The Decision Deck Project
Towards Open Source Software Tools
Implementing Multiple Criteria Decision Aid

Decision Deck Consortium
Raymond Bisdorff† and Patrick Meyer‡

† University of Luxembourg, ‡ TELECOM Bretagne

July 2010 @ MCDM{M|A} Summer School
École Centrale Paris
Decision Deck’s purpose

The Decision Deck project aims at collaboratively developing open source software tools implementing Multiple Criteria Decision Aid (MCDA).

Its purpose is to provide effective tools for three types of users:

- **practitioners** who use MCDA tools to support actual decision makers involved in real world decision problems;
- **teachers** who present MCDA methods in courses, for didactic purposes;
- **researchers** who want to test and compare methods or to develop new ones.
Decision Deck’s purpose

Promote MCDA research and make it more visible to the “outside world”.

Generate new open research issues and support them.

Help structuring a community composed of

- researchers in the field of MCDA;
- software developers;
- users/decision aid consultants.
Decision Deck’s purpose

Promote MCDA research and make it more visible to the “outside world”.

Generate new open research issues and support them.

Help structuring a community composed of

- researchers in the field of MCDA;
- software developers;
- users/decision aid consultants.
Decision Deck’s purpose

Promote MCDA research and make it more visible to the “outside world”.

Generate new open research issues and support them.

Help structuring a community composed of

- researchers in the field of MCDA;
- software developers;
- users/decision aid consultants.
Decision Deck’s purpose

Promote MCDA research and make it more visible to the “outside world”.

Generate new open research issues and support them.

Help structuring a community composed of

- researchers in the field of MCDA;
- software developers;
- users/decision aid consultants.
Decision Deck’s purpose

Promote MCDA research and make it more visible to the “outside world”.

Generate new open research issues and support them.

Help structuring a community composed of

- researchers in the field of MCDA;
- software developers;
- users/decision aid consultants.
Outline of the talk

- Overview of the Decision Deck project;
 - A little bit of history & visible activities;
 - The Decision Deck Consortium & 6 initiatives;

- Focus on 3 initiatives;

- The future & what you can do.
Outline of the talk

- Overview of the Decision Deck project;
 - A little bit of history & visible activities;
 - The Decision Deck Consortium & 6 initiatives;

- Focus on 3 initiatives;
 - XMCDA standard;
 - MCDA web services;
 - divia

- The future & what you can do.
Outline of the talk

- Overview of the Decision Deck project;
 - A little bit of history & visible activities;
 - The Decision Deck Consortium & 6 initiatives;

- Focus on 3 initiatives;
 - XMCDA standard;
 - MCDA web services;
 - divia

- The future & what you can do.
Outline of the talk

- Overview of the Decision Deck project;
 - A little bit of history & visible activities;
 - The Decision Deck Consortium & 6 initiatives;

- Focus on 3 initiatives;
 - XMCDA standard;
 - MCDA web services;
 - diviz.

- The future & what you can do.
Outline of the talk

- Overview of the Decision Deck project;
 - A little bit of history & visible activities;
 - The Decision Deck Consortium & 6 initiatives;

- Focus on 3 initiatives;
 - XMCDA standard;
 - MCDA web services;
 - diviz.

- The future & what you can do.
Outline of the talk

- Overview of the Decision Deck project;
 - A little bit of history & visible activities;
 - The Decision Deck Consortium & 6 initiatives;

- Focus on 3 initiatives;
 - XMCDA standard;
 - MCDA web services;
 - diviz.

- The future & what you can do.
Outline of the talk

- Overview of the Decision Deck project;
 - A little bit of history & visible activities;
 - The Decision Deck Consortium & 6 initiatives;

- Focus on 3 initiatives;
 - XMCDA standard;
 - MCDA web services;
 - diviz.

- The future & what you can do.
Outline of the talk

- Overview of the Decision Deck project;
 - A little bit of history & visible activities;
 - The Decision Deck Consortium & 6 initiatives;

- Focus on 3 initiatives;
 - XMCDA standard;
 - MCDA web services;
 - diviz.

- The future & what you can do.
But first . . .

. . . what is MCDA?

- **Alternatives** (decision actions) are evaluated on multiple preference dimensions (**criteria**, attributes);

 e.g. cars evaluated according to their price, av. fuel consumption, look, max. speed, . . .

