An operator for graph parameters between α and $\bar{\chi}$ The sandwich line graph

Denis Cornaz

Université Blaise Pascal-Clermont-Ferrand II

Introduction

Introduction (α)

Introduction $(\bar{\chi})$

Introduction

We will study the "sandwich property" of the edge graph introduced in:
D.C., V. Jost: A one-to-one correspondence between colorings and stable sets. Oper. Res. Lett. 36(6) 673-676 (2008)

The fractional clique covering number $\bar{\chi}_{f}(G)$

Let $G=(V, E)$ be a graph with clique-set \mathcal{K}.

$$
\begin{aligned}
\alpha(G) & =\max \left\{\sum_{v \in V} x_{v}: \quad \sum_{v \in K} x_{v} \leq 1, \forall K \in \mathcal{K} ; \quad x \in\{0,1\}^{V}\right\} \\
& \leq \max \left\{\sum_{v \in V} x_{v}: \sum_{v \in K} x_{v} \leq 1, \forall K \in \mathcal{K} ; \quad x \geq 0\right\} \\
& =\min \left\{\sum_{K \in \mathcal{K}} y_{K}: \sum_{K \in \mathcal{K}} y_{K} \geq 1, \forall v \in V ; \quad y \geq 0\right\} \\
& \leq \min \left\{\sum_{K \in \mathcal{K}} y_{K}: \sum_{K \in \mathcal{K}} y_{K} \geq 1, \forall v \in V ; \quad y \in\{0,1\}^{\mathcal{K}}\right\} \\
& =\bar{\chi}(G)
\end{aligned}
$$

These three parameters are NP-hard to compute:

$$
\alpha(G) \leq \bar{\chi}_{f}(G) \leq \bar{\chi}(G)
$$

The Lovász theta number $\vartheta(G)$

Let $G=(V, E)$ be a graph and let \mathcal{M}_{G} be the set of symmetric $V \times V$ matrices, the trace of which is 1 , with $M_{u, v}=0$ for distinct adjacent u, v, and which are positive semidefinite.

$$
\begin{aligned}
\alpha(G) & \leq \max \left\{\sum_{u, v \in V} M_{u, v}: \quad M \in \mathcal{M}_{G}\right\} \\
& \leq \bar{\chi}_{f}(G) \\
& \leq \bar{\chi}^{(G)}
\end{aligned}
$$

The Lovász theta number $\vartheta(G)$ can be computed in polynomial time (ε approx).

Example : The 5-cycle

If $G=C_{5}$, then

$$
\begin{aligned}
\alpha\left(C_{5}\right) & =2 \\
& <\sqrt{5} \\
& =\vartheta\left(C_{5}\right) \\
& <5 / 2 \\
& =\bar{\chi}_{f}\left(C_{5}\right) \\
& <3 \\
& =\bar{\chi}\left(C_{5}\right)
\end{aligned}
$$

$(\sqrt{5} \simeq 2.236)$

Other polynomial sandwich functions

$$
\vartheta^{\prime}(G)
$$

R.J. McEliece, E.R. Rodemich, H.C. Rumsey Jr.: The Lovász bound and some generalizations, J. Combin. Inform. System Sci. 3 134-152 (1978) and
A. Schrijver: A comparison of the Delsarte and Lovász bounds, IEEE Transactions on Information Theory IT-25 425-429 (1979)

$$
\vartheta^{+}(G)
$$

M. Szegedy: A note on the Theta number of Lovász and the generalized Delsarte bound, FOCS 36-39 (1994)

$$
\vartheta^{+\triangle}(G)
$$

P. Meurdesoif: Strengthening the Lovász Theta(G) bound for graph coloring. Math. Program. 102(3) 577-588 (2005)

$$
\vartheta^{\prime} \triangle(G)
$$

I. Dukanovic, F. Rendl: Semidefinite programming relaxations for graph coloring and maximal clique problems, Math. Program. 109(2-3) 345-365 (2007)

The $\bar{\chi}_{f}(G)$ barrier

The polynomial sandwich functions satisfy:

$$
\alpha(G) \leq \vartheta^{\prime \Delta}(G) \leq \vartheta^{\prime}(G) \leq \vartheta(G) \leq \vartheta^{+}(G) \leq \vartheta^{+\Delta}(G) \leq \bar{\chi}_{f}(G) \leq \bar{\chi}(G)
$$

