
Submodular Function Minimization
Based on Chapter 7 of the Handbook on Discrete Optimization [61]

Version 4∗

S. Thomas McCormick †

June 19, 2013

Abstract

This survey describes the submodular function minimization problem (SFM); why it is
important; techniques for solving it; algorithms by Cunningham [8, 12, 13], by Schrijver [76]
as modified by Fleischer and Iwata [23], by Iwata, Fleischer, and Fujishige [50], by Iwata
[46, 48], by Orlin [71], and by Iwata and Orlin [52] for solving it; and extensions of SFM to
more general families of subsets.

1 Introduction

We start with a guide for the reader. If you don’t know about submodularity, you should start
with this Introduction. If you are already familiar with submodular functions but don’t know
the basic tools needed to build the algorithms, start with Section 2. If you just want to learn
about recent algorithms, start with Section 3. Section 4 has a handy summary table comparing
the main algorithms, and Section 5 covers some extensions of submodular flow minimization.
This survey assumes some familiarity with network flow concepts, particularly those of Max
Flow; see, e.g., Ahuja, Magnanti, and Orlin [1] for coverage of these.

1.1 What is Submodularity?

Suppose that our factory has the capability to make any subset of a given set E of potential
products. If we decide to produce subset S ⊆ E of products, then we must pay a setup cost
c(S) to make the factory ready to produce S. This setup cost is a particular instance of a set
function: Given a finite set E (the ground set), the notation 2E stands for the family of all
subsets of E. Then a scalar-valued function f : 2E → R is called a set function. We write f(S)
for the value of f on subset S ⊆ E, and use n for |E|.
∗Version 1 was published as [61] in 2006. Version 2 (May 2006) corrected some errors in the description of

Hybrid. Version 3 (August 2007) corrected further Hybrid errors; added material on Orlin’s Algorithm, on SFM
on ring families, and on finding all SFM solutions; and updated and extended references. Version 3a (June 2008)
clarified how the algorithms work on ring families and updated computational results. Version 4 (May 2013) added
material on the Iwata-Orlin Algorithm, fixed some minor errors, and rearranged and modified some material.
†Sauder School of Business, University of British Columbia, Vancouver, BC V6T 1Z2 Canada. Supported by

an NSERC Operating Grant, and by a visit to LIMOS, Université Blaise Pascal, Clermont-Ferrand.

1



Suppose that we have tentatively decided to produce subset S in our factory, and that we
are considering whether to add product e /∈ S to our product mix. Then the incremental (or
marginal) setup cost that we would have to pay is c(S ∪ {e}) − c(S). We deal with a lot of
singleton sets, so to unclutter things we use the standard notation that S + e means S ∪ {e},
S − e means S − {e}, and f(e) means f({e}). In this notation the incremental cost of adding e
is c(S + e)− c(S). We use S ⊂ T to mean that S ⊆ T but S 6= T .

Now economics suggests that in most real-world situations, this incremental cost is a non-
increasing function of S. That is, adding new product e to a larger set should produce an
incremental cost no more than adding e to a smaller set. In symbols, for a general function f
we should have

for all S ⊂ T ⊂ T + e, f(S + e)− f(S) ≥ f(T + e)− f(T ). (1)

When any set function f satisfies (1), then we say that f is submodular. The connection
between submodularity and economics suggested here is very deep; many more details about
this are available in Topkis’ book [83].

We say that f is supermodular if −f is submodular, and modular if it is both sub- and
supermodular. It is easy to see that f is supermodular iff it satisfies (1) with the inequality
reversed, and modular iff it satisfies (1) with equality. The canonical (and essentially only)
example of a modular function is derived from a vector v ∈ RE : For S ⊆ E, define v(S) =∑

e∈S ve (so that v(∅) = 0), and then v(S) is modular. For example, if πe is the net present
value (NPV) of profits expected from producing product e (the value of the future stream of
profits from producing e discounted back to the present), then π(S) is the total NPV expected
from producing subset S, and π(S) − c(S) is the present value of net profits expected from
producing S. Note that, because π(S) is modular and c(S) is submodular, π(S) − c(S) is
supermodular.

There is an alternate and more standard definition of submodularity that is sometimes more
useful for proofs:

for all X, Y ⊆ E, f(X) + f(Y ) ≥ f(X ∪ Y ) + f(X ∩ Y ). (2)

We now show that these definitions are equivalent:

Lemma 1.1 Set function f satisfies (1) if and only if it satisfies (2).

Proof: To show that (2) implies (1), apply (2) to the sets X = S + e and Y = T to get
f(S+ e) + f(T ) ≥ f((S+ e)∪T ) + f((S+ e)∩T ) = f(T + e) + f(S), which is equivalent to (1).

To show that (1) implies (2), first re-write (1) as f(S + e) − f(T + e) ≥ f(S) − f(T ) for
S ⊂ T ⊂ T +e. Now, enumerate the elements of Y −X as e1, e2, . . . , ek and note that, for i < k,
[(X ∩Y )∪{e1, e2, . . . , ei}] ⊂ [X ∪{e1, e2, . . . , ei}] ⊂ [X ∪{e1, e2, . . . , ei}]+ei+1, so the re-written
(1) implies that

f(X ∩ Y )− f(X) ≤ f((X ∩ Y ) + e1)− f(X + e1)
≤ f((X ∩ Y ) ∪ {e1, e2})− f(X ∪ {e1, e2})
. . .

≤ f((X ∩ Y ) ∪ {e1, e2, . . . , ek})− f(X ∪ {e1, e2, . . . , ek})
= f(Y )− f(X ∪ Y ),

2



and this is equivalent to (2).

Here are some examples of submodular functions that arise often in practice:

Example 1.2 Suppose that G = (N,A) is a directed graph with nodes N and arcs A. For
S ⊆ N define δ+(S) to be the set of arcs i → j with i ∈ S but j /∈ S; similarly, δ−(S) is the
set of i→ j with i /∈ S and j ∈ S, and δ(S) = δ+(S) ∪ δ−(S) (for an undirected graph, δ(S) is
the set of edges with exactly one end in S). Recall that for w ∈ RA, notation w(δ+(S)) means∑

e∈δ+(S)we. Then if w ≥ 0, w(δ+(S)) (or w(δ−(S)), or w(δ(S))), is a submodular function on
ground set N .

Example 1.3 Suppose that M = (E, r) is a matroid (see Welsh [85] for further details) on
ground set E with rank function r. Then r is a submodular function on ground set E. More
generally, if r is a set function on E, we call r a polymatroid rank function if (i) r(∅) = 0,
(ii) S ⊆ T ⊆ E implies r(S) ≤ r(T ) (r is increasing), and (iii) r is submodular. Then the
polyhedron {x ∈ RE | x ≥ 0 and x(S) ≤ r(S) for all S ⊆ E} is the associated polymatroid. For
example, let G = (N,A) be a Max Flow network with source s, sink t, and capacities u ∈ RA.
Define E = {i → j ∈ A | i = s} = δ+(s), the subset of arcs with tail s. Then {xsj | x is a
feasible flow in G} (i.e., the projection of the set of feasible flows onto E) is a polymatroid on
E. If S is a subset of the arcs with tail s, then r(S) is the max flow value when we set the
capacities of the arcs in E − S to zero.

Example 1.4 Suppose that we have a set L of potential locations for warehouses. These ware-
houses are intended to serve the set R of retail stores. There is a fixed cost ϕl for opening a
warehouse at l ∈ L, and the benefit to us of serving retail store r ∈ R from l ∈ L is brl (where
brl = −∞ if location l is too far away to serve store r). Thus if we choose to open warehouses
S ⊆ L, our net benefit would be f(S) =

∑
r∈R maxl∈S brl −

∑
l∈S ϕl. This is a submodular

function.

Example 1.5 Suppose that we have a system of queues (waiting lines) E = {1, 2, . . . , n}. For
queue i, let xi denote its throughput (the amount of work it processes) under some control policy
(allocation of resources to the queues). Then the set of feasible throughputs is some set X in
Rn. We say that the system satisfies conservation laws if the maximum amount of work possible
from the set of queues S, namely f(S) = maxx∈X

∑
i∈S xi, depends only on whether the queues

in S have priority over other queues, and not on the priority order within S. Shanthikumar and
Yao [78] show that if the system satisfies conservation laws, then f(S) is submodular. Since any
feasible x is non-negative, and this f is clearly increasing, then X is the polymatroid associated
with f .

For some applications f is not defined on all subsets of E. Suppose that F ⊆ 2E is a family of
subsets of E. If F is closed under unions and intersections, then we say that F is a ring family,
or a distributive lattice, or a lattice family. If F is a ring family and we require (2) to hold only
for members of F , then we say that f is ring submodular. If instead we require that S ∩ T and
S ∪ T are also in F only for all S, T ∈ F with S ∩ T 6= ∅, then we call F an intersecting family.
If F is an intersecting family and we require (2) to hold only for members of F with non-empty
intersection, then we say that f is intersecting submodular. Finally, if we require that S ∩T and
S ∪ T are also in F only for all S, T ∈ F with S ∩ T 6= ∅ and S ∪ T 6= E, then we call F a

3



crossing family. If F is a crossing family and we require (2) to hold only for members of F with
non-empty intersection and whose union is not E, then we say that f is crossing submodular.
We consider more general families in Section 5.3.

Here are two examples of these specialized submodular functions:

Example 1.6 Continuing with our introductory factory example, suppose that we have some
precedences among products expressed by a directed graph G = (E,C) on node set E, where arc
i → j ∈ C means that any set containing product i must also contain product j. Then feasible
sets are those S ⊆ E such that δ+(S) = ∅, called closed sets. It is easy to see that these sets form
a ring family, and reasonable to assume that the cost function c(S) should be ring submodular
on this family.

When dealing with ring families it is necessary to have some sort of compact representation,
as otherwise SFM would be hopeless: it could take an exponential number of calls to E to
even discover some S ∈ D. If D is a ring family, then Smin =

⋂
S∈D S and Smax =

⋃
S∈D S

also belong to D. When Smin 6= ∅ or Smax 6= E, then consider the reduced ground set E′ =
E − Smin − (E − Smax) and ring family D′ = {S ⊆ E | S ∪ Smin ∈ D}, so that S ∈ D iff
S − Smin ∈ D′ and ∅, E′ ∈ D′. Thus we don’t lose anything by using E′ and D′ in place of
E and D, and so we henceforth assume that ∅, E ∈ D for our ring families. Then Birkhoff’s
Representation Theorem [7] says that all ring families have a representation as the family of
closed sets of a directed graph (E,C). This is easy to see: Suppose that D is a ring family.
Define C via i → j ∈ C iff j belongs to every S ∈ D s.t. i ∈ S, and then indeed the closed
sets of (E,C) are D. Conversely, given (E,C), its closed sets form a ring family. When we are
dealing algorithmically with a ring family D, we henceforth assume that we are given (E,C) as
a representation of D. Section 5.2 gives a general method for adapting an SFM algorithm for
2E to work on a ring family D.

Example 1.7 Suppose that we have a connected directed graph G = (N,A) with node r ∈ N
designated as the root, and weights w ∈ RA. We want to find a minimum weight arborescence
rooted at r (spanning tree such that exactly one arc enters every node besides r, so that the unique
path from r to any other node is a directed path). It can be shown (see [77, Section 52.4]) that
one way to formulate this as an integer program as follows: Make a decision variable xa for each
a ∈ A with the intended interpretation that xa = 1 is a is included in the arborescence, and 0
otherwise. Let T be the family of non-empty subsets of N not containing r. Then the family of
constraints x(δ−(S)) ≥ 1 for all S ∈ T expresses that each such subset should have at least one
arc entering it. The family T is intersecting, and the right-hand side f(S) = 1 for all S ∈ T
is intersecting supermodular. Note that this is a very common way for submodular functions to
arise, as right-hand sides in integer programming formulations (and their linear relaxations) of
combinatorial problems.

It is useful to have a mental model of submodularity to better understand it. Definition (1)
tends to suggest that submodularity is related to concavity. Indeed, suppose that g : R→ R is
a scalar function, and set function f is defined by f(S) = g(|S|). Then it is easy to show that
f is submodular iff g is concave.

A deeper result by Lovász [58] suggests instead that submodularity is related to convexity.
For S ⊆ E define the incidence vector χ(S) of S as χ(S)e equals 1 if e ∈ S, and 0 otherwise
(we use χu to stand for χ({u}). This is a 1–1 map between 2E and the vertices of the n-cube

4



Cn = [0, 1]n. If v = χ(S) is such a vertex, then f gives the value f(S) to v. It is well-known that
Cn can be dissected into n! simplices, where the simplex σ(π) corresponding to permutation π
contains all x ∈ Cn with 0 ≤ xπ(1) ≤ xπ(2) ≤ . . . ≤ xπ(n) ≤ 1. Since f gives values to the vertices
of σ(π), there is a unique way to extend f to the interior of σ(π) in a linear way. Let f̂ : Cn → R
denote the piecewise linear function which is these n! linear extensions pasted together. This
particular piecewise linear extension of f is called the Lovász extension.

Theorem 1.8 (Lovász [58]) Set function f is submodular iff its Lovász extension f̂ is convex.

It turns out that this “convex” view of submodularity is much more fruitful than the “con-
cave” view. In particular, Section 2.3 shows that, similar to convexity, minimizing a submodular
function is “easy”, whereas maximizing one is “hard”. In fact, Murota [64, 65] has developed a
theory of discrete convexity based on submodularity, in which many of the classic theorems of
convexity find analogues.

For a more extensive look at submodular functions and their applications, consult Fujishige’s
book [29], Lovász’s article [58], or Nemhauser and Wolsey [70, Section III.3].

1.2 What is Submodular Function Minimization?

Returning to our factory example, which subset should we choose? Clearly we should choose
a subset that maximizes our future NPV minus our costs. That is, among the 2n subsets of
E, we want to find one that maximizes the supermodular function π(S) − c(S). Maximizing
π(S) − c(S) is equivalent to minimizing −(π(S) − c(S)) = c(S) − π(S), and c(S) − π(S) is a
submodular function of S. This leads to the core problem of this survey:

Submodular Function Minimization (SFM): minS⊆E f(S), where f is submodular.

Here are some applications of SFM:

Example 1.9 Let’s change Example 1.2 a bit. Now we are given a directed graph G = (N,A)
with source s ∈ N and sink t ∈ N (t 6= s) and with non-negative weights w ∈ RA. Let
E = N − {s, t}, and for S ⊆ E define f(S) = w(δ+(S + s)). This f is again submodular, and
SFM with this f is just the familiar s–t Min Cut problem. This also works if G is undirected,
by redefining f(S) = w(δ(S + s)).

Example 1.10 Continuing with Example 1.3, let M1 = (E, r1) and M2 = (E, r2) be two
matroids on the same ground set. Then Edmonds’ Matroid Intersection Theorem [16] says
that the size of the largest common independent set equals minS⊆E r1(S) + r2(E − S). The set
function f(S) = r1(S) + r2(E−S) is submodular, so this is again SFM. This also works for the
intersection of polymatroids.

Example 1.11 As a different continuation of Example 1.3, suppose that we have a polymatroid
P with rank function r, and that we are given some point x̄ ∈ RE that satisfies x̄ ≥ 0. The
question is to determine whether x̄ ∈ P . To do this we need to verify the exponential number of
inequalities x(S) ≤ r(S) for all S ⊆ E. We could do this by computing g = minS⊆E r(S)− x̄(S)
via SFM (note that r(S) − x̄(S) is submodular), because if g ≥ 0 then x̄ ∈ P , and if g < 0
then x̄ /∈ P (and the minimizing S gives a violated constraint). This separation problem (see
Section 2.3) is a common application of SFM.

5



Three recent models in supply chain management use SFM to compute solutions. Shen,
Coullard, and Daskin [79] model a facility location-inventory problem related to Example 1.4,
which they solve using a linear programming column generation algorithm. The column gener-
ation subproblem needs to find optimal subsets of demand points to be served by a facility, and
this is an SFM problem. Begen and Queyranne [4] consider a problem of scheduling surgeries
in operating rooms, and show that its objective function is discretely convex, which uses SFM in
its solution. Huh and Roundy [44] model capacity expansion sequencing decisions in the semi-
conductor industry, where we trade off the declining cost of buying fabrication tools with the
cost of lost sales from buying tools too late. The problem of determining an optimal sequence
with general costs uses a (parametric) SFM subroutine. Additional applications to flows over
time appear in Baumann and Skutella [3], and to Artificial Intelligence in Jeavons et al. [53].

1.3 Computational Models for SFM

A naive algorithm for SFM is to use brute force to look at the 2n values of f(S) and select the
smallest, but this would take 2n time, which is exponential, and hence impractical for all but
the smallest instances. We would very much prefer to have an algorithm that is polynomial
in n. The running time of an algorithm might also depend on the “size” of f as measured
by, e.g., some upper bound M on maxS |f(S)|. Since we could scale f to make M arbitrarily
small, this makes sense only when we assume that f is integer-valued, and hence we implicitly
so assume whenever we use M . An SFM algorithm that is polynomial in n and M is called
pseudo-polynomial. To be truly polynomial, the running time must be a polynomial in n and
logM , leading to a weakly polynomial algorithm. If f is real-valued, or if M is very large, then it
would be better to have an algorithm whose running time is independent of M , i.e., a polynomial
function of n only, which is then called a strongly polynomial algorithm.

The first polynomial algorithms for SFM used the Ellipsoid method, see Section 2.3. Algo-
rithms that avoid using Ellipsoid-like methods are called combinatorial. There appears to be no
intrinsic reason why an SFM algorithm would have to use multiplication or division, so Schri-
jver [76] asks whether an SFM algorithm exists that is strongly polynomial, and which uses only
additions, subtractions, and comparisons (such an algorithm would have to be combinatorial).
Schrijver calls such an algorithm fully combinatorial. It is sometimes more convenient to hide
logarithmic factors in running times, so we use the common notation that Õ(f(n)) stands for
O(f(n) · (log n)k) for some positive constant k.

This brings up the problem of how to represent the apparently exponential-sized input f in
an algorithm. If we explicitly listed the values of f , then just reading the input would already
be super-polynomial. The assumption we make to deal with this is that we have an evaluation
oracle E available. We assume that E is a black box whose input is some set S ⊆ E, and whose
output is f(S). We use EO to stand for the time needed for one call to E . For Example 1.2
with a reasonable representation for the graph, we would have EO = O(|A|). Since the input
S to EO has size Θ(n), it is reasonable to assume that EO = Ω(n). Section 2.2 shows how to
compute a bound M on the size of f in O(nEO) time. Thus our hope is to solve SFM with a
polynomial number of calls to E , and a polynomial amount of other work.

1.4 Overview, and Short History of SFM

SFM has been recognized as an important problem since the early days of combinatorial opti-
mization, when in the early 1970s Edmonds [16] established many of the fundamental results

6



that we use, which we cover in Sections 2.1 and 2.2.
When the Ellipsoid Algorithm arrived, in 1981 Grötschel, Lovász, and Schrijver [42] realized

that it is a useful tool for finding polynomial algorithms for problems such as SFM; we cover these
developments in Section 2.3. However, this result is ultimately unsatisfactory, since Ellipsoid is
not very practical, and does not give much combinatorial insight. The problem shifted from “Is
SFM polynomial?” to “Is there a combinatorial (i.e., non-Ellipsoid) polynomial algorithm for
SFM?”. In 1985 Cunningham [13] said that:

It is an outstanding open problem to find a practical combinatorial algorithm to
minimize a general submodular function, which also runs in polynomial time.

Cunningham made what turned out to be key contributions to this effort in the mid-80s by using
a linear programming duality result of Edmonds [16] to set up a Max Flow-style algorithmic
framework for SFM. We cover the LPs in Section 2.4, the network flow framework in Section 2.6,
and Cunningham’s applications of it [8, 12, 13] that yield a pseudo-polynomial algorithm for
SFM in Section 3.1.

Then, nearly simultaneously in 1999, two working papers appeared giving quite different
combinatorial strongly polynomial algorithms for SFM. These were by Schrijver [76] (formally
published in 2000) and Iwata, Fleischer, and Fujishige (IFF) [50] (formally published in 2001).
In 2006 Orlin [71] proposed a different SFM algorithm that is organized differently from the
Schrijver and IFF algorithms, and which is significantly faster than either; a somewhat similar
algorithm by Iwata and Orlin [52] was proposed in 2009. All of these are based on Cunningham’s
framework. We describe Schrijver’s Algorithm in Section 3.2, , various versions of the IFF
Algorithm in Section 3.3, and Orlin-type algorithms in Section 3.4.

All of these algorithms maintain a current point y as a convex combination of vertices of
a polyhedron: y =

∑
i∈I λiv

i. As each algorithm proceeds, new vertices get added to the
combination, and from time to time the algorithm needs to call a “Carathéodory” subroutine
whose input is the convex combination representation of y ∈ RE , and whose output is a set of
at most n of the vi whose convex hull still contains y, see Section 2.5. This can be done using
standard linear algebra techniques, but it is esthetically unpleasant. This led Schrijver [76] to
pose the question as to whether there exists a fully combinatorial SFM algorithm. Iwata [46]
found such an algorithm, based on the IFF Algorithm, which we call IFF-FC and describe in
Section 3.3.3; there is also a faster fully combinatorial version of the Iwata-Orlin algorithm [52].
An alternate version of Schrijver’s Algorithm using push-relabel ideas from Max Flow is given
by Fleischer and Iwata [23] (which we call Schrijver-PR and cover into Section 3.2). A speedup
of the IFF Algorithm (which uses ideas from both Schrijver and IFF, and which we call the
Hybrid Algorithm) and Iwata’s fully combinatorial version of it is given by Iwata [48], which
we describe in Section 3.3.4. We compare and contrast these algorithms in Section 4, where we
also give some guidelines on solving SFM in practice. We discuss various solvable extensions of
SFM in Section 5, and we speculate about the future of SFM algorithms in Section 6. We note
that Fleischer [21], Fujishige [27], Iwata [49], and Schrijver [77, Chapter 45] wrote other surveys
of submodular function minimization.

We cannot cover it here in detail, but we note that there also exists some work on the struc-
ture of solutions to parametric SFM problems (where we want to solve a parametrized sequence
of SFM problems), notably the work of Topkis [82, 83]. He shows that when a parametric SFM
problem satisfies certain properties, then optimal SFM solutions are nested as a function of the
parameter. Granot and Veinott [41] later extended this work. Fleischer and Iwata [23] extend

7



their Push-Relabel version of Schrijver’s Algorithm to solve some parametric SFM problems in
the same running time, and Nagano [69] extends Orlin’s Algorithm in the same way. These are
then used by Nagano [68] to minimize separable convex functions over a base polyhedron (see
Section 2.1).

The SFM algorithms share a common heritage with algorithms for the Submodular Flow
problem, a common generalization of Min Cost Flow and Matroid Intersection developed by
Edmonds and Giles [17]; in particular IFF grew out of a Submodular Flow algorithm of Fleischer,
Iwata, and McCormick [24]. In return, Fleischer and Iwata were able to show how to solve
Submodular Flow in the same time as one call to IFF in [22]. The IFF algorithms have been
further extended to minimizing bisubmodular functions. These are a directed, or signed, analogue
of submodular functions, see Fujishige and Iwata [31], or McCormick and Fujishige [62].

2 Building Blocks for SFM Algorithms

This section builds up some tools that are common to all the SFM algorithms.

2.1 Greedy Optimizes over Submodular Polyhedra

Generalizing the polymatroids of Example 1.3 somewhat, for a submodular function f it is
natural to consider the submodular polyhedron P (f) = {x ∈ RE | x(S) ≤ f(S) for all S ⊆ E}.
For our arguments to be consistent for every case we need to worry about the constraint 0 =
x(∅) ≤ f(∅). To ensure that this makes sense, from this point forward we re-define f(S) to be
f(S) − f(∅) so that f(∅) = 0; note that this change does not affect submodularity nor SFM.
It turns out to be quite useful to consider the face of P (f) satisfying x(E) = f(E), the base
polyhedron: B(f) = {x ∈ P (f) | x(E) = f(E)}. We prove below that B(f) is never empty.

Given weights w ∈ RE , it is natural to wonder about maximizing the linear objective wTx
over P (f) and B(f). Note that y ≤ x ∈ P (f) implies that y ∈ P (f). Hence if we < 0 for
some e ∈ E, then maxwTx is unbounded on P (f), since we can let xe → −∞. If w ≥ 0, then
the results below imply that an optimal x∗ must belong to B(f). Hence we can restrict our
attention to solving the linear program (with dual variables in red):

maxwTx
s.t. πS : x(S) ≤ f(S) for all S ⊂ E

πE : x(E) = f(E)
xe free for all e ∈ E

(3)

It can be seen that LP (3) is bounded, and so we can relax and consider weights w of any sign.
The dual of (3) has dual variable πS for each ∅ ⊂ S ⊆ E and is (with primal variables in red):

min
∑

S⊆E f(S)πS
s.t. xe :

∑
S3e πS = we for all e ∈ E

πS ≥ 0 for all S ⊂ E
πE free

(4)

One remarkable property of submodularity is that the naive Greedy Algorithm solves this
problem. Given a linear order ≺ of the elements of E, index the elements as e1, e2, . . . , en such
that e1 ≺ e2 ≺ . . . ≺ en. For any e ∈ E, define e≺ as {e′ ∈ E | e′ ≺ e}, a subset of E, so that

8



e≺i = {e1, e2, . . . , ei−1}. Define e≺n+1 = E. Then Greedy takes ≺ as input, and outputs a vector
v≺ ∈ RE ; component ei of v≺ is then v≺ei .

The Greedy Algorithm with Linear Order ≺

For i = 1, . . . n
Set v≺ei = f(e≺i+1)− f(e≺i ) ( = f(e≺i + ei)− f(e≺i )).

Return v≺.

To use this to maximize wTx, index the elements as e1, e2, . . . , en such that we1 ≥ we2 ≥
. . . ≥ wen , and define ≺w as the linear order e1 ≺w e2 ≺w . . . ≺w en. Apply Greedy to ≺w to
get v≺w . Further define wn+1 = 0, and dual variables πwS as having value wei−1 −wei if S = e≺wi
( = {e1, e2, . . . , ei−1}), i = 2, . . . , n+ 1, and zero otherwise.

Theorem 2.1 The optimization version of Greedy runs in O(n log n+nEO) time, v≺w is primal
optimal, πw is dual optimal, and v≺w is a vertex of B(f).

Proof: Computing ≺w involves sorting the weights, which takes O(n log n) time. Otherwise,
Greedy takes O(nEO) time.

Now we prove that v≺w ∈ B(f). Note that v≺w(E) =
∑n

i=1[f(e≺wi+1) − f(e≺wi )] = f(E) −
f(∅) = f(E). So we just need to verify that for ∅ ⊂ S ⊂ E, v≺w(S) ≤ f(S). Define k as
the largest index such that ek ∈ S. We proceed by induction on k. For k = 1 we must have
S = {e1}, and v≺w(e1) = v≺we1 = f(e≺w2 ) − f(e≺w1 ) = f(e1) − 0 = f(e1), so v≺w(e1) ≤ f(e1) is
true.

For 1 < k < n, note that S ∪ e≺wk = e≺wk+1 and S ∩ e≺wk = S − ek. Hence (2) gives f(S) ≥
f(e≺wk+1) + f(S − ek) − f(e≺wk ). Now v≺w(S) = f(e≺wk+1) − f(e≺wk ) + v≺w(S − ek). By induction
v≺w(S− ek) ≤ f(S− ek), so we get v≺w(S) ≤ f(e≺wk+1)− f(e≺wk ) + f(S− ek) ≤ f(S), as required.

Now we prove that πw is dual feasible. Suppose that e = ek. Then
∑

S3e π
w
S =

∑n
i=k(wei −

wei+1) = wek = we as desired. By the ordering of E, πwS ≥ 0 for all S ⊂ E, and it does not
matter if πwE is negative.

Next, we prove that v≺w and πw are complementary slack. First, πwS > 0 implies that
S = e≺wk for some k, and v≺w(e≺wk ) =

∑k−1
i=1 [f(e≺wi+1)−f(e≺wi )] = f(e≺wk ). Next, if v≺w(S) < f(S),

then S cannot be one of the e≺wk , so πS = 0. Hence v≺w and πw are feasible and complementary
slack, and thus optimal.

Recall that v≺w is a vertex of B(f) if the submatrix of constraints where πwS > 0 is non-
singular. This submatrix has rows which are a subset of χ(e≺w2 ), χ(e≺w3 ), . . . , χ(e≺wn+1), and these
vectors are clearly linearly independent.

Suppose that y ∈ P (f). We say that S ⊆ E is tight for y if y(S) = f(S), and we denote the
family of tight sets for y by T (y). A corollary to this proof is that

If v≺ is generated by Greedy from ≺, then e≺ ∈ T (v≺) for all e ∈ E. (5)

Note that when w ≥ 0 then we get that πwE ≥ 0 also, showing that the given solutions are
also optimal over P (f) in this case. We can also conclude from this proof that B(f) 6= ∅, and
that every permutation of E generates a vertex of B(f), and hence that B(f) has a maximum

9



of n! vertices. Our ability to generate vertices of B(f) as desired is a key part of the SFM
algorithms that follow.

The strongly polynomial version of IFF in Section 3.3.2 reduces SFM over 2E to SFM over
a ring family D represented by the closed sets of the directed graph (E,C), so we need to
understand how these concepts generalize in that case. (We therefore henceforth refer to e ∈ E
as “nodes” as well as “elements”.) In this case B(f) is in general not bounded (we continue
to write B(f) for the base polyhedron over a ring family), because some of the constraints
x(S) ≤ f(S) needed to bound B(f) do not exist when S /∈ D. In particular, if (E,C) has a
directed cycle Q and l 6= k are nodes of Q, then for any z ∈ B(f) we have z+α(χl−χk) ∈ B(f)
for any (positive or negative) value of α, and so B(f) cannot have any vertices. Section 3.3.2
deals with this by contracting strong components of (E,C), so we can assume that (E,C) has
no directed cycles. Then we say that linear order ≺ is consistent with (E,C) (a consistent linear
order is called a linear extension in [29, 46]) if k → l ∈ C implies that l ≺ k, which implies that
e≺ ∈ D for every e ∈ E. The proof of Theorem 2.1 shows that when ≺ is consistent with D,
then v≺ is a vertex of B(f).

If ϕ is a flow (not necessarily satisfying conservation) on (E,C), define ∂ϕ : E → R by
∂ϕk =

∑
l ϕkl −

∑
j ϕjk, the net ϕ-flow out of node k, or boundary of ϕ. Then it can be

shown (see Fujishige [29, Theorem 3.26]) that w ∈ B(f) iff there is some y which is a convex
combination of vertices v≺ for consistent ≺, and some flow ϕ ≥ 0 such that w = y + ∂ϕ. Thus
the boundaries of non-negative flows in (E,C) are precisely the directions of unboundedness of
B(f).

Section 3.3.2 also needs sharper bounds than M on ye for y ∈ B(f). For e ∈ E define De, the
descendants of e, as the set of nodes reachable from e via directed paths in (E,C). We know from
(1) and Greedy that the earlier that e appears in ≺, the larger the value of v≺e is. Any consistent
order must have all elements of De − e coming before e. Therefore, an order ≺e putting De

before all other nodes should maximize ye, so we should have that ye ≤ v≺
e

e = f(De)−f(De−e).
The next lemma formalizes this.

Lemma 2.2 If y ∈ B(f) and y is in the convex hull of the vertices of B(f), then ye ≤ f(De)−
f(De − e).

Proof: It suffices to show that, for any ≺ consistent with (E,C), that v≺e ≤ f(De)−f(De−e).
From Greedy, v≺ = f(e≺+ e)− f(e≺). By consistency, De ⊆ e≺+ e, and so by (1), f(e≺+ e)−
f(e≺) ≤ f(De)− f(De − e).

2.2 Algorithmic Tools for Submodular Polyhedra

Here is one of the most useful implications of submodularity:

Lemma 2.3 If S, T ∈ T (y), then S ∩T , S ∪T ∈ T (y), i.e., the union and intersection of tight
sets are also tight.

Proof: Since y(S) is modular, f(S)− y(S) is submodular. Suppose that S, T ∈ T (y). Then
by (2) and y ∈ P (f) we get that 0 = (f(S)− y(S)) + (f(T )− y(T )) ≥ (f(S ∪ T )− y(S ∪ T )) +
(f(S∩T )−y(S∩T )) ≥ 0, which implies that we have equality everywhere, so we get that S∩T ,
S ∪ T ∈ T (y).

10



We use this to prove the useful fact that every vector in P (f) is dominated by a vector in
B(f).

Lemma 2.4 If z ∈ P (f) and T is tight for z, then there exists some y ∈ B(f) with y ≥ z and
ye = ze for e ∈ T .

Proof: Apply the following generalization of the Greedy Algorithm: Start with y = z. Then
for each e /∈ T , iterate this step: compute (by brute force) α = min{f(S) − y(S) | e ∈ S}, and
set y ← y + αχei . Since we start with z ∈ P (f) and maintain feasibility throughout, we always
have that α ≥ 0, and the final y must still belong to P (f). Since only e /∈ T are changed, for
the final y we have ye = ze for e ∈ T .

At iteration e we find some set Se that achieves the minimum. Thus, after iteration e, Se
is tight for y, and Se remains tight for y for all iterations until the end. Then Lemma 2.3 says
that E = T ∪

⋃
e/∈T Se is also tight, and hence the final y belongs to B(f).

The Greedy Algorithm in this proof raises a natural question: Given y ∈ P (f) and k ∈ E, find
the maximum step length we can move in direction χk while remaining in P (f). Equivalently,
compute c(k; y) = max{α | y+αχk ∈ P (f)}, which is easily seen to be equivalent to min{f(S)−
y(S) | k ∈ S}. A similar problem arises for y ∈ B(f). In order to stay in B(f) we must lower
some component l while raising component k to keep y(E) = f(E) satisfied. Equivalently,
compute c(k, l; y) = max{α | y + α(χk − χl) ∈ B(f)}, which is easily seen to be equivalent to
min{f(S) − y(S) | k ∈ S, l /∈ S} (which is closely related to Example 1.11). This c(k, l; y)
is called an exchange capacity. If we choose a large number K and define the modular weight
function w(S) to be −K when k but not l is in S, +K if l but not k is in S, and 0 otherwise,
then f(S) − y(S) + w(S) is submodular, and solving SFM on this function computes c(k, l; y).
The same trick works for c(k; y). (Nagano [67] shows how to use IFF-FC to solve a more general
line search problem over P (f).)