- **Help** to determine the best alternative, rank the alternatives or assign them to ordered classes;

- By taking into account the **preferences** of the decision maker.
But first . . .

. . . what is MCDA?

- **Alternatives** (decision actions) are evaluated on multiple preference dimensions (**criteria**, attributes);

 e.g. cars evaluated according to their price, av. fuel consumption, look, max. speed, . . .

- **Help** to determine the best alternative, rank the alternatives or assign them to ordered classes;

- By taking into account the **preferences** of the decision maker.
But first . . .

. . . what is MCDA?

- **Alternatives** (decision actions) are evaluated on multiple preference dimensions (**criteria**, attributes);

 e.g. cars evaluated according to their price, av. fuel consumption, look, max. speed, . . .

- **Help** to determine the *best* alternative, rank the alternatives or assign them to ordered classes;

- By taking into account the **preferences** of the decision maker.
But first ...

... what is MCDA?

- **Alternatives** (decision actions) are evaluated on multiple preference dimensions (**criteria**, attributes);

e.g. cars evaluated according to their price, av. fuel consumption, look, max. speed, ...

- **Help** to determine the best alternative, rank the alternatives or assign them to ordered classes;

- By taking into account the **preferences** of the decision maker.
But first . . .

. . . how does the software *situation* look like in the field?

- many different **methods**;

- many different **softwares**;

- no unified software to test the same problem on various methods.
But first . . .

. . . how does the software situation look like in the field?

- many different methods;
- many different softwares;
- no unified software to test the same problem on various methods.
But first . . .

. . . how does the software *situation* look like in the field?

- many different *methods*;
- many different *softwares*;
- *no unified* software to test the same problem on various methods.
Overview of the Decision Deck project

- A bit of history & visible activities;
- The Decision Deck Consortium & 6 initiatives.
Overview of the Decision Deck project

1. A bit of history & visible activities
Decision Deck’s history

- **2003**
 - *Decision Deck project*, financed by the Wallon Region (B), (SMG-ULB, MathRO-Mons, SCSI-ULB);

- **2006**
 - Lamsade (Paris-Dauphine) joined the project and restructured the existing platform with plugins (in conjunction with KarmicSoft)

 Birth of the Decision Deck project and of the D2 client
Decision Deck’s history

- **2003**

 EVAL project, financed by the Wallon Region (B), (SMG-ULB, MathRO-Mons, SCSI-ULB);

- **2006**

 Lamsade (Paris-Dauphine) joined the project and restructured the existing platform with plugins (in conjunction with KarmicSoft)

 Birth of the Decision Deck project and of the D2 client
Decision Deck’s history

- **2003**
 EVAL project, financed by the Wallon Region (B), (SMG-ULB, MathRO-Mons, SCSI-ULB);

- **2006**
 Lamsade (Paris-Dauphine) joined the project and restructured the existing platform with plugins (in conjunction with KarmicSoft)

Birth of the Decision Deck project and of the D2 client
Decision Deck’s history

- 2003
 EVAL project, financed by the Wallon Region (B), (SMG-ULB, MathRO-Mons, SCSI-ULB);

- 2006
 Lamsade (Paris-Dauphine) joined the project and restructured the existing platform with plugins (in conjunction with KarmicSoft)

 Birth of the Decision Deck project and of the D2 client;
Decision Deck’s history

- 2003
 EVAL project, financed by the Wallon Region (B), (SMG-ULB, MathRO-Mons, SCSI-ULB);

- 2006
 Lamsade (Paris-Dauphine) joined the project and restructured the existing platform with plugins (in conjunction with KarmicSoft)

 Birth of the Decision Deck project and of the D2 client;
\textit{Decision Deck’s history}

- **2007 – 2008**
 SMA (UL) joined in and invested in the Decision Deck project (\textsc{Rubis} plugin for \textbf{D2, D3, web services, XMCDA-1.0});

- **2007 – 2010**
 Contributions from Portugal (INESC Coimbra) and Poland (ICS Poznan) (plugins for \textbf{D2});

- **2008 – 2010**
 Contributions from Télécom Bretagne (diviz prototype, \textit{XMCDA-2.0}, diviz web services);
 Contributions from UL (\textit{XMCDA-2.0 \textsc{Rubis} server, D4 prototype}).
Decision Deck’s history

