ways.

Definition 5.2 (〈 P, I 〉 Structure). A 〈 P, I 〉 structure on the set A is
a pair 〈P, I〉 of relations on A such that:

P is asymmetric,

I is reflexive, symmetric.

The characteristic relation R of a 〈P, I〉 structure can be defined as a
combination of the relations P and I as :

aRb iff a(P ∪ I)b (1.1)

In this case P and I can be defined from R as follows:

aPb iff aRb and bRca (1.2)

aIb iff aRb and bRa (1.3)
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The construction of orders is of a particular interest, especially in
decision analysis since they allow an easy operational use of such pref-
erence structures. We begin by representing the most elementary orders
(weak order, complete order). In order to define such structures we add
properties to the relations P and I (namely different forms of transitiv-
ity).

Definition 5.3 (Total Order). Let R be a binary relation on the set A,
R being a characteristic relation of 〈 P, I 〉, the following definitions are
equivalent:
i. R is a total order.
ii. R is reflexive, antisymmetric, complete and transitive

iii.







I = {(a, a),∀a ∈ A}
P is transitive
P ∪ I is reflexive and complete

iv.







P is transitive
P . I ⊂ P (or equivalently I P ⊂ P)
P ∪ I is reflexive and complete

With this relation, we have an indifference between any two objects
only if they are identical. The total order structure consists of an ar-
rangement of objects from the best one to the worst one without any ex
aequo.

In the literature, one can find different terms associated with this
structure: total order, complete order, simple order or linear order.

Definition 5.4 (Weak Order). Let R be a binary relation on the set A,
R being a characteristic relation of 〈P, I〉, the following definitions are
equivalent:
i. R is a weak order
ii. R is reflexive, complete and transitive

iii.







I is transitive
P is transitive
P ∪ I is reflexive and complete

This structure is also called complete preorder or total preorder. In this
structure, indifference is an equivalence relation. The associated order
is indeed a total order of the equivalence (indifference) classes of A.

These first two structures consider indifference (or absence of prefer-
ence) as a transitive relation. This is empirically falsifiable. Literature
studies on the intransitivity of indifference show this; undoubtedly the
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most famous is that of Luce, 1956, which gives the example of a cup of
sweetened tea.6 Before him, Armstrong, 1939, Georgescu-Roegen, 1936,
Fechner, 1860, Halphen, 1955 and Poincaré, 1905 already suggested this
phenomenon. For historical commentary on the subject, see Fishburn
and Monjardet, 1992. Relaxing the property of transitivity of indif-
ference results in two well-known structures: semi-orders and interval
orders.

Definition 5.5 (Semiorder). Let R be a binary relation on the set A,
R being a characteristic relation of 〈 P, I 〉, the following definitions are
equivalent:
i. R is a semiorder
ii. R is reflexive, complete, Ferrers relation and semitransitive

iii.







P.I.P ⊂ P

P 2 ∩ I2 = ∅
P ∪ I is reflexive and complete

iv.







P.I.P ⊂ P

P 2I ⊂ P (or equivalently IP 2 ⊂ P )
P ∪ I is reflexive and complete

Definition 5.6 (Interval Order (IO)). Let R be a binary relation on the
set A, R being a characteristic relation of 〈P, I〉, the following definitions
are equivalent:
i. R is an interval order
ii. R is reflexive, complete and Ferrers relation

iii.

{

P.I.P ⊂ P

P ∪ I is reflexive and complete

A detailed study of this structure can be found in Pirlot and Vincke,
1997, Monjardet, 1978, Fishburn, 1985. It is easy to see that this struc-
ture generalises all the structures previously introduced.

Can we relax transitivity of preference? Although it might appear
counterintuitive there is empirical evidence that such a situation can oc-
cur: May, 1954, Tversky, 1969. Similar work can be found in: Fishburn,
1982, Fishburn, 1991b, Fishburn, 1991a, Vind, 1991, Bouyssou, 1996,
Bouyssou and Pirlot, 1999, Bouyssou and Pirlot, 2002b, Bouyssou and
Pirlot, 2002a, Abbas et al., 2007.

5.2 Extended Structures

The 〈P, I〉 structures presented in the previous section neither take
into account all the decision-maker’s attitudes, nor all possible situa-
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tions. In the literature, there are several non exclusive ways to extend
such structures:

- Using sophisticated numerical representations (such as n ordered
points, triangles, trapezoids, etc.);

- Introduction of several distinct preference relations representing (one
or more) hesitation(s) between preference and indifference or preference
intensities;

- Introduction of one or more situations of incomparability.

5.2.1 Preference Relations on n ordered points. As we
showed by the end of the previous section intervals may be used in order
to represent sophisticated preferences (for instance where the indiffer-
ence is not necessarily transitive). The use of intervals in order to take
into account imprecision and vagueness in handling preferences is well
known in the literature, but a general theory on how such models be-
have was lacking until recently. Öztürk et al., 2011 have generalized the
concept of interval by introducing the notion of n-point intervals where
each object is represented by n ordered points (for more details see also
Öztürk, 2005). They provided an exhaustive study of 2-point and 3-
point intervals comparison and show the way to generalize such results
to n-point intervals. Their results may be interpreted in two ways:

What are the all preference structures that can be defined using
n-point interval representations and satisfying some axioms?

How to define all different ways to compare two objects repre-
sented by n-point intervals in order to obtain a 〈P, I〉- preference
structure?

Their approach is based on two notions that they called a relative
position (intuitively showing how far is the actual position of the two
intervals w.r.t. to complete disjunction: one interval completely to the
right of the other) and a component set associated with each relative
position (where all redundant information is discarded and where the
coding is done in a compact way).

Concerning the first point it turns out that the comparison of 2-point
intervals allows to establish 3 different preference structures: 2 types
of weak orders, bi-weak order and interval order. The use of 3-point
intervals allows to establish 7 types of preference structures: 3 types of
weak orders, 3 types of bi-weak orders, 3 types of interval orders, one
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three-weak order, one split-interval order, one triangle order and 2 types
of intransitive preference structures. In their paper they showed also the
equivalence between the usual definitions of such preferences structures,
their numerical representation and the properties that characterize them.
Such results confirm the descriptive power of the framework which allows
to provide a complete characterization for preference structures that
have never been studied before, as well as other structures well known
in the literature (for instance it is possible to interpret within the same
framework triangle orders and weak orders).

Concerning the second point they were also interested to the relation
between n-point intervals and fuzzy numbers. In order to interpret a
fuzzy number as a n-point interval one may alternatively consider ordi-
nal fuzzy intervals as a family of α-cuts of ordinary (i.e. with continuous
membership function) fuzzy numbers or intervals; the family of cuts cor-
respond to a finite number of different values of threshold α. Using such
an approach they showed how to make use of their comparison rules in
order to compare fuzzy intervals and analyzed the link between their
framework and the four comparison indices introduced by Dubois and
Prade (Dubois and Prade, 1983) for fuzzy intervals. Three of these cor-
respond to strict preference relations obtained for 2-point intervals while
the fourth is associated with a non-strict preference relation that is an
interval order. In a similar way, they investigated special fuzzy numbers
having only two non-zero levels of membership. Their comparison by
means of Dubois and Prade comparison indices corresponds to prefer-
ence structures met in the comparison of 3-point intervals, namely three
types of interval orders and one type of weak order.

5.2.2 Several Preference Relations. One can wish to give
more freedom to the decision-maker and allow more detailed preference
models, introducing one or more intermediate relations between indiffer-
ence and preference. Such relations might represent one or more zones
of ambiguity and/or uncertainty where it is difficult to make a distinc-
tion between preference and indifference. Another way to interpret such
“intermediate” relations is to consider them as different “degrees of pref-
erence intensity”. From a technical point of view these structures are
similar and we are not going to further discuss such semantics. We
distinguish two cases: one where only one such intermediate relation
is introduced (usually called weak preference and denoted by Q), and
another where several such intermediate relations are introduced.

1 〈P,Q, I〉 preference structures. In such structures we introduce
one more preference relation, denoted by Q which is an asymmet-
ric and irreflexive binary relation. The usual properties of prefer-
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ence structures hold. Usually such structures arise from the use
of thresholds when objects with numerical values are compared or,
equivalently, when objects whose values are intervals are compared.
The reader who wants to have more information on thresholds can
go to section 6.1. where all definitions and representation theorems
are given.

〈P,Q, I〉 preference structures have been generally discussed in
Vincke, 1988. Two cases are studied in the literature:
- PQI interval orders and semi-orders (for their characterisation
see Tsoukiàs and Vincke, 2003). The detection of such structures
has been shown to be a polynomial problem (see Ngo The et al.,
2000).
- double threshold orders (for their characterisation see Vincke,
1988, Tsoukiàs and Vincke, 1998) and more precisely pseudo-orders
(see Roy and Vincke, 1984, Roy and Vincke, 1987).

One of the difficulties of such structures is that it is impossible to
define P , Q and I from a single characteristic relation R as is the
case for other conventional preference structures.