In fact it can be shown that the converse is also true: Given an algorithm to compute c(k, l; y)
or c(k, y), we can use it solve general SFM. This is unfortunate, as the algorithmic framework
we’ll see later would like to be able to compute c(k, l; y) and/or c(k, y), but this is as hard as
the problem we started out with. However, there is one case where computing c(k, l; y) is easy.
We say that (l, k) is consecutive in ≺ if l ≺ k and there is no j with l ≺ j ≺ k. It can be shown
[8] that the following result corresponds to a move along an edge of B(f).

Lemma 2.5 Suppose that y = v≺ is an extreme point of B(f) arising from the Greedy Algorithm
using linear order ≺. If (l, k) is consecutive in ≺, then

c(k, l; y) = [f(l≺ + k)− f(l≺)]− [f(k≺ + k)− f(k≺)] = [f(l≺ + k)− f(l≺)]− v≺k ,

which is non-negative.

Proof: Since (l, k) is consecutive in ≺, we have k≺ = l≺ + l, and so the expression is
non-negative by (1).

Let y′ be the result of the Greedy Algorithm with the linear order ≺′ that matches ≺ except
that k ≺′ l (the same order with l and k switched). Note that y and y′ match in every component
except that yl = f(k≺)−f(l≺) whereas y′l = f(k≺+k)−f(l≺+k), and yk = f(k≺+k)−f(k≺),
whereas y′k = f(l≺+k)−f(l≺). Thus y′ = y+(χk−χl)·([f(l≺+k)−f(l≺)]−[f(k≺+k)−f(k≺)]).
Since the line segment defined by y and y′ clearly belongs to B(f), we get that c(k, l; y) ≥

11



[f(l≺ + k)− f(l≺)]− [f(k≺ + k)− f(k≺)]. But if f(k, l; y) was strictly larger, then y′ would not
be an extreme point, so we get the desired result.

There is a similar result for c(k; y).
Several of the algorithms avoid the difficulty of computing c(k, l; y) by instead moving in

more general directions defined by differences of vertices of B(f). These differences always arise
from closely-related linear orders like this: Suppose that we have linear orders ≺ and ≺′ such
that ≺= (e1, e2, . . . , en) and ≺′= (e1, e2, . . . , ek, e′k+1, e′k+2, . . . , e′l, el+1, . . . , en), i.e., ≺′ differs
from ≺ only in that we have permuted the elements B = {ek+1, ek+2, . . . , el} of ≺ into some
other order e′k+1, e

′
k+2, . . . , e

′
l in ≺′. We call this move from ≺ to ≺′ a block modification of the

block of size b = l − k. Then

If we’ve already computed v≺, we can compute v≺
′

using only O(b) calls to
E instead of O(n) calls.

(6)

This is because for j ≤ k and j > l, e≺j = e′j
≺, and so v≺j = v≺

′

j .
Now let’s further suppose that we have a partition of B into non-empty sets Q and R, and

that the order of elements in ≺′ is all elements of Q first in the same order as in ≺, followed by
all elements of R in the same order as in ≺. For example, if l = k + 10 and we relabel element
eh of B as qh if it is in Q, and rh if it is in R, then ≺ might look like

. . . ek−1ekrk+1rk+2qk+3rk+4rk+5rk+6qk+7qk+8rk+9qk+10el+1el+2 . . . ,

and then ≺′ would look like

. . . ek−1ekqk+3qk+7qk+8qk+10rk+1rk+2rk+4rk+5rk+6rk+9el+1el+2 . . . .

In such cases we say that ≺′ differs from ≺ by a block exchange. If |Q| = 1 or |R| = 1 then we
call this a single element block exchange, otherwise we call it a general block exchange. Then
we get:

Lemma 2.6 For each q ∈ Q we have v≺
′

q ≥ v≺q , and for each r ∈ R we have v≺
′

r ≤ v≺r .

Proof: Because of the assumption of how Q and R change in going from ≺ to ≺′, we have
that q ∈ Q implies that q≺

′ ⊆ q≺, and r ∈ R implies that r≺ ⊆ r≺′ . Therefore by (1), for q ∈ Q
we have that v≺

′
q = f(q≺

′
+ q)− f(q≺

′
) ≥ f(q≺ + q)− f(q≺) = v≺q , and similarly for r ∈ R.

The intuition to draw from Lemma 2.6 is that when we move elements to the left in linear
orders we increase that component, and when we move elements to the right in linear orders
we decrease that component. When (l, k) is consecutive in ≺, then the swap of l and k is a
special case of a (single element) block exchange with Q = {k} and R = {l}, and so Lemma 2.6
generalizes the non-negativity result of Lemma 2.5.

For vector v, define v− via v−e = min(0, ve) ≤ 0, and v+
e = max(0, ve) ≥ 0. Computing

the exact value maxS⊆E |f(S)| is hard (see Section 2.3.1), but we can easily compute a good
enough bound M such that |f(S)| ≤M for all S ⊆ E: Pick any linear order ≺ and use Greedy
to compute v = v≺. Then for any S ⊆ E, by (2) v−(E) ≤ v(S) ≤ f(S) ≤

∑
e∈E f(e)+. Thus

M = max(|v−(E)|,
∑

e∈E f(e)+) works as a bound, and takes O(nEO) time to compute.

12



2.3 Optimization, Separation, and Complexity

Suppose that we have a class L of linear programs that we want to solve. We say that OPT(L)
is the problem of computing an optimal solution for any LP in L. The Ellipsoid Algorithm
gives a generic way to solve OPT(L) as long as we have a subroutine to solve the associated
separation problem SEP(L): Given an LP L ∈ L and a point x̄, either prove that x̄ is feasible
for L, or find a constraint aTx ≤ b that is satisfied by all feasible points of L, but violated by
x̄. Then Ellipsoid says that if SEP(L) is polynomial, then OPT(L) is also polynomial. In fact,
Grötschel, Lovász, and Schrijver [42] were able to use polarity of polyhedra (which interchanges
OPT and SEP) to also show the converse (modulo certain technicalities that we skip here):

Theorem 2.7 OPT(L) is solvable in polynomial time iff SEP(L) is solvable in polynomial time.

For ordinary LPs, SEP(L) is trivially polynomial: just look through all the constraints of L
and plug x̄ into each one. Either x̄ satisfies each one, or we find some constraint violated by x̄,
and we output that. Thus the Ellipsoid Algorithm is polynomial for ordinary LPs.

However, consider “combinatorial” LPs where the number of constraints is exponential in the
number of variables, as is the case for polymatroids in Example 1.3. Here the trivial separation
algorithm is no longer polynomial in the number of variables, although Theorem 2.7 is still valid.

This is important for SFM since we can use an idea from Cunningham [11] to reduce SFM
to a separation problem over a polymatroid. For e ∈ E define γe = f(E − e)− f(E). If γe < 0,
then by (1) for any S ⊆ E containing e we have f(S− e)− f(S) ≤ f(E− e)− f(E) = γe < 0, or
f(S) > f(S− e). Hence e cannot belong to any solution to SFM, and without loss of optimality
we can delete e from E and solve SFM on the reduced problem. Thus we can assume that γ ≥ 0.
Define f̃(S) = f(S) + γ(S). Clearly f̃ is submodular with f̃(∅) = 0, and for any S ⊂ S+ e ⊆ E,
f̃(S + e) = f̃(S) + [f̃(S + e)− f̃(S)] = f̃(S) + [(f(S + e)− f(S)) + (f(E − e)− f(E))] ≥ f̃(S)
by (1), so f̃ is increasing. Thus f̃ is a polymatroid rank function.

Now consider the separation problem over P (f̃) with x̄ = γ. The optimization maxS γ(S)−
f̃(S) yields the set S with maximum violation. But γ(S) − f̃(S) = −f(S), so this also would
solve SFM for f . So, if we could solve SEP for P (f̃), we could then use binary search to find
a maximum violation, and hence solve SFM for f . But by Theorem 2.7 we can solve SEP for
P (f̃) in polynomial time iff we can solve OPT for P (f̃) in polynomial time. But Theorem 2.1
showed that we can in fact solve OPT over P (f̃) in polynomial time. We have proved that the
Ellipsoid Algorithm leads to a weakly polynomial algorithm for SFM. (Recently, Fujishige and
Iwata [32] showed that there is a direct algorithm that needs only O(n2) calls to a separation
routine to solve SFM.) In fact, later Grötschel, Lovász, and Schrijver were able to extend this
result to show how to use Ellipsoid to get a strongly polynomial algorithm for SFM:

Theorem 2.8 (Grötschel, Lovász, Schrijver [43]) The Ellipsoid Algorithm can be used to
construct a strongly polynomial algorithm for SFM that runs in Õ(n5EO + n7) time.

(The running time of this algorithm is quoted as O(n4EO) in [74], but Lovász [59] relates that
the previous computation was “too optimistic”, and that the running time above is correct.)

This theorem establishes that SFM is technically “easy”, but it is unsatisfactory in at least
two ways:

13



• The Ellipsoid Algorithm has proven to be very slow in practice.

• This algorithm gives us very little insight into the combinatorial structure of SFM.

2.3.1 Submodular Function Maximization is Hard

Note that in Example 1.4 we are interested in maximizing the submodular function, i.e., solving
maxS f(S). However, this example of submodular function maximization is known to be NP
Hard (even when all ϕl = 1 and all brl are 1 or −∞, since it is a special case of Min Dominating
Set in a graph, see Garey and Johnson [34, Problem GT2]), so the general problem is also NP
Hard. (However, Shen, Coullard, and Daskin [79] propose a related problem where we do want
to solve SFM.) There are also many applications where we want to maximize the (submodular)
cut function in Example 1.2, leading to the Max Cut problem (see Laurent [56]), and this is
also NP Hard, see [34, Problem ND16]. Nemhauser and Wolsey [70, Section II.3.9], Krause
and Golovin [54], and Krause and Guestrin [55] survey other applications and results about
maximizing submodular functions, and Feige, Mirrokni, and Vondrák [20] give constant-factor
approximation algorithms and hardness of approximation results for variations of the problem.

2.4 A Useful LP Formulation of SFM

Edmonds developed many of the basic concepts and results that led to SFM algorithms. In
particular, all combinatorial SFM algorithms to date derive from the following idea from [16]
(which considered only polymatroids, but the extension to general submodular functions is easy):
Let 1 denote the vector of all ones, so that if z ∈ RE , then 1T z = z(E). Suppose that we are
given an upper bound vector x ∈ RE (data, not a variable), and we want to find a maximal
vector (i.e., a vector z ∈ RE whose sum of components 1T z is as large as possible) in P (f)
subject to this upper bound. This naturally formulates as the following linear program and its
dual (with dual variables in red):

max1T z
σe : ze ≤ xe for all e ∈ E,
πS : z(S) ≤ f(S) for all S ⊆ E

ze free for all e ∈ E;

min
∑

e xeσe +
∑

S⊆E f(S)πS
ze : σe +

∑
S3e πS = 1 for all e ∈ E

σe ≥ 0 for all e ∈ E
πS ≥ 0 for all S ⊆ E.

One consequence of submodularity is that LPs like these often have integral optimal solutions
when the data is integral. Edmonds saw that these LPs not only have integral optimal solutions,
but also have the special property that there is a 0–1 dual solution with exactly one πS having
value 1. Assuming that this is true, let S∗ be the subset of E such that πS∗ = 1. Then an
optimal solution must have that σ = χ(E − S∗) to satisfy the dual constraint, and the dual
objective becomes x(E − S∗) + f(S∗). We now prove this:

Theorem 2.9 The dual LP has a 0–1 optimal solution with exactly one πS = 1. This implies
that

max{1T z | z ∈ P (f), z ≤ x} = min
S⊆E
{f(S) + x(E − S)}. (7)

If f and x are integer-valued, then the primal LP also has an integral optimal solution.

14



Proof: Note that (weak duality) z(E) = z(S) + z(E−S) ≤ f(S) + x(E−S). Hence we just
need to show that an optimal solution satisfies this with equality.

Recall that T (z) is the family of tight sets for z. By Lemma 2.3 we have that S∗ = ∪T∈T (z)T
is also tight. If z is optimal and ze < xe, then there must be some T ∈ T (z) containing e, else
we could feasibly increase ze. Hence ze = xe for all e /∈ S∗. Thus we have z(S∗) + z(E − S∗) =
f(S∗) + x(E − S∗), and so the 0–1 π with πS∗ = 1, πS = 0 for S 6= S∗, and σ = χ(E − S∗) is
optimal.

If f and x are integer-valued, define M ′ = min(−M,mine xe), so that z = M ′1 satisfies
z ∈ P (f) and z ≤ x. Now apply Greedy starting from this z and ensuring that z ≤ x is
preserved. By induction, z is integral at the current iteration, so that the exchange capacity
used to determine the next step is also integral, so the next z is also integral. Hence the final,
optimal z is also integral.

One way we could apply this LP to SFM, which we call the polymatroid approach, is to
recall from Section 2.3 Cunningham’s reduction of SFM to a separation problem for the derived
polymatroid function f̃ w.r.t. the point γ. Since f̃(S) + γ(E − S) = f(S) + γ(E) (and since
γ(E) is a constant), minimizing f(S) is equivalent to minimizing f̃(S) + γ(E − S). As noted in
Section 2.3 we can assume that γ ≥ 0. Since f̃ is a polymatroid function we can use the detailed
knowledge about polymatroids developed in [8]. Since f̃(S) +γ(E−S) matches the RHS of (7),
we can use Theorem 2.9 and its proof for help. Because we are assuming that γ ≥ 0, we can in
fact replace the condition z ∈ P (f) in the LHS of (7) with z ∈ P̃ (f̃) = {z ∈ P (f̃) | z ≥ 0}, i.e.,
the polymatroid itself. We can recognize optimality when we have a point z ∈ P̃ (f̃) and a set
S ⊆ E with z(E) = f̃(S) + γ(E − S).

Alternatively, we could use the base polyhedron approach, which is to use Theorem 2.9 directly
without modifying f , by choosing x = 0. Then (7) simplifies to

max{1T z | z ∈ P (f), z ≤ 0} = min
S⊆E

f(S). (8)

The RHS of this is just SFM. In this approach, it is more convenient to enforce that z ∈ B(f)
instead of z ∈ P (f). When we switch from z ∈ P (f) to y ∈ B(f), in order to faithfully
represent z ≤ 0 we change the objective function from max1T z to max

∑
e min(0, ye). The

proof of Theorem 2.9 shows that for optimal z and S we have z(S) = f(S), and Lemma 2.4
shows that this z is dominated by some y ∈ B(f) with ye = ze for e ∈ S, so this change does
not harm the objective value. Recall that we defined y−e to be min(0, ye). Then (8) becomes

max{y−(E) | y ∈ B(f)} = min
S⊆E

f(S). (9)

(This result could also be derived directly from LP duality and an argument similar to Theo-
rem 2.9.) It is easy to directly show weak duality for (9): For any y ∈ B(f) and S ⊆ E,

y−(E) ≤ y−(S) (tight if ye < 0⇒ e ∈ S)
≤ y(S) (tight if e ∈ S ⇒ ye ≤ 0)
≤ f(S) (tight if y(S) = f(S))

(10)

Complementary slackness is equivalent to these inequalities becoming equalities as indicated
above. Thus joint optimality is equivalent to y−(E) = f(S). Note that y(E) = f(E) =
y+(E) + y−(E), or y−(E) = f(E) − y+(E), so we can think of the LHS of (9) as min y+(E) if
we prefer.

15



2.5 How Do We Know that Our Current Point is Feasible?

In either approach we face a difficult problem: How can the algorithm ensure that either z ∈ P̃ (f̃)
or y ∈ B(f)? Since both are described by an exponential number of constraints, there is no
straightforward way to verify these.

A way around this comes from the following facts:

1. Since B(f) and P̃ (f̃) are bounded, a point belongs to them iff it is a convex combination
of extreme points.

2. The extreme points v≺ of B(f) and of P̃ (f̃) are available to us from the Greedy Algorithm
(or a simple modification of it, in the case of P̃ (f̃)).

3. By Carathéodory’s Theorem, it suffices to use at most n extreme points for B(f) (since
y ∈ B(f) satisfies the linear constraint y(E) = f(E) the dimension of B(f) is at most
n− 1), or n+ 1 extreme points for P̃ (f̃).

We concentrate on the B(f) case here, as the P̃ (f̃) case is similar. Therefore, to prove that
y ∈ B(f) it suffices to keep linear orders ≺i with associated extreme points v≺i and multipliers
λi ≥ 0 for i in index set I, such that∑

i∈I
λi = 1, y =

∑
i∈I

λiv
≺i . (11)

To reduce clutter, we’ll usually write v≺i as vi, and we’ll abuse notation by considering i ∈ I to
be both ≺i and vi. Since the Greedy Algorithm is a strongly polynomial algorithm for checking
if ≺i truly does generate vi, as long as |I| is polynomial we can use this to prove that y really
does belong to B(f) in strongly polynomial time. In the language of computational complexity,
the linear orders ≺i, i ∈ I, are a succinct certificate that y ∈ B(f).

Most of our algorithms use such a representation of the current point, and they dynamically
change the set I by adding one or more new vertices vj to I to allow a move away from the
current point. To keep |I| small, such algorithms need to reduce the set of vi to the Carathéodory
minimum from time to time. This is a simple matter, handled by subroutine ReduceV. Its
input is a representation of y in terms of I and λ as in (11) with |I| ≤ 4n, and the output is a
new representation with |I| ≤ n. It could happen that a vj we want to add to I already belongs
to I. We could search I to detect such duplicates, but this would add an overhead of O(n2) per
addition. The simpler, more efficient method that we use is to allow I to contain duplicates,
which get removed by a later ReduceV.

Let V be the matrix whose columns are the current (too large set of) vi’s, and V ′ be V with
a row of ones added at the top. When we reduce I (remove columns from V ′) we must compute
and maintain the invariant that there are non-negative multipliers λi satisfying (11), which
is equivalent to V ′λ =

(
1
y

)
. By standard linear algebra manipulations (essentially converting

a feasible solution to a basic feasible solution), ReduceV finds a linearly-independent set of
columns of V ′ with corresponding new λ. Since V ′ has at most 4n columns, the initial reduction
of V ′ to (I N) takes O(n3) time. Each of the at most 4n columns subsequently deleted requires
reducing at most one column to a unit vector, which can be done in O(n2) time. Thus ReduceV
takes O(n3) total time.

16



Carathéodory Subroutine ReduceV

Let V be the matrix whose columns are the vi.

Let V ′ be
(
1

V

)
, i.e., V with a row of ones added.

While |I| > n do
Use linear algebra to reduce V ′ to (I N), where I is an identity matrix.
[ (I N) might have fewer rows than V ′; if |I| > n, N has at least one column ]
Let B index the columns of I.
Select a column j of N , call it N j .
Compute the vector µ with entries N j in positions B, and −χj otherwise.
[ thus (I N)µ = 0⇒ V ′µ = 0⇒ V ′(λ+ αµ) =

(
1
y

)
for any α ]

Compute α = min{−λi/µi | µi < 0}, with the min achieved at indices in M.
Set λ← λ+ αµ. [ this makes λk = 0 for k ∈M and keeps λ ≥ 0 ]
Set I ← I −M, and delete columns in M from V ′.

2.6 From LPs to Network Flow-Like Problems

Our descriptions of the network-like formulations of SFM are somewhat vague, since each algo-
rithm makes different choices about the details of implementation. The two approaches outlined
in Section 2.4 lead to two slightly different networks.

2.6.1 The Base Polyhedron Approach

This approach suggests the following generic algorithm: Pick an arbitrary linear order ≺ and
use it to generate extreme point y = v≺ ∈ B(f). Define S−(y) = {e ∈ E | ye < 0}, S+(y) =
{e ∈ E | ye > 0}, and S0(y) = {e ∈ E | ye = 0}. Then if we could find k, l ∈ E with k ∈ S−(y),
l ∈ S+(y), and c(k, l; y) > 0, then we could update y ← y+(χk−χl)c(k, l; y) and increase y−(E)
by c(k, l; y). The difficulty with this is that it would require knowing the exchange capacities
c(k, l; y), and this is already as hard as SFM, as discussed in Section 2.2.

However, we can at least use Lemma 2.5, which says that c(k, l; y) is easily computable when
(l, k) is consecutive in ≺. Suppose that i ∈ I and (l, k) is consecutive in ≺i, and let ≺′i be ≺i
with k and l reversed (so that (k, l) is consecutive in ≺′i) with corresponding vertex vi

′
= v≺

′
i .

Then Lemma 2.5 says that
vi
′

= vi + c(k, l; vi)(χk − χl), (12)

and that for all θ ∈ [0, c(k, l; vi)], vi + θ(χk − χl) ∈ B(f). Using (12) we can re-write this as
(1− θ

c(k,l;vi)
)vi + ( θ

c(k,l;vi)
)vi
′ ∈ B(f). Then

y′ =
∑

j∈I, j 6=i
λjv

j + λi

(
1− θ

c(k, l; vi)

)
vi + λi

(
θ

c(k, l; vi)

)
vi
′

(13)

is a convex combination representation of the new point y′ over the expanded index set I ′ =
I ∪{i′}. Now (13) implies that y′ = y+ λiθ

c(k,l;vi)
(vi
′ − vi), and so from (12) y′ = y+λiθ(χk−χl).

As long as λiθ ≤ min(|yk|, yl), we would have that (y′)−(E) = y−(E)−λiθ, and so our objective
value is improved. This is the mechanism by which new vertices are added to I.

17



More generally (see Figure 1), suppose that ≺i contains the block · · · k4k3k2k1 · · ·. Define
v21 to be generated by ≺i with k1 and k2 exchanged, v32 to be generated by ≺i with k2 and
k3 exchanged, and v43 to be generated by ≺i with k3 and k4 exchanged. Further suppose that
k1 ∈ S−(y), k2 ∈ S0(y), and c(k1, k2; v21) > 0; k3 ∈ S0(y) and c(k2, k3; v32) > 0; and k4 ∈ S+(y)
and c(k3, k4; v43) > 0. Choose

α = min
(

λi
1/c(1, 2; vi) + 1/c(2, 3; vi) + 1/c(3, 4; vi)

, |yk1 |, yk4
)
> 0,

and
y′ = y +

α

c(1, 2; vi)
(v21 − vi) +

α

c(2, 3; vi)
(v32 − vi) +

α

c(3, 4; vi)
(v43 − vi).

What’s going on here is that we are adding v21, v32, and v43 to I, reducing the coefficient of
vi from λi to λi − α[1/c(1, 2; vi) + 1/c(2, 3; vi) + 1/c(3, 4; vi)], and putting the new coefficient of
v21 to be α

c(1,2;vi)
, the new coefficient of v32 to be α

c(2,3;vi)
, and the new coefficient of v43 to be

α
c(3,4;vi)

. Then, despite the fact that none of these three changes by itself improves y−(E), doing
all three changes simultaneously has the net effect of y′ = y + α(χk1 − χk4), which improves
y−(E) by α, at the expense of adding three new vertices to I.

S−(y)

S0(y)

S+(y)

Makes yk3 ↑, yk4 ↓

Makes yk2 ↑, yk3 ↓
Makes yk1 ↑, yk2 ↓

k1

k2

k3

k4

Figure 1: Example showing why we need to consider paths of arcs in the network. None
of these three changes improves y−(E) by itself, but their union does improve y−(E).

This suggests that we define a network with node set E, and arc k → l with capacity c(k, l; vi)
whenever there is an i ∈ I with (l, k) consecutive in ≺i. (This definition has our arcs in the
reverse direction of most of the literature. We choose this convention to get the natural sense
of augmenting from S−(y) towards S+(y), but somewhat non-intuitively means that arc k → l
corresponds to l ≺ k.) Then we look for paths from S−(y) to S+(y). If we find a path, then we
“augment” by making changes as above, and call ReduceV to keep |I| small.

Schrijver’s Algorithm and the Hybrid Algorithm both consider changes to the vi more general
than swaps of consecutive elements. Hence both use this more liberal definition of arcs: k → l

18



exists whenever there is an i ∈ I with l ≺i k. The following lemma is a direct analogue of the
classic result that a flow in a Max Flow / Min Cut network is maximum if it has no augmenting
paths.

Lemma 2.10 For either definition of arcs, if no augmenting path exists, then the node subset
S defined as {e ∈ E | there is a partial augmenting path from some node e′ ∈ S−(y) to node e}
solves SFM.

Proof: Since no augmenting path exists, S−(y) ⊆ S ⊆ S−(y)∪S0(y), implying that y−(E) =
y(S). Since no arcs exit S we must have that for each i ∈ I, there is some ei ∈ E such that
S = e≺ii , hence by (5) f(S) = vi(S). But then S satisfies all three complementary slackness
tightness conditions of (10), and so S is an optimal solution to SFM.

Here is another way to think about this. For some vi in I, consider the pattern of signs of
the ye when ordered by ≺i. If ⊕ is a non-negative entry and 	 is a non-positive entry, we are
trying to find an S ⊆ E such that this sign pattern looks like this for every i ∈ I:

(
S︷ ︸︸ ︷

		 · · · 	 	⊕⊕ · · · ⊕ ⊕).

This picture also illustrates the complementary slackness of (10). If we find such an S, then
(5) says that S is tight for vi, and then by (11) S is tight also for y. Then we must have that
y−(E) = y(S) = f(S), and by (9)–(10) y and S must be optimal. Thus to move closer to
optimality we try to move positive components of the vi to the right, and negative components
to the left.

2.6.2 The Polymatroid Approach

This approach suggests a similar generic algorithm: Start with z = 0 and try to increase 1T z
while maintaining z ≤ γ and z ∈ P (f). In theory, we could do this via the sort of modified
Greedy Algorithm used in the proof of Theorem 2.9. The difficulty with this is that it would
require knowing the exchange capacities c(k; z), and this is already as hard as SFM, as discussed
in Section 2.2.

We define a similar network. This time we add a source s and a sink t to E to get the node
set. The arcs not incident to s and t are as in Section 2.6.1. We make arc s → e if zi < γe for
some i ∈ I. We make arc e→ t if there is some i ∈ I such that e belongs to no tight set of vi.
Now an s–t augmenting path in this network allows us to bring z closer to γ, and z(E) closer
to f̃(E). When there is no augmenting path, define S as the elements of E reachable from s by
augmenting paths. As above, S is tight. Since e /∈ S is not reachable, it must have ze = γe, so
we have z(E) = z(S) + z(E − S) = f̃(S) + γ(S), proving that S is optimal for SFM.

2.7 Strategies for Getting Polynomial Bounds

In both cases we end up with generic algorithms that resemble Max Flow / Min Cut: We have
a network, we look for augmenting paths, we have a theorem that says that an absence of
augmenting paths implies optimality, we have general capacities on the arcs, and we have 0–1
objective coefficients. In keeping with this analogy, we consider the flow problems to be the
primal problems, and the “min cut” problems to be the dual problems, despite the fact that our

19



original problem of SFM then turns out to be a dual problem. However, note that the analogy
with Max Flow / Min Cut is far from exact: whatever “flow” changes we make have to be
consistent with, e.g., the representation (11), and we have the option of adding new vertices to
(11) (and so new arcs to the “network”) as long as we can compute them.

This analogy helps us think about ways in which we might make these generic algorithms
have polynomial bounds. There are two broad strategies that have been successful for Max Flow
/ Min Cut:

1. Give an argument that some potential function bounded by a polynomial function of n
is monotone non-decreasing, and strictly increases in a polynomial number of iterations.
Often the potential function is based on some distance labels; the canonical instance of
this for Max Flow is Edmonds and Karp’s Shortest Augmenting Path [18] bound. They
show that the length of the shortest augmenting path from s to each node is monotone
non-decreasing, and that each new time an arc is the bottleneck arc on an augmenting
path, this shortest distance must strictly increase by 2 at one of its nodes. With m = |A|,
this leads to their O(nm2) bound on Max Flow. A more sophisticated version of this
argument is used in Goldberg and Tarjan’s Push-Relabel Max Flow Algorithm [37] to get
an O(mn log(n2/m)) bound.

This strategy is attractive since it typically yields a strongly polynomial bound without
extra work, and it implies that we don’t have to worry about how large the change in
objective value is at each iteration. It also doesn’t require pre-computing the bound M
on the size of f . For Max Flow, these algorithms also seem to work well in practice (see,
e.g., Cherkassky and Goldberg [9]).

2. Give a sufficient decrease argument that when one iteration changes y to y′, the difference
in objective value between y and y′ is a sufficiently large fraction of the gap between
the objective value of y and the optimal objective value that we can get a polynomial
bound. The canonical instance of this for Max Flow also comes from Edmonds and Karp
[18], the Maximum Capacity Path bound. Here we augment on an augmenting path with
maximum residual capacity at each iteration. This can be shown to reduce the gap between
the current solution and an optimal solution by a factor of (1−1/m), leading to an overall
O(m(m + n log n) log(nU)) bound, where U is the maximum capacity. Capacity scaling
algorithms (scaling algorithms were first suggested also by Edmonds and Karp [18], and
capacity scaling for Max Flow was suggested by Gabow [33]) can also be seen as a way of
achieving sufficient decrease.

This strategy leads to quite simple proofs of polynomiality. However, it does require
starting off with the assumption that all data are integral (so that an optimality gap
of less than one implies optimality), and pre-computing the bound M on the size of f .
Therefore it leads to algorithms which are naturally only weakly polynomial, not strongly
polynomial (in fact, Queyranne [73] showed that Maximum Capacity Path for Max Flow is
not strongly polynomial). However, it is usually possible to modify these algorithms so they
become strongly polynomial, and so can deal with non-integral data. It is generally believed
that these algorithms do not perform well in practice, partly because their average-case
behavior tends to be close to their worst-case behavior, unlike the potential function-based
algorithms.

There are two aspects of these network-based SFM algorithms that are significantly more

20



difficult than Max Flow. In Max Flow, if we augment flow on s–t path P , then this does not
change the residual capacity of any arc not on P . In SFM, augmenting from y to y′ along a path
P not containing k → l can cause c(k, l; y′) to be positive despite c(k, l; y) = 0. A technique that
has been developed to handle this is called lexicographic augmenting paths (also called consistent
breadth-first search in [12]), which was discovered independently by Lawler and Martel [57] and
Schönsleben [75]. It is an extension of the shortest augmenting path idea. We choose some
fixed linear order on the nodes, and we select augmenting paths which are lexicographically
minimum, i.e., among shortest paths, choose those whose first node is as small as possible, and
among these choose those whose second node is as small as possible, etc. Then, despite the
exchange arcs changing dynamically, one can mimic a Max Flow-type potential function-based
convergence proof.

Second, the coefficients λi in the representation (11) can be arbitrarily small even with
integral data. Consider this example due to Iwata: Let L be a large integer. Then f defined
by f(S) = 1 if 1 ∈ S, n /∈ S, f(S) = L if n ∈ S, 1 /∈ S, and f(S) = 0 otherwise is a
submodular function. The base polyhedron B(f) is the line segment between the vertices v1 =
(1, 0, . . . , 0,−1) and v2 = (−L, 0, . . . , 0, L). Then the zero vector, i.e., the unique primal optimal
solution, has a unique representation as in (11) with λ1 = 1−1/(L+1) and λ2 = 1/(L+1). This
phenomenon means that it is difficult to carry through a sufficient decrease argument, since we
may be forced to take very small steps to keep the λi non-negative.

Another choice is whether an algorithm augments along paths as in the classic Edmonds and
Karp [18] or Dinic [15] Max Flow Algorithms, or augments arc by arc, as in the Goldberg and
Tarjan [37] Push-Relabel Max Flow Algorithm, or is not based on augmentation, as in the Orlin-
type algorithms. Augmenting along a path here is tricky since several arcs of the path might
correspond to the same vi, so that tracking the changes to I is difficult. In terms of worst-case
running time, the Dinic [15] layered network approach speeds up the standard Edmonds and
Karp shortest augmenting path approach and has been extended to situations akin to SFM by
Tardos, Tovey and Trick [81], but the Goldberg and Tarjan approach is even faster. In terms of
running time in practice, the evidence shows (see, e.g., Cherkassky and Goldberg [9]) that for
Max Flow, the arc by arc approach seems to work better in practice than the path approach.
Schrijver’s Algorithm uses the arc by arc method. The IFF Algorithm and its variants blend
the two methods: A relaxed current point is augmented arc by arc, but the flow mediating the
difference between the relaxed point and the feasible point is augmented on paths. Orlin-type
algorithms only implicitly use networks, although one could interpret the algorithms as looking
at nodes (elements) with ye > 0 and trying to either drive them to be non-positive, or prove
that they can never belong to a min cut (SFM solution).

The algorithms have the generic outline of keeping a current point y and moving in some
direction to improve y−(E). This movement is achieved by modifying (11) by adding a new
order (or multiple orders) to I and updating the λi. Here is a general idea for developing good
movement directions: Suppose that vi and vh are two vertices of B(f), where typically i ∈ I and
h /∈ I. Then x′ = x+α(vh−vi) will also be in B(f) as long as α ≤ λi. This move corresponds to
changing the convex combination (11) via reducing λi by α, and increasing λh by α (by adding
h to I if it wasn’t there to start with).

A particularly simple version of this arises like this. Suppose that v≺ comes from a linear
order with (l, k) consecutive in ≺, and ≺′ is the same linear order with k and l swapped. Then
Lemma 2.5 says that we can compute the exchange capacity c(k, l; v≺) easily and (12) says that
v≺
′ − v≺ = c(k, l; v≺)(χk − χl). These directions χk − χl for k, l ∈ E are the edge directions of

21



B(f) (see [8]). Alternatively, we could choose directions from more general vertex differences,
i.e., vh − vi. Finally, we could choose directions that are positive linear combinations of vertex
differences, or multiple vertex differences.