- **2007 – 2008**
 SMA (UL) joined in and invested in the Decision Deck project (**Rubis** plugin for **D2, D3, web services, XMCDA-1.0**);

- **2007 – 2010**
 Contributions from Portugal (INESC Coimbra) and Poland (ICS Poznan) (plugins for **D2**);

- **2008 – 2010**
 Contributions from Télécom Bretagne (diviz prototype, **XMCDA-2.0**, diviz web services);
 Contributions from UL (**XMCDA-2.0 Rubis** server, D4 prototype).
Decision Deck’s history

- 2007 – 2008
 SMA (UL) joined in and invested in the Decision Deck project (Rubis plugin for D2, D3, web services, XMCDA-1.0);

- 2007 – 2010
 Contributions from Portugal (INESC Coimbra) and Poland (ICS Poznan) (plugins for D2);

- 2008 – 2010
 Contributions from Télécom Bretagne (diviz prototype, XMCDA-2.0, diviz web services);
 Contributions from UL (XMCDA-2.0 Rubis server, D4 prototype).
Decision Deck’s history

- **2007 – 2008**
 SMA (UL) joined in and invested in the Decision Deck project (Rubis plugin for D2, D3, web services, XMCDA-1.0);

- **2007 – 2010**
 Contributions from Portugal (INESC Coimbra) and Poland (ICS Poznan) (plugins for D2);

- **2008 – 2010**
 Contributions from Télécom Bretagne (diviz prototype, XMCDA-2.0, diviz web services);
 Contributions from UL (XMCDA-2.0 Rubis server, D4 prototype).
Decision Deck’s history

- 2007 – 2008
 SMA (UL) joined in and invested in the Decision Deck project (Rubis plugin for D2, D3, web services, XMCDA-1.0);

- 2007 – 2010
 Contributions from Portugal (INESC Coimbra) and Poland (ICS Poznan) (plugins for D2);

- 2008 – 2010
 Contributions from Télécom Bretagne (diviz prototype, XMCDA-2.0, diviz web services);
 Contributions from UL (XMCDA-2.0 Rubis server, D4 prototype).
Decision Deck’s history

- **2007 – 2008**
 SMA (UL) joined in and invested in the Decision Deck project (Rubis plugin for D2, D3, web services, XMCDA-1.0);

- **2007 – 2010**
 Contributions from Portugal (INESC Coimbra) and Poland (ICS Poznan) (plugins for D2);

- **2008 – 2010**
 Contributions from Télécom Bretagne (diviz prototype, XMCDA-2.0, diviz web services);
 Contributions from UL (XMCDA-2.0 Rubis server, D4 prototype).
Decision Deck’s history

- **2007 – 2008**
 SMA (UL) joined in and invested in the Decision Deck project (Rubis plugin for D2, D3, web services, XMCDA-1.0);

- **2007 – 2010**
 Contributions from Portugal (INESC Coimbra) and Poland (ICS Poznan) (plugins for D2);

- **2008 – 2010**
 Contributions from Télécom Bretagne (diviz prototype, XMCDA-2.0, diviz web services);
 Contributions from UL (XMCDA-2.0 Rubis server, D4 prototype).
Visible activities

- 6 past workshops
 Luxembourg, Paris, Coimbra, Mons, Brest, Coimbra;

- 1 future workshop
 Ecole Centrale de Paris, October 7–9, 2010;

- 2 developers days
 Luxembourg, Paris;

- 6 steering meetings
 Luxembourg, Paris, Brussels;

- 7 specifications meetings
 Luxembourg, Paris,
Visible activities

- 6 past workshops
 Luxembourg, Paris, Coimbra, Mons, Brest, Coimbra;

- 1 future workshop
 Ecole Centrale de Paris, October 7–9, 2010;

- 2 developers days
 Luxembourg, Paris;

- 6 steering meetings
 Luxembourg, Paris, Brussels;

- 7 specifications meetings
 Luxembourg, Paris;
Visible activities

- 6 past workshops
 Luxembourg, Paris, Coimbra, Mons, Brest, Coimbra;

- 1 future workshop
 Ecole Centrale de Paris, October 7–9, 2010;

- 2 developers days
 Luxembourg, Paris;

- 6 steering meetings
 Luxembourg, Paris, Brussels;

- 7 specifications meetings
 Luxembourg, Paris...
Visible activities

- 6 past workshops
 Luxembourg, Paris, Coimbra, Mons, Brest, Coimbra;