2 〈P1, · · ·Pn〉 preference structures. Practically, such structures gen-
eralise the previous situation where just one intermediate relation
was considered. Again, such structures arise when multiple thresh-
olds are used in order to compare numerical values of objects. The
problem was first introduced in Cozzens and Roberts, 1982 and
then extensively studied in Roubens and Vincke, 1984, Doignon
et al., 1984, Doignon et al., 1986, see also Valadares Tavares, 1988,
Moreno, 1992, Abbas and Vincke, 1993, Doignon and Falmagne,
1997. Typically such structures concern the coherent representa-
tion of multiple interval orders. The particular case of multiple
semi-orders was studied in Doignon, 1987.

5.2.3 Incomparability. In the classical preference structures
presented in the previous section, the decision-maker is supposed to be
able to compare all alternatives, the absence of preference being consid-
ered indifference (we can have aPb, bPa or aIb). But certain situations,
such as lack of information, uncertainty, ambiguity, multi-dimensional
and conflicting preferences, can create incomparability between alterna-
tives. Within this framework, the partial structures use a third symmet-
ric and irreflexive relation J (aJb ⇐⇒ not(aPb), not(bPa), not(aIb),
not(aQb), not(bQa)), called incomparability, to deal with this kind of
situation. To have a partial structure 〈P, I, J〉 or 〈P,Q, I, J〉, we add
to the definitions of the preceding structures ( total order, weak order,
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semi-order, interval order and pseudo-order), the relation of incompa-
rability (J 6= ∅); and we obtain respectively partial order, partial pre-
order (quasi-order), partial semi-order, partial interval order and partial
pseudo-order (Roubens and Vincke, 1985).

Definition 5.7 (Partial Order). Let R be a binary relation (R = P ∪ I)
on the set A, R being a characteristic relation of 〈P, I, J〉, the following
definitions are equivalent:
i. R is a partial order.
ii. R is reflexive, antisymmetric, transitive

iii.















P is asymmetric, transitive
I is reflexive, symmetric
J is irreflexive and symmetric
I = {(a, a),∀a ∈ A}

Definition 5.8 (quasi-order). Let R be a binary relation (R = P ∪ I)
on the set A, R being a characteristic relation of 〈P, I, J〉, the following
definitions are equivalent:
i. R is a quasi-order.
ii. R is reflexive, transitive

iii.















P is asymmetric, transitive
I is reflexive, symmetric and transitive
J is irreflexive and symmetric
(P.I ∪ I.P ) ⊂ P

A fundamental result (Dushnik and Miller, 1941, Fishburn, 1985)
shows that every partial order (resp. partial preorder) on a finite set
can be obtained as an intersection of a finite number of total orders
(resp. total preorders, see Bossert et al., 2002).

A further analysis of the concept of incomparability can be found in
Tsoukiàs and Vincke, 1995 and Tsoukiàs and Vincke, 1997. In these
papers it is shown that the number of preference relations that can
be introduced in a preference structure, so that it can be represented
through a characteristic binary relation, depends on the semantics of the
language used for modelling. In other terms, when classical logic is used
in order to model preferences, no more than three different relations can
be established (if one characteristic relation is used). The introduction of
a four-valued logic allows to extend the number of independently defined
relations to 10, thus introducing different types of incomparability (and
hesitation) due to the different combination of positive and negative
reasons (see Tsoukiàs et al., 2002). It is therefore possible, with such
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a language, to consider an incomparability due to ignorance separately
from one due to conflicting information.

5.3 Valued Structures

In this section, we present situations where preferences between objets
are defined by a valued preference relation such that µ(R(a, b)) repre-
sents either the intensity or the credibility of the preference of a over b7

or the proportion of people who prefer a to b or the number of times
that a is preferred to b. In this section, we make use of results cited in
Fodor and Roubens, 1994 and Perny and Roubens, 1998. To simplify
the notation, the valued relation µ(R(a, b)) is denoted R(a, b) in the rest
of this section. We begin by giving a definition of a valued relation:

Definition 5.9 (Valued Relation). :
A valued relation R on the set A is a mapping from the cartesian product
A×A onto a bounded subset of R, often the interval [0,1].

Remark 5.1. A valued relation can be interpreted as a family of crisp
nested relations. With such an interpretation, each α-cut level of a fuzzy
relation corresponds to a different crisp nested relation.

In this section, we show some results obtained by the use of fuzzy set
theory as a language which is capable to deal with uncertainty. The
seminal paper by Orlovsky (Orlovsky, 1978) can be considered as the
first attempt to use fuzzy set theory in preference modelling. Roy in
Roy, 1977 will also make use of the concept of fuzzy relations in trying
to establish the nature of a pseudo-order. In his paper Orlovsky defines
the strict preference relation and the indifference relation with the use of
Lukasiewicz and min t-norms. After him, a number of researchers were
interested in the use of fuzzy sets in decision aiding, most of these works
are published in the journal Fuzzy Sets and Systems.

In the following we give some definitions of fuzzy ordered sets. We
derive the following definitions from the properties listed in section 4.2:

Definition 5.10 (Fuzzy Total Order). A binary relation R on the set
A, is a fuzzy total order iff:
- R is antisymmetric, strongly complete and T-transitive

Definition 5.11 (Fuzzy Weak Order). A binary relation R on the set
A is a fuzzy weak order iff:
- R is strongly complete and transitive

Definition 5.12 (Fuzzy Semi-order). A binary relation R on the set A
is a fuzzy semi-order iff:
- R is strongly complete, a Ferrers relation and semitransitive
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Definition 5.13 (Fuzzy Interval Order (IO)). A binary relation R on
the set A is a fuzzy interval order iff:
- R is a strongly complete Ferrers relation

Definition 5.14 (Fuzzy Partial Order). A binary relation R on the set
A is a fuzzy partial order iff:
- R is antisymmetric reflexive and T-transitive

Definition 5.15 (Fuzzy Partial Preorder ). A binary relation R on the
set A is a fuzzy partial preorder iff:
- R is reflexive and T-transitive

All the above definitions are given in terms of the characteristic re-
lation R. The second step is to define valued preference relations (val-
ued strict preference, valued indifference and valued incomparability)
in terms of the characteristic relation (Fodor, 1992, Fodor, 1994, Fodor
and Roubens, 1994, Ovchinnikov and Roubens, 1991, Perny and Roy,
1992). For this, equations 1.1- 1.3 are interpreted in terms of fuzzy
logical operations:

P (a, b) = T [R(a, b), nR(b, a)] (1.4)

I(a, b) = T [R(a, b), R(b, a)] (1.5)

R(a, b) = S[P (a, b), I(a, b)] (1.6)

However, it is impossible to obtain a result satisfying these three equa-
tions using a De Morgan triplet. Alsina, 1985, Fodor and Roubens,
1994 present this result as an impossibility theorem that proves the
non-existence of a single, consistent many-valued logic as a logic of pref-
erence. A way to deal with this contradiction is to consider some axioms
to define 〈P, I, J〉. Fodor, Ovchinnikov, Roubens propose to define three
general axioms that they call Independence of Irrelevant Alternatives
(IA), Positive Association (PA), Symmetry (SY). With their axioms,
the following propositions hold:

Proposition 5.1 (Fuzzy Weak Order). if 〈P, I〉 is a fuzzy weak order
then:
- P is a fuzzy strict partial order
- I is a fuzzy similarity relation (reflexive, symmetric, transitive)

Proposition 5.2 (Fuzzy Semi-order). if 〈P, I〉 is a fuzzy semi-order
then:
- P is a fuzzy strict partial order
- I is not transitive
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Proposition 5.3 (Fuzzy Interval Order (IO)). if 〈P, I〉 is a fuzzy inter-
val order then:
- P is a fuzzy strict partial order
- I is not transitive

De Baets, Van de Walle and Kerre (De Baets et al., 1995, Van De
Walle et al., 1996, Van De Walle et al., 1998) define the valued preference
relations without considering a characteristic relation:

P is T -asymmetric (P ∩T P−1)= ∅

I is reflexive and J is irreflexive (I(a, a)=1, J(a, a)=0 ∀a ∈ A)

I and J are symmetric (I = I−1, J = J−1)

P ∩T I = ∅, P ∩T J = ∅, I ∩T J = ∅

P ∪T P−1 ∪T I∪T = A×A

With a continuous t-norm and without zero divisors, these properties
are satisfied only in crisp case. To deal with this problem, we have to
consider a continuous t-norm with zero divisor.

In multiple criteria decision aiding, we can make use of fuzzy sets
in different ways. One of these helps to construct a valued preference
relation from the crisp values of alternatives on each criteria. As an
example we cite the work of Perny and Roy (Perny and Roy, 1992).
They define a fuzzy outranking relation R from a real valued function θ

defined on R×R, such that R(a, b) = θ(g(a), g(b)) verifies the following
conditions for all a, b in A:

∀y ∈ X, θ(x, y) is a nondecreasing function of x (1.7)

∀x ∈ X, θ(x, y) is a nonincreasing function of y (1.8)

∀z ∈ X, θ(z, z) = 1 (1.9)

The resulting relation R is a fuzzy semi-order (i.e. reflexive, complete,
semi-transitive and Ferrers fuzzy relation). Roy (1978) proposed in Elec-
tre III to define the outranking relation R characterized by a function θ

for each criterion as follows:

θ(x, y) =
p(x) −min{y − x, p(x)}

p(x) −min{y − x, q(x)}

Where p(x) and q(x) are thresholds of the selected criteria.
We may work with alternatives representing some imprecision or am-

biguity for a criterion. In this case, we make use of fuzzy sets to de-
fine the evaluation of the alternative related to the criterion. In the
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ordered pair {x, µa
j}, µa

j represents the grade of membership of x for
alternative a related to the criterion j. The fuzzy set µ is supposed
to be normal (supx(µa

j ) = 1) and convex (∀x, y, z ∈ R, y ∈ [x, z],
µa
j (y) ≤ min{µa

j (x), µa
j (z)}). The credibility of the preference of a over

b is obtained from the comparison of the fuzzy intervals (normal, convex
fuzzy sets) of a and b with some conditions:

- The method used should be sensitive to the specific range and shape
of the grades of membership.