Choosing edge directions has the virtue of having an easy-to-compute exchange capacity, but
the vice of being a slow way to make big changes in the linear orders. Alternatively, we could
modify larger blocks of elements. This has the vice that exchange capacities are hard to compute
(but at least we can use (6) to quickly compute new vertices), but the virtue that big changes
in the linear orders are faster. Cunningham’s Algorithm uses edge directions and consecutive
pairs. Schrijver’s Algorithm uses edge directions, but single element blocks; modifying by blocks
means that it is complicated to synthesize a edge direction, but it does give a good enough bound
on c(k, l; y). Basic IFF uses edge directions and consecutive pairs, but the Hybrid Algorithm
changes to vertex differences and general blocks; blocks represent vertex differences easily, and
staying within B(f) is easy since we are effectively just replacing vi by vh in (11). Orlin’s
Algorithm uses multiple vertex differences, where the new vertices come from single element
block changes, and the Iwata-Orlin algorithm uses single vertex differences coming from general
block exchanges..

Cunningham’s Algorithm for General SFM [13] uses the polymatroid approach, augment-
ing on paths, edge directions, modifying consecutive pairs, and the sufficient decrease strategy.
However, he is able to prove only a pseudo-polynomial bound. Schrijver’s Algorithm [76] and
Schrijver-PR use the base polyhedron approach, augmenting arc by arc, edge directions, modi-
fying blocks, and a distance-based strategy, and so they easily get a strongly polynomial bound.
Iwata, Fleischer, and Fujishige’s Algorithm (IFF) [50] uses the base polyhedron approach, aug-
menting both on paths and arc by arc, edge directions, modifying consecutive pairs, and the
sufficient decrease strategy. IFF are able to modify their algorithm to make it strongly polyno-
mial. Iwata’s Algorithm [46] is a fully combinatorial extension of IFF. Iwata’s Hybrid Algorithm
[48] largely follows IFF, but adds some distance-based ideas that lead to vertex differences and
modifying blocks instead of edge directions and consecutive pairs. Orlin’s Algorithm [71] uses the
base polyhedron approach, augmenting on multiple paths, multiple vertex differences, modifying
blocks, and a potential function strategy; Iwata-Orlin is similar, except for using single vertex
difference directions. Orlin’s Algorithm is naturally strongly polynomial, whereas Iwata-Orlin
needs some modifications to become strongly polynomial (though it still avoids scaling).

There is some basis to believe that the potential function-based strategy is more “natural”
than scaling for Max Flow-like problems such as SFM. Despite this, the running time for the
IFF Algorithm is in most cases faster than the running time for Schrijver’s Algorithm. However,
Iwata’s Hybrid Algorithm, which adds some distance-based ideas to IFF, is even faster than IFF,
and Orlin’s Algorithm (which is completely potential function-based) is faster yet; see Section 4.

3 The SFM Algorithms

We describe Cunningham’s Algorithms in Section 3.1, a version of Schrijver’s Algorithm in
Section 3.2, various IFF-type algorithms in Section 3.3, and Orlin-type algorithms in Section 3.4.

3.1 Cunningham’s SFM Algorithms

We skip most of the detail of these algorithms, as more recent algorithms appear to be better
in both theory and practice.

22



In a series of three papers in the mid-1980s [8, 12, 13] (one with Bixby and Topkis), Cun-
ningham developed the ideas of the polymatroid approach and gave three SFM algorithms. The
first [12] is for Example 1.11, for separating point x̄ from the matroid polytope defined by rank
function r, which is the special case of SFM where f(S) = r(S)− x̄(S). Here Cunningham takes
advantage of the special structure of f and carefully analyzes how augmentations happen in a
lexicographic shortest augmenting path framework. This allows him to prove that the algorithm
needs O(n3) total augmenting paths; each path adds O(n) new vi (which are the incidence vec-
tors of independent sets in this case) to I, so when it doesn’t call ReduceV the algorithm must
manage O(n4) vertices in I. To construct the graph of augmenting paths, for each of the O(n4)
i ∈ I and each of the O(n2) pairs k, l ∈ E, we must consider whether i implies an arc k → l,
for a total of O(n6EO) time per augmenting path. This yields a total time of O(n9EO), and a
fully combinatorial algorithm for this case (without calling ReduceV). If we do use ReduceV,
then the size of I stays O(n), so the time per augmentation is now only O(n3EO), for a total of
O(n6EO) (although the resulting algorithm is no longer fully combinatorial, but only strongly
polynomial).

In the second paper, Bixby, Cunningham, and Topkis [8] extend some of these ideas to the
general case. It uses the polymatroid approach and augmenting on paths. Because of degeneracy,
there might be several different linear orders that generate the same vertex v of P̃ (f̃). A given
pair (l, k) might be consecutive in some of these orders but not others. They show that, for
each vertex v, there is a partial order ≺v (note that ≺v is in general not a linear order) such
that c(k, l; v) > 0 iff k covers l in ≺v, i.e., if l ≺v k but there is no j ∈ E with l ≺v j ≺v k (if
≺v is linear, then k covers l in ≺v iff (l, k) is consecutive). Furthermore, they gave an O(n2EO)
algorithm for computing ≺v. Finally, they note that if k covers l in ≺v, then c(k, l; v) (and also
c(k; v)) can be computed in O(EO) time, similar to Lemma 2.5. They define the arcs to include
k → l if there is some i ∈ I such that k covers l in vi, and thus they know that the capacity
of every arc is positive. When this is put into the polymatroid approach using ReduceV, it is
easy to argue that no set of vertices I can repeat, leading to a finite algorithm.

In the third paper, Cunningham [13] modified this second algorithm into what we call Cun-
ningham’s Algorithm for General SFM. It adds a weak version of the sufficient decrease strategy
to the second algorithm. The fact that the λi can be arbitrarily small (discussed in Section 2.7)
prevents Cunningham from using a stronger sufficient decrease argument. Suppose that we re-
strict our search for augmenting paths only to arcs s→ e with γe− ze ≥ 1/Mn(n+ 1)2 and arcs
k → l with λic(k, l; z) ≥ 1/M(n + 1)2. If we find an augmenting path P of such arcs, then it
can be seen that augmenting along P increases 1T z by at least 1/M(n + 1)2. Then the key to
Cunningham’s argument is the following lemma:

Lemma 3.1 ([13, Theorem 3.1]) If no such path exists, then there is some S ⊆ E with
z(E) > f(S) + γ(E − S)− 1, and because all data are integral, we conclude that S solves SFM.

Cunningham suggests some speedups, which are essentially variants of implicit capacity
scaling (look for augmenting paths of capacity at least K until none are left, then set K ← K/2
until K < 1/M(n + 1)2) and maximum capacity augmenting path. These lead to the overall
time bound of O(Mn6 log(Mn) · EO), which is pseudo-polynomial.

23



3.2 Schrijver’s SFM Algorithm

Schrijver’s Algorithm [76] (see also [77, Chapter 45]) uses the base polyhedron approach, aug-
menting arc by arc, modifying single element blocks, and the distance-based strategy. The
algorithm assumes that f is defined on 2E , but it can be adapted to ring families using the
method of Section 5.2. Schrijver’s big innovation is to avoid being constrained to consecutive
pairs, but to allow arcs k → l if l ≺i k for some i ∈ I, even if l and k are not consecutive in ≺i.
This implies that Schrijver has a looser definition of arcs than some other algorithms. Of course,
the problem that computing c(k, l; v) is equivalent to SFM still remains; Schrijver’s solution is
to compute a lower bound on c(k, l; v).

Let’s focus on a particular arc k → l, associated with ≺h, which we’d like to include in an
augmentation. For simplicity call ≺h just ≺ and vh just v. Define (l, k]≺ = {e ∈ E | l ≺ e � k}
(and similarly [l, k]≺ and [l, k)≺), so that (l, k]≺ = ∅ if k � l. Then Lemma 2.5 says that
c(k, l; v) is easy to compute if |(l, k]≺| = 1. In order to get combinatorial progress, we would like
to represent the direction we want to move in, v + α(χk − χl), as a combination of new vertices
wj with linear orders ≺′j with (l, k]≺′j ⊂ (l, k]≺ for each j. That is, we would like to drive arcs
which are not consecutive more and more towards being consecutive.

Schrijver gives a subroutine for achieving this, which we call ExchBd(k, l;≺) (and describe
in Section 3.2.1). It chooses the following linear orders to generate its wj : For each j with l ≺ j
define ≺l,j as the linear order with j moved just before l. That is, if ≺’s order is

· · · sa−1salt1t2 . . . tbju1u2 · · · ,

then ≺l,j ’s order is
· · · sa−1sajlt1t2 . . . tbu1u2 · · · .

Note that if l ≺ j � k, then (l, k]≺l,j ⊂ (l, k]≺, as desired. Also, this is a type of block exchange,
with Q = {j} and R = [l, k)≺.

ExchBd(k, l;≺) has the following properties. The input is linear order ≺ and k, l ∈ E

with l ≺ k. The output is a step length α ≥ 0, and the collection of vertices wj = v≺
l,j

with
coefficients µj ≥ 0 for j ∈ J = (l, k]≺. This implies that |J | ≤ |(l, k]≺| ≤ n. The µj satisfy∑

j∈J µj = 1, and

v≺ + α(χk − χl) =
∑
j∈J

µjw
j . (14)

That is, v≺+α(χk−χl) is a convex combination of the wj . Also, this implies that v≺+α(χk−χl) ∈
B(f), and hence that α ≤ c(k, l; v). We show below that ExchBd takes O(n2EO) time.

We now describe Schrijver’s Algorithm, assuming ExchBd as a given. We actually present
a Push-Relabel variant due to Fleischer and Iwata [23] that we call Schrijver-PR, because it is
simpler to describe, and seems to run faster in practice than Schrijver’s original algorithm (see
Section 4). Schrijver-PR originally also had a faster time bound than Schrijver, but Vygen [84]
showed that in fact the time bound for Schrijver’s Algorithm is the same as for Schrijver-PR.
Roughly speaking, Schrijver’s original algorithm is similar to Dinic’s Max Flow Algorithm [15],
in that it uses exact distance labels to define a layered network, whereas Schrijver-PR is similar
to Goldberg and Tarjan’s Push-Relabel Max Flow Algorithm [37], in that it uses approximate
distance labels to achieve the same thing.

Similar to Goldberg and Tarjan [37], we put non-negative, integer distance labels d on the
nodes. We call labels d valid if

24



(Sch i) de = 0 for all e ∈ S−(y), and

(Sch ii) we have dl ≤ dk + 1 for every arc k → l (i.e., whenever l ≺i k for some i ∈ I).

This implies that de is a lower bound on the number of arcs in a shortest path from S−(y) to e,
so that de < n; we use de = n to signify that no path from S−(y) to e exists. We choose de = 0
for all e ∈ E as an initial valid labeling.

The algorithm defines the set of active nodes as A = {e ∈ S+(y) | de < n}, i.e., the set of
positive nodes which still have a hope of being decreased. The basic idea of the algorithm is to
choose a node l ∈ A with maximum dl, and then look for some node k such that dk = dl − 1
and such that arc k → l exists due to l ≺h k for some h ∈ I. If we have selected l but every arc
k → l has dk ≥ dl (i.e., no arc k → l satisfies the distance criterion that dk = dl − 1), then we
apply Relabel(l).

Relabel(l) Subroutine for the Schrijver-PR Algorithm

Set dl ← dl + 1.
If dl = n, then A ← A− l.

Thus we can assume that we find such a k, and we then call Push, which applies ExchBd
repeatedly to k → l. Each ExchBd decreases yl, and makes the (l, k]≺i smaller. We apply
ExchBd until either (1) yl drops to 0, called non-saturating, or (2) arc k → l disappears
because k ≺i l for all i ∈ I (i.e., |(l, k]≺i | = 0 for all i ∈ I), called saturating. To keep
combinatorial monotonicity, we always choose an associated ≺h achieving maxi∈I |(l, k]≺i |. To
be lexicographic, we scan through the possible nodes k in a fixed linear order.

When we work on arc k → l, we are increasing yk and decreasing yl. We enforce that yl
stays non-negative (since dl > 0, if we allowed yl to become negative, this would violate that
de = 0 for e ∈ S−(y)), but if yk is negative, we allow it to become positive. To see the algebraic
details of this, note that (11) and (14) imply that

y + αλh(χk − χl) =
∑
i 6=h

λiv
i + λh

∑
j

µjw
j . (15)

If αλh > yl, then this would make yl < 0, which we don’t allow. So we set β = min(yl, αλh), and
we want to take the step y + β(χk − χl). Note that β = yl means that the new yl = 0, leading
to a non-saturating Push; and β = αλh means that h leaves I, so there is one less index in I
with a maximum value of |(l, k]≺i |, so we are closer to being saturating. To get this effect we
add (1− β/(αλh)) times (11) to β/(αλh) times (15) to get:

y + β(χk − χl) =
∑
i 6=h

λiv
i + (λh − β/α)vh +

∑
j

(βµj/α)wj .

We put these pieces together into the subroutine Push(k, l).
Now we are ready to describe the whole algorithm. For simplicity, assume that E =

{1, 2, . . . , n}. To get our running time bound, we need to ensure that for each fixed node l,
we do at most n saturating Pushes before Relabeling l. To accomplish this, we do Pushes

25



Push(k, l) Subroutine for the Schrijver-PR Algorithm

While yl > 0 and arc k → l exists,
Select h that solves maxi∈I |(l, k]≺i |.
Call ExchBd(k, l; vh) to get α, J , µj , wj .
Set β = min(yl, αλh).
Update y ← y + β(χk − χl), I ← I ∪ J , and λh ← λh − β/α.
For j ∈ J , set λj ← βµj/α.
Call ReduceV.

to l from nodes k for each k in order from 1 to n; to ensure that we re-start where we left off
if Pushes to l are interrupted by a non-saturating Push, we keep a pointer pl for each node l
that keeps track of the next k where we want to do a Push(k, l).

The Schrijver-PR Algorithm for SFM

Initialize by choosing ≺1 to be any linear order, y = v1, and I = {1}.
Set d = 0 and p = 1.
Compute S−(y) and S+(y) and set A = S+(y).
While A 6= ∅ and S−(y) 6= ∅,

Find l solving maxe∈A de. [ try to push to max distance node l ]
While pl ≤ n do [ scan through possible nodes that could push to l ]

If dpl = dl − 1 then
Push(pl, l).
If yl = 0 set A ← A− l, and break out of the “While pl” loop.

Set pl ← pl + 1.
If pl > n, set pl = 1 and Relabel(l).

Compute S as the set of nodes reachable from S−(y), and return S.

We now prove that this works, and give its running time. We give one big proof, but we pick
out the key claims along the way in boldface.

Theorem 3.2 Schrijver-PR correctly solves SFM, and runs in O(n7EO + n8) time.

Proof:
Distance labels d stay valid: We use induction on the iterations of the algorithm; d starts

out being valid. Only Push and Relabel could make d invalid.
Push preserves validity of d: Suppose that a call to ExchBd(k, l; vh) in Push(k, l)

introduces a new arc u → t. Since u → t didn’t exist before we must have had u ≺h t, and
since it does exist now we must have that t ≺l,jh u for some j ∈ (l, k]≺h . The only way for
this to happen is if j = t and we had l �h u ≺h t �h k and now have t ≺l,th l �l,th u ≺l,th k.
Doing Push(k, l) means that dk + 1 = dl. Since d was valid before the Push(k, l), we have
dt ≤ dk + 1 = dl ≤ du + 1, so d is still valid.

Relabel preserves validity of d: We must show that when the algorithm calls Relabel(t),
every arc u→ t has du ≥ dt. Since Relabel(t) gets called when pt = n+ 1, if we can show that

26



u < pt and u → t an arc imply that du ≥ dt, then we are done. We prove this by induction;
it is trivially true when pt = 1, and so also true just after Relabel(t). A Relabel(u) for
u 6= t also only improves things, so we need worry only about Pushes. The algorithm increases
pl only when all pl → l arcs have been made to disappear in Push, so the only problem that
could arise is when a call to Push(k, l) (with k = pl) creates a new arc u → t. Suppose that
the claim remains true until this point. The previous paragraph showed that in this case we
had l �h u ≺h t �h k, implying that dt ≤ dk + 1 = dl ≤ du + 1. If t = k then dk = dt which
gives that du ≥ dt; similarly if u = l. If k < pt, then t ≺h k implies that k → t was an arc,
and induction gives that dk ≥ dt, implying that du ≥ dt. Otherwise, we have pl = k ≥ pt, and
we are assuming that u < pt, so we get u < pl. Then l ≺h u implies that u → l was an arc, so
induction gives du ≥ dl, again implying that du ≥ dt.

The algorithm performs at most n2 total Relabels: Each Relabel(l) increases dl
by 1, and dl ≤ n, so we call Relabel(l) at most n times, so that the total is at most n2.

The algorithm performs at most n3 total saturating Pushes: Because of the pl, for
each l we do at most n saturating Pushes to l before doing a Relabel(l). Since there are at
most n Relabel(l)s, there are at most n2 saturating Pushes to l, or n3 total saturating Pushes.

The algorithm performs at most n3 total non-saturating Pushes: We have a non-
saturating Push(k, l) because yl drops to 0. For the next non-saturating Push to happen at l,
some other Push(l, u) must make yl > 0 first. Since we always Push from the highest label,
and since distance labels are monotone non-decreasing, we must have that du at the time of the
Push(l, u) is at least one larger than dl at the time of the non-saturating Push, so a Relabel(u)
must have happened in between. Since there are at most n2 Relabels, and each Relabel can
re-activate at most n such l’s, there are at most n3 non-saturating Pushes.

Each call to Push(k, l) iterates at most n2 times: An iteration of the while loop of
Push(k, l) might cause yl = 0 (a non-saturating Push), in which case we exit. Each iteration
that does not cause yl = 0 has β = αλh, meaning that the new coefficient of vh is 0, so that h
drops out of I. This either reduces maxi∈I |(l, k]≺i |, or reduces the number of i ∈ I achieving
this maximum (calling ReduceV can only help here). Since |(l, k]≺i | < n, this implies the
claim.

The running time is O(n7EO+n8): There are O(n3) calls to Push, each of which iterates
at most n2 times, and each iteration calls ExchBd and ReduceV once each, for a total of
O(n5) calls to ExchBd and ReduceV. Each call to ExchBd costs O(n2EO) time, and each
call to ReduceV costs O(n3) time.

The algorithm terminates with an optimal solution: By Lemma 2.10.

3.2.1 The Exchange Capacity Bound Subroutine

Recall that for each j ∈ (l, k]≺ we define ≺l,j as the linear order with j moved just before l. The
task of ExchBd(k, l;≺) is to find a step length α ≥ 0 and a representation of v≺ + α(χk − χl)
as a convex combination of vertices vl,j corresponding to the linear orders ≺l,j .

Define q = |(l, k]≺|, enumerate ≺ as · · · lu1u2 . . . uq−1k · · ·, and define uq = k. Define V l,k to
be the matrix whose columns are the vl,j for j ∈ (l, k]≺, so that V l,k has n rows and q columns,
and V ≺ to be the matrix of the same dimension with every column equal to v≺. Since ≺l,j is
the same order as ≺ except for j ∈ [l, k]≺, by (6) the only places where two columns of V l,k

might differ is in the q + 1 rows [l, k]≺. Again using ⊕ for non-negative and 	 for non-positive,

27



then Lemma 2.6 proves that the sign pattern of this submatrix of V l,k − V ≺ is:



vl,u1 vl,u2 vl,u3 . . . vl,uq

l 	 	 	 . . . 	
u1 ⊕ 	 	 . . . 	
u2 0 ⊕ 	 . . . 	
u3 0 0 ⊕ . . . 	
...

...
...

...
. . .

...
k = uq 0 0 0 . . . ⊕


. (16)

Suppose that diagonal element vl,uu − v≺u of (16) equals zero. Then, since vl,u(E) = v≺(E) =
f(E), from (16) we would get that vl,u = v≺. In this case we choose α = 0 and represent
v≺ + α(χk − χl) = v≺ as 1 · vl,u for our convex combination.

Suppose instead that all diagonal elements of (16) are positive. Consider the following
equation in unknowns η:

(V l,k − V ≺)η = χk − χl. (17)

Since (16) is triangular with positive diagonal, (17) has a unique solution with η > 0. We then
set α = 1/η(E) and µ = αη, which then satisfy (V l,k−V ≺)µ = α(χk−χl). Since µ(E) = 1, this is
equivalent to (14), as desired. Suppose that q = 1, i.e., (l, k) is consecutive in ≺. Then ≺l,k is just
≺ with l and k interchanged. In this case Lemma 2.5 tells us that vl,k = v≺+c(k, l; v≺)(χk−χl).
This implies that when c(k, l; v≺) > 0, the solution of (17) in this case is η = 1/c(k, l; v≺), which
means that we would compute α = c(k, l; v≺). Thus in this case, as we would expect, ExchBd
computes the exact exchange capacity.

Now we consider the running time of ExchBd. Computing the vl,u requires at most n calls
to Greedy, which takes O(n2EO) time (we can save time in practice by using (6), but this doesn’t
seem to improve the overall bound). Setting up and solving (17) takes only O(n2) time (because
it is triangular), for a total of O(n2EO) time.

3.3 SFM Algorithms in the Iwata, Fleischer, and Fujishige (IFF) Family

We describe the weakly polynomial version of the IFF algorithm [50] in Section 3.3.1, which
assumes for simplicity that f is defined on 2E . Section 3.3.2 shows how to adapt the algorithm
for the case where f is defined on a ring family, and then uses this to get a strongly polynomial
version. Iwata’s fully combinatorial version [46] is developed in Section 3.3.3, and Iwata’s faster
Hybrid Algorithm [48] in Section 3.3.4.

3.3.1 The Basic Weakly Polynomial IFF Algorithm

Iwata, Fleischer, and Fujishige’s Algorithm (IFF) [50] uses the base polyhedron approach, aug-
menting both on paths and arc by arc, modifying consecutive pairs, and the sufficient decrease
strategy. IFF are able to modify their algorithm to make it strongly polynomial. The IFF Al-
gorithm would like to use capacity scaling. A difficulty is that here the “capacities” are derived
from the values of f , and scaling a submodular function typically destroys its submodularity.
One way to deal with this is suggested by Iwata [45] in the context of algorithms for Submodular
Flow: Add a sufficiently large perturbation to f and the scaled function is submodular. However

28



this proved to be slow, yielding a run time of Õ(n7EO) compared to Õ(n4EO) for the current
fastest algorithm for Submodular Flow [24].

A different approach is suggested by Goldberg and Tarjan’s Successive Approximation Al-
gorithm for Min Cost Flow [38], using an idea first proposed by Bertsekas [6]: Instead of scaling
the data, relax the data by a parameter δ and scale δ instead. As δ is scaled closer to zero, the
scaled problem more closely resembles the original problem, and when the scale factor is small
enough and the data are integral, it can be shown that the scaled problem gives a solution to the
original problem. Tardos-type [80] proximity theorems can then be applied to turn this weakly
polynomial algorithm into a strongly polynomial algorithm.

The idea here is to relax the capacities of arcs by δ. This idea was first used for Min
Cost Flow by Ervolina and McCormick [19]. For SFM, every pair of nodes could potentially
form an arc, so we introduce a complete directed network on nodes E with relaxation arcs
R = {k → l | k 6= l ∈ E}. We maintain y ∈ B(f) as before, but we also maintain a flow x in
(E,R). We say that x is δ-feasible if 0 ≤ xkl ≤ +δ for all k 6= l ∈ E. We enforce that x is δ-
feasible, and that for every k 6= l ∈ E, xkl ·xlk = 0, i.e., at least one of xkl and xlk is zero. (Some
versions of IFF instead enforce that for all k 6= l ∈ E, xkl = −xlk, i.e., that x is skew-symmetric,
which leads to a simpler description. However, we later sometimes have infinite bounds on some
arcs of R which are incompatible with skew-symmetry, so we choose to use this more general
representation from the start.) Recall that ∂x : E → R is defined as ∂xk =

∑
l xkl−

∑
j xjk. We

perturb y ∈ B(f) by ∂x to get z = y + ∂x. If we define κ(S) = |S| · |E − S| (which is |δ(S)| in
(E,R), and hence submodular), we could also think of this as relaxing the condition y ∈ B(f)
to z ∈ B(f + δκ) (this is the relaxation originated by [45]). The perturbed vector z has enough
flexibility that we are able to augment z on paths even though we augment the original vector
y arc by arc. The flow x buffers the difference between these two augmentation methods.

The idea of scaling δ instead of f + δκ is developed for use in Submodular Flow algorithms
by Iwata, McCormick, and Shigeno [51], and in an improved version by Fleischer, Iwata, and
McCormick [24]. Indeed, some parts of the IFF SFM Algorithm (notably the Swap subroutine
below) were inspired by the Submodular Flow algorithm from [24]. It is formally similar to an
excess scaling Min Cost Flow algorithm of Goldfarb and Jin [39], with the flow x playing the
role of arc excesses.

As δ → 0, Lemma 3.3 below shows that 1T z− converges towards 1T y−, so we concentrate on
maximizing 1T z− instead of 1T y−. We do this by looking for augmenting paths from S− to S+

with capacity at least δ (called δ-augmenting paths). We modify y arc by arc as needed to try
to create further such augmenting paths for z. Roughly speaking, we call z δ-optimal if there
is no further way to construct a δ-augmenting path. Augmenting on δ-augmenting paths turns
out to imply that we make enough progress at each iteration that the number of iterations in a
δ-scaling phase is strongly polynomial (only the number of scaling phases is weakly polynomial).

The outline of the outer scaling framework is now clear: We start with y = v1 for an arbitrary
order ≺1, and a sufficiently large value of δ (it turns out that δ = |y−(E)|/n2 ≤ 2M/n2 suffices).
We then cut the value of δ in half, and apply a Refine procedure to make the current values
δ-optimal. We continue until the value of δ is small enough that we know that we have an
optimal SFM solution (it turns out that δ = 1/n2 suffices). Thus the number of outer iterations
is 1 + blog2

2M/n2

1/n2 c = O(logM).
Since the outer scaling framework cuts δ in half, Refine starts by halving the 2δ-feasible

flow x to make it a δ-feasible flow.

29



IFF Outer Scaling Framework

Initialize by choosing ≺1 to be any linear order, y = v1, and I = {1}.
Initialize δ = |y−(E)|/n2, x = 0, and z = y. [ z = y + ∂x is δ-optimal ]
While δ ≥ 1/n2, [ when δ < 1/n2 we are optimal ]

Set δ ← δ/2.
Call Refine. [ converts 2δ-optimality to δ-optimality ]

Return last approximate solution from Refine as optimal SFM solution.

To find δ-augmenting paths, we must restrict the starting and ending nodes to have suffi-
ciently large and small values of zl, so we define S−δ(z) = {l ∈ E | zl ≤ −δ}, and S+δ(z) =
{l ∈ E | zl ≥ +δ}. Further define the subset of arcs of R with residual capacity δ as
R(δ) = {k → l | xkl = 0}. We look for a directed augmenting path P from some k ∈ S−δ(z)
to some l ∈ S+δ(z) using only arcs of R(δ). Since P contains only relaxation arcs (no exchange
arcs), somewhat surprisingly we do not need to ensure that P is a lexicographic shortest path,
or even a shortest path at all. Define the set S = {l ∈ E | there is a path in (E,R(δ)) from
S−δ(z) to l}. If we find such a P (if S∩S+δ(z) 6= ∅), we call Augment(P ) to increase x on arcs
in P by δ. If t → u ∈ P , then xtu = 0 and the old contribution of t → u and u → t to ∂xt is
−xut. Augment(P ) updates xtu = δ − xut and xut = 0, so that the new contribution of t→ u
and u → t to ∂xt is δ − xut, which is δ larger than before as desired (and their contribution to
∂xu decreases by δ). Over all arcs of P , this has the effect of increasing ∂xk by δ, decreasing ∂xl
by δ, and leaving ∂xh the same for h 6= k, l. The corresponding update to z = y + ∂x increases
zk by δ, decreases zl by δ, and leaves zh the same for h 6= k, l, thereby increasing 1T z− by δ.
The running time of Augment is dominated by re-computing S, which takes O(n2) time (since
|R| = O(n2)).

IFF Subroutine Augment(P ) for P from k ∈ S−δ(z) to l ∈ S+δ(z)

For all t→ u ∈ P do [ augment each arc of P , update R(δ) ]
Set xtu ← δ − xut, xut ← 0.
If xtu > 0 set R(δ)← R(δ)− (t→ u), and set R(δ)← R(δ) ∪ (u→ t).

Set
{
zk ← zk + δ
zl ← zl − δ

}
. [ update z, S−δ(z), S+δ(z), and S. ]

If
{
zk > −δ set S−δ(z)← S−δ(z)− k
zl < +δ set S+δ(z)← S+δ(z)− l

}
.

Set S = {l ∈ E | ∃ a path in (E,R(δ)) from S−δ(z) to l}.

What do we do if no augmenting path from S−δ(z) to S+δ(z) using only arcs of R(δ) exists?
Suppose that there is some i ∈ I such that (l, k) is consecutive in ≺i, k ∈ S and l /∈ S. We call
such a (k, l; vi) a boundary triple, and let B denote the current set of boundary triples. Note
that if ≺i has no boundary triple, then all s ∈ S must occur first in ≺i, implying by (5) that

30



vi(S) = f(S). Thus

If B = ∅, then vi(S) = f(S) (S is tight for vi) for all i ∈ I, so that
y(S) =

∑
i∈I λiv

i(S) =
∑

i∈I λif(S) = f(S), and so S is also tight for y.
(18)

We develop a Swap(k, l; vi) procedure below (called double-exchange in [24, 50]) to deal with
boundary triples.

Note that two different networks are being used here to change two different sets of variables
that are augmented in different ways: Augmentations happen on paths, affects variables z, and
are defined by and implemented on the network of relaxation arcs. Swaps happen arc by arc,
affects variables y, and are defined by and implemented on the network of arcs of potential
boundary triples (where k → l is an arc iff (l, k) is consecutive in some ≺i). The flow variables
x are used to mediate between these different changes.

Let ≺j be ≺i with k and l interchanged. Then Lemma 2.5 says that

vj = vi + c(k, l; vi)(χk − χl). (19)

Then (19) together with (11) implies that

y + λic(k, l; vi)(χk − χl) = λiv
j +

∑
h6=i

λhv
h, (20)

so we could take a step of λic(k, l; vi) in direction χk − χl from y. The plan is to choose a step
length α ≤ λic(k, l; vi) and then update y ← y + α(χk − χl). Then we are sure that the new y
also belongs to B(f). This increases yk and decrease yl by α. To keep z = y + ∂x invariant, we
also modify xkl by α so as to decrease ∂xk and increase ∂xl by α.

Recall that xkl was positive (else k → l ∈ R(δ), implying that l ∈ S). As long as α ≤ xkl,
updating xkl ← xkl − α (and keeping xlk = 0) modifies ∂x as desired, and keeps x δ-feasible.
But there is no reason to use α > xkl, since we could instead use α = xkl so that the updated
xkl = 0, meaning that l would join S, and we would make progress. Thus we choose α =
min(λic(k, l; vi), xkl). If α = xkl so that l joins S, we call the Swap partial (since we take only
part of the full step from vi to vj ; non-saturating in [50]), else we call it full (saturating in [50]).
Every full Swap has α = λic(k, l; vi), which implies that |I| does not change; a partial Swap
increases |I| by at most one. Since there are clearly at most n partial Swaps before calling
Augment, |I| can be at most 2n before calling ReduceV.

If α = xkl < λic(k, l; vi) then we’ll want to take a step of only xkl. To achieve this, take
xkl/(λic(k, l; vi)) times (20) plus (1− xkl/(λic(k, l; vi))) times (11) to get

y + xkl(χk − χl) = (xkl/c(k, l; vi))vj + (λi − xkl/c(k, l; vi))vi +
∑
h6=i

λhv
h, (21)

which shows how to update the λ’s in Swap. The running time of a full Swap is O(EO) . For
a partial Swap, for each h added to S we can update B in O(n2) time. Thus a partial swap
costs O(EO) plus O(n2) per element added to S. Note that if xkl = λic(k, l; vi) then we have
a “degenerate” Swap that is both partial and full. Although it is partial, |I| does not change,
and although it is full we need to update B anyway. In the complexity analysis we double-count
such a Swap as being both partial and full. The key idea here is trading off (hard to manage)

31



IFF Subroutine Swap(k, l; vi)

Set β ← c(k, l; vi), α← min(xkl, λiβ). [ compute step length ]
If α = λiβ, [ a full Swap ]

Rename ≺i, vi as ≺j , vj , swap k and l in ≺j , add β to vjk, subtract β from vjl .
Set I ← I + j − i, λj ← λi.

Else [ α = xkl < λiβ, a partial Swap, so k → l joins R(δ) and at least l joins S ]
Define ≺j as ≺i with k and l interchanged and compute vj .
Set I ← I + j, λi ← λi − xkl/β, λj ← xkl/β.

Set xkl ← xkl − α,
{
yk ← yk + α
yl ← yl − α

}
, and update R(δ) and S.

For each new member h of S do
Delete any boundary triples (u, h; vh) from B.
Add any new boundary triples (h, u; vh) to B.

exchange capacity for (easy to manage) flow on the relaxation arcs, and this idea comes from
[24].

Refine stops and concludes that the current point is δ-optimal when it can no longer find
any augmenting paths and B = ∅. We show later that the running time of Refine is O(n5EO).

IFF Subroutine Refine

Set x← x/2. [ make x δ-feasible ]
For all l ∈ E do [ update z ]

Set zl ← yl + ∂xl.
Compute S−δ(z), S+δ(z), R(δ), S, and B.
While augmenting paths exist (S ∩ S+δ(z) 6= ∅), or B 6= ∅ do

While ∃ path P from S−δ(z) to S+δ(z) using arcs from R(δ), do
Augment(P ) and set B to be boundary triples w.r.t. new S.

While 6 ∃ path P from S−δ(z) to S+δ(z) using arcs from R(δ) and B 6= ∅, do
Find a boundary triple (k, l; vi) and Swap(k, l; vi).