- 1 future workshop
 Ecole Centrale de Paris, October 7–9, 2010;

- 2 developers days
 Luxembourg, Paris;

- 6 steering meetings
 Luxembourg, Paris, Brussels;

- 7 specifications meetings
 Luxembourg, Paris;
Visible activities

- 6 past workshops
 Luxembourg, Paris, Coimbra, Mons, Brest, Coimbra;

- 1 future workshop
 Ecole Centrale de Paris, October 7–9, 2010;

- 2 developers days
 Luxembourg, Paris;

- 6 steering meetings
 Luxembourg, Paris, Brussels;

- 7 specifications meetings
 Luxembourg, Paris.
Visible activities

- 6 past workshops
 Luxembourg, Paris, Coimbra, Mons, Brest, Coimbra;

- 1 future workshop
 Ecole Centrale de Paris, October 7–9, 2010;

- 2 developers days
 Luxembourg, Paris;

- 6 steering meetings
 Luxembourg, Paris, Brussels, ...

- 7 specifications meetings
 Luxembourg, Paris, ...
Visible activities

- 6 past workshops
 Luxembourg, Paris, Coimbra, Mons, Brest, Coimbra;

- 1 future workshop
 Ecole Centrale de Paris, October 7–9, 2010;

- 2 developers days
 Luxembourg, Paris;

- 6 steering meetings
 Luxembourg, Paris, Brussels, . . .

- 7 specifications meetings
 Luxembourg, Paris, . . .
Visible activities

- 6 past workshops
 Luxembourg, Paris, Coimbra, Mons, Brest, Coimbra;

- 1 future workshop
 Ecole Centrale de Paris, October 7–9, 2010;

- 2 developers days
 Luxembourg, Paris;

- 6 steering meetings
 Luxembourg, Paris, Brussels, . . .

- 7 specifications meetings
 Luxembourg, Paris, . . .
Visible activities

- 6 past workshops
 Luxembourg, Paris, Coimbra, Mons, Brest, Coimbra;

- 1 future workshop
 Ecole Centrale de Paris, October 7–9, 2010;

- 2 developers days
 Luxembourg, Paris;

- 6 steering meetings
 Luxembourg, Paris, Brussels, . . .

- 7 specifications meetings
 Luxembourg, Paris, . . .
Visible activities

- 6 past workshops
 Luxembourg, Paris, Coimbra, Mons, Brest, Coimbra;

- 1 future workshop
 Ecole Centrale de Paris, October 7–9, 2010;

- 2 developers days
 Luxembourg, Paris;

- 6 steering meetings
 Luxembourg, Paris, Brussels, . . .

- 7 specifications meetings
 Luxembourg, Paris, . . .
Overview of the Decision Deck project

2. The Decision Deck Consortium & 6 initiatives
The Decision Deck Consortium

- A french non profit association\(^1\) which \textbf{steers} and \textbf{manages} the project;

- Headed by an administration board
 V. Mousseau (pres.), P. Meyer (trea.), M. Pirlot (sec.),
 R. Bisdorff, O. Cailloux;

- Guided by a general assembly;

- Individual memberships! (30€)

- Formerly known as the “steering committee”.

\(^1\) Association loi 1901
The Decision Deck Consortium

- A french non profit association\(^1\) which **steers** and **manages** the project;

- Headed by an administration board

 V. Mousseau (pres.), P. Meyer (trea.), M. Pirlot (sec.),
 R. Bisdorff, O. Cailloux;

- Guided by a general assembly;

- **Individual** memberships! (30€)

- Formerly known as the “steering committee”.

\(^1\)Association loi 1901
- A french non profit association1 which \textbf{steers} and \textbf{manages} the project;

- Headed by an administration board
 \begin{itemize}
 \item V. Mousseau (\textit{pres.}), P. Meyer (\textit{trea.}), M. Pirlot (\textit{sec.}),
 \item R. Bisdorff, O. Cailloux;
 \end{itemize}

- Guided by a general assembly;

- \textbf{Individual memberships}! (30€)

- Formerly known as the “steering committee”.