- The method should be independent of the irrelevant alternatives.

-The method should satisfy transitivity.

Fodor and Roubens (Fodor and Roubens, 1994) propose the use of
two procedures.

In the first one, the credibility of the preference of a over b for j is
defined as the possibility that a ≥ b:

Πj(a ≥ b) =
∨

x≥y

[µa
j (x) ∧ µb

j(y)] = supx≥y[min(µa
j (x), µb

j(y))] (1.10)

The credibility as defined by 1.10 is a fuzzy interval order (Πj is
reflexive, complete and a Ferrers relation) and

min(Πj(a, b),Πj(b, a)) = supxmin(µa
j (x), µb

j(x))

In the case of a symmetrical fuzzy interval (µa), the parameters of
the fuzzy interval can be defined in terms of the valuation gj(a) and
thresholds p(gj(a)) and q(gj(a)). Some examples using trapezoidal fuzzy
numbers can be found in the work of Fodor and Roubens.

The second procedure proposed by Fodor and Roubens makes use of
the shapes of membership functions, satisfies the three axioms cited at
the beginning of the section (PA, SY and SY) and gives the credibility
of preference and indifference as follows:

Pj(a, b) = Rd
j (a, b) = 1 − Πj(b ≥ a) = Nj(a > b) (1.11)

Ij(a, b) = min[Πj(a ≥ b),Πj(b ≥ a)] (1.12)

Where Π (the possibility degree) and N (the necessity degree) are two
dual distributions of the possibility theory that are related to each other
with the equality: Π(A) = 1 − N(A) (see Dubois and Prade, 2001 for
an axiomatic definition of the theory of possibility).
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6. Domains and Numerical Representations

In this section we present several results concerning the numerical
representation of the preference structures introduced in the previous
section (see also Aleskerov et al., 2007). This is an important operational
problem. Given a set A and a set of preference relations holding between
the elements of A, it is important to know whether such preferences fit
a precise preference structure admitting a numerical representation. If
this is the case, it is possible to replace the elements of A with their
numerical values and then work with these. Otherwise, when to the
set A is already associated a numerical representation (for instance a
measure), it is important to test which preference structure should be
applied in order to faithfully interpret the decision-maker’s preferences
(Vincke, 2001).

6.1 Representation Theorems

Theorem 6.1 (Total Order). Let R = 〈P, I〉 be a reflexive relation on
a finite set A, the following definitions are equivalent:

i. R is a total order structure (see 5.3)

ii. ∃ g: A 7→ R
+ satisfying for ∀a, b ∈ A:

{

aPb iff g(a) > g(b)
a 6= b =⇒ g(a) 6= g(b)

iii. ∃ g: A 7→ R
+ satisfying for ∀a, b ∈ A:

{

aRb iff g(a) > g(b)
a 6= b =⇒ g(a) 6= g(b)

In the infinite not enumerable case, it can be impossible to find a
numerical representation of a total order. For a detailed discussion on the
subject, see Beardon et al., 2002. The necessary and sufficient conditions
to have a numerical representation for a total order are present in many
works: Debreu, 1954, Fishburn, 1970, Krantz et al., 1971, Briges and
Mehta, 1995.

Theorem 6.2 (Weak Order). Let R = 〈P, I〉 be a reflexive relation on
a finite set A, the following definitions are equivalent:
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i. R is a weak order structure (see 5.4)

ii. ∃ g: A 7→ R
+ satisfying for ∀a, b ∈ A:

{

aPb iff g(a) > g(b)
aIb iff g(a) = g(b)

iii. ∃ g: A 7→ R
+ satisfying for ∀a, b ∈ A:

aRb iff g(a) ≥ g(b)

Remark 6.1. Numerical representations of preference structures are not
unique. All monotonic strictly increasing transformations of the function
g can be interpreted as equivalent numerical representations8.

Intransitivity of indifference or the appearance of intermediate hesi-
tation relations is due to the use of thresholds that can be constant or
dependent on the value of the objects under comparison (in this case
values of the threshold might obey further coherence conditions).

Theorem 6.3 (Semi-Order). Let R = 〈P, I〉 be a binary relation on a
finite set A, the following definitions are equivalent:

i. R is a semi-order structure (see 5.5)

ii.∃ g: A 7→ R
+ and a constant q ≥ 0 satisfying ∀a, b ∈ A:

{

aPb iff g(a) > g(b) + q

aIb iff |g(a) − g(b| ≤ q

iii. ∃ g: A 7→ R
+ and a constant q ≥ 0 satisfying ∀a, b ∈ A:

aRb iff g(a) ≥ g(b) − q

iv. ∃ g: A 7→ R
+ and ∃q : R 7→ R

+ satisfying ∀a, b ∈ A:
{

aRb iff g(a) ≥ g(b) − q(g(b))
(g(a) > g(b)) −→ (g(a) + q(g(a)) ≥ g(b) + q(g(b)))

For the proofs of these theorems see Scott and Suppes, 1958, Fishburn,
1985, Krantz et al., 1989, Pirlot and Vincke, 1997.

The threshold represents a quantity for which any difference smaller
than this one is not significant for the preference relation. As we can
see, the threshold is not necessarily constant, but if it is not, it must
satisfy the inequality which defines a coherence condition.

Here too, the representation of a semi-order is not unique and all
monotonic increasing transformations of g appear as admissible repre-
sentations provided the condition that the function q also obeys the same
transformation 9.
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Theorem 6.4 (PI Interval Order). Let R = 〈P, I〉 be a binary relation
on a finite set A, the following definitions are equivalent:

i. R is an interval order structure (see 5.6)

ii. ∃ g: A 7→ R
+ satisfying ∀a, b ∈ A:







aPb iff g(a) > g(b) + q(b)

aIb iff
g(a) ≤ g(b) + q(b)
g(b) ≤ g(a) + q(a)

It should be noted that the main difference between an interval order
and a semi-order is the existence of a coherence condition on the value
of the threshold. One can further generalise the structure of interval or-
der, by defining a threshold depending on both of the two alternatives.
As a result, the asymmetric part appears without circuit: Abbas and
Vincke, 1993, Agaev and Aleskerov, 1993,Subiza, 1994, Abbas, 1995,
Diaye, 1999, Aleskerov et al., 2007. For extensions on the use of thresh-
olds see Fishburn, 1997, Moore, 1966, Hansen, 1992. The special case
where a “frontier” has to be explicitly considered instead of threshold is
discussed in Bouyssou and Th. Marchant, 2011. For the extension of the
numerical representation of interval orders in the case A is infinite not
denumerable see Fishburn, 1973, Chateauneuf, 1987, Briges and Mehta,
1995, Oloriz et al., 1998, Nakamura, 2002, Bosi et al., 2007.

We can now see the representation theorems concerning preference
structures allowing an intermediate preference relation (Q). Before that,
let us mention that numerical representations with thresholds are equiv-
alent to numerical representations of intervals. It is sufficient to note
that associating a value g(x) and a strictly positive value q(g(x)) to
each element x of A is equivalent to associating two values: l(x) = g(x)
(representing the left extreme of an interval) and r(x) = g(x) + q(g(x))
(representing the right extreme of the interval to each x; obviously:
r(x) > l(x) always holds).

Theorem 6.5 (PQI Interval Orders). Let R = 〈P,Q, I〉 be a relation
on a finite set A, the following definitions are equivalent:

i. R is a PQI interval Order

ii.There exists a partial order L such that:
1) I = L ∪R ∪ Id where Id = {(x, x), x ∈ A} and R = L−1;
2) (P ∪Q ∪ L).P ⊂ P ; 3) P.(P ∪Q ∪R) ⊂ P ;
4) (P ∪Q ∪ L).Q ⊂ P ∪Q ∪ L ; 5) Q.(P ∪Q ∪R) ⊂ P ∪Q ∪R.



Preference Modelling 29

iii. ∃ l,r: A 7→ R
+ satisfying:















r(a) ≥ l(a)
aPb iff l(a) > r(b)
aQb iff r(a) > r(b) ≥ l(a) ≥ l(b)
aIb iff r(a) ≥ r(b) ≥ l(a) or r(b) ≥ r(a) ≥ l(a) ≥ l(b)

For proofs, further theory on the numerical representation and algo-
rithmic issues associated with such a structure see Tsoukiàs and Vincke,
2003, Ngo The et al., 2000, Ngo The and Tsoukiàs, 2005.

Theorem 6.6 (Double Threshold Order). Let R = 〈P,Q, I〉 be a rela-
tion on a finite set A, the following definitions are equivalent:

i. R is a double Threshold Order (see Vincke, 1988)

ii.