Call ReduceV.
Return S as an approximate optimum solution.

Recall from Section 2.6.1 that our optimality condition for S solving SFM is that y−(E) =
f(S). The following lemma (which is a relaxed version of Lemma 2.10) shows for both y and z
how close these approximate solutions are to exactly satisfying y−(E) = f(S) and z−(E) = f(S),
as a function of δ.

Lemma 3.3 When a δ-scaling phase ends, S is tight for y, and we have y−(E) ≥ f(S) − n2δ
and z−(E) ≥ f(S)− nδ.

Proof: When Refine ends, B = ∅, and then (18) says that S is tight for y.
Because the δ-scaling phase ended, we have S−δ(z) ⊆ S ⊆ E − S+δ(z). This implies that

for every k ∈ S, zk < +δ. Thus z−(S) ≥
∑

e:ze≤0(ze − δ) +
∑

e:ze>0(ze − δ) = z(S) − |S|δ. For

32



every l ∈ E − S, zl > −δ, and so z−(E − S) > −|E − S|δ. Since every k → l with k ∈ S and
l /∈ S has xkl > 0, ∂x(S) =

∑
k∈S, l/∈S xkl > 0. Therefore y(S) = z(S) − ∂x(S) < z(S). Then

z−(E) = z−(S) + z−(E − S) > (z(S)− |S|δ)− |E − S|δ > y(S)− nδ = f(S)− nδ.
Note that for any l ∈ E and any δ-feasible x, −(n−1)δ ≤ ∂xl ≤ (n−1)δ. Since yk = zk+∂xk,

yk ≥ zk−(n−1)δ, and so y−(E) ≥ z−(E)−n(n−1)δ > (f(S)−nδ)−n(n−1)δ = f(S)−n2δ.

We now use this to prove correctness and running time. We now formally define z to be
δ-optimal (for set T ) if there is some T ⊆ E such that z−(E) ≥ f(T ) − nδ. Lemma 3.3 shows
that the z at the end of each δ-scaling phase is δ-optimal for the current approximate solution
S. As before, we pick out the main points in boldface.

Theorem 3.4 The IFF SFM Algorithm is correct for integral data and runs in O(n5 logM ·EO)
time.

Proof:
The current approximate solution T at the end of a δ-scaling phase with δ < 1/n2

solves SFM: Lemma 3.3 shows that y−(E) ≥ f(T ) − n2δ > f(T ) − 1. But for any U ⊆ E,
f(U) ≥ y(U) ≥ y−(E) > f(T )− 1. Since f is integer-valued, T solves SFM.

The first δ-scaling phase calls Augment O(n2) times: Denote initial values with hats.
Recall that δ̂ = |ŷ−(E)|/n2. Now x̂ = 0 implies that ẑ = ŷ, so that ẑ−(E) = ŷ−(E). Since
z−(E) monotonically increases during Refine and is always non-positive, the total increase in
z−(E) is no greater than |ŷ−(E)| = n2δ̂. Since each Augment increases z−(E) by δ, there are
only O(n2) calls to Augment.

Subsequent δ-scaling phases call Augment O(n2) times: After halving δ, for the data
at the end of the previous scaling phase we had z−(E) ≥ f(T ) − 2nδ. Making x δ-feasible
at the beginning of Refine changes each xkl by at most δ, and so degrades this to at worst
z−(E) ≥ f(T )− (2n+n2)δ. Now z−(E) ≤ y−(E) +n2δ, and y−(E) cannot be larger than f(T ),
so that z−(E) ≤ f(T ) + n2δ. Each call to Augment increases z−(E) by δ, so Augment gets
called at most 2n+ 2n2 = O(n2) times.

There are O(n3) full Swaps before each call to Augment: Each full Swap(k, l; vi)
replaces vi by vj where l is one position higher in vj than in vi. Consider one vi and the
sequence of vj ’s generated from vi by full Swaps. Since each such Swap moves an element
l of E − S one position higher in its linear order, and no operations before Augment allow
elements of E − S to become lower, no pair k, l occurs more than once in a boundary triple.
There are O(n2) such pairs for each vi, and O(n) vi’s, for a total of O(n3) full Swaps before
calling Augment.

The total amount of work in all calls to Swap before a call to Augment is O(n3EO):
There are O(n3) full Swaps before the Augment, and each costs O(EO). Each node added to
S by a partial Swap costs O(n2) time to update B, and this happens at most n times before we
must include a node of S+δ(z), at which point we call Augment. Each partial Swap adds at
least one node to S and costs O(EO) other than updating B. Hence the total Swap-cost before
the Augment is O(n3EO).

The time for one call to Refine is O(n5EO): Each call to Refine calls Augment O(n2)
times. The call to Augment costs O(n2) time, the work in calling Swap before the Augment
is O(n3EO), and the work in calling ReduceV after the Augment is O(n3), so we charge
O(n3EO) to each Augment.

33



There are O(logM) calls to Refine: For the initial ŷ, ŷ(E) = f(E) ≥ −M . Let T be
the set of elements where ŷ is positive. Then ŷ+(E) = ŷ(T ) ≤ f(T ) ≤ M . Thus ŷ−(E) =
ŷ(E) − ŷ+(E) ≥ −2M , so δ̂ = |y−(E)|/n2 ≤ 2M/n2. Since δ’s initial value is at most 2M/n2,
it ends at 1/n2, and is halved at each Refine, there are O(logM) calls to Refine.

The total running time of the algorithm is O(n5 logM ·EO): Multiplying together the
factors from the last two paragraphs gives the claimed total time.

3.3.2 Making the IFF Algorithm Strongly Polynomial

We now develop a strongly polynomial version of the IFF algorithm that we call IFF-SP. The
challenge in making a weakly polynomial scaling algorithm like the IFF Algorithm strongly poly-
nomial is to avoid having to call Refine for each scaled value of δ, since the weakly polynomial
factor O(logM) is really Θ(logM). The rough idea is to find a way for the current data of the
problem to reveal a good starting value of δ, and then to apply O(log n) calls to Refine to
get close enough to optimality that we can “fix a variable”, which can happen only a strongly
polynomial number of times. Letting the current data determine the value of δ can also be seen
as a way to allow the algorithm to make much larger decreases in δ than would be available in
the usual scaling framework.

The general mechanism for fixing a variable is to prove a “proximity lemma” as in Tardos
[80] that says that if the value of a variable gets too far from a bound, then we can remove that
bound, and then reduce the size of the problem. In this case, the proximity lemma below says
that if we have some y ∈ B(f) such that yl is negative enough w.r.t. δ, then we know that l
belongs to every minimizer of f . This is a sort of approximate complementary slackness for LP
(9): Complementary slackness for exact optimal solutions y∗ and S∗ says that y∗e < 0 implies
that e ∈ S∗, and the lemma says that for δ-optimal y, ye < −n2δ implies that e ∈ S∗.

Lemma 3.5 At the end of a δ-scaling phase, if there is some l ∈ E such that the current y
satisfies yl < −n2δ, then l belongs to every minimizer of f .

Proof: By Lemma 3.3, at the end of a δ-scaling phase, for the current approximate solution
S, we have y−(E) ≥ f(S) − n2δ. If S∗ solves SFM, we have f(S) ≥ f(S∗) ≥ y(S∗) ≥ y−(S∗).
These imply that y−(E) ≥ y−(S∗)− n2δ, or y−(E − S∗) ≥ −n2δ. Then if l ∈ E − S∗, we could
add −yl > n2δ to this to get y−(E − S∗ − l) > 0, a contradiction, so we must have l ∈ S∗.

There are two differences between how we use this lemma and how IFF [50] use it. First,
we apply the lemma in a more “lazy” way than IFF proposed that is shorter and simpler to
describe, and which extends to the bisubmodular case [62], whereas the IFF approach seems not
to extend [31]. Second, we choose to implement the algorithm taking the structure it builds on
the optimal solution explicitly into account (as is done in Iwata [46]) instead of implicitly into
account (as is done in [50]), which requires us to slightly generalize Lemma 3.5 into Lemma 3.8
below.

We compute and maintain a set Out of elements proven to be out of every optimal solution,
effectively leading to a reduced problem on E − Out. Previously we used M to estimate the
“size” of f . The algorithm deletes “big” elements, so that the reduced problem consists of
“smaller” elements, and we need a sharper initial estimate δ0 of the size of the reduced problem.
At first we choose f(u) = maxl∈E f(l) and δ0 = f(u)+. Let ŷ ∈ B(f) be an initial point coming
from Greedy. Then ŷ+(E) =

∑
e ŷ

+
e ≤ nδ0, so that ŷ−(E) = ŷ(E)− ŷ+(E) ≥ f(E)−nδ0. Thus,

34



if we choose x = 0, then ẑ = ŷ + ∂x̂ = ŷ, so that E proves that ẑ is δ0-optimal. Thus we could
start calling Refine with y = ŷ and δ = δ0.

Suppose we have some set T such that f(T ) ≤ −δ0; we call such a set highly negative.
Then dlog2(2n3)e = O(log n) (a strongly polynomial number) calls to Refine produces some
δ-optimal y with δ < δ0/n3. Subroutine Fix makes these O(log n) calls to Refine. But
y(T ) ≤ f(T ) ≤ −δ0 < −n3δ implies that there is at least one t ∈ T with yt < −n2δ, and
Lemma 3.5 then shows that such t belong to every minimizer of f . We call such a t a highly
negative element. This would be great, but IFF must go to some trouble to manufacture such a
highly negative T .

Instead we adapt a “lazy” version of the IFF idea of considering the set function on E − u
defined by fu(S) = f(S + u) − f(u) = f(S + u) − δ0. Clearly fu is submodular on E − u
with fu(∅) = 0. Now apply Fix to fu. Suppose that Fix does not find any highly negative
element for fu. This implies that there cannot be a highly negative set T for fu. Then we
know that for every T not containing u, −δ0 < fu(T ) = f(T + u) − f(u) = f(T + u) − δ0, or
f(T + u) > 0 = f(∅). This proves that u cannot belong to any minimizer of f , and so we add
u to Out. On the other hand, suppose that Fix identifies at least one highly negative element
t (which is guaranteed if there exists a highly negative set T for fu). Then t belongs to every
minimizer of fu. Note that any minimizer of fu actually solves the problem of minimizing f(S)
over subsets of E containing u. Therefore we would get the condition that every minimizer of
f that contains u must also contain t. Note that it is possible that there is no highly negative
set for fu but that Fix identifies some highly negative element t anyway. This is not a problem,
since Lemma 3.5 still implies the condition that any minimizer containing u must also contain
t. Each new condition arc u → t means that we no longer need to consider sets containing u
but not t as possible SFM solutions, thereby reducing the problem. Only O(n2) condition arcs
can be added before the reduced problem becomes trivial, so this is real progress.

As the algorithm proceeds we need some way of tracking such conditions. We do this by
maintaining a set of arcs C on node set E, where arc k → l means that every minimizer of f
containing k must also contain l. We start with C = ∅, and add arcs to C as we go along. If
adding an arc creates a directed cycle Q in (E,C), then the nodes in Q either all belong to every
minimizer of f , or none belong to every minimizer of f .

Dealing with (E,C) adds a new layer of complexity to the algorithm. For u ∈ E define the
descendants of u as Du = {l ∈ E | there is a directed path from u to l in (E,C)}, and the
ancestors of u as Au = {l ∈ E | there is a directed path from l to u in (E,C)}. If Fix finds a
highly negative l (so that l belongs to every minimizer of fu), then we know that Dl must also
belong to every minimizer of fu. Similarly, if we add u to Out, we must also add all of Au to
Out. Doing this ensures that whenever we call Fix, the arcs we find for C are indeed new, and
so that we make real progress.

Let C be the set of strongly connected components of (E−Out, C). By the above comments,
for every σ ∈ C, every solution to SFM either includes all or no nodes of σ. Thus C is better
thought of as being a set of arcs on the node subset C. Thus we should re-define descendants
(resp. ancestors) from Du (Au) for u ∈ E−Out to Dσ (Aσ) for σ ∈ C, again as the set of nodes
of C reachable from σ (that σ can reach) via arcs of C. If S ⊆ C, define E(S) = ∪σ∈Sσ, the set
of original elements contained in the union of strong components in S. Therefore our general
situation is that we have Out ⊂ E as the set of nodes out of an optimal solution, and we are
essentially solving a reduced SFM problem on the contracted set of elements C, which partitions
E −Out.

35



Subset S ⊆ C can be part of an SFM solution only if no arc of C exits S, i.e., if δ+(S) = ∅.
In this case we call S closed (or an ideal). Note that the family D of closed sets is closed under
unions and intersections (it is a ring family), and we say that (C, C) represents D (in the sense
of Birkhoff’s Theorem [7]). Thus a solution to SFM for f has the form E(S) for some S ∈ D.
For S ∈ D, define f̂(S) = f(E(S)), so that f̂(∅) = 0 and f̂ is submodular on D. Essentially f̂ is
just f restricted to E −Out, and then with each of the components of C contracted to a single
new element. With good data structures for representing C we can evaluate f̂ using just one
call to the evaluation oracle E for f , so we use EO to also count evaluations of f̂ . We also need
to re-define fu for u ∈ E to be a set function f̂τ for τ ∈ C. Since Dτ is closed, Dτ ∈ D. Define
Dτ to be the subsets S ⊆ C −Dτ such that S ∪Dτ is closed (again a ring family). The graph
representing Dτ is (C − Dτ , C), which is (C, C) with the nodes of Dτ (and any incident arcs)
deleted. For S ∈ Dτ define f̂τ (S) = f̂(S ∪Dτ )− f̂(Dτ ). Then f̂τ is submodular, has f̂τ (∅) = 0,
and can be evaluated using only two calls to the evaluation oracle for f̂ . Thus we also use EO
for f̂τ .

Instead of restricting f̂ to the closed subsets of C, we could define it on all subsets of C via
f̂(S) = f(E(S)) for any S ⊆ C (and similarly for f̂τ ). Since we call Fix on the set of contracted
elements C −Dτ , we would still be sure that any condition arcs found by Fix are new (do not
already belong to C), and we could use Lemma 3.5 as it stands. This implicit method of handling
Dτ is used by IFF [50]. Here we use choose to use the slightly more complicated explicit method
(developed for Iwata’s fully combinatorial version of IFF [46]) that does restrict f̂τ to Dτ because
it yields better insight into the structure of the problem, and it is needed for Lemma 3.10 (which
is crucial for making the fully combinatorial version work). It also allows us to demonstrate how
to modify Refine to work over a ring family, which is needed in Section 5. (The published
version of [46] contains an error pointed out by M. Kriesell: It handles flow x as needed for
the explicit method, but uses the implicit method Lemma 3.5 instead of the explicit method
Lemma 3.8; a corrected version is available at http://www.sr3.t.u-tokyo.ac.jp/~iwata/.)

We call the extended version of Refine (that can deal with optimizing over a ring family
such as D instead of 2E) RefineR. There are only two changes that we need to make to Refine.
First, we must ensure that our initial y = v≺ comes from an order ≺ that is consistent with D
(recall that this means that σ → ρ ∈ C implies that ρ ≺ σ; this change is needed for both the
implicit and explicit methods). This is easy to achieve, since we can take any order coming from
an acyclic labeling of (C, C).

Second, we must ensure that all vi ∈ I that arise in the algorithm also have ≺i consistent
with D. We adapt a device suggested by Fujishige [29, Section 14.1 (d)]: we keep a separate
flow ϕ on C. Flows xσρ have the bounds 0 ≤ xσρ ≤ δ, and ϕσρ have the bounds 0 ≤ ϕσρ ≤ ∞
(we could achieve the same effect without ϕ by relaxing the upper bounds for x on arcs of C
to ∞, but this version is more convenient for the Hybrid Algorithm). Augmentations affect
only x, and R(δ) contains only δ-augmentable arcs w.r.t. x. We now keep the invariant that
z = y+∂x+∂ϕ, and (for the SP and FC versions) define w = y+∂ϕ so that z = w+∂x. Note
that every constraint y(S) ≤ f̂(S) defining B(f̂) comes from some closed S ∈ D, and each such
S has no arcs of C exiting it. Hence for any S ∈ D (since ϕ ≥ 0) ∂ϕ(S) ≤ 0, and so y ∈ B(f̂)
implies that w ∈ B(f̂) (recall that w = y + ∂ϕ is how all points in the (now unbounded) B(f̂)
arise).

While searching for an augmenting path, if there is some σ → ρ ∈ C with σ ∈ S and ρ /∈ S (⇒
xσρ > 0, else σ → ρ ∈ R(δ)) then we apply FlowSwap: We set ϕσρ ← ϕσρ + xσρ and xσρ ← 0.
If xσρ > 0 and ρ→ σ ∈ C with ϕρσ ≥ xσρ, then instead FlowSwap sets ϕρσ ← ϕρσ − xσρ and

36



xσρ ← 0. Since the new xσρ = 0, σ → ρ joins R(δ), and so ρ joins S. Note that this update
leaves ∂ϕ + ∂x invariant. FlowSwap is the only operation that changes ϕ. Then σ → ρ ∈ C
implies that (σ, ρ; vi) can never be a boundary triple (since then FlowSwap would ensure that
ρ ∈ S), so an inconsistent ≺j is never created. This also implies that S always belongs to D, so
the optimal solution belongs to D. We now need to re-visit Lemmas 3.3 and 3.5 in light of the
new representation of z. The next lemma is the ring equivalent of Lemma 3.3, and we express
it in terms of f̂ defined on generic ring family D ⊆ 2C .

Lemma 3.6 When a δ-scaling phase ends, S ∈ D, S is tight for y, and we have w−(C) ≥
f̂(S)− n2δ and z−(C) ≥ f̂(S)− nδ.

Proof: When Refine ends, no arc of C exits S, and so S ∈ D. Also, B = ∅, and then (18)
says that S is tight for y.

Because the δ-scaling phase ended, we have S−δ(z) ⊆ S ⊆ C − S+δ(z). Similar to the proof
of Lemma 3.3 this implies that z−(C) > z(S) − nδ. If ρ → σ /∈ C, interpret ϕρσ as 0. Then
FlowSwap implies that if σ ∈ S and ρ /∈ S, then xσρ − ϕρσ > 0. Since no arc of C exits S,
∂x(S) + ∂ϕ(S) =

∑
σ∈S, ρ/∈S(xσρ − ϕρσ) > 0. Therefore y(S) = z(S) − ∂x(S) − ∂ϕ(S) < z(S).

Then z−(C) > z(S)− nδ > y(S)− nδ = f̂(S)− nδ.
Note that for any ρ ∈ C and any δ-feasible x, −(n−1)δ ≤ ∂xρ ≤ (n−1)δ. Since wσ = zσ+∂xσ,

wσ ≥ zσ−(n−1)δ, and so w−(C) ≥ z−(C)−n(n−1)δ > (f̂(S)−nδ)−n(n−1)δ = f̂(S)−n2δ.

Weakly Polynomial IFF on Ring Families We can use this lemma and RefineR to
immediately adapt the weakly polynomial version of IFF so that it works directly on ring
families.

IFF Weakly Polynomial Algorithm for Ring Families

Initialize by choosing ≺1 to be any consistent linear order, y = v1, and I = {1}.
Initialize δ0 = maxσ f̂(Dσ)− f̂(Dσ − σ), x = ϕ = 0, and z = w = y.
While δ ≥ 1/n2, [ when δ < 1/n2 we are optimal ]

Set δ ← δ/2.
Call RefineR. [ converts 2δ-optimality to δ-optimality ]

Return last approximate solution from RefineR as optimal SFM solution.

Theorem 3.7 When f̂ is integer-valued, this Algorithm solves SFM over the ring family in
O(n5EO log(nM)) time.

Proof: Lemma 3.6 shows that the S produced at the end of one call to RefineR belongs to D
and proves that the initial z at the next call to RefineR is 2δ-optimal. Similar to Theorem 3.4,
if a call to RefineR ends with δ < 1/n2, then S solves SFM.

By Lemma 2.2, for y0 = w0 as the initial values of y and w, we have w0(E) ≤ 2nδ0 =
2nδ0 − f̂(∅), and so w0 is δ0-optimal. Clearly δ0 ≤ 2M . Since each call to RefineR halves
δ, there are at most log2(2Mn2) = O(log(nM)) such calls. As in Theorem 3.4, each call costs
O(n5EO) time, for a total of O(n5EO log(nM)) time.

37



It is disappointing that we lose a factor of O(log n) in running time when we move from 2E

to D (compare Theorem 3.4 to Theorem 3.7), as the weakly polynomial bound is interesting
precisely when M is “small”, and so when log n is large relative to logM . In practice one would
often have an initial solution with a small gap to optimality and so the run time would still be
good, or one could instead use the method of Section 5.2.

The next lemma is the ring equivalent of Lemma 3.5. Since we always apply it to f̂τ , we
express it in terms of f̂τ defined on ring family Dτ ⊆ 2C−Dτ .

Lemma 3.8 At the end of a δ-scaling phase, if there is some σ ∈ C −Dτ such that the current
w satisfies wσ < −n2δ, then σ belongs to every minimizer of f̂τ .

Proof: By Lemma 3.6, at the end of a δ-scaling phase, for the current approximate solution
S, we have w−(C −Dτ ) ≥ f̂τ (S) − n2δ. If S∗ solves SFM, we have f̂τ (S) ≥ f̂τ (S∗) ≥ w(S∗) ≥
w−(S∗). These imply that w−(C −Dτ ) ≥ w−(S∗)− n2δ, or w−((C −Dτ )− S∗) ≥ −n2δ. Then
if σ ∈ (C − Dτ ) − S∗, we could add −wσ > n2δ to this to get w−((C − Dτ ) − S∗ − σ) > 0, a
contradiction, so we must have σ ∈ S∗.

IFF-SP Subroutine Fix(f̂τ , (C −Dτ , C), δ0)
Applies to f̂τ defined on closed sets of (C −Dτ , C), and yσ ≤ δ0 for all y ∈ B(f̂τ ).

Initialize ≺ as any linear order consistent with C, y ← v≺, δ ← δ0, and N = ∅.
Initialize x = ϕ = 0 and z = y + ∂x+ ∂ϕ ( = y).
While δ ≥ δ0/n3 do

Set δ ← δ/2.
Call RefineR.

For σ ∈ C −Dτ do [ add descendants of highly negative nodes to N ]
If wσ = yσ + ∂ϕσ < −n2δ set N ← N ∪Dσ.

Return N .

Define δ0 = maxσ∈C f̂(Dσ)− f̂(Dσ−σ). Lemma 2.2 shows that δ0 is an upper bound on the
components of any y in the convex hull of the vertices of B(f̂), and we show below that if δ0 ≤ 0,
then E−Out solves SFM for f (it is not hard to show that δ0 is monotone non-increasing during
the algorithm). So we can assume that δ0 > 0, and we take this as the “size” of the current
solution. Suppose that τ achieves the max for δ0, i.e., that δ0 = f̂(Dτ ) − f̂(Dτ − τ). We then
apply Fix to f̂τ . If Fix finds a highly negative σ then we add τ → σ to C; if it finds no highly
negative elements, then we add E(Aτ ) to Out.

Theorem 3.9 IFF-SP is correct, and runs in O(n7 log n · EO) time.

Proof:
If δ0 ≤ 0 then E −Out solves SFM for f : Lemma 2.2 shows that for the current y and

any σ ∈ C, yσ ≤ 0. Thus y−(C) = y(C) = f̂(C), proving that C solves SFM for f̂ . We know that
any solution T of SFM for f must be of the form E(T ) for some T ∈ D. By optimality of C for
f̂ , f̂(C) ≤ f̂(T ), or f(E −Out) = f(E(C)) ≤ f(E(T )) = f(T ), so E −Out is optimal for f .

38



IFF Strongly Polynomial Algorithm (IFF-SP)

Initialize Out← ∅, C ← ∅, C ← E.
While |C| > 1 do

Compute δ0 = maxσ∈C f̂(Dσ)− f̂(Dσ − σ) and let τ ∈ C attain the maximum.
If δ0 ≤ 0 then return E −Out as an optimal SFM solution.
Else (δ0 > 0)

Set N ← Fix(f̂τ , (C −Dτ , C), δ0).
If N 6= ∅, for all σ ∈ N add τ → σ to C, update C, and all Dρ’s, Aρ’s.
Else (N = ∅) set Out← Out ∪ E(Aτ ).

Return whichever of ∅ and E −Out has a smaller function value.

In Fix(f̂τ , (C, C), δ0) with δ0 > 0, the first call to RefineR calls Augment O(n)
times: Lemma 2.2 shows that for the current y and any σ ∈ C, yσ ≤ δ0. In the first call to
RefineR we start with z = y, so that z+(C) = y+(C). Since yσ ≤ δ0 for each σ ∈ C, we get
z+(C) = y+(C) ≤ nδ0. Each call to Augment reduces z+(C) by δ0/2. Thus there are at most
2n calls to Augment during the first call to RefineR.

The time for one call to RefineR is O(n5EO): By the same argument as in Theorem 3.4.
When a highly negative T ∈ Dτ exists, a call to Fix(f̂τ , (C − Dτ , C), δ0) results in

at least one element added to N : The call to Fix reduces δ from δ0 to below δ0/n3. Then
T highly negative and T ∈ Dτ imply that w(T ) ≤ y(T ) ≤ f̂(T ) ≤ −δ0 < −n3δ. This implies
that there is at least one ρ ∈ C with wρ < −n2δ, so at least one element gets added to N .

If Fix(f̂τ , (C − Dτ , C), δ0) finds no highly negative element, then E(Aτ ) belongs to
no minimizer of f : As above, if there were a highly negative set T for f̂τ , then the call
to Fix would find a highly negative element. Thus for all T ∈ Dτ we have −δ0 < f̂τ (T ), or
−f̂(Dτ ) + f̂(Dτ − τ) < f̂(T ∪Dτ )− f̂(Dτ ), or f(E(Dτ − τ)) < f(E(T ∪Dτ )). Since E(T ∪Dτ )
is a generic feasible set containing τ and E(Dτ − τ) is a specific set not containing τ , no set
containing τ can be optimal. Thus adding E(Aτ ) to Out is correct.

The algorithm returns a solution to SFM: If some δ0 ≤ 0, then we showed above that
the returned E −Out is optimal. Otherwise the algorithm terminates because |C| = 1. In this
case the only two choices left for solving SFM are E(C) = E −Out and ∅, and the algorithm
returns the better of these.

Fix calls RefineR O(log n) times: Parameter δ starts at δ0, ends at its first value below
δ0/n3, and is halved at each iteration. Thus there are dlog2(2n3)e = O(log n) calls to RefineR.

The algorithm calls Fix O(n2) times: Each call to Fix either (i) adds at least one element
to Out, or (ii) adds at least one arc to C. Case (i) happens at most n times. Since there are
only n(n− 1) possible arcs for C, case (ii) happens O(n2) times.

The algorithm runs in O(n7 log n · EO) time: Each call to Fix calls RefineR O(log n)
times, so the time for one call to Fix is O(n5 log n · EO). The algorithm calls Fix O(n2) times,
for a total time of O(n7 log n · EO).

3.3.3 Iwata’s Fully Combinatorial SFM Algorithm

Iwata’s algorithm [46] is a fully combinatorial extension of IFF-SP, and so we call it IFF-FC.
Finding a fully combinatorial SFM algorithm answers a natural question. It also turns out to

39



be useful: So far the only known polynomial algorithm for line search in submodular polyhedra
was developed by Nagano [67], and it works by embedding IFF-FC inside Megiddo’s parametric
framework [63].

Recall that a fully combinatorial algorithm cannot use multiplication or division, and must
also be strongly polynomial. This implies that it cannot call ReduceV, since the linear algebra
in ReduceV apparently needs to use multiplication and division in a way that cannot be
simulated with addition and subtraction. This suggests that we adapt an existing algorithm
by avoiding the calls to ReduceV; this would probably degrade the running time since |I|
would be allowed to get much larger than n, but as long as we could show that |I| remained
polynomially-bounded, we should still be ok.

Let’s try to imagine a fully combinatorial version of (either version of) Schrijver’s Algorithm.
A key part of the running time proof of Theorem 3.2 is that Push has O(n2) iterations since
each saturating Push either reduces maxi |(l, k]≺i |, or the number of i ∈ I attaining this max.
Without ReduceV, the first saturating Push could have |(l, k]≺i | = n−1 and could create n−2
vj ’s with |(l, k]≺i | = n−2; these could each cause n−2 saturating Pushes, each of which creates
n − 3 vj ’s with |(l, k]≺i | = n − 3; these (n − 2)(n − 3) vj ’s could each cause n − 3 saturating
Pushes, each of which creates n − 4 vj ’s with |(l, k]≺i | = n − 4; these (n − 2)(n − 3)(n − 4)
vj ’s could . . . . Thus |I| could become super-polynomial. Also, Schrijver’s ExchBd subroutine
needs to solve the system (17), and this seems to require using multiplication and division. The
same objections apply to Orlin’s Algorithm, where there is no apparent way to solve (22) fully
combinatorially. For these reasons fully combinatorial versions of Schrijver’s Algorithm and
Orlin’s Algorithm appear to be unattainable; however, the Iwata-Orlin Algorithm does not have
this problem, and so has a fully combinatorial version that is the fastest known, see Section 3.4.2.

IFF-SP adds new vj ’s only at partial Swaps, and only one new vj at a time. Since there
are at most n partial Swaps per Augment, this means that each Augment creates at most n
new vj ’s. In the strongly polynomial version of the algorithm, each call to Fix calls RefineR
O(log n) times. Each call to RefineR does O(n2) Augments, and or a total of O(n2 log n)
Augments for each call to Fix, for a total of O(n3 log n) vj ’s added in each call to Fix. Each
call to Fix starts out with |I| = 1, so |I| stays bounded by O(n3 log n) when we don’t use
ReduceV.

When we do use ReduceV, the running time for RefineR comes from (O(n2) calls to
Augment) times (O(n3EO) work from full Swaps between each Augment). This last term
comes from (O(n2) possible boundary triples per vertex) times (O(n) vertices in I) times (O(EO)
work per boundary triple).

When we don’t use ReduceV, we instead have O(n3 log n) vertices in I. Each one again
has O(n2) possible boundary triples, so now the work from full Swaps between each Augment
is O(n5 log n · EO). Multiplied times the O(n2) Augments, this gives O(n7 log n · EO) as the
time for RefineR. Multiplied times the O(log n) calls to RefineR per call to Fix, and times
the O(n2) calls to Fix overall, we would get a total of O(n9 log2 n · EO) time for the algorithm
without calling ReduceV. Thus there is some real hope for making a fully combinatorial version
of IFF-SP.

However, getting rid of ReduceV is not sufficient to make IFF-SP fully combinatorial. There
is also the matter of the various other multiplications and divisions in IFF-SP. The only non-
trivial remaining multiplication in IFF-SP is the term λic(k, l; vi) that arises in Swap. Below
we modify the representation (11) by implicitly multiplying through by a common denominator
so that each λi is an integer bounded by a polynomial in n. Then this product can be dealt

40



with using repeated addition.
IFF-SP has two non-trivial divisions. One is the computation of δ0/n3 in Fix. We change

from halving δ at each iteration to doubling a scaling parameter, and we need another factor
of n for technical reasons, so we need to compute instead n4. This can again be done via
O(n) repeated additions. The second is the division xkl/c(k, l; vi) in (21). We would like to
simulate this division via repeated subtractions. To do this we need to know that the quotient
xkl/c(k, l; vi) has strongly polynomial size in terms of a scale factor. Here we take advantage
of some flexibility in the choice of the step length α. Recall that when the full step length
λic(k, l; vi) is “big”, we chose to set α = xkl. But (with appropriate modification of the update
to x) the analysis of the algorithm remains the same for any α satisfying xkl ≤ α ≤ min(xkl +
δ, λic(k, l; vi)), since for any such value of α x remains δ-feasible and we can still add l to S.
Our freedom to choose α in this range gives us enough flexibility to discretize the quotient. The
setup of IFF-SP facilitates making such arguments, since it has the explicit bound δ0 on the
components of y available at all times. Indeed, this is essentially what Iwata [46] does.

IFF-FC adapts IFF-SP as follows: We denote corresponding variables in IFF-FC by tildes,
so where IFF-SP has x, y, z, λ, δ, etc., IFF-FC has x̃, ỹ, z̃, λ̃, δ̃, etc. Since Fix is always working
with f̂τ defined on (C−Dτ , C), we use σ and ρ in place of k and l. Recall from (11) that IFF-SP
keeps y ∈ B(f̂τ ) as a convex combination of vertices y =

∑
i∈I λiv

i. The λi satisfy λi ≥ 0 and∑
i∈I λi = 1, but are otherwise arbitrary. To make the arithmetic discrete in IFF-FC, we keep a

scale factor SF = 2a (for a a non-negative integer). We now insist that each λi be a fraction with
integer numerator, and denominator SF. To clear the fractions we represent ỹ as SFy ∈ B(SFf̂)
and λ̃i = SFλi, so that ỹ =

∑
i∈I λ̃iv

i with each λ̃i a positive integer, and
∑

i∈I λ̃i = SF. At
the beginning of each call to Fix, as before we choose an arbitrary ≺1 consistent with D and
set ỹ = v1. Thus we choose a = 0, SF = 20 = 1, and λ̃1 = 1 to satisfy this initially.

IFF-SP starts each call to Fix with δ = δ0 and halves it before each call to RefineR. IFF-
FC starts with δ̃ = (n+ 1)δ0, and instead of halving it, IFF-FC doubles SF (increases a by 1).
This extra factor of n+ 1 is needed to make Lemma 3.10 work, which in turn is needed to make
the fully combinatorial discrete approximation of x̃σρ/c(σ, ρ; vi) lead to a δ̃-feasible update to x̃.
The proof of Lemma 3.10 also obliges using the explicit method of handling Dτ , since it needs
to know that all vertices generated during RefineR are consistent with Dτ , and this may not
be true with the implicit method.