1 Association loi 1901
The Decision Deck Consortium

- A french non profit association1 which \textbf{steers} and \textbf{manages} the project;

- Headed by an administration board
 V. Mousseau (\textit{pres.}), P. Meyer (\textit{tre.a.}), M. Pirlot (\textit{sec.}),
 R. Bisdorff, O. Cailloux;

- Guided by a general assembly;

- \textbf{Individual} memberships! (30\euro)

- Formerly known as the “steering committee”.

1Association loi 1901
- A french non profit association1 which \textbf{steers} and \textbf{manages} the project;

- Headed by an administration board
 \begin{itemize}
 \item V. Mousseau (\textit{pres.}), P. Meyer (\textit{tre.a.}), M. Pirlot (\textit{sec.}),
 \item R. Bisdorff, O. Cailloux;
 \end{itemize}

- Guided by a general assembly;

- \textbf{Individual} memberships! (30€)

- Formerly known as the “steering committee”.

1Association loi 1901
The Decision Deck Consortium

- A french non profit association\(^1\) which **steers** and **manages** the project;

- Headed by an administration board
 V. Mousseau (*pres.*), P. Meyer (*trea.*), M. Pirlot (*sec.*),
 R. Bisdorff, O. Cailloux;

- Guided by a general assembly;

- **Individual** memberships! (30€)

- Formerly known as the “steering committee”.

\(^1\)Association loi 1901
6 scientific initiatives

Decision Deck

- d2
- d4
- diviz
- XMCDA
- MCDA web services
- d3
6 scientific initiatives

D2

A rich open source Java client offering several MCDA methods.

- MCDA methods can be added as plugins;

- Role management and a first attempt of collaborative work;

- Currently offering IRIS, RUBIS and VIP, UTA-GMS/GRIP.
6 scientific initiatives

D2
A rich open source Java client offering several MCDA methods.

- MCDA methods can be added as plugins;
- Role management and a first attempt of collaborative work;
- Currently offering IRIS, RUBIS and VIP, UTA-GMS/GRIP.
6 scientific initiatives

D2
A rich open source Java client offering several MCDA methods.

- MCDA methods can be added as **plugins**;
- **Role** management and a first attempt of collaborative work;
- Currently offering IRIS, RUBIS and VIP, UTA-GMS/GRIP.
6 scientific initiatives

D2

A rich open source Java client offering several MCDA methods.

- MCDA methods can be added as **plugins**;

- **Role** management and a first attempt of collaborative work;

- Currently offering IRIS, RUBIS and VIP, UTA-GMS/GRIP.
6 scientific initiatives

Time for a demo!
6 scientific initiatives

MCDA web services

Algorithmic components or complete MCDA methods accessible on-line.

- Reuse of existing implementations of algorithms;
- Use of any programming language;
- Currently offering the RUBIS solver and the KAPPALAB R library.

Further details later!
6 scientific initiatives

MCDA web services

Algorithmic components or complete MCDA methods accessible online.

- Reuse of existing implementations of algorithms;

- Use of any programming language;

- Currently offering the RUBIS solver and the KAPPALAB R library.

Further details later!
6 scientific initiatives

MCDA web services
Algorithmic components or complete MCDA methods accessible on-line.

- Reuse of existing implementations of algorithms;
- Use of any programming language;
- Currently offering the RUBIS solver and the KAPPALAB R library.

Further details later!
6 scientific initiatives

MCDA web services

Algorithmic components or complete MCDA methods accessible online.

- Reuse of existing implementations of algorithms;

- Use of any programming language;

- Currently offering the RUBIS solver and the KAPPALAB R library.

Further details later!
6 scientific initiatives

MCDA web services

Algorithmic components or complete MCDA methods accessible online.

- Reuse of existing implementations of algorithms;
- Use of any programming language;
- Currently offering the RUBIS solver and the KAPPALAB R library.

Further details later!
6 scientific initiatives

MCDA web services
Algorithmic components or complete MCDA methods accessible on-line.

- Reuse of existing implementations of algorithms;
- Use of any programming language;
- Currently offering the RUBIS solver and the KAPPALAB R library.

Further details later!
6 scientific initiatives

XMCDA

A standardised XML recommendation to represent objects and data structures issued from the field of MCDA.

- Allow different MCDA algorithms to interact and be easily callable;

- Direct applications:
 - MCDA web services;
 - Standard visualisation of data.
6 scientific initiatives

XMCDA

A standardised XML recommendation to represent objects and data structures issued from the field of MCDA.