Q.I.Q ⊂ Q ∪ P

P.I.P ⊂ P

Q.I.P ⊂ P

P.Q−1.P ⊂ P

iii. ∃ g,q,p: A 7→ R
+ satisfying:







aPb iff g(a) > g(b) + p(b))
aQb iff g(b) + p(b) ≥ g(a) > g(b) + q(b)
aIb iff g(b) + q(b) > g(a) > g(b) − q(a)

Theorem 6.7 (pseudo-order). Let R = 〈P,Q, I〉 be a relation on a finite
set A, the following definitions are equivalent:

i. R is a pseudo-order

ii.















is a double threshold order
〈(P ∪Q), I〉 is a semi-order
〈P, (Q ∪ I ∪Q−1)〉is a semi-order
P.I.Q ⊂ P

iii.







is a double threshold order
g(a) > g(b) ⇐⇒ g(a) + q(a) > g(b) + q(b)

g(a) + p(a) > g(b) + p(b)

A pseudo-order is a particular case of double threshold order, such
that the thresholds fulfil a coherence condition. It should be noted how-
ever, that such a coherence is not sufficient in order to obtain two con-
stant thresholds. This is due to different ways in which the two functions
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can be defined (see Doignon et al., 1986). For the existence of multiple
constant thresholds see Doignon, 1987.

For partial structures of preference, the functional representations ad-
mit the same formulas, but equivalences are replaced by implications.
In the following, we present a numerical representation of a partial order
and a quasi-order examples:

Theorem 6.8 (Partial Order). If 〈P, I, J〉 presents a partial order struc-
ture,then ∃ g: A 7→ R

+ such that:
{

aPb =⇒ g(a) > g(b)

Theorem 6.9 (Partial Weak order). If 〈P, I, J〉 presents a partial weak
order structure, then ∃ g: A 7→ R

+ such that:
{

aPb =⇒ g(a) > g(b)
aIb =⇒ g(a) = g(b)

The detection of the dimension of a partial order 10 is a NP hard
problem (Doignon et al., 1984, Fishburn, 1985).

Remark 6.2. In the preference modelling used in decision aiding, there
exist two different approaches: In the first one, the evaluations of alter-
natives are known (they can be crisp or fuzzy) and we try to reach conclu-
sions about the preferences between the alternatives. For the second one,
the preferences between alternatives (pairwise comparison) are given by
an expert (or by a group of experts), and we try to define an evaluation
of the alternatives that can be useful. The first approach uses the inverse
implication of the equivalences presented above (for example for a total
order we have g(a) > g(b) −→ aPb ); and the second one the other
implication of it (for the same example, we have aPb −→ g(a) > g(b))

Remark 6.3. There is a body of research on the approximation of a
preference structure by another one; here we cite some studies on the
research of a total order with a minimum distance to a tournament
(complete and antisymmetric relation): Slater, 1961, Bermond, 1972,
Monjardet, 1979, Barthélémy and Monjardet, 1981, Barthélémy et al.,
1989, Charon-Fournier et al., 1992, Hudry and Woirgard, 1996,

6.2 Minimal Representation

In some decision aiding situations, the only available preferential in-
formation can be the kind of preference relation holding between each
pair of alternatives. In such a case we can try to build a numerical
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representation of each alternative by choosing a particular functional
representation of the ordered set in question and associating this with
the known qualitative relations.

This section aims at studying some minimal or parsimonious repre-
sentations of ordered sets, which can be helpful for this kind of sit-
uation. Particularly, given a countable set A and a preference rela-
tion R ⊆ A × A, we are interested to find a numerical representation
f̂ ∈ F = {f : A 7→ R, f homomorph to R}, such that for all x ∈ A, f̂
is minimal.

6.2.1 Total Order, Weak order. The way to build a minimal
representation for a total order or a weak order is obvious since the
preference and the indifference relations are transitive: The idea is to
minimise the value of the difference g(a) − g(b) for all a, b in A. To do
this we can define a unit k = mina,b∈A(g(a) − g(b)) and the minimal
evaluation m = mina∈A(g(a)). The algorithm will be:

Choose any value for k and m , e.g. k = 1, m = 0;

Find the alternative i which is dominated by all the other alterna-
tives j in A and evaluate it by g(i) = m

For all the alternatives l for which we have lIi, note g(l) = g(i)

Find the alternative i′ which is dominated by all the alternatives
j′ in A− {i} and evaluate it by g(i′) = m + k

For all the alternatives l′ for which we have l′Ii′, note g(l′) = g(i′)

Stop when all the alternatives are evaluated

6.2.2 Semi-order. The first study on the minimal represen-
tation of semi-orders was done in Pirlot, 1990 who proved its existence
and proposed an algorithm to build it. One can find more information
about this in Doignon, 1988, Mitas, 1994, Pirlot and Vincke, 1997 and
Ngo The, 2002. Pirlot uses an equivalent definition of the semi-order
which uses a second positive constant: Total Semi-order : A reflexive
relation R = (P, I) on a finite set A is a semi-order iff there exists a
real function g, defined on A, a non negative constant q and a positive
constant ε such that ∀a, b ∈ A

{

aPb iff g(a) > g(b) + q + ε

aIb iff |g(a) − g(b)| ≤ q
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Such a triple (g, q, ε) is called an ε − representation of (P, I). Any
representation (g, q), as in the definition of semi-order given in 5.1, yields
an ε-representation where

ε = min(a,b)∈P (g(a) − g(b) − q)

Let (A,R) be an associated to the semi-order R = (P, I), we denote
G(q, ε) the valued graph obtained by giving the value (q + ε) to the arcs
P and (−q) to the arcs I.

Theorem 6.10. : If R=(P, I) is a semi-order on the finite set A, there
exists an ε-representation with threshold q iff:

q

ε
≥ α = maxC{

|C ∩ P |

|C ∩ I| − |C ∩ P |
, C circuit of (A, R)}

where |C ∩ P | (resp. |C ∩ I|), represents the number of arcs P (resp.
I) in the circuit C of the graph (A, R).

An algorithm to find a numerical representation of a semi-order is as
follows:

Choose any value for εk, e.g. ε= 1;

Choose a large enough value of q
ε
(e.g. q

ε
= |P |;

Solve the maximal value path problem in the graph G(q, ε) (e.g.
by using the Bellman algorithm, see Lawler, 1976).

Denote by gq,ε, the solution of the maximal path problem in G(q, ε);
we have:

gq,ε ≤ g(a)∀a ∈ A

Example 6.1. We consider the example given by Pirlot and Vincke (see
Pirlot and Vincke, 1997):
Let S = (P, I) be a semiorder on A = {a, b, c} defined by P = {(a, c)}.

The first inequality of 6.2.2 gives the following equations:

g(a) ≥ g(c) + q + ε

g(a) ≥ g(b) − q

g(b) ≥ g(a) − q

g(b) ≥ g(c) − q

g(c) ≥ g(b) − q

Figure 1.3 shows the graphical representation of this semiorder.
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Figure 1.3. Graphical representation of the semiorder

a b c

q=1 g1=1 2 1 0

q=1 g2=1 9.5 8.5 7.5

q=2.5 g3=1 3.5 1 0

q=2.5 g4=1 10.5 8.5 7

q=2.5 g5=1 3.5 2.5 0

Table 1.2. Various ε-representations with ε=1

As the non-trivial circuit C = {(a, c), (c, b), (b, a)} is −q+ ε (−q+ ε =
(q+ε)+(−q)+(−q)), necessary and sufficient conditions for the existence
of an ε-representation is q ≥ ε.
The table1.2 provides an example of possible numerical representation
of this semiorder:

Definition 6.1. A representation (g∗, q∗, ε) is minimal in the set of
all non-negative ε-representations (g, q, ε) of a semiorder iff ∀a ∈ A

g∗(a) ≤ g(a).

Theorem 6.11. The representation (gq∗,ε, q
∗, ε) is minimal in the set

of all ε-representations of a semiorder R.

6.2.3 Interval Order. An interval can be represented by two
real functions l and r on the finite set A which satisfy:

(∀a ∈ A, l(a) ≤ r(a))11

Definition 6.2. A reflexive relation R = (P ∪ I) on a finite set A is an
interval order iff there exists a pair of functions l, r: A −→ R+ and a
positive constant ε such that ∀a, b ∈ A
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{

aPb iff l(a) > r(b) + q + ε

aIb iff l(a) ≥ r(b) and l(b) ≥ r(a)

Such a triplet (l, r, ε) is called an ε-representation of the interval
order P ∪ I.

Definition 6.3. The ε-representation (l∗, r∗, ε) of the interval order P ∪
I is minimal iff for any other ε-representation (l, r, ε) we have, ∀a ∈ A,

l∗(a) ≤ l(a)
r∗(a) ≤ r(a)

Theorem 6.12. For any interval order P ∪ I, there exists a minimal
ε-representation (l∗, r∗, ε); the values of l∗ and r∗ are integral multiples
of ε.