Lemma 3.10 also needs that f̂(C) is not too negative, which necessitates changing IFF-SP: If
f̂(C) ≤ −δ0 then it is highly negative, and we can call Fix directly on f̂ (instead of f̂τ ) to find
some σ ∈ C that is contained in all SFM solutions via Lemma 3.5, and then we add E(Dσ) to
a set In of elements in all SFM solutions. We then delete Dσ from C and re-set f̂ ← f̂σ. This
change clearly does not impair the running time of the algorithm. This also means that we need
the same sort of bound for B(f̂).

Lemma 3.10 If f̂(C) > −δ0, then for any two vertices vi and vj of B(f̂τ ) and any σ ∈ C −Dτ ,
|viσ − v

j
σ| ≤ δ̃. In particular c(σ, ρ; vi) ≤ δ̃ in B(f̂τ ) (and also B(f̂)).

Proof: Note that c(σ, ρ; vi) equals |viσ − v
j
σ| for the vertex vj coming from ≺i with σ and

ρ interchanged, so it suffices to prove the first statement. Lemma 2.2 shows that for any y in
B(f̂τ ), in particular y = v≺, and any ρ ∈ C −Dτ , we have yρ ≤ δ0. We have that y(C −Dτ ) =
f̂τ (C−Dτ ) = f̂(C)−f̂(Dτ ). Then f̂(C) > −δ0 and f̂(Dτ ) ≤

∑
σ∈Dτ (f̂(Dσ)−f̂(Dσ−σ)) ≤ |Dτ |δ0

imply that y(C − Dτ ) ≥ −(|Dτ | + 1)δ0. Adding −yσ ≥ −δ0 to this for all σ ∈ C − Dτ other

41



than ρ implies that −nδ0 ≤ yρ ≤ δ0 for any ρ ∈ C −Dτ . Thus any exchange capacity is at most
(n+ 1)δ0 = δ̃. A simpler version of the same proof works for B(f̂).

IFF Fully Combinatorial Algorithm (IFF-FC)

Initialize In← ∅, Out← ∅, C ← ∅, C ← E.
While |C| > 1 do

Compute δ0 = maxσ∈C f̂(Dσ)− f̂(Dσ − σ) and let τ ∈ C attain the maximum.
If δ0 ≤ 0 then return E −Out as an optimal SFM solution.
If f̂(C) ≤ −δ0

Set N ← Fix(f̂ , (C, C), δ0).
For each σ ∈ N add E(Dσ) to In, and re-set C ← C −Dσ, f̂ ← f̂σ.

Else (δ0 > 0 and f̂(C) > −δ0)
Set N ← Fix(f̂τ , (C −Dτ , C), δ0).
If N 6= ∅, for each σ ∈ N add τ → σ to C, update C, and all Dρ’s, Aρ’s.
Else (N = ∅) set Out← Out ∪ E(Aτ ).

Return whichever of In and E −Out has a smaller function value.

Thus, where IFF-SP kept δ, IFF-FC keeps the pair δ̃ and SF, which we could translate into
IFF-SP terms via δ = δ̃/SF. Also, in IFF-SP δ dynamically changes during Fix, whereas in
IFF-FC δ̃ keeps its initial value and only SF changes. Since ỹ = SFy, we get the effect of scaling
by keeping x̃ = x (so that doubling SF makes x half as large relative to y, implying that we do
not need to halve the flow x̃ at each call to RefineR), and continue to keep the invariant that
z̃ = ỹ + ∂x̃. However, to keep ỹ = SFy we do need to double y and each λ̃i when SF doubles.

When IFF-SP chose the step length α, if xσρ ≥ λic(σ, ρ; vi), then we chose α = λic(σ, ρ; vi)
and took a full step. Since this implied replacing vi by vj in I with the same coefficient,
we can translate it directly to IFF-FC without harming discreteness. Because both x̃ and
λ̃ are multiplied by SF, this translates to saying that if x̃σρ ≥ λ̃ic(σ, ρ; vi), then we choose
α̃ = λ̃ic(σ, ρ; vi) and take a full step.

In IFF-SP, if xσρ < λic(σ, ρ; vi), then we chose α = xσρ and took a partial step. This up-
date required computing xσρ/c(σ, ρ; vi) in (21), which is not allowed in a fully combinatorial
algorithm. To keep the translated λ̃i and λ̃j integral, we need to compute an integral approx-
imation to x̃σρ/c(σ, ρ; vi). To ensure that x̃σρ − α hits zero (so that ρ joins S), we need this
approximation to be at least as large as x̃σρ/c(σ, ρ; vi).

The natural thing to do is to compute β̃ = dxσρ/c(σ, ρ; vi)e and update λi and λj to λi−β̃ and
β̃ respectively, which are integers as required. This implies choosing α̃ = β̃c(σ, ρ; vi). Because
dx̃σρ/c(σ, ρ; vi)e < (x̃σρ/c(σ, ρ; vi))+1, α̃ is less than c(σ, ρ; vi) larger than α. Hence the increase
we make to x̃ρσ to keep the invariant z̃ = ỹ+∂x̃ is at most c(σ, ρ; vi). By Lemma 3.10, c(σ, ρ; vi) ≤
δ̃, so we would have that the updated x̃ρσ ≤ δ̃, so it remains δ̃-feasible, as desired. Furthermore,
we could compute β̃ by repeatedly subtracting c(σ, ρ; vi) from x̃σρ until we get a non-positive
answer. We started from the assumption that x̃σρ < λ̃ic(σ, ρ; vi), or x̃σρ/c(σ, ρ; vi) < λ̃i, implying
that β̃ ≤ λ̃i ≤ SF. Thus the number of subtractions needed is at most SF, which we show below
remains small. In fact, we can do better by using repeated doubling: Initialize q = c(σ, ρ; vi)
and set q ← 2q until q ≥ xσρ. The number d of doublings is O(log SF) = O(a). Along the

42



way we save qi = 2iq for i = 0, 1, . . . , d. Then set q ← qd−1, and for i = d − 2, d − 3, . . . , 0, if
q + qi ≤ xσρ set q ← q + qi. If the final q < xσρ, set q ← q + 1. Thus the final q is of the form
pc(σ, ρ; vi) for some integer p, we have q ≥ xσρ, and (p − 1)c(σ, ρ; vi) < xσρ. Thus q = β̃, and
we have computed this in O(log SF) time.

IFF-FC Subroutine Swap(σ, ρ; vi)

Define ≺j as ≺i with σ and ρ interchanged and compute vj .
If x̃σρ ≥ λ̃ic(σ, ρ; vi) [ a full Swap ]

Set α̃ = λ̃ic(σ, ρ; vi), and x̃σρ ← x̃σρ − α̃.
Set I ← I + j − i and λ̃j ← λ̃i.

Else (x̃σρ < λ̃ic(σ, ρ; vi)) [ a partial Swap, so at least ρ joins S ]
Compute β̃ = dx̃σρ/c(σ, ρ; vi)e and α̃ = β̃c(σ, ρ; vi).
Set x̃ρσ ← α̃− x̃σρ and x̃σρ ← 0. [ makes ∂xσ drop by α̃ as required ]
Set λ̃j ← β̃ and I ← I + j.
If β̃ < λ̃i set λ̃i ← λ̃i − β̃, else (β̃ = λ̃i) set I ← I − i.

Set
{
ỹσ ← ỹσ + α̃
ỹρ ← ỹρ − α̃

}
, and update R(δ) and S.

For each new member η of S do
Delete any boundary triples (µ, η; vh) from B.
Add any new boundary triples (η, µ; vh) to B.

Due to choosing the initial value of δ̃ = (n + 1)δ0 instead of δ0, we now need to run Fix
for dlog2((n + 1)2n3)e iterations instead of dlog2(2n3)e, but this is still O(log n). This implies
that SF stays bounded by a polynomial in n, so that the computation of β̃ and our simulated
multiplications are fully combinatorial operations.

IFF-FC Subroutine Fix(f̂τ , (C −Dτ , C), δ̃)
Applies to f̂τ defined on closed sets of (C −Dτ , C), and c(σ, ρ; vi) ≤ δ̃ for all y ∈ B(f̂τ )

Initialize ≺ as any linear order consistent with C, ỹ ← v≺, SF← 1, and N = ∅.
Initialize x̃ = ϕ̃ = 0 and z̃ = ỹ + ∂x̃+ ∂ϕ̃ ( = ỹ).
While SF ≤ 2n4 do

Set SF← 2SF, y ← 2y, and λ̃i ← 2λ̃i for i ∈ I.
Call RefineR.

For σ ∈ C −Dτ do [ add descendants of highly negative nodes to N ]
If w̃σ = ỹσ + ∂ϕ̃σ < −n2δ̃ set N ← N ∪Dσ.

Return N .

From this point the analysis of IFF-FC proceeds just like the analysis of IFF-SP when it
doesn’t call ReduceV that we did at the beginning of this section, so we end up with a running
time of O(n9 log2 n · EO).

43



3.3.4 Iwata’s Faster Hybrid Algorithms

In [48] Iwata shows a way to adopt some of the ideas behind Schrijver’s SFM Algorithm, in
particular the idea of modifying the linear orders by general blocks instead of consecutive pairs,
to speed up the IFF Algorithm, including the fully combinatorial version of the previous section.
The high-level view of the IFF-based algorithms is that they all depend on the O(n5EO) running
time of Refine: The weakly polynomial version embeds this in O(logM) iterations of a scaling
loop; the strongly polynomial version calls Fix O(n2) times, and each call to Fix requires
O(log n) calls to Refine (actually RefineR). For the fully combinatorial version we need to
look more closely at the running time of RefineR. One term in the bottleneck expression
determining the running time of RefineR is |I|. Ordinarily we have |I| = O(n), but in the
fully combinatorial version we don’t call ReduceV, so |I| balloons up to O(n3 log n). This
makes RefineR run a factor of O(n2 log n) slower. Otherwise the analysis is the same as for
the strongly polynomial version.

Therefore, if we can make Refine run faster, then all three versions should also run faster.
One place to look for an improvement is the action that Refine takes when no augmenting path
exists: it finds any boundary triple (k, l; vi) and does a Swap. Potentially a more constrained
choice of boundary triple would lead to a faster running time. The Hybrid Algorithm implements
this idea in HRefine by adding distance labels as in Schrijver’s Algorithm.

But a problem arises with this: the pair of elements (k, l) picked out by distance labels need
not be consecutive in ≺i. Schrijver’s Algorithm deals with this by using ExchBd to come up
with a representation of χk − χl in terms of vertices with smaller (l, k]≺j . Indeed, all previous
non-Ellipsoid SFM algorithms move in χk − χl directions. The Hybrid Algorithm introduces a
new idea (originally suggested by Fujishige as a heuristic speedup for IFF): instead of focusing
on χk − χl, do a BlockSwap (called Multiple-Exchange in Iwata [48]) that makes multiple
changes to the block [l, k]≺i of ≺i to get a new ≺j that is much closer to our ideal (of having all
elements of the current set of reachable elements appear consecutively at the beginning of ≺j),
and then move in direction vj − vi. Using such directions means that at most one new vertex
(namely vj) needs to be added to I at each iteration, so the fully combinatorial machinery still
works.

By (6), when we generate ≺j from ≺i by rearranging some block of b elements, Greedy needs
O(bEO) time to compute vj . For a(n ordinary) Swap, b = 2, so it costs only O(EO) time (plus
overhead for updating the set of boundary triples). A BlockSwap is more complicated and
costs O(bEO) ≤ O(nEO) time. However, we still come out ahead because the sum of these times
over all calls to BlockSwap in one call to HRefine is only O(n4EO), whereas we called Swap
O(n5) times per Refine. This leads to the improved running time of O(n4EO) for HRefine,
exclusive of calls to ReduceV. As with IFF, the Hybrid Algorithm needs to call ReduceV
once per Augment, for a total of O(n5) linear algebra work (which dominates other overhead).
Thus the running time of HRefine is O(n4EO +n5), compared to O(n5EO) for Refine. Since
we can safely assume that EO is at least O(n) (because the length of its input is a subset of size
O(n)), this is a speedup over all three versions of IFF by a factor of O(n).

The top-level parts of the Hybrid Algorithm look much like the IFF Algorithm: We relax
y ∈ B(f) to z ∈ B(f + δκ) via flows x in the relaxation network and keeps the invariant
z = y+∂x, and we put this into a loop that scales δ. We again define S−δ(z) = {l ∈ E | zl ≤ −δ},
S+δ(z) = {l ∈ E | zl ≥ +δ}, and R(δ) = {k → l | xkl ≤ 0}. We look for a directed augmenting

44



Hybrid Outer Scaling Framework

Initialize by choosing ≺1 to be any linear order, y = v1, and I = {1}.
Initialize δ = |y−(E)|/n2, x = ϕ = 0, and z = w = y. [ z = y + ∂ϕ+ ∂x is δ-optimal ]
While δ ≥ 1/n2, [ when δ < 1/n2 we are optimal ]

Set δ ← δ/2.
Call HRefineR. [ converts 2δ-optimality to δ-optimality ]

Return last approximate solution from HRefineR as optimal SFM solution.

path P from S−δ(z) to S+δ(z) using only arcs of R(δ) and then Augment as before.
Since we no longer require consecutive pairs, we now define the set of arcs available for

augmenting y to be A(I) = {k → l | ∃i ∈ I s.t. l ≺i k} (the same set of arcs as in Schrijver’s
Algorithm), which includes many more arcs than in IFF. We use distance labels d w.r.t. A(I)
in a similar way as in Schrijver’s Algorithm: For now we say that d is valid if

(IFF i) ds = 0 for all s ∈ S−δ(z), and

(IFF ii) dl ≤ dk + 1 for all k → l ∈ A(I) (i.e., l ≺i k).

As usual, dl is a lower bound on the number of arcs in a path in (E,A(I)) from S−δ(z) to l, so
that dl = n signifies that no such path exists.

Notice that neither of the arc sets R(δ) and A(I) is necessarily contained in the other. The
set S is defined as nodes reachable from S−δ(z) w.r.t. R(δ), and so there could be an arc of A(I)
exiting S. In this case there must be some boundary triple (k, l; vi) ∈ B with k → l ∈ A(I)
exiting S, and then IFF does Swaps until S has no arcs of A(I) exiting it. Then (18) ensures
that S is tight for y. It might take a lot of time to Swap until B = ∅, and so Hybrid instead
iterates only until dt = n for all t /∈ S, and then computes the set S′ of nodes reachable from
S−δ(z) w.r.t. A(I) as its approximate solution.

However, there is a problem with this strategy because the explicit method (which is needed
for a fully combinatorial version of Hybrid) puts infinite bounds on ϕ on arcs of C. There
is nothing to prevent having an arc t → s of C entering S′ with ϕts � δ (note that this
could not happen with t → s entering S in IFF, since ϕts ≥ δ implies that ϕts ≥ xst, and so
FlowSwap would apply and cause t to join S). Such a rogue arc would then invalidate the
proof of Lemma 3.6 since it depends on knowing that xkl − ϕlk > 0 for all k ∈ S, l /∈ S, which
might no longer be true. This problem causes the argument for the fully combinatorial version
of Hybrid in [48] to be incorrect as it stands.

We adapt a fix suggested by Fujishige (personal communication): We change FlowSwap
and the definition of validity of d to ensure that no rogue arcs enter S′. Define C(δ) = C ∪{l→
k | k → l ∈ C and ϕkl ≥ δ}. We now say that d is valid if

(IFF′ i) ds = 0 for all s ∈ S−δ(z), and

(IFF′ ii) dl ≤ dk + 1 for all k → l ∈ A(I) ∪ C(δ) (consistency implies that if k → l ∈ C, then
k → l ∈ A(I), and so validity on arcs of C is automatic).

Then dl is a lower bound on the number of arcs in a path in (E,A(I)∪C(δ)) from S−δ(z) to l,
and dl = n signifies that no such path exists. We use this modified explicit method throughout
our discussion of Hybrid.

45



When no augmenting path exists, we use a modified version of FlowSwap that we call
HFlowSwap as follows. Suppose that there s → t ∈ C(δ) with s ∈ S and t /∈ S. If s → t
corresponds to t → s ∈ C with ϕts ≥ δ, then validity of d for both s → t, t → s ∈ C(δ) says
that |dt−ds| ≤ 1, and so HFlowSwap can do an ordinary FlowSwap to t→ s (that decreases
ϕts to drop xst to zero, allowing t to join S), and d remains valid. If instead s → t ∈ C and
dt < ds − 1, then an ordinary FlowSwap would make d invalid if it caused ϕst to become at
least δ so that t→ s joins C(δ). Hence HFlowSwap does FlowSwap to s→ t (that increases
ϕst to drop xst to zero, allowing t to join S) only when dt ≥ ds − 1, and d again remains valid.

Re-define S′ as the nodes reachable from S−δ via A(I) ∪ C(δ). Since no node t with dt = n
is reachable via A(I) ∪ C(δ), we have S−δ(z) ⊆ S′ ⊆ S. Also, S′ clearly has no arcs of A(I)
exiting it, so we could use S′ in place of S in the proof of Lemma 3.6. Unlike IFF, there can
be arcs t → s ∈ C entering S′ (but only if ϕts < δ), and arcs s → t ∈ R(δ) exiting S′ (but
with xst ≥ −δ), and so the bound on the gap between z−(E) and the value of our approximate
solution degrades a bit (compare Lemma 3.6 to Lemma 3.11 below), but it is still small enough
for the analysis to go through.

When no augmenting path exists, define the set of nodes not in S with minimum distance
label as D = {l /∈ S | dl = minh/∈S dh}. If no HFlowSwap applies, suppose that there is some
arc k → l ∈ A(I) (so there is some i ∈ I with l ≺i k) with k ∈ S, l ∈ D, and dl = dk + 1. Then
we re-define l as the left-most such element in ≺i, and k as the right-most such element in ≺i,
and call the triple (i; k, l) active. Suppose that h ≺i l and h /∈ S. Then dh > dl = dk + 1 so that
dh ≥ dk + 2, and then h ≺i l ≺i k contradicts validity of d. Thus h ∈ S. Also, h �i k implies
that dh > dk. This definition of active is the only delicate lexicographic choice here.

It is a bit tricky to efficiently find active triples. Define a re-ordering phase to be the set of
BlockSwaps between consecutive calls to Relabel or Augment. At each re-ordering phase,
we Scan ≺i for each i ∈ I to find out Leftir, the left-most element of ≺i with distance label r,
and Rightir, the right-most such element. Then, when we look for an active triple (i; k, l) with
dl = m, we can restrict our Search to [Leftim, Righti,m−1].

Define S(i; k, l) to be the elements in [l, k]≺i in S, and T (i; k, l) to be the elements in [l, k]≺i
not in S, i.e., S(i; k, l) = {h ∈ S | l ≺i h �i k} and T (i; k, l) = {h /∈ S | l �i h ≺i k}. Thus
k ∈ S(i; k, l) and l ∈ T (i; k, l). Define ≺j to be ≺i with all elements of S(i; k, l) moved ahead
of the elements of T (i; k, l) (without changing the order within S(i; k, l) and T (i; k, l)), i.e., just
before l. For example (using ta to denote elements of T (i; k, l) and sb to denote elements of
S(i; k, l)), if ≺i looks like

. . . u3u4lt1t2s1t3t4t5s2s3t6s4ku5u6 . . . ,

then ≺j looks like
. . . u3u4s1s2s3s4klt1t2t3t4t5t6u5u6 . . . .

Note that this is just a block exchange. Let vj be the vertex associated with ≺j by the Greedy
Algorithm. By (6), for b = |[l, k]≺i |, computing vj costs O(bEO) time. We ideally want to move
y in the direction vj − vi by replacing the term λiv

i in (11) by λiv
j . To do this we need to

change x to ensure that z = y + ∂ϕ+ ∂x is preserved, and so we must find a flow q to subtract
from x whose boundary is vj − vi.

First we determine the sign of viu− v
j
u depending on whether u is in S(i; k, l) or T (i; k, l) (for

u /∈ [l, k]≺i we have viu − v
j
u = 0 since u≺j = u≺i). Lemma 2.6 implies that for s ∈ S(i; k, l), we

have vjs ≥ vis, and for t ∈ T (i; k, l), we have vjt ≤ vit.

46



Now set up a transportation problem with left nodes S(i; k, l), right nodes T (i; k, l), and
all possible arcs. Make the supply at s ∈ S(i; k, l) equal to vjs − vis ≥ 0, and the demand
at t ∈ T (i; k, l) equal to vit − v

j
t ≥ 0. Now use, e.g., the Northwest Corner Rule (see Ahuja,

Magnanti and Orlin [1]) to find a basic feasible flow q ≥ 0 in this network. This can be done in
O(|[l, k]≺i |) = O(b) time, and the number of arcs with qst > 0 is also O(b) [1]. Hence computing
q and using it to update x takes only O(b) time. Now re-imagining q as a flow in (E,R) we see
that ∂q = vj − vi, as desired.

Hybrid Subroutine BlockSwap(i; k, l)
Applies to active triple (i; k, l)

Use l and k to compute S(i; k, l), T (i; k, l), ≺j , and vj .
Set up the transportation network and compute q.
Compute η = maxst qst and α = min(λi, δ/η). [ compute step length, then update ]
Set y ← y + α(vj − vi), λj ← α, and I ← I + j.
If α = δ/η then [ a partial BlockSwap, so at least t with qst = η joins S ]

Set λi ← λi − α.
Else (α = λi) [ a full BlockSwap, so i leaves I ]

Set I ← I − i.
For s→ t s.t. qst > 0, [ update xst and xts ]

If αqst ≤ xst, set xst ← xst − αqst;
Else (αqst > xst) set xts ← αqst − xst, and xst ← 0.

Update R(δ), S, and D.

As with IFF, the capacities of δ on the x’s might prevent us from taking the full step from λiv
i

to λivj , and modifying xst and xts by λiqst. So we choose a step length α ≤ λi and investigate
constraints on α. If αqst ≤ xst then our update is xst ← xst − αqst, which is no problem. If
αqst > xst then our update is xts ← αqst − xst and xst ← 0, which requires that αqst − xst ≤ δ,
or α ≤ (δ + xst)/qst. Since xst ≥ 0, if we choose η = maxst qst and α = min(λi, δ/η), then this
suffices to keep x feasible.

Since x is changed only on arcs from S to E − S, S can only get bigger after BlockSwap
(since z doesn’t change, neither S+δ(z) nor S−δ(z) changes). If α = δ/η < λi, then for the
s → t such that η = qst, αqst = δ ≥ xst, so the updated xst is zero. Hence s → t joins R(δ)
and so t joins S, and we call such a step partial (non-saturating in [48]). In this case we need to
keep both vj (with coefficient α) and vi (if α < λi, with coefficient λi − α) in I so |I| possibly
goes up by one. Otherwise (α = λi), we call the step full (saturating in [48]). In this case vj

just replaces vi (with coefficient λi = α) in I and |I| stays the same. Since there are at most n
partial BlockSwaps before calling Augment, |I| ≤ 2n before calling ReduceV.

If there are no active triples for the current D and dl < n for l ∈ D, then HRefineR does a
Relabel that increases dl by one for all l ∈ D. HRefineR stops when it can no longer find any
augmenting paths and dl = n for l ∈ D (and so for all l /∈ S). Note that HRefineR re-computes
S−δ(z), S+δ(z), S, and D after every Augment, and S and D during BlockSwap, so that S
dynamically changes and is not necessarily monotonic.

Note that if S−δ(z) = ∅ in HRefineR, then S is always empty in HRefineR, so that
everything soon gets Relabeled to n, and S′ = ∅ gets returned as the approximate optimal

47



solution. If S+δ(z) = ∅, then Augment never gets called in HRefineR, but the algorithm
proceeds normally anyway, possibly by eventually adding all elements to S and returning S′ = E
as its approximate optimal solution.

Hybrid Subroutine HRefineR

Initialize d = 0, x← x/2, ϕ← ϕ/2, and update z.
Compute S−δ(z), S+δ(z), and S.
While augmenting paths exist (S ∩ S+δ(z) 6= ∅), or ∃l /∈ S with dl < n do

If ∃ path P from S−δ(z) to S+δ(z) using arcs from R(δ), do
Augment(P ), ReduceV, update S−δ(z), S+δ(z), S, and D, Scan.

Else ( 6 ∃ such a path, but l ∈ D have dl < n) if HFlowSwap applies, call it.
Else (HFlowSwap does not apply) do

Search for an active triple.
If ∃ an active triple (i; k, l), BlockSwap(i; k, l).
Else (no active triple) Relabel: dl ← dl + 1 for all l ∈ D, update D, Scan.

[ Now no augmenting paths exist and dl = n for all l /∈ S ]
Compute S′ = nodes reachable from S−δ(z) via arcs of A(I) ∪ C(δ).
Return S′ as an approximate optimum solution.

Recall that w = y + ∂ϕ ∈ B(f), and that our optimality condition for S′ solving SFM is
that w−(E) = f(S′). The following lemma shows for both w and z how close these approximate
solutions are to exactly satisfying w−(E) = f(S′) and z−(E) = f(S′) at the end of HRefineR.

Lemma 3.11 When HRefineR ends, S′ is tight for y, and we have w−(E) ≥ f(S′)−n2δ and
z−(E) ≥ f(S′)− n(n+ 1)δ/2.

Proof: We already noted that S′ is tight for y, and that (since no augmenting path exists)
S−δ(z) ⊆ S′ ⊆ S ⊆ E − S+δ(z). Similar to the proof of Lemma 3.3 this implies that z−(E) >
z(S′)− nδ = y(S′) + ∂ϕ(S′) + ∂x(S′)− nδ = f(S′) + ∂x(S′) + ∂x(S′)− nδ.

Since no arcs of C(δ) exit S′ we have that ∂ϕ(S′) > −δ|S′| · |E−S′| ≥ −n2δ/4. Similarly the
upper bound of δ on x implies that ∂x(S′) ≥ −n2δ/4. This yields z−(E) > f(S′)− (n+n2/2)δ.
Since w = z + ∂x, for any u ∈ E wu can be at most ∂xu lower than zu. Thus the at most n− 1
arcs t→ u can decrease wu at most (n−1)δ below zu. Furthermore, since xut ·xtu = 0, each xut,
xtu pair decreases at most one of wu and wt. Thus the total amount by which w−(E) is smaller
than z−(E) is at most n(n− 1)δ/2. Thus we get w−(E) > f(S′)− n(n+ 1)δ/2− n(n− 1)δ/2 =
f(S′)− n2δ.

We now use this to prove correctness and running time, as well as consistency for later FC
use. As before we pick out the main points in boldface.

Theorem 3.12 The Hybrid SFM Algorithm generates only consistent vertices, is correct for
integral data, and runs in O((n4EO + n5) logM) time.

Proof:

48



The current approximate solution S at the end of a δ-scaling phase with δ < 1/n2

solves SFM: Lemma 3.11 shows that w−(E) ≥ f(S) − n2δ > f(S) − 1. But for any U ⊆ E,
f(U) ≥ w(U) ≥ w−(E) > f(T )− 1. Since f is integer-valued, T solves SFM.

Distance labels remain valid throughout HRefineR: Only Augment changes z, and
in such a way that S−δ(z) only gets smaller. Hence ds = 0 on S−δ(z) is preserved. We already
remarked that HFlowSwap preserves validity on C(δ). BlockSwap(i; k, l) adds new vertex
vj to I. The only new pairs with s ≺j t but s 6≺i t (that might violate validity) are those with
s ∈ S(i; k, l) and t ∈ T (i; k, l), and for these we need that ds ≤ dt + 1. Validity applied to s �i k
implies that ds ≤ dk + 1 = dl. By definition of D, dl ≤ dt, so ds ≤ dl ≤ dt < dt + 1. Suppose
that Relabel made s→ t ∈ C(δ) invalid. This means that before the Relabel we had s ∈ S
and t ∈ D with dt = ds + 1. But this s, t pair would then define an active triple, contradicting
that we are doing a Relabel. Similarly Relabel cannot invalidate any arc of A(I).

Only consistent vertices are generated: Suppose that s→ t ∈ C and we had t ≺i s but
that BlockSwap uses ≺i to generate ≺j with s ≺j t, so that s ∈ S(i; k, l) and t ∈ T (i; k, l).
The previous paragraph showed that at this point |ds − dt| ≤ 1, and so HFlowSwap would
apply to s→ t, causing t to join S, contradicting that t /∈ S.

Each scaling phase calls Augment O(n2) times: At the beginning of HRefineR, for
X equal to the final S′ from the previous call to HRefineR, Lemma 3.11 shows that z−(E) >
f(X) − n(n + 1)δ. This is also true for the first call to HRefineR for X = ∅ by the choice of
the initial value of |y−(E)|/n2 = |z−(E)|/n2 for δ. From the upper bound of δ on x we have
z−(E) ≤ w−(E) + n2δ. Since w ∈ B(f) we have w−(E) ≤ f(X), and so z−(E) ≤ f(X) + n2δ.
Thus the total rise in value for z−(E) during HRefineR is at most (2n2 + n)δ. Each call to
Augment increases z−(E) by δ, so there are O(n2) calls to Augment.

There are O(n2) calls to Relabel during HRefineR: Each dk is between 0 and n and
never decreases during HRefineR. Each Relabel increases at least one dk by one, so there are
O(n2) Relabels.

The previous two paragraphs establish that there are O(n2) re-ordering phases.
The common value m of dl for l ∈ D is non-decreasing during a re-ordering phase:

During a re-ordering phase, d does not change but S, D and R(δ) do change. However, all arcs
where x changes, and hence where R(δ) can change, are between S(i; k, l) and T (i; k, l). Thus
S can only get larger during a re-ordering phase, and so m is non-decreasing in a phase.

The work done by all BlockSwaps during a re-ordering phase is O(n2EO): Suppose
that BlockSwap(i; k, l) adds vj to I. Then, by how k and l were defined in an active triple,
for any q with dq = dl, any p with dq = dp + 1 must have that p ≺j q, and hence there can
be no subsequent active triple (j; p, q) in the phase with dq = dl. Thus m must increase by
at least one before the phase uses a subsequent active triple (j; p, q) involving ≺j . But then
dq > dl = dk + 1, implying that we must have that l ≺i k ≺i q ≺i p. Hence if vj results from vi

via BlockSwap(i; k, l), and (j; p, q) is the next active triple at j in the same re-ordering phase,
it must be that [l, k]≺i is disjoint from [q, p]≺i .

Suppose that ≺j appears in I at some point during a re-ordering phase, having been derived
by a sequence of BlockSwaps starting with ≺i1 (which belonged to I at the beginning of the
phase), applying active triple (i1; k1, l1) to ≺i1 to get ≺i2 , applying active triple (i2; k2, l2) to ≺i2
to get ≺i3 , . . . , and applying active triple (ia; ka, la) to ≺ia to get ≺ia+1=≺j . Continuing the
argument in the previous paragraph, we must have that l1 ≺i1 k1 ≺i1 l2 ≺i1 k2 ≺i1 . . . ≺i1 la ≺i1
ka. Thus the sum of the sizes of the intervals [l1, k1]≺i1 , [l2, k2]≺i1 , . . . , [la, ka]≺i1 is O(n). We
count all these BlockSwaps as belonging to ≺j , so the total BlockSwap work attributable

49



to ≺j is O(nEO). Since |I| = O(n), the total work during a re-ordering phase is O(n2EO).
The time for one call to HRefineR is O(n4EO+n5): The bottleneck in calling Augment

is the call to ReduceV, which costs O(n3) time. There are O(n2) calls to Augment, for a
total of O(n5) ReduceV work during HRefineR. There are O(n2) re-ordering phases during
HRefineR, so Scan is called O(n2) times. The BlockSwaps during a phase cost O(n2EO)
time, for a total of O(n4EO) BlockSwap work in one call to HRefineR. Each call to Scan
costs O(n2) time, for a total of O(n4) work per HRefineR. As in the previous paragraph, the
intervals [Leftim, Righti,m−1] are disjoint in ≺i, so the total Search work for ≺i is O(n), or a
total of O(n2) per phase, or O(n4) work over all phases. The updates to S and D cost O(n)
work per phase, or O(n3) overall.

There are O(logM) calls to HRefineR: As in the proof of Theorem 3.4 the initial
δ̂ = |y−(E)|/n2 ≤ 2M/n2. Each call to HRefineR cuts δ in half, and we terminate when
δ < 1/n2, so there are O(logM) calls to HRefineR.

The total running time of the algorithm is O((n4EO+n5) logM): Multiplying together
the factors from the last two paragraphs gives the claimed total time.

We already specified HRefineR so that it optimizes over a ring family, and this suffices to
embed HRefineR into the strongly polynomial framework of Section 3.3.2, getting a running
time of O((n4EO + n5)n2 log n).

Making the Hybrid Algorithm fully combinatorial is similar to the ideas in Section 3.3.3.
The ratio δ/η in BlockSwap is handled in the same way as the ratio xkl/c(k, l; vi) in (21) of
IFF-FC. If λ̃iqst ≤ SFx̃st for all s→ t (where SF is the current scale factor), then we can do a
full BlockSwap as before. Otherwise we use binary search to compute the minimum integer
β̃ such that there is some s → t with β̃qst ≥ SFx̃st. We then update λ̃i ← λ̃i − β̃ and λ̃j ← β̃.
Since β̃ = dSFx̃st/qste, the increase in β̃ over the usual value SFx̃st/qst is at most 1, so the
change in ∂x̃s is at most qst ≤ vjs − vis ≤ δ̃ by Lemma 3.10 (which requires consistent vertices,
which we proved above; this is why we need the explicit method here), so the update keeps
x̃ δ̃-feasible. We started from the assumption that there is some s → t with λ̃iqst > SFx̃st,
implying that β̃ ≤ λ̃i ≤ SF, so this binary search is fully combinatorial.

The running time of all versions of the algorithm depends on the O(n4EO + n5) time for
HRefineR, which comes from O(n2) re-ordering phases times O(n2EO) BlockSwap work plus
O(n3) ReduceV work in each re-ordering phase. The O(n2EO) BlockSwap work in each re-
ordering phase comes from O(nEO) BlockSwap work attributable to each ≺i in I times the
O(n) size of I. Since |I| is larger by a factor of O(n2 log n) when we don’t call ReduceV (it
grows from O(n) to O(n3 log n)), we might expect that the fully combinatorial running time also
grows by a factor of O(n2 log n), from O((n6EO +n7) log n) to O((n8EO +n9) log2 n). However,
the term O(n9) comes only from the O(n3) ReduceV work per re-ordering phase: The Scan
and Search time in a re-ordering phase is only O(n2), which is dominated by the BlockSwap
work. Thus, since the fully combinatorial version avoids calling ReduceV, the total time is
only O(n8EO log2 n). (The careful implementation of Scan and Search are needed to avoid
the extra term of O(n9 log2 n), and this is original to this survey.)