There is no polynomial graph parameter β with $\frac{|V(G)|}{\omega(G)} \leq \beta(G) \leq \bar{\chi}(G)$ unless $\mathrm{P}=$ NP.
\Rightarrow no poly β with $\bar{\chi}_{f} \leq \beta \leq \bar{\chi}$
N. Gvozdenović and M. Laurent: The operator Ψ for the Chromatic Number of a Graph, SIAM J. Optim., 19(2) 592-615 (2008)

$$
\begin{array}{rllc}
\Psi: \quad\left[\frac{|V|}{\chi}, \bar{\chi}\right] & \rightarrow & {[\alpha, \bar{\chi}]} \\
{\left[\frac{|V|}{\chi}, \alpha\right]} & \rightarrow & \{\bar{\chi}\} \\
{\left[\frac{|V|}{\omega}, \bar{\chi}\right]} & \rightarrow & \{\alpha\} \\
\vartheta & \mapsto & \lceil\vartheta\rceil \\
\vartheta^{\prime} & \mapsto & \left\lceil\vartheta^{+}\right\rceil
\end{array}
$$

$$
\Psi_{\beta}(G):=\min _{t \in \mathbb{N}} t \quad \text { s.t. } \beta\left(K_{t} \square \bar{G}\right)=|V(G)|
$$

$$
\Psi_{\beta}(G):=\min _{t \in \mathbb{N}} t \quad \text { s.t. } \beta\left(K_{t} \square \bar{G}\right)=|V(G)|
$$

Line graph of triangle free graphs

The line-graph $L(G)$ of G is the graph with node-set the edge-set of G and where two nodes e, f are nonadjacent in $L(G)$ if they correspond to two disjoint edges of G.

If $L(G)$ is the line-graph of a triangle-free G, then :

$$
\begin{aligned}
& |V(G)|-\alpha(G)=\bar{\chi}(L(G)) \\
& |V(G)|-\bar{\chi}(G)=\alpha(L(G))
\end{aligned}
$$

Illustrating $|V(G)|-\alpha(G)=\bar{\chi}(L(G))$

Illustrating $|V(G)|-\bar{\chi}(G)=\alpha(L(G))$

Illustrating $|V(G)|-\bar{\chi}(G)=\alpha(L(G))$

Illustrating $|V(G)|-\bar{\chi}(G)=\alpha(L(G))$

Illustrating $|V(G)|-\bar{\chi}(G)=\alpha(L(G))$

Line graph of triangle free graphs

If $L(G)$ is the line-graph of a triangle-free G, then :
(P1) $|V(G)|-\alpha(G)=\bar{\chi}(L(G))$;
(P2) $|V(G)|-\bar{\chi}(G)=\alpha(L(G))$;

Line graph of triangle free graphs

If $L(G)$ is the line-graph of a triangle-free G, then :
(P1) $|V(G)|-\alpha(G)=\bar{\chi}(L(G))$;
(P2) $|V(G)|-\bar{\chi}(G)=\alpha(L(G))$;
and it follows from (P1)-(P2) that
(P3) If $\alpha \leq \beta \leq \bar{\chi}(\forall G)$ and if G is triangle-free then,

$$
\alpha(G) \leq|V(G)|-\beta(L(G)) \leq \bar{\chi}(G)
$$

Line graph of triangle free graphs

If $L(G)$ is the line-graph of a triangle-free G, then :
(P1) $|V(G)|-\alpha(G)=\bar{\chi}(L(G))$;
(P2) $|V(G)|-\bar{\chi}(G)=\alpha(L(G))$;
and it follows from (P1)-(P2) that
(P3) If $\alpha \leq \beta \leq \bar{\chi}(\forall G)$ and if G is triangle-free then,

$$
\alpha(G) \leq|V(G)|-\beta(L(G)) \leq \bar{\chi}(G)
$$

$\alpha \leq \beta \quad \Rightarrow \quad|V(G)|-\beta(L(G)) \leq|V(G)|-\alpha(L(G))=\bar{\chi}(G)$.