6.2.4 PQI Interval Order. Ngo The and Tsoukias (Ngo The
and Tsoukiàs, 2005) have extended the results concerning the minimal
representation of interval orders to the case of PQI interval orders. After
presenting some real life examples which showed that it does not make
sense to have a minimal representation of a PQI interval orders, they
studied the problem through an instance of a PQI interval orders which
is a separated PQI interval orders (it corresponds to the presentation
of the condition ii of Theorem 6.5 where the indifference is separated
into three relations, the identity, a partial order and its inverse). They
obtained a result enabling to order the endpoints of intervals using an
ε-representation like in the case of interval orders and they proposed two
algorithms : the first one determining a general numerical representation
(in O(n2)) and the second one minimising the first one (in O(n)).

7. Extending preferences to sets

The problem of how to extend a preference relation over a set A of
“objects” (e.g., alternatives, opportunities, candidates, etc.) to the set
of all subsets of A is a very general problem inspired to many individual
and collective decision making situations. Consider, for instance, the
comparison of the stability of groups in coalition formation theory, or
the ranking of likely sets of events in the axiomatic analysis of subjective
probability, or the evaluation of equity of sets of rights inside a society,
or the comparison of assets in portfolio analysis. In those situations, and
in many others, a ranking of the single elements of a (finite) universal
set A is not sufficient to compare the subsets of A. On the other hand,
for many practical problems, only the information about preferences
among single objects is available. Consequently, a central question is:
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how to derive a ranking over the set of all subsets of A in a way that is
“compatible” with the primitive ranking over the single elements of A?

This question has been carried out in the tradition of the literature
on extending an order on a set A to its power set (denoted by 2A) with
the objective to axiomatically characterise families of ordinal preferences
over subsets (see, for instance, Barberà et al., 1984, Barberà et al., 2004,
Bossert, 1995, Bossert et al., 1994, Geist and Endriss, 2011, Fishburn,
1992, Kannai and Peleg, 1984, Kreps, 1979). In this context, an order
< on the power set 2A is required to be an extension of a primitive
order R on A. This means that the relative ranking of any two singleton
sets according to < must be the same as the relative ranking of the
corresponding alternatives according to R (i.e., for each a, b ∈ A, {a} <

{b} ⇔ aRb).
The interpretation of the properties used to characterise extensions is

deeply interconnected to the meaning that is attributed to sets. Accord-
ing to the survey of Barberà et al., 2004, the main contributions from
the literature on ranking sets of objects may be grouped in three main
classes of problems: 1) complete uncertainty, where a decision-maker is
asked to rank sets which are considered as formed by mutually exclusive
objects (i.e., only one object from a set will materialise), and taking into
account that he cannot influence the selection of an object from a set
(see, for instance, Barberà et al., 1984, Kannai and Peleg, 1984, Nitzan
and Pattanaik, 1984); 2) opportunity sets, where sets contain again mu-
tually exclusive objects but, in this case, a decision maker compares sets
taking into account that he will be able to select a single element from
a set (see, for example, Bossert et al., 1994, Kreps, 1979, Puppe, 1996,
Puppe, 1997); 3) sets as final outcomes, where each set contains objects
that are assumed to materialise simultaneously (if that set is selected;
for instance, see Bossert, 1995, Fishburn, 1992, Roth, 1985).

In order to better clarify the differences between these three classes
of problems, and to stress the importance of the nature of problems
in the selection of intuitive axioms, consider the following example. Let
A = {a, b} be a universal set of two alternatives. Suppose that a decision-
maker prefers a over b. Then under the complete uncertainty interpre-
tation, it is reasonable to expect that the decision-maker will prefer set
{a} to {a, b}, since the possibility that alternative b materialises does
exist if set {a, b} is selected. But under the interpretation of opportunity
sets, the two sets {a} and {a, b} could be simply considered indifferent.
Finally, under the interpretation of sets as final outcomes, if objects
are goods, one could guess that to have {a, b} is better, because the
decision-maker will receive both b and a. But the judgement depends on
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the nature of a and b and on possible effects of incompatibility between
the two objects.

Let R be a binary relation on the set A, being R the characteristic
relation of a preference structure 〈P, I〉. In the following, in order to rank
the elements of 2A, we use a binary relation < on the set 2A, being <

the characteristic relation of a preference structure 〈≻,∼〉. For example,
assume that a linear order R on the set A is given. For each S ∈ 2A\{∅},
we denote by max(S,R) the best element of S with respect to R such
that max(S)Rb for each b ∈ S, and by min(S,R) the worst element of S
with respect to R such that bRmin(S) for each b ∈ S. Perhaps the two
simplest extensions of R are the MAX extension and the MIN extension,
which are defined, respectively, as a binary relation <max on 2A such that
(S <max T ) ⇔ (max(S)Rmax(T )), and as a binary relation <min on 2A

such that (S <min T ) ⇔ (min(S)Rmin(T )), for each S, T ∈ 2A \ {∅}.

7.1 Complete uncertainty

In this section we introduce some axioms used in the literature in order
to characterise extensions under complete uncertainty. In this context,
a decision-maker is assumed to face a decision problem of establishing a
ranking over all possible sets of outcomes, provided that the objects of a
set are interpreted as mutually exclusive outcomes, and a final outcome is
selected at a later stage according to a random procedure. As an example
in this class, consider the problem faced by a policy maker that must
compare different public policies, where a public policy may bring, after
a certain period of time, to alternative (mutually exclusive) outcomes,
whose realisation may be influenced by unforeseen contingencies.

Historically, one of the most studied axioms for extensions in this
class of problems is the dominance property, that is referred to as the
Gärdenfors principle in Kannai and Peleg, 1984, in recognition of the use
of this axiom in Gärdenfors, 1976. This property requires that adding an
element which is better (worse) than all elements in a given set S ∈ 2A

according to a preference relation R on the universal set A, leads to a
set that is better (worse) than the original set according to preference
relation < over 2A.

Definition 7.1 (Dominance, DOM). Let R be a binary relation on A.
A binary relation < on 2A satisfies the dominance property (with respect
to R) iff for all S ∈ 2A and for all a ∈ A,

(i) [aPb for all b ∈ S] ⇒ S ∪ {a} ≻ S;
(ii) [bPa for all b ∈ S] ⇒ S ≻ S ∪ {a}.
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It is important to note that, if R on A is reflexive and antisymmetric
and < on 2A is reflexive and transitive, than the property of dominance
for < (w.r.t. R) implies that < is an extension of R (i.e., if aPb, then
the DOM property implies that {a} ≻ {a, b} and also {a, b} ≻ {b}; so,
by transitivity, {a} ≻ {b}).

Another important axiom which has extensively been used in the lit-
erature is the independence property (introduced by Kannai and Peleg,
1984 with the name of monotonicity axiom). It requires that if there
exists a strict preference between two sets S, T ∈ 2A and the same al-
ternative a ∈ A is added to both sets, then the ranking between the two
formed sets must exist (according to <) and cannot be reversed.

Definition 7.2 (Independence, IND). Let R be a binary relation on
A. A binary relation < on 2A satisfies the independence property (with
respect to R) iff for all S, T ∈ 2A, for all a ∈ A \ (S ∪ T ),

S ≻ T ⇒ (S ∪ {a}) < (T ∪ {a}).

The following proposition (Kannai and Peleg, 1984), says that if a
reflexive and transitive relation < on 2A satisfies DOM (i.e. < is an
extension of R on A) and IND, then any set A ∈ 2A \ {∅} is indifferent
(with respect to <) to the set consisting of the best element and the
worst element in A (according to the primitive linear order R).

Theorem 7.1. Let R a linear order on A and let < be a reflexive and
transitive relation on 2A. If < satisfies DOM and IND (w.r.t. R), then

S ≃ {max(S,R),min(S,R)}

for all S ∈ 2A \ {∅}.

For a proof of this theorem see Kannai and Peleg, 1984, Barberà
et al., 2004. Both DOM and IND are quite intuitive properties for ex-
tensions when objects are mutually exclusive. Surprisingly, the following
proposition shows that DOM and IND properties are incompatible when
completeness of the ranking on the 2A is assumed (and |A| ≥ 6).

Theorem 7.2. Let R be a linear order on A, with |A| ≥ 6. There exists
no total preorder < on 2A which satisfies DOM and IND.

For a proof of this theorem see Kannai and Peleg, 1984, Barberà et al.,
2004. Other (possibility or impossibility) results can be obtained by
modifying axioms IND and DOM (Barberà and Pattanaik, 1984,Bossert
et al., 2000, Geist and Endriss, 2011), or weakening the assumption that
< is a total preorder on 2A (Nitzan and Pattanaik, 1984, Pattanaik and
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Peleg, 1984). Many other extensions have been proposed and axiomati-
cally studied in the literature for problems under complete uncertainty
Barberà et al., 2004. In particular, we refer to the lexi-max and lexi-
min extensions (Pattanaik and Peleg, 1984, Bossert, 1995), which are
obtained, respectively, as the lexicographical generalizations of the MAX
and the MIN extensions, and the median-based extensions (Nitzan and
Pattanaik, 1984), where the relative ranking of the median alternatives
is used as the criterion for comparing two sets.

7.2 Opportunity sets

For this family of problems, the elements in 2A are interpreted as
sets of opportunities from which a decision-maker is allowed to select
precisely one element. Note that the substantial difference from the
context of complete uncertainty is that for opportunity sets the choice
of an outcome from a set is left to the decision-maker, whereas in the
context of complete uncertainty the selection procedure is based on a
random device that cannot be influenced by the decision-maker. An
example of opportunity set is the set of consumption bundles that a
consumer may afford given his budget and the market price of goods
in the bundle. Another example could be the sets of candidates (e.g.,
corresponding to different parties) that are available to a voter in a
particular election (Gravel, 2008).