3.4 Orlin-Type SFM Algorithms

Orlin [71] proposed an SFM algorithm in 2006 that was quite different from previous algorithms,
in part because it does not use network flow ideas. In 2009 Iwata and Orlin [52] re-used some of

50



the same ideas in a simpler SFM algorithm that is nearly as fast, and whose fully combinatorial
version is the current fastest in that class.

As before, define S−(y) = {e ∈ E | ye < 0}, S0(y) = {e ∈ E | ye = 0}, and S+(y) = {e ∈ E |
ye > 0}. Notice that if S−(y) = ∅, then ∅ solves SFM, and if S+(y) = ∅, then E solves SFM.

These algorithms do not explicitly reference arcs or a network. Instead they use distance
labels that implicitly define the same network as in Schrivjer’s Algorithm. Unlike previous
distance labels, here each linear order ≺i has its own distance labels di. The label die of e ∈ E
is an estimate of how far to the right e should appear in ≺i, where a label of zero means that e
should be at the left, and n+ 1 means that it should be at the right. As the algorithms proceed
they will maintain the following validity properties between y, the ≺i and the di:

(OT i) For each i ∈ I, if ye ≤ 0, then die = 0.

(OT ii) For each i ∈ I, if e ≺i g, then die ≤ dig.

(OT iii) For each i, j ∈ I and each e ∈ E, |die − d
j
e| ≤ 1.

(In [71] the ≺i are derived from the di essentially using property (OT ii), but it can be seen
that this definition is equivalent.) Note that (OT i) tends to force e ∈ S−(y) to the left of each
≺i, as required by optimality. As the e ∈ S−(y) move leftwards, by (1) they increase towards
zero (and can become positive), and so the algorithms do increase y−(E) over time. For e ∈ E
define dmin

e = mini∈I die.
As the algorithms proceed, sometimes they will add new linear orders via doing block ex-

changes on existing linear orders, and the label vectors of the new linear orders match those of
the existing ones, except that the labels of some subset of elements is increased by one. We need
to ensure that label values do not become too large. Note that if some die reaches value n + 1,
then by (OT iii) there is some j ∈ I with dje = dmin

e ≥ n, and then by the pigeon-hole principle
there is some k ∈ (0, n) such that there is some e with dmin

e = k, but no g with dmin
g = k − 1.

We call such a k a distance gap.
If k is a distance gap, define T = {e | dmin

e < k}, and note that by (OT ii) T is at the left of
every ≺i. By (OT i), ye ≥ 0 for e /∈ T . We say that a distance gap satisfies partial optimality
(because if we also had that ye ≤ 0 for e ∈ T , then it is easy to see that this would prove that
T is optimal).

Lemma 3.13 There is an optimal SFM solution S with S ⊆ T . If we also know that ye > 0 for
e /∈ T , then S ⊆ T for every SFM solution S.

Proof: By (OT i) and (5), vi(T ) = f(T ) for all i ∈ I, and so y(T ) = f(T ). Let S∗ solve SFM.
By (OT i), S−(y) ⊆ T , and so f(T ) = y(T ) ≤ y(T ∪ S∗) ≤ f(T ∪ S∗). Thus f(T ) ≤ f(T ∪ S∗),
and so (2) implies that f(T ∩ S∗) ≤ f(S∗), showing that T ∩ S∗ ⊆ T also solves SFM.

Now assume that ye > 0 for e /∈ T . Suppose that S solves SFM but that S − T 6= ∅. Then
f(T ) = y(T ) < y(T ) + y(S − T ) = y(S) ≤ f(S), contradicting that S solves SFM, so we must
have S ⊆ T .

This lemma justifies the algorithms in setting die = n+ 1 for all i ∈ T as a way of essentially
deleting the elements of T from further consideration. This action of deleting elements above
distance gaps also ensures that labels stay at most n+1. It is possible for k = 1 to be a distance
gap when dmin

e ≥ 1 for all e ∈ E (⇒ S−(y) = ∅), and in this case T = ∅, which solves SFM. The
algorithms recognize this. Hence while the algorithms are running, there is always some e with
dmin
e = 0.

51



3.4.1 Orlin’s SFM Algorithm

Orlin’s Algorithm appeared in 2006 [71], and is currently the fastest known strongly polynomial
SFM algorithm (faster even than Ellipsoid). The algorithm assumes that f is defined on 2E , but
it can be adapted to ring families using the method of Section 5.2. It is somewhat reminiscent
of Schrijver’s Algorithm as it also considers directions synthesized from multiple new vertices
defined by single element block changes to existing vertices. However, unlike Schrijver, Orlin
does not use these new vertices to synthesize an edge direction, but rather synthesizes a direction
that keeps S0(y) monotonically non-decreasing. Also, where Schrijver solves triangular system
(17) to synthesize a direction, Orlin solves a more general system that involves an M-matrix (see
Berman and Plemmons [5]).

For each e ∈ E define d[e] (the primary distance vector for e) to be a di with die = dmin
e ,

and with minimum di(E) value among these. That is, let’s define H [e] as the set of i ∈ I that
lexicographically minimize (die, d

i(E)), and then d[e] = di for some i ∈ H [e]. Denote the linear
order associated with d[e] by ≺[e]. Define d[e+] (the secondary distance vector for e, which is
usually not one of the di) via d

[e+]
g = d

[e]
g for g 6= e, and d

[e+]
e = d

[e]
e + 1. The linear order

associated with d[e+] is ≺[e+], which moves e to the right in ≺ just until it is larger than every
g with d

[e]
g = d

[e]
e , so this is a block exchange. Notice that this construction for d[e+] and ≺[e+]

preserves (OT ii) and (OT iii). The associated vertices are v[e] and v[e+]. A subset of the v[e+]

are the new vertices the algorithm adds to I.
For e ∈ E define the column A(e) ∈ RE by A(e) = v[e+] − v[e], and its restriction to the

components of S0(y) by A0(e). Then if S0(y) 6= ∅ the |S0(y)| × |S0(y)| auxiliary matrix A∗

contains the columns A0(e) for e ∈ S0(y). Enumerate the elements of S0(y) as e1, e2, . . . , eq.
Then Lemma 2.6 implies that the sign pattern of A∗ looks like:



A0(e1) A0(e2) A0(e3) . . . A0(eq)
e1 	 ⊕ ⊕ . . . ⊕
e2 ⊕ 	 ⊕ . . . ⊕
e3 ⊕ ⊕ 	 . . . ⊕
...

...
...

...
. . .

...
eq ⊕ ⊕ ⊕ . . . 	

.

Lemma 3.14 If A∗ is invertible, then (A∗)−1 ≤ 0, and if A∗ is singular, then there exists some
γ ∈ RS0(y), γ 6= 0, γ ≥ 0, with A∗γ = 0.

Proof: Recall that v[e](E) = v[e+](E) = f(E). For e ∈ S0(y), A0(e) includes A(e)e, the only
possibly negative component, and just a subset of the possibly positive components, and so we
get that 1TA0(e) ≤ 0. When A∗ is invertible, these facts show that −A∗ is an M-matrix. The
conclusions then follow from [5] and [71, Theorem 2].

Now the idea is to choose some h ∈ S+(y). In order to get all the S−(y) elements towards
the left, we would like move the labels of h and all the S0(y) elements to the right, so we’d like
to replace d[g] with d[g+] for g ∈ S0(y) + h. Adding a positive multiple of A(g) to y (adding a
new index to I for d[g+] if necessary) would do this, and would keep

∑
i∈I λi = 1. At the same

time, we want to ensure that no e ∈ S0(y) leaves S0(y). Lemma 3.14 gives us tools to help us
synthesize a good direction.

52



If A∗ is non-singular, then we can solve A∗γ = −A(h) for γ. Lemma 2.6 says that since
h /∈ S0(y), −A0(h) ≤ 0, and (A∗)−1 ≤ 0, so that the resulting γ ≥ 0. If instead A∗ is singular,
then Lemma 3.14 ensures that some γ ≥ 0 with γ 6= 0 exists such that γA∗ = 0. In the first case
we set γh = 1, and in the second case we set γh = 0. We combine both cases by finding some

γ ≥ 0, γ 6= 0, solving
∑

g∈S0(y)+h

γgA
0(g) = 0. (22)

In the degenerate case where S0(y) = ∅ we put γh = 1, which has all the properties needed for
the algorithm. Hence in all cases, moving in direction d ≡

∑
g∈S0(y)+h γgA(g) indeed preserves

that ye = 0 for e ∈ S0(y) and
∑

i λi = 1, while tending to replace d[g] with d[g+] as desired.
Let α denote the step length of our move, so that we change y to y + αd. Note that I

expands to include new indices for v[g+] for each g ∈ S0(y) + h. Suppose that there was some
e, g ∈ E and i ∈ H [e] such that di = d[g+]. Then we could choose d[e] = di, and we’d have
d

[e]
g = d

[g+]
g = d

[g]
g + 1, and d

[g]
j = d

[g+]
j = d

[e]
j for j 6= g. But then d[g](E) < d[e](E), but both

have that d[g]
e = d

[e]
e = dmin

e , and this contradicts that d[e] has the min value of d[e](E) over all
di with d

[e]
e = dmin

e . Hence

For all g ∈ E, if there is some i ∈ I with di = d[g+], then i is not in H [e] for
any e ∈ E.

(23)

Thus for i in the new I such that there is some g ∈ S0(y) + h with di = d[g+], there can be no
e ∈ S0(y) + h with di = d[e], and so the new λi is λi + α

∑
g:d[g+]=di γg; for i in the new I such

that there is some g ∈ S0(y) + h with di = dg, there can be no e ∈ S0(y) + h with di = d[e+],
and so the new λi is λi − α

∑
g:d[g]=di γg. Since γ ≥ 0, this ensures that this change causes only

λi with di = d[e] (and not those with di = d[e+]) to drop towards zero, which is important for
the running time proof. We continue moving in direction d until either some λi drops to zero
for i ∈ I, or ye drops to zero for some e that was in S+(y) (since γ 6= 0, at least one of these
cases must happen). This ensures that we keep λ ≥ 0 and that no new elements join S−(y).

Once we take this step, we now call subroutine UpdateI, which removes any i with λi = 0,
and then recomputes the d[e], d[e+], S0(y), and S+(y). It chooses some h ∈ S+(y) and for
e ∈ S0(y) + h such that d[e] has changed, adds d[e+] to I and computes A(e).

Note that if an exact primal solution is desired, then instead of deleting all elements above
a distance gap, one could set their labels to n+ 1 in all di to ensure that they are right-most in
all di and modify the selection of h ∈ S+(y) to ensure that dih ≤ n, and then the algorithm ends
with an exact primal solution.

We now prove that this works, and give its running time. We again give one big proof, but
we pick out the key claims along the way in boldface.

Theorem 3.15 Orlin’s Algorithm correctly solves SFM, and runs in O(n5EO + n6) time.

Proof: If the algorithm terminates, it is with an optimal solution: It only terminates
when S+(y) = ∅, and then the remaining E is clearly optimal.

If ye = 0 at some iteration, then ye = 0 at all later iterations: The choice of d and α
ensures this.

53



Orlin’s Algorithm for SFM

Initialize by setting d1 = 0, ≺1= 12 . . . n, λ1 = 1, I = {1}, and computing y = v1.
While S+(y) 6= ∅ do

Choose some h ∈ S+(y). [ try to replace d[h] by d[h+] ]
If S0(y) = ∅, put γh = 1;
Else compute γ ≥ 0, γ 6= 0 s.t.

∑
e∈S0(y)+h γeA

0(e) = 0. [ (22), Lemma 3.14 ]
Compute d =

∑
e∈S0(y)+h γeA(e).

Set α the max possible s.t. ye + αde ≥ 0 ∀e ∈ S+(y) and α
∑

e:d[e]=di γe ≤ λi ∀i ∈ I.
Set y = y + αd, add indices for d[g+] for g ∈ S0(y) + h to I.
For i ∈ I, set λi = λi + α(

∑
g:d[g+]=di γg −

∑
g:d[g]=di γg).

Call UpdateI.
If |I| ≥ 3n then call ReduceV and UpdateI.
If k is a distance gap, then set E = {e | dmin

e < k}, recompute S−(y), S0(y), and S+(y).
Return E as an optimal solution. [ E is optimal as S+(y) = ∅ ]

For all e ∈ E, dmin
e is non-decreasing: Dropping i from I via ReduceV cannot decrease

a dmin
e . Since any new d[g+] added to I has d[g+]

e ≥ d[g]
e for the d[g] already in I, this also cannot

decrease a dmin
e .

The algorithm preserves validity and representation (11): If e ∈ S−(y) then the
algorithm never considers d[e+], and so die = 0 is preserved, i.e., (OT i). We already noted that
(OT ii) and (OT iii) are preserved by the definitions of d[e+] and ≺[e+]. Since each A(e) =
v[e+] − v[e] and d is a linear combination of A(e)’s, moving along d preserves that

∑
i λi = 1.

The choice of α preserves that λ ≥ 0.
Defining the potential function: For e ∈ E define Φ(e) = |H [e]|, and Φ =

∑
e∈E Φ(e).

The total decrease (increase) in Φ is the sum of the decreases (increases) at steps where Φ
decreases (increases). The eventual goal is to show that the total decrease in Φ is O(n4). To
derive this, define h(e) = d[e](E) and ĥ(e) =

∑
g∈E(d[e]

g − dmin
g ). We first show that the number

of changes in (dmin
e , h(e)) (which is the lexicographic value for i ∈ H [e]) is O(n2); to show this

we consider changes in ĥ(e).
The number of times that (dmin

e , h(e)) changes is O(n2): Since dmin
e is non-decreasing

and dmin
e ≤ n, the number of times that dmin

e changes without a change in h(e) is O(n), so we
concentrate on changes in h(e). Note that h(e) − ĥ(e) =

∑
g∈E d

min
g . It is possible for h(e) to

change while ĥ(e) stays constant, as long as dmin
g increases for some g. The number of changes

in
∑

g∈E d
min
g is O(n2), and so if we show that there are O(n2) changes in ĥ(e), this also shows

O(n2) changes for h(e). By removing distance gaps, 0 ≤ ĥ(e) ≤ n, and so total increases in
ĥ(e) are bounded by total decreases plus n. The only way for ĥ(e) to decrease is if some dmin

g

increases. There are only O(n2) increases of dmin
g over all g, and so only O(n2) decreases to ĥ(e).

Hence total changes to ĥ(e), and so also h(e), and so also (dmin
e , h(e)), are O(n2).

The total increase and decrease in Φ is O(n4): Since Φ = O(n2), if suffices to bound
the total increase in Φ by O(n4). The only new i added to I are those with di = d[g+] for some
g ∈ S0(y) +h, and by (23) these do not change any H [e]. Hence, during a sequence of iterations
where (dmin

e , h(e)) is constant, Φ(e) can only decrease (due to λi hitting zero for some i with

54



di = d[e], or ReduceV). When (dmin
e , h(e)) changes, the new H [e] contains at most |I| = O(n)

indices, and so Φ(e) increases by O(n). For a fixed e, (dmin
e , h(e)) changes O(n2) times, and

so the total increase to Φ(e) over all iterations is O(n3). Thus the total increase in Φ over all
iterations is O(n4). Note that this (and all previous paragraphs) remains true when the distance
gap step deletes some elements.

The total work in adding columns A(g) to A∗ is O(n5EO): The time to compute one
A(g) is O(nEO), so it suffices to show that O(n4) columns get added to A∗. New column A(g)
needs to be added whenever the i with di = d[g] disappears from I due to λi hitting zero, or
ReduceV. In this case di serves as d[g] for the elements D = {g ∈ E | d[g] = di}, and so when
di disappears we need to add the |D| new columns A(g) for g ∈ D to A∗. For g ∈ D, losing di

means that either Φ(g) decreases by 1, or (dmin
g , h(g)) changes. Since the total decrease in Φ is

O(n4), the first case happens O(n4) times; since (dmin
e , h(e)) changes O(n2) times, the second

case happens O(n2) times, for a total of O(n4) columns added to A∗.
The total work in solving (22) is O(n6): Each time a new A(g) gets added to A∗, it

takes O(n2) time to reduce the new A∗ to the canonical form needed for solving (22). Since
O(n4) columns are added, total time is O(n6).

The total work in UpdateI is O(n6): Each iteration of the loop either makes a new
element join S0(y), or deletes some i with di = d[e] for some e from I. Since S0(y) is monotone,
the first case happens O(n) times. The second case either causes some H [e] to decrease, or a
change in (dmin

e , h(e)); these happen O(n4) times. Hence there are O(n4) iterations that call
UpdateI. A naive implementation of UpdateI takes O(n2) time. (It is possible to implement
UpdateI using a priority queue [10] with i’s key being di(E) to reduce its time to O(n log n).)

The total work in ReduceV is O(n6): The time for ReduceV is O(n3) plus O(n2) for
each i ∈ I eliminated. ReduceV ensures that |I| ≤ n, and the subsequent UpdateI adds O(n)
d[e+] to I, and so |I| ≤ 2n. Each i added to I between now and the next call to ReduceV is
d[e+] for some e, which generates a new column A(e). At the next call to ReduceV, |I| ≥ 3n,
and so at least n new columns have been added to A∗. Since O(n4) columns get added to A∗,
ReduceV gets called O(n3) times. The number of indices deleted from I is within O(n) of the
number added, which is of the same order as the number of columns added to A∗, or O(n4), for
a total of O(n6) ReduceV work.

The algorithm runs in O(n5EO + n6) time: This is the sum of the times of the major
steps in the four previous paragraphs. All other work is clearly bounded by O(n2) per iteration,
and so is dominated by the major steps.

3.4.2 Iwata and Orlin’s SFM Algorithm

In 2009 Iwata and Orlin [52] gave a simple SFM algorithm that re-uses some of the ideas of Orlin’s
Algorithm, and a few ideas from the Hybrid Algorithm. It achieves time bounds nearly as good
as Orlin’s Algorithm, and it has a fully combinatorial version that is the current champion. We
call it the Iwata-Orlin, or IO, Algorithm. Unlike Orlin’s Algorithm, it is not naturally strongly
polynomial, but by making some changes we can get a strongly polynomial version, IO-SP. Also
unlike Orlin’s Algorithm, it can be make fully combinatorial, which we call IO-FC. We develop
each version in turn.

The IO Algorithm is based on a quite different objective function than other SFM algorithms.

55



The Min Norm Point (MNP) problem is to solve

min
∑

e∈E y
2
e

s.t. x ∈ B(f).
(24)

A proof similar to Lemma 2.3 shows that the union and intersection of SFM solutions are again
SFM solutions. Therefore there is a unique minimal SFM solution (namely the intersection of all
SFM solutions) and a unique maximal SFM solution (namely the union of all SFM solutions).
The next theorem shows the connection between MNP and SFM:

Theorem 3.16 ([25, Theorem 3.3], [26, Proposition 7.1]) Suppose that y∗ solves MNP.
Then S−(y∗) is the minimal SFM solution, and S−(y∗) ∪ S0(y∗) is the maximal SFM solution.

This theorem motivate a basic idea of the IO Algorithm: concentrate on the MNP objective
(24). Recall that B(f) is contained in the hyperplane y(E) = f(E). It is easy to see that the
optimal MNP solution for y in this hyperplane is ỹ = ( 1

f(E))1, because the quadratic objective
function prefers component values that are as equal as possible. Indeed, if ỹ ∈ B(f) this
optimizes MNP over B(f), with the primal solution being E if f(E) ≤ 0, and ∅ if f(E) ≥ 0.
(The MNP solution has many strong properties, see Nagano [68].)

This leads to the idea of finding some central value µ and some S ⊆ E and trying to move
the ye < µ with e ∈ S upwards towards µ, and the ye > µ with e ∈ S downwards towards µ. We
call this a squish step. If we can arrange things so that the ye move a sufficiently long distance
towards µ in a squish step, then we could get a large enough decrease in

∑
E y

2
e to get geometric

convergence. The algorithm will end up caring only about the positive components of y, and
so it will instead concentrate on the potential function Φ(y) ≡

∑
e∈E(y+

e )2 (different from the
Φ in Orlin’s Algorithm). This points up a big difference between Orlin’s Algorithm and the IO
Algorithm: Orlin’s Algorithm aims to monotonically increase S0(y), whereas the IO Algorithm
is happy to have a negative ye become positive during a squish step (which we take into account
in developing (27) below).

There are five versions of the IO Algorithm: (1) The basic weakly polynomial version, that we
call Basic IO, that is needed for the fully combinatorial version; (2) A faster weakly polynomial
version, that we call Wave IO; (3) A variant of Wave IO that is strongly polynomial, that we
call IO-SP; (4) A transitional strongly polynomial version of Basic IO, that we call Basic IO-SP;
and (5) a fully combinatorial version based on Basic IO-SP that we call IO-FC.

The Basic Weakly Polynomial Version of IO The algorithm will use Lemma 3.13 to
delete elements from E. For simplicity denote the original E by Ē, and the current value by E.
Note that all deleted elements e have dmin

e > 0, and so by (OT i) they satisfy ye > 0. The proof
of Lemma 3.13 shows that at the moment of deletion, y(E) = f(E). Deleted elements are never
changed after deletion, and so we maintain that y(E) = f(E) at all times.

Define ymax = maxE ye. If ymax ≤ 0, then clearly the current E solves SFM, so we can
assume that ymax > 0. The next lemma bounds ymax away from 0:

Lemma 3.17 Suppose that f is integer-valued. If ymax < 1/n, then the current E is the unique
maximal SFM solution.

56



Proof: We have ye < 1/n for e ∈ E, and ye > 0 for e ∈ Ē. Thus y−(Ē) > y(E) − |E|/n ≥
x(E)− 1 = f(E)− 1. For any S ⊆ E and by integrality of f we have f(S) ≥ y−(Ē) ≥ f(E), so
E is an SFM solution. Since ye > 0 for all e ∈ Ē −E, by Lemma 3.13 in fact E is the maximal
SFM solution.

Now define δ = ymax/4n. To aim for sufficient decrease in Φ(y) during a squish step, we
want to find a µ ∈ [δ, ymax) such that the interval (µ−δ, µ+δ) contains no ye. Since this interval
has size 2δ, the total interval (0, ymax) has size 4nδ, and there are at most n ye values, by the
pigeon-hole principle we must be able to find such a µ. Note that we can find µ by sorting the
positive ye and then doing a linear scan in O(n log n) time, which will not be a bottleneck.

Now we define the squish step w.r.t. µ. Compute g = argmin{dmin
e | e ∈ E s.t. ye > µ},

l = dmin
g , and k ∈ I with dkg = l. Now subroutine NewOrd(k, µ, l) constructs a new linear order

≺k′ from ≺k like this: Define S = {e | dke = l}, and partition S into Q = {e ∈ S | ye < µ} and
R = {e ∈ S | ye > µ}. Then ≺k′ is the result of the general block exchange that moves Q to the
left of the block and R to the right of the block (as in Section 3.3.4). The labels for k′ match
those of k, except that dk

′
e = dke + 1 for e ∈ R (it’s easy to see that this preserves (OT i–iii)).

Since g ∈ R, we have that at least one element has its label increased in dk
′
.

Lemma 2.6 says that vk
′ − vk is non-negative on Q, non-positive on R, and zero elsewhere,

and so moving in the vk
′ − vk direction will tend to squish the ye for e ∈ S towards µ. The step

length of this move is determined by two factors. First, to keep λ ≥ 0 we need to choose α ≤ λk.
Second, we don’t want to overshoot µ. For e ∈ Q we know that vk

′
e ≥ vke . If vk

′
e > vke then we

want that ye + α(vk
′
e − vke ) ≤ µ, or α ≤ (µ− ye)/(vk

′
e − vke ), and a similar thing for e ∈ R. Thus

we choose

α = min
{
λk,min

(
µ− ye
vk′e − vke

∣∣∣∣ e ∈ Q ∪R, vk′e 6= vke

)}
. (25)

Moving by α in direction vk
′ − vk is done by Squish. When α = λk we call the Squish full,

otherwise we call it partial (saturating and non-saturating in [52], respectively). Note that a
full Squish does not change |I| (since ≺k′ joins I but ≺k drops out), whereas a partial Squish
increases |I| by one (though it does cause a ye to equal µ for some e ∈ S).

The Squish subroutine for the IO SFM Algorithm

[ Input is µ s.t. 6 ∃ ye ∈ (µ− δ, µ+ δ); and k ∈ I and g ∈ E with dkg = l. ]
Compute S = {e | dke = l}, Q = {e ∈ S | ye < µ}, R = {e ∈ S | ye > µ}.
Call NewOrd(k, µ, l) to get new order ≺k′ which is ≺k with the block exchange

that moves Q before R.
Add k′ to I with dk

′
e = dke + 1 on S, dk

′
e = dke elsewhere.

[ Lemma 2.6 ⇒ vk
′ − vk ≥ 0 on Q, vk

′ − vk ≤ 0 on R, and zero elsewhere. ]
Compute α via (25).
Set λk ← λk − α, λk′ ← α, and update y and ymax.
If λk = 0 [ since α was λk, a full Squish ] delete k from I.

Now we are ready for the key lemma that drives all the IO algorithms. It assumes that a
sequence of Squishes is substantial enough to cause at least one component of y to change by
some multiple k of δ. Although a Squish can cause ymax to decrease, we use ymax to refer to its
value at the beginning of the Squish throughout the following lemma and its proof.

57



Lemma 3.18 Suppose that y and µ are such that there is no ye in (µ− δ, µ+ δ), and that we
apply a sequence of one or more Squishes w.r.t. µ that changes y to y′. Further suppose that
there is some e ∈ E with |y+

e − y′e| ≥ kδ. Then Φ(y)− Φ(y′) ≥ kΦ(y)/16n3.

Proof: Define Q = {e | y′e > ye}, R = {e | y′e < ye}, and Q+ = {e ∈ Q | y′e > 0}. Due to
how Squishes work, for e ∈ Q we have ye ≤ µ− δ, and for e ∈ R we have ye ≥ µ+ δ. If e ∈ Q
(or Q+) then ye ≤ µ− δ and y′e ≤ µ, and so

ye + y′e ≤ 2µ− δ for e ∈ Q+; similarly ye + y′e ≥ 2µ+ δ for e ∈ R. (26)

Now y+
e ≥ ye, and so

∑
Q+(y+

e − y′e) ≥
∑

Q+(ye − y′e). Then Q+ ⊆ Q and y′e ≥ ye on Q imply
that

∑
Q+(ye − y′e) ≥

∑
Q(ye − y′e). Since ye 6= y′e only on Q ∪ R and y(E) = y′(E) we get∑

Q(ye − y′e) =
∑

R(y′e − ye), and together these imply∑
Q+

(y+
e − y′e) ≥

∑
R

(y′e − ye). (27)

Now

Φ(y)− Φ(y′) =
∑

R∪Q+((y+
e )2 − (y′e)

2)

=
∑

R∪Q+(y+
e − x′e)(y+

e + y′e)

≥
∑

Q+(y+
e − y′e)(2µ− δ) +

∑
R(ye − y′e)(2µ+ δ) by (26)

≥
∑

Q+(y′e − y+
e )δ +

∑
R(ye − y′e)δ by 2µ · (27).

(28)

By hypothesis, at least one term of (28) has e ∈ Q+ and y′e−y+
e ≥ kδ, or e ∈ R and ye−y′e ≥ kδ,

and so Φ(y) − Φ(y′) ≥ kδ2 = ky2
max/16n2. Since each term of Φ(y) is at most y2

max, we get
Φ(y) ≤ ny2

max, or y2
max ≥ Φ(y)/n. From this we get ky2

max/16n2 ≥ kΦ(y)/16n3.

Notice that a partial Squish moves at least one e ∈ Q ∪ R from outside (µ − δ, µ + δ) to
equal µ, a distance of at least δ (and when e ∈ Q, we indeed have that y′e − y+

e ≥ δ). Thus we
can apply Lemma 3.18 with k = 1 to get:

Corollary 3.19 Suppose that Squish is a partial change from y to y′. Then Φ(y) − Φ(y′) ≥
Φ(y)/16n3.

Now we can specify the overall Basic IO Algorithm.
We now prove that this works, and give its running time. We again give one big proof, but

we pick out the key claims along the way in boldface.

Theorem 3.20 The Basic IO Algorithm correctly finds the unique maximal SFM solution, and
runs in O(n6EO log(nM)) time.

Proof: If the algorithm terminates, it is with the unique maximal SFM solution:
The algorithm terminates when ymax < 1/n, and indeed the current E is then the unique
maximal SFM solution by Lemma 3.17 and Lemma 3.13.

58



The Basic IO Algorithm for SFM

Initialize by setting d1 = 0, ≺1= 12 . . . n, λ1 = 1, I = {1}, and computing y = v1.
While ymax ≥ 1/n [ using Lemma 3.17 ] do

Find µ ≥ δ s.t. 6 ∃ y ∈ (µ− δ, µ+ δ).
Compute g = argmin{dmin

e | ye > µ}, l = dmin
g , and k ∈ I s.t. dkg = l.

Call Squish using this µ, k, g, and l.
End while.
Output final E as the unique maximal SFM solution.

Distance labels stay valid: We already saw that (OT i–iii) stay valid during Squish.
Doing O(n3) partial Squishes suffices to halve Φ(y): We can re-express the conclusion

of Corollary 3.19 as Φ(y)−Φ(y′)
Φ(y) ≥ 1/16n3. Therefore O(n3) partial Squishes suffice to halve

Φ(y).
There are O(n3 log(nM)) partial iterations: The initial value of Φ(y) is at most 4nM2.

Once Φ(y) is below 1/n2 then ymax must be below 1/n, and so by Lemma 3.17 the current E is
the unique maximal SFM solution.

There are O(n5 log(nM)) full iterations: For i ∈ I and e ∈ E, define dgapie = (n +
1) − die, the remaining room for die to increase. Consider a second potential function Γ(I, d) =∑

i

∑
e dgapie. Each full Squish decreases Γ(I, d) by at least one (since new order k′ joins I but

old order k exits, and at least dk
′
g increases by one), and each partial Squish increases Γ(I, d)

by at most n2. Thus the total increase in Γ(I, d) from partial Squishes is O(n5 log(nM)), and
so this bounds the number of full Squishes.

The running time is O(n6EO log(nM)): Each Squish takes O(nEO) time, and the total
number of Squishes is O(n5 log(nM)).

The Wave Weakly Polynomial Version of IO Iwata and Orlin modify Basic IO in two
ways to speed it up. First, note that so far we have not used ReduceV. Second, we could
repeatedly apply Squish (through several full Squishes) long enough that we get a partial
Squish so that Corollary 3.19 applies, and we can do this for every possible µ in [δ, ymax].

The Wave subroutine for the IO Algorithm for SFM

[ Input is the interval [δ, ymax]. ]
Initialize µ = δ.
While µ ≤ ymax and no value of dmin

e changes do
Increase µ the minimum amount until 6 ∃ y ∈ (µ− δ, µ+ δ).
While 6 ∃ e with ye = µ [ i.e., keep going until get a partial Squish ]

and no value of dmin
e changes do

Compute g = argmin{dmin
e | ye > µ}, l = dmin

g , and k ∈ I s.t. dkg = l.
Call Squish using this µ, k, g, and l.

End while.
End while.

59



We implement this in subroutine Wave. It starts µ at δ, increases it to a value such that
there is no e with ye ∈ (µ− δ, µ+ δ) (so that we can apply Squish), and then repeatedly applies
Squish until we get a partial Squish that causes ye = µ for some e. It then increases µ to
the next higher possible value, and repeats. For the running time proof, we also break out of
the iterations in case a Squish causes dmin

e to increase for some e. Here we assume that ymax

changes dynamically during Squishes, but that δ maintains its initial value.
Now we can specify the overall Wave IO Algorithm.

The Wave IO Algorithm for SFM

Initialize by setting d1 = 0, ≺1= 12 . . . n, λ1 = 1, I = {1}, and computing y = v1.
While ymax ≥ 1/n [ using Lemma 3.17 ] do

Compute ymax = maxe ye and set δ = ymax/4n.
Call Wave. [ this could decrease ymax ]
If a distance gap k appears, compute T = {e | dmin

e ≥ k}, set die = n+ 1 ∀i, e ∈ T ,
set E ← E − T . [ using Lemma 3.13 ]

Call ReduceV.
End while.
Output final E as the unique maximal SFM solution.

We now prove that this works, and give its running time. We again give one big proof, but
we pick out the key claims along the way in boldface.

Theorem 3.21 The Wave IO Algorithm correctly finds the unique maximal SFM solution, and
runs in O((n4EO + n5) log(nM)) time.

Proof: If the algorithm terminates, it is with the unique maximal SFM solution:
The algorithm terminates when ymax < 1/n, and indeed the current E is then the unique
maximal SFM solution by Lemma 3.17 and Lemma 3.13.

Distance labels stay valid: We already saw that (OT i–iii) stay valid during Squish.
ReduceV could delete some i from I, but this cannot impair validity.

Wave returns O(n2) times due to some dmin
e increasing: Each die is non-decreasing

during the algorithm, and so the dmin
e are non-decreasing. Each dmin

e starts at 0 and ends up at
most n+ 1, and so is increased O(n) times, and so there are O(n2) times overall that some dmin

e

increases.
Split analysis of Wave without some dmin

e increasing into two cases: Recall that
Wave can cause ymax to decrease (ymax is non-increasing during the algorithm). Case A: the
value of ymax at the end of Wave is at most 3nδ. Case B: the value of ymax at the end of Wave
is between 3nδ and 4nδ.

Let y0 denote the value of y before calling Wave, and y′ its value after calling Wave. In
Case A we have Φ(y0) − Φ(y′) ≥ Φ(y0)/16n2: This follows from applying Lemma 3.18 with
k = n, since ymax shrinking nδ implies that some ye moved at least nδ.