- Allow different MCDA algorithms to interact and be easily callable;

- Direct applications:
 - MCDA web services;
 - Standard visualisation of data.
6 scientific initiatives

XMCDA

A standardised XML recommendation to represent objects and data structures issued from the field of MCDA.

- Allow different MCDA algorithms to interact and be easily callable;

- Direct applications:
 - MCDA web services;
 - Standard visualisation of data.
6 scientific initiatives

XMCDA

A standardised XML recommendation to represent objects and data structures issued from the field of MCDA.

- Allow different MCDA algorithms to interact and be easily callable;

- Direct applications:
 - MCDA web services;
 - Standard visualisation of data.
6 scientific initiatives

XMCDA
A standardised XML recommendation to represent objects and data structures issued from the field of MCDA.

- Allow different MCDA algorithms to interact and be easily callable;

- Direct applications:
 - MCDA web services;
 - Standard visualisation of data.
6 scientific initiatives

XMCDA

<alternatives name="myAlternatives">
 <alternative id="x1" name="Red Ferrari">
 <type>real</type>
 <active>true</active>
 <reference>false</reference>
 </alternative>
 <alternative id="x2" name="Blue Corvette">
 <type>real</type>
 <active>true</active>
 <reference>false</reference>
 </alternative>
 <alternative id="x3" name="UFO">
 <type>fictive</type>
 </alternative>
</alternatives>

Further details later!
6 scientific initiatives

D3

An open source rich internet application for XMCDA web services management.

- Call and basic management of web services;
- Interface in a web browser.
6 scientific initiatives

D3

An open source rich internet application for XMCDA web services management.

- Call and basic management of web services;
- Interface in a web browser.
6 scientific initiatives

D3
An open source rich internet application for XMCDA web services management.

- Call and basic management of web services;
- Interface in a web browser.
6 scientific initiatives

D3

Time for a demo!
6 scientific initiatives

diviz

An open source Java client and server for XMCDA web services composition, workflow management and deployment.

- Call and advanced management of web services;
- Oriented towards algorithms (and not decision aid processes).
6 scientific initiatives

diviz

An open source Java client and server for XMCDA web services composition, workflow management and deployment.

- Call and advanced management of web services;
- Oriented towards algorithms (and not decision aid processes).
diviz

An open source Java client and server for XMCDA web services composition, workflow management and deployment.

- Call and advanced management of web services;
- Oriented towards algorithms (and not decision aid processes).
6 scientific initiatives

Further details later!
6 scientific initiatives

D4

A rich internet application host for implementing, running and auditing XMCDA compatible decision aid processes.

- Oriented towards decision aid processes and algorithms;
- Interface in a web browser.
6 scientific initiatives

D4

A rich internet application host for implementing, running and auditing XMCDA compatible decision aid processes.

- Oriented towards decision aid processes and algorithms;

- Interface in a web browser.
6 scientific initiatives

Time for a demo!
Key websites

- http://www.decision-deck.org
 General information about the project;

 Technical information about the D2 and D3;

- http://www.decision-deck.org/d3/
 Portal of the D3 server in Luxembourg;

- http://www.decision-deck.org/xmcda
 All information about the XMCDA standard;

- http://www.decision-deck.org/diviz
 All information on the diviz initiative.

- http://leopold-loewenheim.uni.lu/cawa/
 Portal of the D4 server in Luxembourg.
Focus on three initiatives

- XMCDA standard;
- MCDA web services;
- diviz.
Focus on three initiatives

1. XMCDA standard
A standard data format does not exist to test a same MCDA problem instance on various methods (and softwares);

Existing MCDA methods / algorithms cannot communicate.

2007
Creation of the **specification committee** in Decision Deck to propose a standardised format for MCDA data: XMCDA.
XMCDA: Introduction

XMCDA is an instance of **UMCDA-ML**.

UMCDA-ML is intended to be a universal modelling language to express MCDA concepts and generic decision aid processes.

XMCDA focusses more particularly on MCDA **concepts** and **data structures** and is defined by an **XML schema**.
The goals of XMCDA are to ease:

- the *interaction* of different MCDA algorithms;
- the execution of various algorithms on the *same problem* instance;
- the *visual representation* of MCDA concepts and data structures via standard tools like web browsers.