In Kreps, 1979, a characterisation of the MAX extension <max for
opportunity sets12 is provided. The axiom of extension robustness used
in Kreps, 1979 requires that adding to a set A ∈ 2A a set B ∈ 2A that
is at most as good as A determines a set that is indifferent to A.

Definition 7.3 (Extension Robustness, EXT ROB). A binary relation
< on 2A satisfies the extension robustness property if and only if for all
S, T ∈ 2A,

S < T ⇒ S ∼ (S ∪ T ).

One of the main results in Kreps, 1979 is that a binary relation < on
2A satisfies the EXT ROB property if and only if there exists a linear
order R on A such that < coincides with <max, the MAX extension on
R.

The MAX extension has been subject to some criticism when used
to compare sets of opportunities. A certain branch of the economic lit-
erature, illustrated by the contributions of Baharad and Nitzan, 2000,
Bossert, 1996, Bossert et al., 1994, Dutta and Sen, 1996, Gravel, 1994,
Gravel, 1998, Gravel et al., 1997, Klemisch-Ahlert, 1993, Pattanaik and
Xu, 1990 have attempted to define rankings of opportunity sets without
explicitly refer to the future choice behavior of a decision-maker. The
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problem of ranking opportunity sets in this context amounts to define
what it means for a set of opportunities to offer more freedom of choice
than another. We do not enter here in the philosophical debate on the
concept of “freedom” (see, for instance, Gravel, 2008) and how its def-
inition may be related to the nature of different constraints (physical,
economical, legal, etc. Hayek, 1960, Gravel, 2008). Moreover, there is
no unity in the opportunity sets literature about the notion of freedom
to be used for ranking opportunity sets. According to Baujard, 2006,
different notions of freedom have been proposed: freedom of choice per
se, introduced by the seminal article of Pattanaik and Xu, 1990, where
the absence of preference information means that a measure of freedom
can only reflect quantitative aspects of opportunity sets; freedom as au-
tonomy, which keeps into account the autonomy of the decision-makers
in making choices and where the autonomy is defined according to the
independence of the choices of a decision-maker of his conditioning or of
the will of other decision-makers (Jones and Sugden, 1982); freedom as
the valuation of exercise of choice, where the significance of the choices
is evaluated according to some notion of diversity or similarity among al-
ternatives (e.g., see Pattanaik and Xu, 2000, Rosenbaum, 2000); negative
freedom, where ranking is aimed to represent the measure of absence of
coercion or oppression imposed by other decision-makers on individual
choices rather than any other constraints (Van Hees, 1998).

7.3 Sets as final outcomes

In this section, the problem of how to rank sets of elements that
materialise simultaneously is considered. For instance, consider the for-
mation of coalitions that should work jointly for a common goal, or the
election of new members to join an organisation, or many situations
where matching problems arise. A standard application of this kind of
problems is the college admissions problem (Roth, 1985, Gale and Shap-
ley, 1962), where colleges need to rank sets of students based on their
ranking of individual applicants.

We start with the introduction of the fixed cardinality ranking ap-
proach (Roth, 1985), where the number of elements in ranked sets is
fixed a priori. For instance, in the college admission problem, where the
objective is to evaluate individual students for the admissibility to the
first class, colleges are assumed to have a fixed quota q ∈ N specifying
the maximum number of students they can admit. Therefore, matching
analysis concentrates on the preferences of colleges over sets of students
of size q. In order to analyse this kind of problems, Roth, 1985 intro-
duced the property of responsiveness, which requires that if one element
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a in a set A is replaced by another element b, then the ranking between
the new set A \ {a} ∪ {b} and the original set A is determined by the
ranking between a and b according to R. In the following, we denote
by Aq the set of all subsets of A of cardinality q ∈ {1, . . . , |A|}, that is
Aq = {S ∈ 2A s.t. |S| = q}.

Definition 7.4 (Responsiveness, RESP). Let R be a binary relation
on the set A. A binary relation <q on Aq satisfies the responsiveness
property on Aq (and with respect to R) iff for all S ∈ Aq, for all a ∈ A

and for all b ∈ A \ S we have that

[

[S <q (S \ {a}) ∪ {b}] ⇔ aRb
]

and
[

[(S \ {a}) ∪ {b} <q S] ⇔ bRa
]

.

Clearly, the RESP property is aimed at preventing complementarity
effects. As shown in Bossert, 1995, the RESP property was used by
Bossert, 1995 to characterize13 the family of lexicographic rank-ordered
extensions, which generalise the idea of lexi-min and lexi-max orderings.

Another simple way to generate rankings of sets as final results is to
look for a utility representation of the ranking over sets (Fishburn, 1970,
Fishburn, 1967, Roberts, 1979). In particular, it is interesting to study
under which conditions an extension < of R is additively representable
(De Finetti, 1931, Fishburn, 1970).

A still different approach was introduced by Fishburn, 1992, where
the information available to establish an extension is not only a prim-
itive ranking on the universal set A, but also a signed ordering on the
“complements” of the alternatives in A is available. Looking at A as a
set of possible candidates for a committee, for instance, the model based
on signed ordering allows for the consideration of comparisons like “it is
more important to prevent a candidate a from being in the committee
than having candidate b in the committee”, or “leaving candidate a off
the committee is preferred to leaving b off the committee”, etc. Proper-
ties of signed orderings and conditions for their extensions in this richer
informational content are presented in Fishburn, 1992.

Recently, Moretti and Tsoukiàs, 2012, introduced a new class of or-
derings of sets as final results, and they called the elements of this class
Shapley extensions, for their attitude to preserve the ranking provided
by the Shapley value (Shapley, 1953; Moretti and Patrone, 2008) of asso-
ciated coalitional games. In general, Shapley extensions do not need to
satisfy the RESP property (even if an axiomatic characterization using
this property on the class of monotonic total preorders is provided in
Moretti and Tsoukiàs, 2012) and therefore they can be used to keep into
account possible complementarity effects among objects.
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7.4 An overview to related theories

The problem of electing a committee is also well-studied in voting
theory (Brams and Fishburn, 2002; Brams et al., 2007; Kilgour et al.,
2006). In such situations, voters face the problem to choose from a
finite set A of candidates a nonempty subset K of committee members.
For a general discussion on voting methods see, for example, Chevaleyre
et al., 2009 and Lang and Xia, 2009. Here we focus on the aspects of the
problem which are directly related to the extension of preference of voters
over single candidates to subsets of candidates. Following an example
illustrated by Uckelman, 2009, suppose that a group of voters are invited
to elect a committee of three persons from the set of five candidates
A = {1, 2, 3, 4, 5}. Now, suppose that a voter believes that 1 and 2
are the best candidates: we may represent this fact with a preference
structure 〈P, I〉 on A such that 1 I 2 P 3 I 4 I 5. Consequently, it
could be reasonable to assume that any committee containing one of
them is better than any committee with neither. In addition, suppose
also that such a voter also believes that 1 and 2 will fight if they are
on the committee together (so, any committee with both of them is
worse than any committee with neither). Thus, the voter would rank
the committees in the following way:

{1, 3, 4} ∼ {1, 3, 5} ∼ {1, 4, 5} ∼ {2, 3, 4} ∼ {2, 3, 5} ∼ {2, 4, 5}
≻ {3, 4, 5} ≻ {1, 2, 3} ∼ {1, 2, 4} ∼ {1, 2, 5}.

(1.13)
Which criterion can be adopted to extend a characteristic relation R

of the preference structure 〈P, I〉 on single candidates, in order to end
up in a characteristic relation < of the preference structure 〈≻,∼〉 on
committees? Put in a more general way, how to consider the fact that
committee membership for one candidate is not necessarily independent
of the question of committee membership for some other candidate? Sev-
eral approaches have been proposed in literature to extend preference of
voters. In Kilgour et al., 2006 and Brams et al., 2007, voters are assumed
to rank committees according to their Hamming distance from their top
preferences, where the top preference of a voter is the committee it most
prefers. Let n be the number of voters and k ≤ n be the number of seats
in the committee. A ballot is a binary k-vector, (p1, p2, . . . , pk), where
pi equals 0 or 1, for each i ∈ {1, . . . , k}. These binary vectors indicate
the approval or disapproval of each candidate by a voter. For instance,
ordering candidates increasingly, the committee {1, 3, 4} corresponds to
the ballot (1, 0, 1, 1, 0) (shortly, 10110). The Hamming distance d(p, q)
between two binary k-vectors p and q is the number of components on
which they differ. Note that the Hamming distance between {1, 3, 4} and
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{2, 4, 5} is d(10110, 01011) = 4, whereas the distance between {1, 3, 4}
and {1, 2, 3} is d(10110, 11100) = 2. Consequently, the ordering induced
by the Hamming distance from {1, 3, 4} is {1, 3, 4} ≻ {1, 2, 3} ≻ {2, 3, 4},
thus putting an optimal committee last and one least favoured commit-
tee in second place, which does not represent the true ranking 〈≻,∼〉
introduced in (1.13).