In Case B we also have Φ(y0)−Φ(y′) ≥ Φ(y0)/16n2: We first claim that Wave processes
Θ(n) different values of µ. Each time µ changes, it increases by at least δ, and ends up at
least 3nδ, so there are O(n) values of µ. On the other side, each value of ye can invalidate a

60



subinterval of width at most 2δ in the overall interval of at least [δ, 3nδ], and so there are at
least n values of µ that will be considered. For each of these Θ(n) values of µ, Wave ends with
a partial Squish that have some e with ye = µ, and so Corollary 3.19 applies. Since it applies
Θ(n) times, we get that Φ(y′)) ≤ (1− 1/16n3)nΦ(y0), and so Φ(y0)− Φ(y′) ≤ Φ(y0)/16n2.

There are O(n2 log(nM)) calls to Wave: We showed above that there are O(n2) Waves
that return due to some dmin

e increasing. Each other Wave satisfies Φ(y0)−Φ(y′) ≥ Φ(y0)/16n2.
Thus it takes O(n2) iterations to cut Φ(y) in half, and so O(n2 log(nM)) iterations to cut Φ(y)
from its initial value of at most nM2 to a final value of at most 1/n3. When Φ(y) < 1/n3, then
ymax < 1/n, and we are optimal.

The size of I at the end of a Wave is at most 5n: Each full Squish leaves |I| unchanged,
so we need only show that the number of partial Squishes is at most 4n. Each partial Squish
causes some ye to equal the current µ, and we showed above that this happens at most 4n times.

Total work in calling ReduceV is O(n5 log(nM)): ReduceV gets called once per Wave,
and there are O(n2 log(nM)) Waves. The number of columns that ReduceV must process is
O(n), and each call costs O(n3).

The time per call to Wave is O(n2EO): Each Squish does a block exchange on S,
which costs O(|S|EO) by (6), and this is the bottleneck operation. We saw that there are O(n)
partial Squishes. Each takes O(|S|EO) time, for a total of O(n2EO) time. Now we consider
full Squishes. A full Squish uses ≺k and S to create new linear order ≺k′ . We call ≺k′ a child
of ≺k, and any orders coming from further Squishes on ≺k′ we call descendents of ≺k. Because
µ is non-decreasing during Squish, and because we choose g to minimize dmin

e among eligible
e, the set S′ for a descendent of ≺k must be disjoint and to the right of S. Therefore the total
work in computing new vertices from descendents of ≺k is only O(nEO) (this is similar to an
argument in the proof of Theorem 3.12). Since we start with O(n) linear orders in I, the total
work from the full Squishes is O(n2EO).

The total time for the algorithm is O((n4EO+n5) log(nM)): The bottleneck operations
are calls to ReduceV (which cost O(n5 log(nM)) in total) and calls to Wave (which cost
O(n2EO) each). There are O(n2 log(nM)) calls to Wave, for a total of O((n4EO+n5) log(nM))
time.

Note that the argument for this running time in [52, Section 4] does not distinguish Case
A from Case B as we do above, and this appears to be wrong. The argument that fixes this is
original to this survey.

The Strongly Polynomial Version of IO Often weakly polynomial algorithms are scaling-
based. The IO Algorithm does not do explicit scaling, but Lemma 3.18 shows that the algorithm
is effectively implicitly scaling Φ(y). In order to turn IO into its strongly polynomial version
IO-SP we need a analogue of Lemma 3.5, a proximity lemma adapted to this context.

Lemma 3.22 If ymax > 0 and y ∈ B(f), then yg < −nymax implies that g is contained in all
SFM solutions.

Proof: Define P = {e | ye > 0}. Now execute a conceptual algorithm to move y towards an
SFM solution. For each e ∈ P in turn use brute force to compute c(g, e; y), and the step length
α = min(ye, c(g, e; y)). Now update y ← y+α(χg−χe), and go on to the next e ∈ P . Note that
ye ≤ ymax for all e ∈ P and the original yg < −nymax imply that the final yg is still negative.

61



For e ∈ P , iteration e results in either ye = 0 or there is some y-tight set Te containing g but
not e. Subsequent iterations keep Te y-tight. Then the intersection T of all these Te is again
y-tight, and satisfies that ye ≤ 0 for all e ∈ T (if no iterations result in a Te, then ye ended up
equal to zero for all e ∈ P , and then we can use E for T ).

Suppose that g /∈ S ⊆ E. Then f(T ) = y(T ) < y(S ∩ T ) ≤ f(S ∩ T ). Submodularity then
implies that f(S) > f(S ∪ T ), and so the subset S not containing g cannot solve SFM.

We can no longer use Lemma 3.17 as a termination criterion, as it depends on the assumption
that f is integral. But Lemma 3.13 is still valid, and so (as in the weakly polynomial version of
IO) when we find a distance gap we exclude the elements above the gap, and so E shrinks during
the algorithm. Thus if we have ymax ≤ 0, then the current E must be the unique maximal SFM
solution.

Now we will use the same ring family technology covered in Section 3.3.2, where our current
state of knowledge about the solution is represented by the directed graph (E,C). We know that
all SFM solutions must correspond to ideals of (E,C). To simplify the exposition, we assume
that C contains no directed cycles (if it does, then we can shrink strongly connected components
to new vertices, and then use the methods of Section 3.3.2). For e ∈ E, recall that De is the
set of descendents of e in (E,C), and Ae is the set of ancestors of e in (E,C), both including e.
When we delete the elements in T above a distance gap from E, we must also delete A(T ), the
ancestors of elements in T . This ensures that our current set E is always an ideal.

For e ∈ E and S an ideal of (E − De, C), recall that fe(S) = f(S ∪ De) − f(De) is the
contraction of f at e. Given y ∈ B(f) (where now we include only the constraints x(s) ≤ f(S)
for S an ideal of (E,C) in defining B(f)) represented via (11) and e ∈ E, we can produce a
related ŷ ∈ B(fe) as follows. Given ≺i with i ∈ I, define ≺i′ as the linear order on E we get by
moving the elements of Dg to the front of ≺i. Suppose that S ⊆ E − De is such that De ∪ S
is an initial segment of some ≺i′ . Then from Greedy vi

′
(S) = f(De ∪ S) − f(De) = fe(S).

Therefore, if we define v̂i
′ ∈ RE−De to be vi

′
with its first |De| coordinates chopped off, we get

that v̂i
′ ∈ B(fe). Finally we can define ŷ =

∑
I λiv̂

i′ (using the same λi as y) and know that
ŷ ∈ B(fe).

As the algorithm proceeds, there are three useful events that might happen w.r.t. ymax:

1. We could have ymax ≤ 0: This implies that the current E is the unique maximal SFM
solution, and we can stop.

2. We could have some g ∈ E with yg < −nymax: Then Lemma 3.22 implies that g
belongs to every SFM solution. We can reduce to the case of the contracted function fg,
recursively find the unique maximal SFM solution Sg for fg, and return Sg + g.

3. We could have some g ∈ E with f(Dg) > n2ymax: Compute the ≺i′ and ŷ ∈ B(fg).
Then ŷ(E −Dg) = fg(E −Dg) = f(E)− f(Dg) < −(n2 − n)ymax, implying that there is
some h ∈ E − Dg with ŷh < −nymax. We can then apply Lemma 3.22 to fg and this h
to get the condition that any solution to SFM for fg must include h, which implies that
we can add the arc g → h to C. Such arcs can get added at most O(n2) times before the
algorithm terminates.

It is possible to have both event 2 and event 3 happen, and it is quite possible that none of these
events happens. We need to arrange the algorithm so that in a strongly polynomial number

62



of iterations, we produce either a negative enough element (event 2), or a positive enough Dg

(event 3).
At a given point in the algorithm we call element e ∈ E big if ye > δ = ymax/4n. Lemma 2.2

shows that ye ≤ f(De) − f(De − e). Therefore e big implies that we have either f(De) > δ/2
or f(De − e) < −δ/2 (or both). Thus if we accumulate enough geometric decrease using some
version of Lemma 3.18 to reduce Φ(y) by a factor of at least 8n5, then we reduce ymax by a
factor of at least 8n3, and we’d have either that f(De) > n2ymax (i.e., event 2, so we can add
an arc to C), or f(De − e) < −n2ymax, and so there is some g ∈ De − e such that yg < −nymax

(i.e., event 3, so we can contract g out of E).
Now we can specify the overall IO-SP SFM Algorithm.

The IO-SP Algorithm for SFM

Initialize by setting d1 = 0, ≺1= 12 . . . n, λ1 = 1, I = {1}, and computing y = v1.
While ymax > 0 [ until event 1 ] do

Compute ymax = maxe ye and set δ = ymax/4n.
If there is some g ∈ E with yg < −nymax, recursively call the algorithm on fg

getting optimal Sg, return Sg + g. [ event 2, using Lemma 3.22 ]
If there is some g ∈ E with y(Dg) ≥ n2ymax, compute ŷ ∈ B(fg);

for each h ∈ E −Dg with ŷh < −nymax add arc g → h to C. [ event 3 ]
Call Wave. [ this could decrease ymax ]
If a distance gap k appears, compute T = {e | dmin

e ≥ k}, set die = n+ 1 ∀i, e ∈ A(T ),
set E ← E −A(T ). [ using Lemma 3.13 ]

Call ReduceV.
End while.
Output final E as the unique maximal SFM solution.

We now prove that this works, and give its running time. We again give one big proof, but
we pick out the key claims along the way in boldface.

Theorem 3.23 The IO-SP Algorithm correctly finds the unique maximal SFM solution, and
runs in O((n5EO + n6) log n) time.

Proof: If the algorithm terminates, it is with the unique maximal SFM solution:
The algorithm terminates when ymax ≤ 0, and indeed the current E is then the unique maximal
SFM solution by Lemma 3.13.

When event 3 happens, at least one arc gets added to C: We have ŷ(E − Dg) =
fg(E − Dg) = f(E) − f(Dg) < −(n2 − n)ymax, implying that there is some h ∈ E − Dg with
ŷh < −nymax.

Define a phase as a sequence of Waves that reduce Φ(y) by half, and bj as the number
of big elements at the beginning of the j-th Wave, and K as the total number of phases. An
e with ymax = ye is always big, so bj ≥ 1. The proof of Theorem 3.21 showed that there are
O(n2) Waves which increase some dmin

e , and each Wave takes O(n2EO) time, for a (strongly
polynomial) total time of O(n4EO). This is not a bottleneck, so for the rest of the proof we
focus only on Waves that do not increase any dmin

e .

63



A Wave in phase j reduces Φ(y) by a factor of at least (1 − 1/(17n2bj))n: At the
beginning of the Wave we have Φ(y) ≤ (n− bj)δ2 + 16n2bjδ

2 ≤ 17n2bjδ
2. A similar Case A/B

split as in the proof of Theorem 3.21 then proves the claim.
The total number of Waves is O(n

∑K
j=1 bj): The previous claim shows that O(bjn)

Waves suffices to cut Φ(y) in half, and so phase j uses O(bjn) Waves, and the total number of
Waves overall is O(n

∑K
j=1 bj).

Each e ∈ E is big for O(n log n) phases: Once ye becomes big, it takes only O(log(8n5)) =
O(log n) phases until either event 2 or event 3 happens. If event 2 happens, we switch to fe,
which effectively deletes e from E, so it is no longer big. If event 3 happens at least one new
arc with tail e is added to C, and this can happen O(n) times.

The total number of Waves is O(n3 log n): The previous claim implies that each e ∈ E
contributes O(n log n) to

∑K
j=1 bj , and so

∑K
j=1 bj = O(n2 log n). Thus the total number of

Waves is O(n3 log n).
The total time for the algorithm is O((n5EO + n6) log n): The bottleneck operations

are calls to ReduceV (which cost O(n3) each) and calls to Wave (which cost O(n2EO) each).
There are O(n3 log n) calls to Wave and ReduceV, for a total of O((n5EO+n6) log n) time.

The Fully Combinatorial Version of IO To the fully combinatorial version IO-FC of the
IO Algorithm we need to start with a strongly polynomial version and get rid of multiplications
and divisions. This means that we can no longer use ReduceV, and so |I| will grow. Thus we
first have to convert Basic IO (which doesn’t use ReduceV) to its strongly polynomial version
Basic IO-SP using the same techniques we used to convert Wave IO into IO-SP. Now we can
specify the overall Basic IO-SP SFM Algorithm by replacing calls to Wave by simpler calls to
Squish, and avoiding calling ReduceV.

The Basic IO-SP Algorithm for SFM

Initialize by setting d1 = 0, ≺1= 12 . . . n, λ1 = 1, I = {1}, and computing y = v1.
While ymax > 0 [ until event 1 ] do

Compute ymax = maxe ye and set δ = ymax/4n.
If there is some g ∈ E with yg < −nymax, recursively call the algorithm on fg

getting optimal Sg, return Sg + g. [ event 2, using Lemma 3.22 ]
If there is some g ∈ E with y(Dg) ≥ n2ymax, compute ŷ ∈ B(fg);

for each h ∈ E −Dg with ŷh < −nymax add arc g → h to C. [ event 3 ]
Find µ ≥ δ s.t. 6 ∃ y ∈ (µ− δ, µ+ δ).
Compute g = argmin{dmin

e | ye > µ}, l = dmin
g , and k ∈ I s.t. dkg = l.

Call Squish using this µ, k, g, and l. [ this could decrease ymax ]
If a distance gap k appears, compute T = {e | dmin

e ≥ k}, set die = n+ 1 ∀i, e ∈ A(T ),
set E ← E −A(T ). [ using Lemma 3.13 ]

End while.
Output final E as the unique maximal SFM solution.

We now combine the arguments in the proofs of Theorem 3.20 and Theorem 3.23 to bound
the number of iterations of Basic IO-SP.

64



Lemma 3.24 Basic IO-SP calls Squish O(n6 log n) times.

Proof: We adopt the same notion of phases and big elements as in the proof of Theorem 3.23;
in particular, bj is the number of big elements in phase j. By a similar argument as in the proof
of Theorem 3.23 we get that each partial Squish during phase j reduces Φ(y) by a factor of
at least (1 − 1/17n2bj), and so there are O(n2bj) partial Squishes during phase j. As in that
proof, since each element is big in at most O(n2 log n) phases, overall we have O(n4 log n) partial
Squishes.

Now we consider the secondary potential function Γ from the proof of Theorem 3.20. It
showed that the number of full Squishes is bounded by O(n2) times the number of partial
Squishes, and so there are O(n6 log n) total Squishes.

In order to convert Basic IO-SP into IO-FC we can apply the same sorts of tricks that we
used for IFF-FC and Hybrid. The only real remaining source of multiplications and divisions in
Basic IO-SP stem from the computation of α in (25). We again bound it away from zero so we
can discretize it into a integer multiples of a quantum.

Lemma 2.2 says that for all y ∈ B(f) we have ye ≤ f(De)−f(De−e). In Basic IO-SP we know
that f(De) ≤ n2ymax and f(De−e) ≥ y(De−e) ≥ −n2ymax, and so vie ≤ 2n2ymax for all i ∈ I and
e ∈ E. Since f(E) ≥ −n2ymax we get vie ≥ −2n3ymax. Thus |vke−vk

′
e | ≤ 2(n3+n2)ymax ≤ 4n3ymax

for all e. Thus in (25) α ≥ δ/4n3ymax = 1/16n4ymax for a partial Squish (unless vk = vk
′
).

Thus if we set κ = 16n4 we can do everything in integer multiples of 1/κ. Computing α for a
partial Squish via repeated doubling and repeated addition/subtraction costs O(n log n) time,
as does updating the λi, and this is not a bottleneck operation. Thus we get:

Theorem 3.25 The IO-FC Algorithm correctly finds the unique maximal SFM solution, and
runs in O((n7EO + n8) log n) time.

Proof: From Lemma 3.24 there are O(n6 log n) Squishes. Since we are dealing with the
ring submodular case using the technique of Section 5.2, each ring evaluation in IO-FC costs
O(EO + n) time. There are O(n) evaluations per call to Squish, and so each call to Squish
costs O(nEO + n2) time.

4 Comparing and Contrasting the Algorithms

Table 1 summarizes, compares, and contrasts the six main SFM algorithms we have studied,
those of Cunningham for General SFM [13], the Fleischer and Iwata [23] Schrijver-PR Push-
Relabel variant of Schrijver [76], Orlin [71], Iwata, Fleischer, and Fujishige [50] and Iwata’s fully
combinatorial version IFF-FC of it [46], and Iwata’s Hybrid Algorithm [48]. The current fastest
combinatorial running times are O((n4EO + n5) logM) = Õ(n5) (assuming that EO = O(n))
for weakly polynomial [48], O(n5EO + n6) for strongly polynomial [71], and O(n8EO log2 n) for
fully combinatorial [48] (compared with Õ(n5EO + n7) for Ellipsoid).

Note that all the algorithms besides Schrijver’s and Orlin’s Algorithms add just one vertex
to I at each exchange (or at most n vertices per augmenting path). Except for the Hybrid
Algorithm, they are able to do this because they all consider only consecutive exchanges; the
Hybrid Algorithm considers non-consecutive exchanges, but moves in a vi− vj direction instead

65



Cunningham
for General
SFM [13],
Sec. 3.1

Schrijver
[76, 84],
Schrijver-PR
[23], Sec. 3.2

Iwata,
Fleischer, and
Fujishige
[50, 46],
Sec. 3.3

Iwata Hybrid
[48], Sec. 3.3.4

Orlin [71], Sec.
3.4.1

Iwata and
Orlin [52], Sec.
3.4.2

Pseudo-polyn.
running time

O(Mn6 log(Mn)·
EO)

Weakly polyn.
running time

O(n5EO log M)
[50], Sec. 3.3.1

O((n4EO +
n5) · log M)
(*)

O((n4EO +
n5) · log(nM))

Strongly
polyn. running
time

O(n7EO + n8)
[23, 84]

O(n7EO log n)
[50], Sec. 3.3.2

O((n6EO +
n7) · log n)

O(n5EO + n6)
(*)

O((n5EO +
n6) log n)

Fully comb.
running time

O(n9EO log2 n)
[46], Sec. 3.3.3

O(n8EO log2 n) O((n7EO +
n8) log n) (*)

Approach polymatroid base polyh. base polyh. base polyh. base polyh. base polyh.

Convergence
strategy

weak suff.
decrease,
pseudo-polyn.

distance label str. suff.
decrease,
strongly polyn.

both distance
label and str.
suff. decrease

potential
function

potential
function

Exact primal
solution?

no yes no no possible no

Scaling? no no relaxation
parameter

relaxation
parameter

no implicit onP
e(y

+
e )2

Max Flow
analogy

Max Capacity
Path

Max Dist.
Push-Relabel

Relaxed Max
Cap. Path for
z, push on cut
for y

Relaxed Max
Cap. Path for
z, Push-Relab.
on cut for y

find nodes not
in min cut

find nodes not
in min cut

Arc k → l for
aug. y exists if
. . .

(l, k) consec.,
c(k, l; y) > 0
(minimal)

l ≺i k (loosest) (l, k) consec.
(medium)

l ≺i k (loosest) l ≺i k (loosest,
but not
arc-based)

l ≺i k (loosest,
but not
arc-based)

Movement
direction,
representation

edge, simple
repr.

edge, complex
repr.

edge, simple
repr.

vertex diff,
simple repr.

multiple
vertex diffs,
complex repr.

vertex diff,
simple repr.

Modifies ≺i by
. . .

consec. pairs single elt
blocks

consec. pairs gen’l blocks single elt
blocks

gen’l blocks

Augments . . . on paths arc by arc z on paths, y
arc by arc via
Swaps

z on paths, y
arc by arc via
BlockSwaps

reduce ye > 0 reduce ye > 0

Objective max y−(E) max y−(E) max z−(E) max z−(E) max y−(E) min
P
e(y

+
e )2

# verts.
added per
exchange

0 or 1 ≤ n 0 or 1 0 or 1 ≤ n 0 or 1

Table 1: Summary comparison table of main results. Running times are expressed in
terms of n = |E|; M , an upper bound on |f(S)| for any S ⊆ E; and EO, the time
for one call to the evaluation oracle for f . Current fastest times are marked by (*).
For comparison, the running time of the strongly polynomial version of the Ellipsoid
Algorithm is Õ(n5EO + n7), see Theorem 2.8.

66



of a χk − χl direction, thereby allowing it also to add at most one vertex per exchange. By
contrast, Schrijver’s and Orlin’s Algorithms allows non-consecutive exchanges, and thus must
pay the price of needing to add as many as n vertices to I for each exchange.

Only Schrijver’s Algorithm and a variant of Orlin’s Algorithm yield an exact primal solution
y. When f is integer-valued, in the base polyhedron approach we apply Theorem 2.9 with x = 0,
and in the polymatroid approach we apply it with x = γ. In either case x is also integral, so
Theorem 2.9 shows that there always exists an integral optimal y. Despite this fact, none of the
algorithms always yields an integral optimal y in this case. However, we could get exact integral
primal solutions from n calls to SFM as follows: Use the polymatroid approach, compute γ, and
discard any e ∈ E with γe < 0. Run the modified Greedy Algorithm in the proof of Theorem 2.9
starting with y = 0, and look for for a vector y ∈ P (f̃) with y ≤ γ. At each of the n steps we
can compute the maximum step length we can take and stay inside P (f̃) via one call to SFM.

4.1 Solving SFM in Practice

There is very little computational experience with any of these algorithms so far, nor is there any
generally accepted test bed of instances of SFM. If we reason by analogy with performance of
similar Max Flow algorithms (see, e.g., Cherkassky and Goldberg [9]), then Schrijver-PR should
out-perform the IFF Algorithm. The reason is that the Push-Relabel Max Flow Algorithm [37]
that is analogous to Schrijver-PR has proven to be more robust and faster in practice than
the sort of capacity-scaling algorithms that IFF is based on. However, the superior practical
performance of Push-Relabel-based Max Flow algorithms depends on using heuristics to speed
up the native algorithm [9], and the relative inflexibility of Schrijver-PR may prevent this.

Iwata [47] did some computational experiments comparing the performance of Schrijver’s
Algorithm, Schrijver-PR, IFF, and Hybrid (Orlin-type algorithms appeared after these tests).
Iwata suggested a family of test problems that are fully dense Min Cut problems perturbed
by a modular function in such a way that the optimal SFM solution is always {1, 2, . . . , k} for
k equalling about n/3. All algorithms were started out with the linear order (n, n − 1, . . . , 1)
to ensure that they would have to work hard to move the {1, 2, . . . , k} elements before the
{k + 1, k + 2, . . . , n} elements in the linear orders for the optimal solution. Each algorithm was
run on instances with sizes from 50 to 1000 nodes.

Algorithm Total run time No. oracle calls
Schrijver n5.8 n4

Schrijver-PR n5.5 n4

IFF n4.0 n2.5

Hybrid n3.5 n2.5

Table 2: Empirical results from Iwata [47]. Estimates of running time and number of
evaluation oracle calls come from a log-log regression.

Fujishige, Hayashi, and Isotani [30] performed computational tests using Iwata’s codes, and
including their own code for their minimum norm point (or Fujishige-Wolfe) algorithm for SFM
(based on Wolfe [86]; see also Fujishige [29, p. 219–220]). Min Norm Point does not have any
known polynomial bound, but it performs well in practice. They tested on Iwata’s family of
instances, as well as Min Cut instances generated from the DIMACS Netflow Challenge [14] test

67



sets Genrmf-Wide and Genrmf-Long (which are sparse, with fewer than 5n arcs on n nodes).
Each algorithm was run on instances with sizes from about 64 to 1000 nodes.

Algorithm Iwata’s family Genrmf-Long family Genrmf-Wide family
Min Norm Point (note 1) n3.3 n3.1

Schrijver (note 2) n5.3 n5.3

Schrijver-PR (note 2) n4.4 n4.4

IFF n4.4 n4.7 n5.3

Hybrid n3.7 n5.4 n4.9

Table 3: Empirical results from Fujishige, Hayashi, and Isotani [30]. Estimates of
running time come from a log-log regression. Note 1: It turns out that Iwata’s family
is trivially easy for Min Norm Point, and so all times are below 0.01 seconds. Note 2:
There were not enough runs that finished within 10,000 seconds to estimate the run
time.

Tables 2 and 3 show the empirical estimates of each algorithm’s running time or number
of evaluation oracle calls as a function of the number of nodes of the Min Cut instance. The
empirical performance of Min Norm Point consistently beats the combinatorial algorithms. We
see that all four combinatorial algorithms are much faster than their theoretical time bounds,
and that none of them has a clear advantage over the other algorithms on all three data sets.
However, these tests cover a limited number of types of instances at a limited range of sizes. Also,
heuristic improvements to these algorithms (such as the “gap” and “exact distance” heuristics
that made such a difference for Max Flow algorithms [9]) have not yet been implemented, and
so these results should be taken only as a first indication of empirical performance, not the last
word (e.g., the running time estimates for Iwata’s instances differs between Table 2 and Table 3).

Iwata’s data shows that the dominant factor in determining running time is the number of
calls to ReduceV: The big advantage of the IFF-based algorithms is that they ended up calling
ReduceV many fewer times than the Schrijver-based algorithms (since Orlin’s Algorithm must
solve (22) using linear algebra similar to ReduceV, this suggests that it might not perform well
in practice, but Iwata-Orlin avoids this and so might be fast).

All of the combinatorial SFM algorithms we consider call the evaluation oracle EO only
as part of the Greedy Algorithm (although Hybrid re-computes only an interval of a vertex
at each iteration). Greedy calls EO for the nested sequence of subsets e≺1 , e≺2 , . . . , e≺i , . . . ,
e≺n . In some applications we can take advantage of this and use some incremental algorithm to
evaluate f(e≺i ) based on the value of f(e≺i−1) much faster than evaluating f(e≺i ) from scratch.
For example, for Min Cut on a graph with n nodes and m arcs, one evaluation of f(S) costs
O(m) time, but all n evaluations within Greedy can be done in just O(m) time. This could lead
to a heuristic speedup for such applications, although most such applications (such as Min Cut)
have specialized algorithms for solving SFM that are much faster than the general algorithms
here.

Indeed, it is very rare that true general SFM arises in practice. Nearly all applications of
SFM in our experience have some special structure that can be taken advantage of, resulting in
much faster special-purpose algorithms than anything covered here. As one example, a naive
application of Queyranne’s Algorithm (see Section 5.4) to solve undirected Min Cut would take
O(n3|A|) time, since EO = O(|A|) in that case. But in fact Nagamochi and Ibaraki [66] show

68



how to take advantage of special structure to reduce this to only O(n|A|+n2 log n). In the great
majority of these cases we end up solving the SFM problem as a sequence of Min Cut problems;
see Picard and Queyranne [72] for a list of problems reducible to Min Cut.

A recent example of this is where f is the rank function of a graph (the rank of edge subset
S is the maximum size of an acyclic subgraph of S) modified by a modular function, which
has applications in physics (see Anglès d’Auriac et al. [2]). Here E is the set of edges of the
graph, so we use n = |E|, and use |N | for the number of nodes. In this case EO = O(n) so
the fastest SFM algorithm here would take Õ(n5) time, but [2] shows how to solve SFM using
Min Cuts in only O(|N | ·MF(|N |, n)) time, where MF(|N |, n) is the time to solve a Max Flow
problem on a graph with |N | nodes and n edges. One of the best bounds for Max Flow is
O(min{|N |2/3,

√
n}n log(|N |2/n) logM) (Goldberg and Rao [36]), which would give a running

time of Õ(min{|N |2/3,
√
n}n2) ≤ Õ(n5/2), much faster than Õ(n5).

Therefore if you are faced with solving a practical SFM problem, you should look very
carefully to see if there is some way to solve it via Min Cut before using one of these general SFM
algorithms. If there is no apparent way to reduce to a Min Cut problem, then another possible
direction is to try a column generation method (see, e.g., [60]), which pairs linear programming
technology (for solving (8) or (9)) with a column generation subroutine that would (in this
context) come from the Greedy Algorithm. Although such algorithms do not have polynomial
bounds, they often can be made to work well in practice.

5 Solvable Extensions of SFM

5.1 Finding All SFM Solutions

There are many applications of SFM where having access to all optimal solutions is helpful. For
example, Jeavons et al. [53] considers the problem from an Artificial Intelligence perspective,
and their Theorem 3.5 shows that O(n2) SFM calls suffice to compute all SFM solutions; Shen,
Coullard and Daskin [79] consider a facility location problem where knowing all SFM solutions
helps in satisfying real-world constraints; Huh and Roundy [44] use parametric SFM to determine
an optimal replacement sequence for semiconductor fabrication tools, and again having all SFM
solutions helps in satisfying real-world constraints; and Baumann and Skutella [3] also use
parametric SFM to compute flows over time.

We extend Picard and Queyranne’s [72] result from on finding all Min Cuts to SFM on a ring
family using three tools: (1) Edmonds’ duality result Theorem 2.9 for SFM, and its associated
complementary slackness; (2) the fact from Section 2.5 that the combinatorial SFM algorithms
represent their primal solution as a convex combination of greedy vertices; and (3) the algorithm
of Bixby, Cunningham, and Topkis (BCT) [8] for finding the tight sets for a vertex. Recall from
Section 2.4 that complementary slackness implies that w and S are jointly optimal if and only
if (1) we < 0⇒ e ∈ S; (2) e ∈ S ⇒ we ≤ 0; and (3) S is tight for f . Given a primal optimal w,
define index sets N = {e ∈ E | we < 0} and Z = {e ∈ E | we = 0}. Then to find all optimal
SFM solutions, all we need to do is to find all tight sets T for w, and then all such T such that
N ⊆ T ⊆ N ∪ Z are precisely all optimal SFM solutions.

Given the representation w =
∑

i λiv
i + ∂ϕ, note that T is tight for w ⇐⇒ ∂ϕ(T ) = 0 and

T is tight for each vi. BCT’s algorithm for finding the tight sets for vertex vi takes O(n2EO)
time, and produces a directed graph Di such that T is tight if and only if it is closed in Di.
Therefore, if we take the graph D whose arc set is {s → t | ϕst > 0} union the O(n) arc sets

69



of the Di, then the tight sets for w are precisely the closed sets of D. Computing D takes
only O(n3EO) time (for any algorithm maintaining that |I| = O(n)). Now contract all strong
components of D which are descendents of elements of P into a single node, and those which
are ancestors of elements of N into a single node. The closed sets of the remaining graph are
precisely the tight sets for w which also satisfy (1) and (2) of complementary slackness, and
hence are precisely the set of optimal solutions for SFM. Although there can be an exponential
number of SFM solutions, this contracted graph compactly represents all of them. The material
in this section up to this point is covered by Fujishige [29, Remark at the end of Section 14.2],
Murota [65, Note 10.11], and Nagano [67].

Schrijver’s Algorithm and a version of Orlin’s Algorithm produce an exact optimal primal
point w (see also [69] for a direct way to modify Orlin’s Algorithm to produce all SFM solutions),
but the various IFF Algorithms and Iwata-Orlin do not. It is possible to use O(n) calls to an
IFF algorithm to find an exact primal optimal point, though it is not clear how to also produce
its required representation as a convex combination of vertices.

However, we note that the strongly polynomial IFF algorithms do carry enough information
to get all optimal solutions. As they proceed, they develop the sets In and Out, and they work
on the reduced ground set C. They use the scale factor δ and recognize optimality in one of two
ways: (1) |C| ≤ 1: In this case the only possible solutions to SFM on C are ∅ and C. Therefore
the only possible solutions to SFM on E are In and In ∪ E(C), and these are easy to check.
(2) Scaling parameter δ ≤ 0: Theorem 3.9 shows that the current y proves that C solves SFM.
Therefore we can apply the BCT algorithm to find all tight sets w.r.t. y, which then gives us all
SFM solutions to the original problem. This shows that to get all optimal SFM solutions, we
do not actually need an exact w defined over all of E. It is enough that IFF-SP (and IFF-FC)
supply an exact optimal w defined only on C. This was extended to bisubmodular function
minimization by [62].

5.2 SFM on Ring Families and their Unions

We already saw with RefineR in Section 3.3.2 that it is not hard to adapt the IFF algorithms to
optimize over ring families instead of 2E . Orlin [71, Section 8] (see also Schrijver [76, Section 6])
gives a way to use any SFM algorithm that works over 2E to solve SFM over ring family D.
Recall that we assume that ∅, E ∈ D, that D is represented as the closed sets of (E,C), and
that for e ∈ E, De is the set of descendents of e in (E,C). By the reduction of f on (E,C) to f̂
on (C, C) of Section 3.3.2 we can assume that each strong component of (E,C) is a single node.
Denote m = |C|, so that m = O(n2). We can pre-compute all the De in O(nm) ≤ O(n3) time.
Recall from Section 2.2 that we can compute an upper bound M on |f | in O(nEO) time. These
times are negligible compared to the running times of all known SFM algorithms.

For T ⊆ E define T =
⋂
S∈D, T⊆S S =

⋃
e∈T De, the smallest R ∈ D containing T . Then for

any S ⊆ E define g(S) = f(S) + 2M |S − S|. Note that g is minimized at some T ∈ D, as for
T ∈ D, g(T ) = f(T ); whereas for T /∈ D, g(T ) > M .

We now show that g is submodular by using (1). Suppose that S ⊆ T ⊂ T + e ⊆ E. Define
A = De−S and B = De−T , so that B ⊆ A. Then g(S+e)−g(S) = f(S+e)−f(S)+2M(|A|−1)
and g(T+e)−g(T ) = f(T+e)−f(T )+2M(|B|−1). Thus (g(S+e)−g(S))−(g(T+e)−g(T )) =
(f(S + e) − f(S)) − (f(T + e) − f(T )) + 2M(|A| − |B|). Since B ⊆ A, and by (1) for f , this
expression is always non-negative, and so g is submodular.