Line graph of triangle free graphs

If $L(G)$ is the line-graph of a triangle-free G, then :
$(\mathrm{P} 1)|V(G)|-\alpha(G)=\bar{\chi}(L(G)) ;$
(P2) $|V(G)|-\bar{\chi}(G)=\alpha(L(G))$;
and it follows from (P1)-(P2) that
(P3) If $\alpha \leq \beta \leq \bar{\chi}(\forall G)$ and if G is triangle-free then,

$$
\alpha(G) \leq|V(G)|-\beta(L(G)) \leq \bar{\chi}(G)
$$

$\alpha \leq \beta \quad \Rightarrow \quad|V(G)|-\beta(L(G)) \leq|V(G)|-\alpha(L(G))=\bar{\chi}(G)$.
$\beta \leq \bar{\chi} \quad \Rightarrow \quad \alpha(G)=|V(G)|-\bar{\chi}(L(G)) \leq|V(G)|-\beta(L(G))$.

Sandwich line graphs

A sandwich line graph $S(G)$ of G is an edge graph of G such that:
(i) $S(G)=L(G)$ if G is triangle free;
(ii) $S(G)$ satisfies (P1), (P2) and (P3) for any graph G.

Now G has triangle

Now G has triangle

Restoring the sandwich property

Restoring the sandwich property

Restoring the sandwich property

A sandwich line graph $S(G)$ of G

Illustrating $|V(G)|-\alpha(G) \geq \bar{\chi}(S(G))$

Illustrating $|V(G)|-\alpha(G) \leq \bar{\chi}(S(G))$

Illustrating $|V(G)|-\bar{\chi}(G) \geq \alpha(S(G))$

Illustrating $|V(G)|-\bar{\chi}(G) \geq \alpha(S(G))$

$$
\text { Illustrating }|V(G)|-\bar{\chi}(G) \leq \alpha(S(G))
$$

Illustrating $|V(G)|-\bar{\chi}(G) \leq \alpha(S(G))$

Illustrating $|V(G)|-\bar{\chi}(G) \leq \alpha(S(G))$

Theorem

Let $\beta(G)$ be a graph parameter with the following sandwich property:

$$
\alpha(G) \leq \beta(G) \leq \bar{\chi}(G)
$$

for every graph G.
Let $G=(V, E)$ be a simple graph.
Let $\sigma: V \leftrightarrow\{1,2, \ldots,|V|\}$ and let $S\left(G_{\sigma}\right)$ be the graph with node-set the edge-set of G and where two nodes e, f are nonadjacent in $S\left(G_{\sigma}\right)$ iff they are disjoint edges in G or $e=u v, f=u w$ but $v w \in E$ and $\sigma(u)<\min \{\sigma(v), \sigma(w)\}$.

Then

$$
\alpha(G) \leq|V(G)|-\beta\left(S\left(G_{\sigma}\right)\right) \leq \bar{\chi}(G), \quad \forall \sigma
$$

futhermore, if $\beta(G)=\bar{\chi}(G)$, then the left inequality holds with equality; and if $\beta(G)=\alpha(G)$, then the right inequality holds with equality.

A corollary

Denote $S^{0}(G)=G$ and let $S^{i+1}(G)$ be a sandwich line graph of $S^{i}(G)$.
Thus, for any sandwich function β and any integer $k \geq 1$, one has

$$
\alpha(G) \leq(-1)^{k} \beta\left(S^{k}(G)\right)-\sum_{i=0}^{i=k-1}(-1)^{i+1}\left|V\left(S^{i}(G)\right)\right| \leq \bar{\chi}(G)
$$

Particular example : numerical values with $G=k C_{5}$

k	$\alpha=\Psi_{\bar{\chi}_{f}}$	ϑ	Ψ_{ϑ}	$\bar{\chi}_{f}=\Phi_{\bar{\chi}_{f}}$	Φ_{ϑ}	$\bar{\chi}$
1	2	2.236	3	2.5	2.764	3
2	4	4.472	5	5	5.528	6
15	30	33.54	34	37.5	41.46	45
100	200	223.6	224	250	276.4	300

where Ψ and Φ are the monotone nonincreasing operators

$$
\begin{aligned}
\Psi: \quad\left[\frac{|V|}{\chi}, \bar{\chi}\right] & \rightarrow[\alpha, \bar{\chi}] \\
\beta & \mapsto
\end{aligned} \Psi_{\beta}(G)=\min _{t \in \mathbb{N}} t \text { s.t. } \beta\left(K_{t} \square \bar{G}\right)=|V(G)|
$$

The End

Thank You