In financial theory, the goal of portfolio management is to allocate
resources and budgets to a group of assets (e.g., stocks, projects, initia-
tives etc.) that maximise the return and minimise the risk. Typically,
the answer to the investment problem is not the selection of the most
preferred assets: a diversified portfolio will likely have less risk than the
weighted average risk of its constituent assets (see, for instance, Samuel-
son, 1967). Therefore, the problem to extend preferences over single
assets to a preference over portfolios of assets is very important in practi-
cal investment problems. Since the pioneering paper of Markowitz, 1968,
where the classical model of Mean-Variance optimisation has been de-
veloped, many different techniques for portfolio management have been
proposed in the area of multi-criteria analysis (Zopounidis, 1999, Salo
et al., 2011).

We conclude this section with a short introduction to some applica-
tions in artificial intelligence which require the specification of prefer-
ences over sets of information items that a computer should be able to
process (desJardins et al., 2006). For instance, web search engines are
designed to retrieve information relative to a particular query on the
World Wide Web, presenting the retrieved information as a list of hits
(e.g., web pages, images, media files, etc.). Since search engines operate
according to predefined algorithms or procedures, efficient methods to
specify and compute the relevance of sets of hits to a specified query are
demanded.

In order to specify preferences of decision-makers on sets of items,
one possibility is to assume that preferences are numerical and to use
compact representation of such valuations as, for instance, the bidding
languages for combinatorial auctions (Nisan, 2000; Uckelman, 2009). An
alternative approach is provided by ordinal preferences and methods that
have been introduced in literature for elicitation and compact represen-
tation of ordinal preferences over combinatorial domains. A well-known
language for eliciting and representing ordinal preferences over combi-
natorial domains is known under the name of (Ceteris Paribus) CP-nets
(Boutilier et al., 2004b), which is tailored for representing preference re-
lations on the domain of each variable conditioned by the values of the
variables it depends on.
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More recently, richer (and more sophisticated) approaches have been
introduced: TCP-nets (Brafman et al., 2006), which extend CP-nets
by allowing statements of conditional importance between single vari-
ables; conditional preference theories (Wilson, 2004), which further ex-
tend TCP-nets; conditional importance networks (CI-nets) (Bouveret
et al., 2009), that also generalise TCP nets, with the further simplifica-
tion that CI-nets do not include any conditional preference statements
on the values of the variables.

Specific solution for information retrieval problems have been also
introduced. A new language has been developed in desJardins et al.,
2006, namely (Depth and Diversity) DD-pref, that allows for set-based
preference learning starting from the specification of few examples in a
numerical form and keeping into account possible effects of interaction
among single items. Effects of complementarity have been modelled
in Zhai et al., 2003 as a trading off “relevance” against “novelty” of
information; or by measuring the “marginal relevance” (Carbonell and
Goldstein, 1998), with the objective to minimise redundancy in a set of
information items corresponding to a certain query.

8. Logic of Preferences

The increasing importance of preference modelling immediately inter-
ested people from other disciplines, particularly logicians and philoso-
phers. The strict relation with deontic logic (see Åqvist, 1986) raised
some questions such as:
- does a general logic exist where any preferences can be represented and
used?
- if yes, what is the language and what are the axioms?
- is it possible, via this formalisation, to give a definition of bad or good
as absolute values?

It is clear that this attempt had a clear positivist and normative ob-
jective: to define the one well-formed logic that people should follow
when expressing preferences. The first work on the subject is the one by
Halldén, 1957, but it is Von Wright’s book (von Wright, 1963) that tries
to give the first axiomatisation of a logic of preferences. Inspired by this
work some important contributions have been made (Houthakker, 1965,
Chisholm and Sosa, 1966b, Chisholm and Sosa, 1966a, Rescher, 1967,
Hansson, 1966b, Hansson, 1966a). Influence of this idea can also be
found in Jeffrey, 1965 and Rescher, 1969, but in related fields (statistics
and value theory respectively). The discussion apparently was concluded
by von Wright, 1972, but Huber, 1974, Huber, 1979 continued on later
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on Halldin, 1986 and Widmeyer, 1988, Widmeyer, 1990 also worked on
this.

The general idea can be presented as follows. At least two questions
should be clarified: preferences among what? How should preferences be
understood? Von Wright (von Wright, 1963) argues that preferences can
be distinguished as extrinsic and intrinsic. The first ones are derived as a
reason from a specific purpose, while the second ones are self-referential
to an actor expressing the preferences. In this sense intrinsic preferences
are the expression of the actor’s system of values of the actor. Moreover,
preferences can be expressed for different things, the most general being
(following Von Wright) “states of affairs”. That is, the expression “a
is preferred to b” should be understood as the preference of a state
(a world) where a occurs (whatever a represents: sentences, objects,
relations etc.) over a state where b occurs. On this basis Von Wright
expressed a theory based on five axioms:

AW 1. ∀x, y p(x, y) → ¬p(y, x)
AW 2. ∀x, y, z p(x, y) ∧ p(y, z) → p(x, z)
AW 3. p(a, b) ≡ p(a ∧ ¬b,¬a ∧ b)
AW 4. p(a∨ b, c) ≡ p(a∧ b∧¬c,¬a∧¬b∧ c) ∧ p(a∧¬b∧¬c,¬a∧¬b∧
c) ∧ p(¬a ∧ b ∧ ¬c,¬a ∧ ¬b ∧ c)
AW 5. p(a, b) ≡ p(a ∧ c, b ∧ c) ∧ p(a ∧ ¬c, b ∧ ¬c)

The first two axioms are asymmetry and transitivity of the preference
relation, while the following three axioms face the problem of combi-
nations of states of affairs. The use of specific elements instead of the
variables and quantifiers reflects the fact that von Wright considered
the axioms not as logical ones, but as “reasoning principles”. This dis-
tinction has important consequences on the calculus level. In the first
two axioms, preference is considered as a binary relation (therefore the
use of a predicate), in the three “principles”, preference is a proposi-
tion. Von Wright does not make this distinction directly, considering
the expression aPb (p(a, b) in our notation) as a well-formed formula-
tion of his logic. However, this does not change the problem since the
first two axioms are referred to the binary relation and the others are
not. The difference appears if one tries to introduce quantifications; in
this case the three principles appear to be weak. The problem with this
axiomatisation is that empirical observation of human behavior provides
counterexamples of these axioms. Moreover, from a philosophical point
of view (following the normative objective that this approach assumed),
a logic of intrinsic preferences about general states of affairs should al-
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low to define what is good (the always preferred?) and what is bad (the
always not preferred?). But this axiomatisation fails to enable such a
definition.

Chisholm and Sosa (Chisholm and Sosa, 1966b) rejected axioms AW 3
to AW 5 and built an alternative axiomatisation based on the concepts of
“good” and “intrinsically better”. Their idea is to postulate the concept
of good and to axiomatise preferences consequently. So a good state of
affairs is one that is always preferred to its negation (p(a,¬a)); Chisholm
and Sosa, use this definition only for its operational potential as they
argue that it does not capture the whole concept of “good”). In this
case we have:

AS1. ∀x, y p(x, y) → ¬p(y, x)
AS2. ∀x, y, z ¬p(x, y) ∧ ¬p(y, z) → ¬p(x, z)
AS3. ∀x, y ¬p(x,¬x) ∧ ¬p(¬x, x) ∧ ¬p(y,¬y) ∧ ¬p(¬y, y) →
¬p(y, x) ∧ ¬p(x, y)
AS4. ∀x, y p(x, y) ∧ ¬p(y,¬y) ∧ ¬p(¬y, y) → p(x,¬x)
AS5. ∀x, y p(y,¬x) ∧ ¬p(y,¬y) ∧ ¬p(¬y, y) → p(x,¬x)

Again in this axiomatisation there are counterexamples of the axioms.
The assumption of the concept of good can be argued as it allows circu-
larities in the definitions of preferences between combinations of states
of affairs. This criticism leaded (Hansson, 1966b) to consider only two
fundamental, universally recognised axioms:

AH1. ∀x, y, z s(x, y) ∧ s(y, z) → s(x, z)
AH2. ∀x, y s(x, y) ∨ s(y, x)

where s is a “large preference relation” and two specific preference rela-
tions are defined, p (strict preference) and i (indifference):

DH1. ∀x, y p(x, y) ≡ s(x, y) ∧ ¬s(y, x)
DH2. ∀x, y i(x, y) ≡ s(x, y) ∧ s(y, x)

He also introduces two more axioms, although he recognises their
controversial nature:

AH3. ∀x, y, z s(x, y) ∧ s(x, z) → s(x, y ∨ z)
AH4. ∀x, y, z s(x, z) ∧ s(y, z) → s(x ∨ y, z)
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Von Wright in his reply (von Wright, 1972), trying to argue for his
theory, introduced a more general frame to define intrinsic “holistic”
preferences or as he called them “ceteris paribus” preferences. In this
approach he considers a set S of states where the elements are the ones
of A (n elements) and all the 2n combinations of these elements. Given
two states s and t (elementary or combinations of m states of S) you
have i (i = 2n−m) combinations Ci of the other states. You call an s-
world any state that holds when s holds. A combination Ci of states is
also a state so you can define it in the same way a Ci-world. Von Wright
gives two definitions (strong and weak) of preference:

1. (strong): s is preferred to t under the circumstances Ci iff every
Ci-world that is also an s-world and not a t-world is preferred to every
Ci-world that is also t-world and not s-world.
2. (weak): s is preferred to t under the circumstances Ci iff some Ci-
world that is an s-world is preferred to a Ci-world that is a t-world, but
a Ci-world that is a t-world that is preferred to a Ci-world that is an
s-world does not exist.