Thus we can apply any SFM algorithm to g to find a minimizer of f over D. Note that

70



evaluating g(S) requires computing S, which takes O(m) time. Therefore any SFM algorithm
can be used to minimize over a ring family, at the cost of replacing O(EO) by O(EO + m)
in its running time. However, we can do better. In all the combinatorial SFM algorithms,
E is called only when computing v≺ for some new ≺. Recall that when computed w.r.t. g,
v≺e = g(e≺ + e) − g(e≺) = f(e≺ + e) − f(e≺). Notice that e≺ + e = e≺ ∪De. Hence as long as
we’ve already computed e≺, we can compute v≺e in O(EO + n) time. In general we assume that
EO = Ω(n), and so computing with g does not inflate running times.

Even without assuming that EO = Ω(n), computing vi for g from ≺i via Greedy costs
O(nEO + n2) time. Since the running times of the Schrijver, Orlin, and IO SFM algorithms is
of the form Õ(nk−2(calls to Greedy) +nk) for some k ≥ 5, replacing the nEO for f by nEO +n2

for g does not hurt their overall running times. However, it is unclear whether the overhead of
this method would impair running times in practice, or whether it would be preferable to use
some version of IFF or IO that can naturally handle ring families.

But sometimes we are interested in optimizing over other families of subsets which are not
ring families. For example, in some applications we would like to optimize over non-empty sets,
or sets other than E, or both; or given elements s and t, optimize over sets containing s but
not t; or optimize over sets S with |S| odd; etc (see Nemhauser and Wolsey [70, Section III] for
typical applications). Goemans and Ramakrishnan [35] derive many such algorithms, and give
a nice survey of the state of the art.

As we saw in Section 3.3.2, if we want to solve SFM over subsets containing a fixed l ∈ E,
then we can consider E′ = E− l and fl(S) = f(S+ l)−f(l), a submodular function on E′. If we
want to solve SFM over subsets not containing a fixed l ∈ E, then we can consider E′ = E − l
and f̂(S) = f(S), a submodular function on E′.

More generally, Goemans and Ramakrishnan point out that if the family of interest can
be expressed as the union of a polynomial number of ring families, then we can run an SFM
algorithm on each family and take the minimum answer. For example, suppose that we want to
minimize over 2E−{∅, E}. Define Fst to be the family of subsets of E which contain s but not t.
Each Fst is a ring family, so we can apply an SFM algorithm to compute an Sst solving SFM on
Fst. Note that for an ordering of E as s1, s2, . . . , sn (with sn+1 = s1), 2E−{∅, E} =

⋃n
i=1Fs,si+1

(since the only non-empty set not in this union must contain all si, and so must equal E). Thus
we can solve SFM over 2E −{∅, E} by taking the minimum of the n values f(Ss,si+1), so it costs
n calls to SFM to solve this problem.

Suppose that F is an intersecting family. For e ∈ E define Fe as the sets in F containing e.
Then each Fe is a ring family, and F =

⋃
e∈E Fe, so we can optimize over an intersecting family

with O(n) calls to SFM. If C is a crossing family, then for each s 6= t ∈ E, Cst is a ring family.
Then for any fixed s ∈ E, C =

⋃
t6=s(Cst ∪ Cts), so we can solve SFM over a crossing family in

O(n) calls to SFM.

5.3 SFM on Triple Families and Parity Families

Let O = {S ⊆ E | |S| is odd} be the family of odd sets, and consider SFM over O. This is not a
ring family (nor a union of ring families), as the union of two odd sets might be even. However,
it does satisfy the following property: If any three of the four sets S, T , S ∩ T , and S ∪ T are
not in O (are even), then the fourth set is also not in O (is even). Families of sets with this
property are called triple families, and were considered by Grötschel, Lovász, and Schrijver [43].
A general lemma giving examples of triple families is:

71



Lemma 5.1 (Grötschel, Lovász, and Schrijver [43]) Let R ⊆ 2E be a ring family, and let
ae for e ∈ E be a given set of integers. Then for any integers p and q, the family {S ∈ R |
a(S) 6≡ q (mod p)} is a triple family.

Let’s consider applications of this where p = 2. If we take R = 2E , a = 1, and q = 0, then
we get that O is a triple family; taking instead q = 1 we get that the family of even sets is a
triple family. If we take a = χ(T ) and q = 0, then we get that the family of subsets having odd
intersection with T is a triple family. If we have two subsets T1, T2 ⊆ E and take q = 0, ae = 1
on T1 − T2, ae = −1 on T2 − T1, and ae = 0 otherwise, then we get that the family of S such
that |S ∩ T1| and |S ∩ T2| have different parity is a triple family.

An even more general class of families is considered by Goemans and Ramakrishnan [35].
For ring family R ⊆ 2E , they call P ⊆ R a parity family if S, T ∈ R−P implies that S ∪T ∈ P
iff S ∩ T ∈ P. An important class of parity families is given by:

Lemma 5.2 (Goemans and Ramakrishnan [35]) Let R1 ⊆ R2 ⊆ 2E be ring families.
Then R2 −R1 is a parity family.

Any triple family is clearly a parity family, but the converse is not true. For example, take
E = {a, b, c}, R1 = {{a}, {a, b}, {a, b, c}}, and R2 = 2E . Then R1 ⊆ R2 and both R1 and R2

are ring families, so the lemma implies that R2 −R1 is a parity family. Taking S = {a, b} and
T = {a, c}, we see that S ∈ R1, S ∩ T = {a} ∈ R1, and S ∪ T = {a, b, c} ∈ R1, but T /∈ R1, so
R2 −R1 is not a triple family.

As an application of Lemma 5.2, note that (2) implies that the union and intersection of
solutions of SFM are also solutions of SFM, so the family S of solutions of SFM is a ring
family. Thus 2E − S is a parity family. The next theorem shows that we can solve SFM over a
parity family with O(n2) calls to SFM over a ring family, so this gives us a way of finding the
second-smallest value of any submodular function.

Theorem 5.3 (Goemans and Ramakrishnan [35]) If R is a ring family and P ⊆ R ⊆ 2E

is a parity family, then we can solve SFM over P using O(n2) calls to SFM over ring families.

Since triple families are a special case of parity families, this gives us a tool that can solve
many interesting problems: SFM over odd sets, SFM over even sets, SFM over sets having odd
intersection with a fixed T ⊆ E, second-smallest value of f(S), etc.

5.4 Symmetric SFM: Queyranne’s Algorithm

A special case of SFM arises when f is symmetric, i.e., when f(S) = f(E − S) for all S ⊆ E.
From (2) we get that for any S ⊆ E, 2f(∅) = 2f(E) = f(∅)+f(E) ≤ f(S)+f(E−S) = 2f(S), or
f(∅) = f(E) ≤ f(S), so that ∅ and E trivially solve SFM. But in many cases such as undirected
Min Cut we would like to minimize a symmetric function over 2E −{∅, E}. We could apply the
procedure in Section 5.2 to solve this in O(n) calls to SFM, but Queyranne [74] developed a
special-purpose algorithm that is much faster. It is based on Nagamochi and Ibaraki’s Algorithm
[66] for finding Min Cuts in undirected graphs.

72



Queyranne’s Algorithm (QA) is not based on the LPs from Section 2.4 and so does not have
a current primal point y, hence it has no need of I, vi, and ReduceV. Somewhat similar to
IFF-SP, QA maintains a partition C of E. As it proceeds, it gathers information that allows it to
contract subsets in the partition, until |C| = 1. If S ⊆ C, then we interpret f(S) to be f(∪σ∈Sσ),
which is clearly submodular on C. It uses a subroutine LeafPair(C, f, η). LeafPair builds up
a set S element by element starting with element η; let Si denote the S at iteration i. Iteration
i adds an element σ of Q = C − S having a minimum value of keyσ = f(Si−1 + σ)− f(σ) as the
next element of S. The running time of LeafPair is clearly O(n2EO).

LeafPair(C, f, η) Subroutine for Queyranne’s Algorithm

Initialize τ1 ← η, S1 ← {τ1}, Q← C − τ1, k ← |C|.
For i = 2, . . . , k do

For σ ∈ Q set keyσ = f(Si−1 + σ)− f(σ).
Find τi in Q with minimum key value.
Set Si ← Si−1 + τi, and Q← Q− τi.

Return (τk−1, τk).

We say that S ⊂ C separates σ, τ ∈ C if σ ∈ S and τ /∈ S, or σ /∈ S and τ ∈ S. Note that S
separates σ, τ iff C − S separates them. The name of LeafPair comes from the cut equivalent
tree of Gomory and Hu [40], which is a compact way of representing a family of minimum cuts
separating any two nodes i and j in a capacitated undirected graph. They give an algorithm that
constructs a capacitated tree T on the nodes such that we can construct a Min Cut separating i
from j as follows: Find a min-capacity edge e on the unique path from i to j in T . Then T − e
has two connected components, which form the two sides of a Min Cut separating i from j, and
this cut has value the capacity of e. (Goemans and Ramakrishnan [35] point out that cut trees
extend to any symmetric submodular function.) Suppose that i is a leaf of T with neighbor j
in T . This implies that {i} is a Min Cut separating i from j. We would call such a pair (j, i) a
leaf pair. The following lemma shows that LeafPair computes a leaf pair in the more general
context of SFM:

Lemma 5.4 If LeafPair(C, f, η) outputs (τk−1, τk), then f(τk) = min{f(S) | S ⊂ C s.t. S
separates τk−1 and τk}.

Proof: Suppose that we could prove that for all i, all T ⊆ Si−1, and all σ ∈ C − Si that

f(Si) + f(σ) ≤ f(Si − T ) + f(T + σ). (29)

If we take i = k − 1, then we must have that σ = τk. Then, since Sk−1 and {τk} are comple-
mentary sets, and since Sk−1 − T and T + τk are complementary sets, (29) would imply that
f(τk) ≤ f(T + τk). Since T + τk is an arbitrary set separating τk from τk−1, this shows that τk−1

and τk are a leaf pair.
So we concentrate on proving (29). We use induction on i; it is trivially true for i = 1.

Suppose that j < i is the maximum index such that τj ∈ T . If j = i − 1, then f(Si −
T ) + f(T + σ) = f(Si−1 − T + τi) + f(T + σ). By the inductive assumption at index i − 1,
element τi, and set Si−1 − T we get f(Si−1 − T + τi) + f(T + σ) ≥ f(Si−1) + f(T + σ) −

73



f(T ) + f(τi). Since [Si−1 ∪ (T + σ)] = Si−1 + σ and [Si−1 ∩ (T + σ)] = T , from (2) we get
f(Si−1) + f(T + σ)− f(T ) + f(τi) ≥ f(Si−1 + σ) + f(τi). By the choice of τi in LeafPair we
get f(Si−1 + σ) + f(τi) ≥ f(Si−1 + τi) + f(σ) = f(Si) + f(σ), as desired.

Otherwise (j < i−1), by the inductive assumption at index j+1, element σ, and set T we get
f(Si−T )+f(T +σ) ≥ f(Si−T )+f(Sj+1)−f(Sj+1−T )+f(σ). Since [(Si−T )∪Sj+1] = Si and
[(Si−T )∩Sj+1] = Sj+1−T , from (2) we get f(Si−T )+f(Sj+1)−f(Sj+1−T )+f(σ) ≥ f(Si)+f(σ),
as desired.

Queyranne’s Algorithm for Symmetric SFM over 2E − {∅, E}

Initialize C = E and η as an arbitrary element of C.
For i = 1, . . . , n− 1 do

Set (σ, τ)← LeafPair(C, f, η).
Set Ti ← E(τ) and mi ← f(Ti).
Contract σ and τ into a new subset of the partition.

Return Ti such that mi = min{mj | j = 1, . . . , n− 1}.

Let S∗ solve SFM for f . If S∗ separates τk−1 and τk, then E(τk) must also solve SFM. If
S∗ does not separate τk−1 and τk, then we can contract τk−1 and τk without harming SFM
optimality. QA takes advantage of this observation to solve SFM by calling LeafPair n − 1
times. The running time of QA is thus O(n3EO). Note that QA is a fully combinatorial
algorithm.

5.5 Constrained SFM can be Hard

So far we have seen that SFM remains easy when we consider it over various well-structured
families of sets, or the symmetric case. However, there are other important cases of SFM with
side constraints that are NP Hard to solve. One such case is cardinality constrained SFM, where
we want to restrict to the family Ck of sets of size k. The s–t Min Cut problem Example 1.9
with this constraint is NP Hard [34, Problem ND17]. This example is representative of the fact
that SFM often becomes hard when side constraints are added.

6 Future Directions for SFM Algorithms

The history of SFM has been that expectations have continually grown. SFM was recognized
early on as being an important problem, and a big question was whether there existed a finite
version of Cunningham’s “augmenting path” algorithm. In 1985, Bixby, Cunningham, and
Topkis [8] found such an algorithm. Then the question became whether one could get a good
bound on the running time of an SFM algorithm. Also in 1985, Cunningham [13] found an
algorithm with a pseudo-polynomial bound. Then the natural question was whether an algorithm
with a (strongly) polynomial bound existed. In 1988, Grötschel, Lovász, and Schrijver [43]
showed that the Ellipsoid Algorithm leads to a strongly polynomial SFM algorithm. However,
Ellipsoid is slow, so the question became whether there existed a “combinatorial” (non-Ellipsoid)
polynomial algorithm for SFM. Simultaneously in 1999, Schrijver [76], and Iwata, Fleischer, and

74



Fujishige [50] found quite different strongly polynomial combinatorial SFM algorithms. However,
both of these algorithms need to use some multiplication and division, leading Schrijver to pose
the question of whether there existed a fully combinatorial SFM algorithm. In 2002 Iwata [46]
found a way to extend the IFF Algorithm to give a fully combinatorial SFM algorithm. In 2001
Fleischer and Iwata [23] found Schrijver-PR, an apparent speedup for Schrijver’s Algorithm
(although Vygen [84] showed in 2003 that both variants actually have the same running time),
and in 2002 Iwata [48] used ideas from Schrijver’s Algorithm to speed up the IFF algorithms.
Finally, in 2006 Orlin [71] developed new tools to get a combinatorial strongly polynomial SFM
algorithm that is faster than the strongly polynomial version of Hybrid by a factor of O(n log n),
and in 2009 Iwata and Orlin developed further ideas to get a fully combinatorial SFM algorithm
that is a factor O(n log n) faster than IFF-FC.

Is this the end of the road for SFM algorithms? I say “no”, for two reasons:

1. The existing SFM algorithms have rather slow running times. Both variants of Schrijver’s
Algorithm take O(n7EO + n8) time, the strongly polynomial Hybrid Algorithm takes
O((n6EO + n7) log n) time, the weakly polynomial Hybrid Algorithm takes O((n4EO +
n5) logM) time, and Orlin’s Algorithm take O(n5EO + n6) time. The progress over time
shows that there may be further room for improvement. There is not yet much practical
experience with any of these algorithms, but experience in other domains suggests that
an O(n5) algorithm is practically useless for large instances. Therefore it is natural to ask
whether we can find significantly faster SFM algorithms.

2. The existing general SFM algorithms use Cunningham’s idea of verifying that the current
y belongs to B(f) via representing y as

∑
i∈I λiv

i for vertices vi coming from Greedy.
Naively, this is a rather brute-force way to verify that y ∈ B(f). However, 30 years of
research have not yet produced any better idea.

These two points are closely related. To keep their running times manageable, existing
algorithms call ReduceV from time to time to keep |I| small, and ReduceV costs O(n3) per
call. Thus the key to finding a faster SFM algorithm might be to avoid representing y as a convex
combination of vertices. Hybrid, the fastest weakly polynomial SFM algorithm known to this
point, runs in Õ(n4EO) time. No formal lower bound on the complexity of SFM exists, but it
is hard to imagine an SFM algorithm computing fewer than n vertices, which takes O(n2EO)
time. It is not unreasonable to hope that an Õ(n3EO) SFM algorithm exists.

How far could we go with algorithms based on Push-Relabel technology such as Schrijver’s
Algorithm and Iwata’s Hybrid Algorithm? For networks with Θ(n2) arcs (and the networks
arising in SFM all can have Θ(n2) arcs since each of the O(n) linear orders in I has O(n)
consecutive pairs), the best known running time for a pure Push-Relabel Max Flow algorithm
uses Θ(n3) pushes (see [1]). Hence such algorithms could not be faster than Θ(n3EO) without
a breakthrough in Max Flow algorithms. If each such push potentially adds a new vertex to I,
then we need to call ReduceV Θ(n2) times, for an overhead of Θ(n5). Note that the Hybrid
Algorithm, at O((n4EO + n5) logM), comes close to this informal lower bound, losing only the
O(logM) factor due to scaling, and inflating O(n3EO) to O(n4EO) since each BlockSwap
takes O(bEO) time instead of O(EO) time.

Ideally it would be useful to have a formal lower bound stating that at least some number
of oracle calls is needed to solve SFM. It is easy to see the trivial lower bound that Ω(n) calls
are necessary, but so far nothing non-trivial is known.

75



Here are two other reasons to be dissatisfied with the current state of the art. It is hard
to be completely happy with the fully combinatorial SFM algorithms, as their use of repeated
subtraction or doubling to simulate multiplication and division is aesthetically unpleasant, and
probably impractical. Second, we saw in Section 2.4 that the linear programs have integral
optimal solutions. All the algorithms find an integral dual solution (an optimal set S solving
SFM), but (when f is integer-valued) none of them directly finds an integral optimal primal
solution (a y ∈ B(f) with y−(E) = f(S) or a y ∈ P (f) with y(E) = f(S) + γ(E − S)).
We conjecture that a faster SFM algorithm exists that maintains an integral y throughout the
algorithm.

One possibility for making faster SFM algorithms without using I is suggested by Queyranne’s
Algorithm for symmetric SFM. Notice that Queyranne’s Algorithm does not use a y =

∑
i∈I λiv

i

representation at all, which suggests that it might be possible to find a similar algorithm for
general SFM. On the other hand, Queyranne’s Algorithm also does not use any of the LP ma-
chinery used by the general SFM algorithms, and it does not produce anything resembling a
primal solution (a y ∈ B(f) with y−(E) = f(S)). Also, as Queyranne notes in [74], general
SFM is provably not reducible to symmetric SFM, and even SFM with f(S) = s(S)−u(S) with
s symmetric and u modular (u a vector in RE) is not reducible to the symmetric case.

However, we can still dream. A vague outline of an SFM algorithm not representing y as
a convex combination of vertices might go like this: Start with y = v≺ for some linear order
≺. Then start doing exchanges that increase y−(E) in such a way that we are assured that y
remains in B(f), until we find some S with y−(E) = f(S), and we are optimal. There would be
some lemma, along the lines of our proof that the α from ExchBd is at most c(k, l; vi), showing
inductively that each step remains inside B(f). Then the proof that the final y is in B(f) would
be the sequence of steps taken by the algorithm. Alternatively, one could use the framework
outlined by Fujishige and Iwata [32]: Their framework needs only a combinatorial strongly
polynomial separation routine that either proves that 0 belongs to a submodular polyhedron
P (f̃) (for an f̃ derived from f), or gives a subset S ⊆ E such that f̃(S) < 0 (thereby separating
0 from P (f̃)). They show that O(n2) calls to such a routine would suffice for solving SFM. A
third possibility would be to derive a polynomial bound on the number of iterations of the Min
Norm Point algorithm for SFM proposed by Fujishige [29, p. 219–220] or [30], although this
seems to involve other unpleasant linear algebra. A final possibility is to use the “combinatorial
hull” representation proposed by Fujishige [28]. We leave these questions for future researchers.

Acknowledgments

I thank two anonymous referees, Yves Crama, Bill Cunningham, Lisa Fleischer, Satoru Fujishige,
Satoru Iwata, Hervé Kerevin, Laszlo Lovász, Kazuo Murota, Maurice Queyranne, Alexander
Schrijver, Bruce Shepherd, and Fabio Tardella for their substantial help with this material.

References

[1] R. K. Ahuja, T. L. Magnanti and J. B. Orlin (1993). Network Flows: Theory, Algorithms, and
Applications. Prentice-Hall, Englewood Cliffs.

[2] J-C. Anglès d’Auriac, F. Iglói, M. Preissmann, and A. Sebő (2002). Optimal Cooperation and
Submodularity for Computing Potts’ Partition Functions with a Large Number of States. J. Phys.
A: Math. Gen., 35 6973–6983

76



[3] N. Baumann and M. Skutella (2006). Solving Evacuation Problems Efficiently — Earliest Arrival
Flows with Multiple Sources. FOCS 2006 Proceedings, 399–408.

[4] M. A. Begen and M. Queyranne (2011). Appointment Scheduling with Discrete Random Durations.
Mathematics of Operations Research, 36, 240–257.

[5] A. Berman and R. J. Plemmons (1994). Nonnegative Matrices in the Mathematical Sciences. SIAM,
Philadelphia, PA.

[6] D. P. Bertsekas (1986). Distributed Asynchronous Relaxation Methods for Linear Network Flow
Problems. Working Paper, Laboratory for Information and Decision Systems, MIT (Cambridge,
MA).

[7] G. Birkhoff (1967). Lattice Theory. Amer. Math. Soc.

[8] R. E. Bixby, W. H. Cunningham, and D. M. Topkis (1985). The Partial Order of a Polymatroid
Extreme Point. Math. of OR, 10, 367–378.

[9] B. V. Cherkassky and A. V. Goldberg (1997). On Implementing Push-Relabel Method for the Max-
imum Flow Problem. Algorithmica, 19, 390–410. The PRF code developed here is available from
http://www.star-lab.com/goldberg/soft.html.

[10] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein (2001). Introduction to Algorithms. Second
Edition. MIT Press, Cambridge, MA.

[11] W. H. Cunningham (1983). Decomposition of Submodular Functions. Combinatorica, 3, 53–68.

[12] W. H. Cunningham (1984). Testing Membership in Matroid Polyhedra. JCT Series B, 36, 161–188.

[13] W. H. Cunningham (1985). On Submodular Function Minimization. Combinatorica, 3, 185–192.

[14] DIMACS (1990). The First DIMACS International Algorithm Implementation Challenge: The Core
Experiments. Available at ftp://dimacs.rutgers.edu/pub/netflow/generalinfo/core.tex.

[15] E. A. Dinic (1970). Algorithm for Solution of a Problem of Maximum Flow in a Network with Power
Estimation. Soviet Math. Dokl., 11, 1277–1280.

[16] J. Edmonds (1970). Submodular Functions, Matroids, and Certain Polyhedra. In Combinatorial
Structures and their Applications, R. Guy, H. Hanani, N. Sauer, and J. Schönheim, eds., Gordon
and Breach, 69–87.

[17] J. Edmonds and R. Giles (1977). A Min-Max Relation for Submodular Functions on Graphs. Ann.
Discrete Math., 1, 185–204.

[18] J. Edmonds and R. M. Karp (1972). Theoretical Improvements in Algorithmic Efficiency for Network
Flow Problems. Journal of ACM 19, 248–264.

[19] T. R. Ervolina and S. T. McCormick (1993). Two Strongly Polynomial Cut Canceling Algorithms
for Minimum Cost Network Flow. Discrete Applied Mathematics. 46, 133–165.

[20] U. Feige, V. Mirrokni, and J. Vondrák (2007). Maximizing Non-monotone Submodular Functions.
Proceedings of 48th Annual IEEE Symposium on Foundations of Computer Science (FOCS), 461–
471.

[21] L. K. Fleischer (2000). Recent Progress in Submodular Function Minimization. Optima, September
2000, 1–11.

[22] L. K. Fleischer and S. Iwata (2000). Improved Algorithms for Submodular Function Minimization
and Submodular Flow. Proceedings of the 32th Annual ACM Symposium on Theory of Computing,
107–116.

[23] L. K. Fleischer and S. Iwata (2003). A Push-Relabel Framework for Submodular Function Mini-
mization and Applications to Parametric Optimization. “Submodularity” special issue of Discrete
Applied Mathematics, S. Fujishige ed., 131, 311-322.

[24] L. K. Fleischer, S. Iwata, and S. T. McCormick (2002). A Faster Capacity Scaling Algorithm for
Minimum Cost Submodular Flow. Math. Prog., 92, 119–139.

[25] S. Fujishige (1980). Lexicographically Optimal Base of a Polymatroid with respect to a Weight
Vector. Math. of OR, 5, 186–196.

77



[26] S. Fujishige (1984). Submodular Systems and Related Topics. Math. Prog. Study, 22, 113–131.

[27] S. Fujishige (2002). Submodular Function Minimization and Related Topics. Discrete Mathematics
and Systems Science Research Report 02-04, Osaka University, Japan.

[28] S. Fujishige (2003). Submodular Function Minimization and Related Topics. Optimization Methods
and Software, 18, 169–180.

[29] S. Fujishige (2005). Submodular Functions and Optimization. Second Edition. North-Holland.

[30] S. Fujishige, T. Hayashi, and S. Isotani (2006). The Minimum-Norm-Point Algorithm Applied to
Submodular Function Minimization and Linear Programming. Research Institute for the Mathemat-
ical Sciences Preprint RIMS-1571, Kyoto University, Kyoto Japan.

[31] S. Fujishige and S. Iwata (2006). Bisubmodular Function Minimization. SIAM J. Disc. Math., 19,
1065–1073.

[32] S. Fujishige and S. Iwata (2002). A Descent Method for Submodular Function Minimization. Math.
Prog., 92, 387–390

[33] H. N. Gabow (1985). Scaling Algorithms for Network Problems. J. of Computer and Systems Sci-
ences, 31 148–168.

[34] M. R. Garey and D. S. Johnson (1979). Computers and Intractability, A Guide to the Theory of
NP-Completeness. W.H. Freeman and Company, New York.

[35] M. X. Goemans and V. S. Ramakrishnan (1995). Minimizing Submodular Functions over Families
of Sets. Combinatorica, 15, 499–513.

[36] A. V. Goldberg and S. Rao (1998). Beyond the Flow Decomposition Barrier. Journal of ACM 45
753–797.

[37] A. V. Goldberg and R.E. Tarjan (1988). A New Approach to the Maximum Flow Problem. JACM,
35, 921–940.

[38] A. V. Goldberg and R. E. Tarjan (1990). Finding Minimum-Cost Circulations by Successive Ap-
proximation. Mathematics of Operations Research, 15, 430–466.

[39] D. Goldfarb and Z. Jin (1999). A New Scaling Algorithm for the Minimum Cost Network Flow
Problem. Operations Research Letters, 25 205–211.

[40] R. E. Gomory and T. C Hu (1961). Multiterminal Network Flows. SIAM J. on Applied Math., 9,
551–570.

[41] F. Granot and A. F. Veinott, Jr. (1985). Substitutes, Complements, and Ripples in Network Flows.
Math. of OR, 10, 471–497.

[42] M. Grötschel, L. Lovász, and A. Schrijver (1981). The Ellipsoid Algorithm and its Consequences in
Combinatorial Optimization. Combinatorica, 1, 499–513.

[43] M. Grötschel, L. Lovász, and A. Schrijver (1988). Geometric Algorithms and Combinatorial Opti-
mization. Springer-Verlag.

[44] W. T. Huh and R. O. Roundy (2005). A Continuous-Time Strategic Capacity Planning Model. Naval
Research Logistics, 52, 329–343.

[45] S. Iwata (1997). A Capacity Scaling Algorithm for Convex Cost Submodular Flows. Math. Pro-
gramming, 76, 299–308.

[46] S. Iwata (2002). A Fully Combinatorial Algorithm for Submodular Function Minimiza-
tion. J. Combin. Theory Ser. B, 84, 203–212; a corrected version is available at
http://www.sr3.t.u-tokyo.ac.jp/~iwata/.

[47] S. Iwata (2002). Submodular Function Minimization — Theory and Practice. Talk given at Workshop
in Combinatorial Optimization at Oberwolfach, Germany, November 2002.

[48] S. Iwata (2003). A Faster Scaling Algorithm for Minimizing Submodular Functions. SIAM J. on
Computing, 32, 833–840.

[49] S. Iwata (2008). Submodular Function Minimization. Mathematical Programming, 112, 45–64.

78



[50] S. Iwata, L. Fleischer, and S. Fujishige (2001). A Combinatorial, Strongly Polynomial-Time Algo-
rithm for Minimizing Submodular Functions. J. ACM, 48, 761–777.

[51] S. Iwata, S. T. McCormick, and M. Shigeno (2005). A Strongly Polynomial Cut Canceling Algorithm
for the Submodular Flow Problem. SIAM J. on Discrete Math., 19, 304–320.

[52] S. Iwata and J. B. Orlin (2009). A Simple Combinatorial Algorithm for Submodular Function Min-
imization. Technical report; an extended abstract appears in Proceedings of the Twentieth Annual
ACM-SIAM Symposium on Discrete Algorithms (SODA 2009), pp. 1230–1237.

[53] P. Jeavons, D. Cohen, and M. C. Cooper (1998). Constraints, Consistency and Closure. Artificial
Intelligence, 101 251–265.

[54] A. Krause and D. Golovin (2013). Submodular Function Maximization. Chapter in Tractability:
Practical Approaches to Hard Problems (to appear), Cambridge University Press.

[55] A. Krause and C. Guestrin (2011). Submodularity and its Applications in Optimized Information
Gathering. ACM Transactions on Intelligent Systems and Technology, 2, Article 32.

[56] M. Laurent (1997). The Max-Cut Problem. In Annotated Bibliographies in Combinatorial Optimiza-
tion, M. Dell’Amico, F. Maffioli, and S. Martello, eds., Wiley, Chichester.

[57] E. L. Lawler and C. U. Martel (1982). Computing Maximal Polymatroidal Network Flows.
Math. Oper. Res., 7, 334–347.

[58] L. Lovász (1983). Submodular Functions and Convexity. In Mathematical Programming — The State
of the Art, A. Bachem, M. Grötschel, B. Korte eds., Springer, Berlin, 235–257.

[59] L. Lovász (2002). Email reply to query from S. T. McCormick, 6 August 2002.

[60] M. E. Lübbecke and J. Desrosiers (2005). Selected Topics in Column Generation. Operations Re-
search, 53, 1007–1023.

[61] S. T. McCormick (2006). Submodular Function Minimization. Chapter 7 in the Handbook on Dis-
crete Optimization, Elsevier, K. Aardal, G. Nemhauser, and R. Weismantel, eds., 321–391. See
http://www.elsevier.com/wps/find/bookdescription.cws home/699541/description

[62] S. T. McCormick and S. Fujishige (2007). Strongly Polynomial and Fully Combinatorial Algorithms
for Bisubmodular Function Minimization. Working paper, Sauder School of Business, University of
British Columbia, Vancouver, BC; an extended abstract appears in Proceedings of Nineteenth SODA
(2008), 44–53.

[63] N. Megiddo (1983). Applying parallel computation algorithms in the design of serial algorithms.
Journal of ACM 30 852–865.

[64] K. Murota (1998). Discrete Convex Analysis. Math. Programming, 83, 313–371.

[65] K. Murota (2003). Discrete Convex Analysis. SIAM Monographs on Discrete Mathematics and Ap-
plications, Society for Industrial and Applied Mathematics, Philadelphia.

[66] H. Nagamochi and T. Ibaraki (1992). Computing Edge Connectivity in Multigraphs and Capacitated
Graphs. SIAM J. on Discrete Math., 5, 54–66.

[67] K. Nagano (2005). A Strongly Polynomial Algorithm for Line Search in Submodular Polyhedra. Pro-
ceedings of the 4th Japanese-Hungarian Symposium on Discrete Mathematics and Its Applications,
Budapest, Hungary, 234–242.

[68] K. Nagano (2007). On Convex Minimization over Base Polytopes. Proceedings of IPCO 12, M.
Fischetti and D. Williamson, eds., Ithaca, NY, 252–266.

[69] K. Nagano (2007). A Faster Parametric Submodular Function Minimization Algorithm and Appli-
cations. Technical Report, Department of Mathematical Informatics, University of Tokyo, Japan.

[70] G. L. Nemhauser and L. A. Wolsey (1988). Integer and Combinatorial Optimization. Wiley, New
York.

[71] J.B. Orlin (2007). A Faster Strongly Polynomial Algorithm for Submodular Function Minimization.
Proceedings of IPCO 12, M. Fischetti and D. Williamson, eds., Ithaca, NY, 240–251.

79



[72] J-C. Picard and M. N. Queyranne (1982). Selected Applications of Minimum Cuts in Networks.
INFOR, 20, 394–422.

[73] M. N. Queyranne (1980). Theoretical Efficiency of the Algorithm Capacity for the Maximum Flow
Problem. Mathematics of Operations Research, 5, 258–266.

[74] M. N. Queyranne (1998). Minimizing Symmetric Submodular Functions. Math. Prog., 82, 3–12.

[75] P. Schönsleben (1980). Ganzzahlige Polymatroid-Intersektions Algorithmen. Ph.D. Dissertation,
ETH Zürich.

[76] A. Schrijver (2000). A Combinatorial Algorithm Minimizing Submodular Functions in Strongly
Polynomial Time. J. Combin. Theory Ser. B 80, 346–355.

[77] A. Schrijver (2003). Combinatorial Optimization: Polyhedra and Efficiency. Springer, Berlin.

[78] J. G. Shanthikumar and D. D. Yao (1992). Multiclass Queueing Systems: Polymatroid Structure
and Optimal Scheduling Control. Operations Research, 40, S293–299.

[79] Z-J. M. Shen, C. Coullard, and M. S. Daskin (2003). A Joint Location-Inventory Model. Transporta-
tion Science, 37, 40–55.

[80] É. Tardos (1985). A Strongly Polynomial Minimum Cost Circulation Algorithm. Combinatorica, 5,
247–256.

[81] É. Tardos, C. A. Tovey, and M. A. Trick (1986). Layered Augmenting Path Algorithms. Math.
Oper. Res., 11, 362–370.

[82] D. M. Topkis (1978). Minimizing a Submodular Function on a Lattice. Operations Research, 26,
305–321.

[83] D. M. Topkis (1998). Supermodularity and Complementarity. Princeton University Press, Princeton,
NJ.

[84] J. Vygen (2003). A Note on Schrijver’s Submodular Function Minimization Algorithm. JCT B, 88,
399–402.

[85] D. J. A. Welsh (1976). Matroid Theory, Academic Press, London.

[86] P. Wolfe (1976). Finding the Nearest Point in a Polytope. Math. Prog., 11, 128–149.

80