Now s is “ceteris paribus” preferred to t iff it is preferred under all
Ci. We leave the discussion to the interested reader, but we point out
that, with these definitions, it is difficult to axiomatise both transitivity
and complete comparability unless they are assumed as necessary truths
for “coherence” and “rationality” (see von Wright, 1972).

It can be concluded that the philosophical discussion about prefer-
ences failed the objective to give a unifying frame of generalised prefer-
ence relations that could hold for any kind of states, based on a well-
defined axiomatisation (for an interesting discussion see Mullen, 1979).
It is still difficult (if not impossible) to give a definition of good or bad in
absolute terms based on reasoning about preferences and the properties
of these relations are not unanimously accepted as axioms of preference
modelling. For more recent advances in deontic logic see Nute, 1997.

More recently, Von Wright’s ideas and the discussion about “logical
representation of preferences” attracted attention again. This is due to
problems found in the field of Artificial Intelligence field due to essen-
tially two reasons:
- the necessity to introduce some “preferential reasoning” (see Boutilier,
1994, Boutilier et al., 1999, Brafman and Friedman, 2001, Doyle, 1989,
Doyle, 1990, Doyle, 1994, Kraus et al., 1990, Lehmann, 2001, Shoham,
1987);
- the large dimension of the sets to which such a reasoning might apply,
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thus demanding a compact representation of preferences (see Benferhat
and Kaci, 2001, Benferhat et al., 2002a, Benferhat et al., 2002b, Domsh-
lak and Brafman, 2002, Lafage and Lang, 2000)

Even if these motivations may appear different, the link between them
is surprisingly strong as they use related languages. In fact, in both
of these cases, the idea is to propose a language allowing a succinct
representation of the problem without enumerating a prohibitive number
of alternatives and being as close as possible to the way that a decision
maker expresses his preferences in a natural language. The two common
approaches consist on the use of the propositional logic or a graphical
language for the representation of preferences which may be given as an
ordinal data (generally a preorder) or as an utilitarian preferences.

Concerning the propositional logic, a survey may be found in Lang,
2006. In this field some authors have been interested on the use of
penalties or weigthed bases with propositional formulae (see de Saint-
Cyr et al., 1994, Pinkas, 1995, Had92, Langetal94, Benferhat et al., 2001,
Chevaleyre et al., 2006, Coste-Marquis et al., 2004, Öztürk and Marquis,
2009, among others) others have proposed the use of distance between
logical worlds (see Lafage and Lang, 2000, Lafage and Lang, 2001).

Graphical languages have been proposed for qualitative and quanti-
tative preferences specially when the set of alternatives is defined as the
cartesian product of finite domains and when there are some interac-
tions between criteria. Generalized additive decomposable (GAI ) utility
functions have been introduced by Fishburn, 1970 in order to represent
interaction between criteria by preserving some decompasability of the
model. One of the earliest studies to exploit separable preferences in a
graphical model is the extension of influence diagrams (see J. A. Tatman
and R. D. Shachter, 1990), then Bacchus and A. J. Grove, 1995 have in-
troduced the GAI-nets, the first graphical model based on conditional
independence structure. The elicitation in GAI-nets have been adressed
in Braziunas and Boutilier, 2005, Braziunas and Boutilier, 2007 and Ch.
Gonzales and Perny, 2004. Another important research line is about
CP-nets which propose a qualitative graphical representation of pref-
erences interpreting conditional independence of preference statements
under a ceteris paribus (all else being equal) principle. The idea of using
ceteris paribus principale is due to Von Wright (vonWright63) and have
became to be used by AI researches for twenty years, firstly by Doyle (
Doyle, 1989, Doyle, 1990), and then others have been interested in dif-
ferent aspects such as elicitation, consistency, computation of a result, ...
(for more details see Boutilier et al., 2004a, Domshlak, 2002, Goldsmith
et al., 2005).
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9. Conclusion

We hope that this chapter on preference modelling, gave the non-
specialist reader a general idea of the field by providing a list of the
most important references of a very vast and technical literature. In
this chapter, we have tried to present the necessary technical support
for the reader to understand the following chapters. One can note that
our survey does not interpret all the questions related to preference mod-
elling. Let us mention some of them:
- How to get and validate preference information (von Winterfeldt and
Edwards, 1986), Bana e Costa and Vansnick, 1999
- The relation between preference modelling and the problem of mean-
ingfulness in measurement theory (Roberts, 1979)
- Statistical analysis of preferential data (Coombs, 1964, Green et al.,
1988)
- Interrogations on the relations between preferences and the value sys-
tem, and the nature of these values( Broome, 1991, Cowan and Fishburn,
1988, Tsoukiàs and Vincke, 1992, von Wright, 1963).

Notes

1. we can use the word action instead of alternative

2. Lets take an example: Imagine that we have to choose one car between two. We have
to know the performance of each car in order to establish the relation of preference:

in the first case, the performance of each car is known and noted between 1 and
10 (p(car1) = 8 and p(car2) = 5); the relation of preference is known too (car1 is
preferred to car2: car1Pcar2 (µ(car1Pcar2) = 1))

in the second case, the performance of each car is known and noted between 1 and
10 (p(car1) = 8 and p(car2) = 7); we are not sur about the preference relation that
is why the relation of preference is fuzzy (µ(car1Pcar2) = 0.75)

in the third case, the performance of each car is fuzzy (in this case the performances
of each car will be defined by fuzzy numbers; in this case we can use triangular or
trapezoidal fuzzy number to represent the performance); the relation of preference is
crisp (car1 is preferred to car2: car1Pcar2 (µ(car1Pcar2) = 1))

in the fourth case, the performance of each car is fuzzy (in this case the performances
of each car will be defined by fuzzy numbers); the preference relation is also fuzzy
((µ(car1Pcar2) = 0.75))

3. a suitable one can be the complement operator defined: n(µ(x)) = 1− µ(x)

4. to have a partition of the set A × A, the inverse of the asymmetric relation must be
considered too.

5. While several authors prefer using both of them, there are others for which one is
sufficient. For example Fishburn does not require the use of preference structures with a
characteristic relation
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6. one can be indifferent between a cup of tea with n milligrams of sugar and one with
n+1 milligrams of sugar, if one admits the transitivity of the indifference, after a certain step
of transitivity, one will have the indifference between a cup of tea with n milligram of sugar
and that with n + N milligram of sugar with N large enough, even if there is a very great
difference of taste between the two; which is contradictory with the concept of indifference

7. this value can be given directly by the decision-maker or calculated by using different
concepts, such values (indices) are widely used in many MCDA methods such as ELECTRE,
PROMETHEE (?,?)

8. the function g defines an ordinal scale for both structures

9. but in this case the scale defined by g is more complex than an ordinal scale

10.when it is a partial order of dimension 2, the detection can be made in a polynomial
time

11.One can imagine that l(a) represents the evaluation of the alternative a (g(a)) which
is the left limit of the interval and r(a) represents the value of (g(a)+q(a)) which is the right
limit of the interval. One can remark that a semi-order is an interval order with a constant
length.

12.The MAX extension is also known, in the context of opportunity sets, as the indirect-

utility criterion, i.e. the criterion to rank sets is the best possible choice that can be made.

13.Together with another property called fixed-Cardinality neutrality, saying that the
labelling of the alternatives is irrelevant in establishing the ranking among sets of fixed
cardinality q.
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Barthélémy, J.-P. and Monjardet, B. (1981). The median procedure in
cluster analysis and social choice theory. Mathematical Social Sci-
ences, pages 235–267.

Baujard, A. (2006). Conceptions of freedom and ranking opportunity
sets. a typology. Technical report, CREM-CNRS.

Beardon, A.F., Candeal, J.C., Herden, G., Induráin, E., and Mehta,
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S lowiński, R. (1998). Fuzzy sets in decision analysis, operations research
and statistics. Kluwer Academic, Dordrecht.

Subiza, B. (1994). Numerical representation of acyclic preferences. Jour-
nal of Mathematical Psychology, 38:467–476.

Tanguiane, A. S. (1991). Aggregation and Representation of Preferences.
Springer-Verlag, Berlin.

Tarski, A. (1954). Contributions to the theory of models i, ii. Indaga-
tiones Mathematicae, 16:572–588.

Tarski, A. (1955). Contributions to the theory of models iii. Indagationes
Mathematicae, 17:56–64.

Thomason, R. and Horty, J. (1987). Logics for inheritance theory. In Re-
infrank, M., de Kleer, J., Ginsberg, M.L., and Sandewall, E., editors,
Non-Monotonic Reasoning, pages 220–237. Springer Verlag, Berlin.
LNAI 346.

Trotter, W.T. (1992). Combinatorics and partially ordered sets. John
Hopkins University Press, Baltimore.
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Tsoukiàs, A. (1997). Sur la généralisation des concepts de concordance et
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