XMCDA is maintained by the specifications committee of the Decision Deck project.
Abstract description of the XMCDA structure is performed via a detailed XML schema;

See schema documentation for further details: http://www.decision-deck.org/xmcda

General idea: express MCDA concepts through a few general XML structures.
XMCDA : Conventions

- **MCDA concept**: a real or abstract construction related to the field of MCDA which needs to be stored in XMCDA;
 for example, the importance of the criteria;

- **XMCDA type**: XML structure that we created for the purpose of XMCDA;
 for example, criteriaValues to store general values related to a set of criteria.
XMCDA : Structure outline

Several tags under the root element XMCDA.

A few general categories:

- Project or file description;
- Output messages from methods (log or error messages) and input information for methods (options);
- Description of major MCDA concepts as attributes, criteria, alternatives, categories;
- The performance table;
- Further preferential information related to criteria, alternatives, attributes or categories.
XMCDA : Conventions on the tagnames

The name of a tag starts by a **lower-case** letter;

The rest of the name is in mixed case with the first letter of each internal word capitalised;

We use **whole words** and avoid as much as possible acronyms and abbreviations:

```
methodParameters, performanceTable and preferenceInformation
```

Objects of the same type can be gathered in a **compound** tag named after the plural form of its components (e.g., alternatives).
Three attributes can be found in the main data tags: \textit{id}, \textit{name} and \textit{mcdaConcept};

\textit{id}: \textit{machine readable} code or identifier of an object;

\begin{verbatim}
<alternativesSet id="set1">
 <element>
 <alternativeID>a03</alternativeID>
 </element>
 <element>
 <alternativeID>a04</alternativeID>
 </element>
</alternativesSet>
\end{verbatim}
XMCDA: Conventions on the attributes

name: human-readable name of an object

```xml
<parameter id="numIt" name="number of iterations">
  <integer>3</integer>
</parameter>
```

mcdaConcept: MCDA type of a particular instance of an XMCDA structure

```xml
<alternativesSet mcdaConcept="kernel" name="a kernel with two elements">
  <element>
    <alternativeID>a03</alternativeID>
  </element>
  <element>
    <alternativeID>a04</alternativeID>
  </element>
</alternativesSet>
```

Do not mix up with the object's name!!
Note that there also exists a type called `numericValue` which restricts `value` to numerical values.
Scales can be qualitative, quantitative or nominal.

```xml
<xmcda>

<point>
   <abscissa><real>2.7182818</real></abscissa>
   <ordinate><integer>23</integer></ordinate>
</point>

<scale>
   <quantitative>
      <min><real>0.00</real></min>
      <max><real>1.00</real></max>
   </quantitative>
</scale>

</xmcda>
```
A function can either be a constant, a linear, a piecewise linear function or simply a set of points.

```xml
<function>
    <constant><real>456.3847</real></constant>
</function>

<function>
    <linear>
        <slope><real>4.00</real></slope>
        <intercept><real>4.00</real></intercept>
    </linear>
</function>

<function>
    <points>[..]</points>
</function>
```
A description is present in any XMCDA type.

```
<alternatives>
  <description>
    <title>The list of alternatives</title>
    <comment>European cars are considered.</comment>
  </description>
  [..]
<alternatives>
```
projectReference: description of the current project by different tags from the description type.

```xml
<projectReference id="testProblem">
  <version>1.2</version>
  <creationDate>2008-10-20T22:24:02</creationDate>
  <author>Patrick Meyer and Thomas Veneziano</author>
</projectReference>
```
Some methods require some specific options in order to guide the resolution of a decision problem.

```xml
<methodParameters>
  <approach>outranking</approach>
  <problematique>choice</problematique>
  <methodology>Rubis</methodology>
  <parameter name="variant">
    <value>
      <label>standard</label>
    </value>
  </parameter>
</methodParameters>
```
Certain methods might generate some error or log messages.

```xml
<methodMessages>
  <errorMessage>
    <number>404</number>
    <name>Error 404</name>
    <message>
      Data not found.
      Did you specify a bad file name?
    </message>
  </errorMessage>
  <logMessage>
    <number>0</number>
    <name>OK</name>
    <message>Execution successful.</message>
  </logMessage>
</methodMessages>
```
XMCDA: How to define alternatives?

<alternatives name="myAlternatives">
 <alternative id="x1" name="Red Ferrari">
 <type>real</type>
 <active>true</active>
 <reference>false</reference>
 </alternative>
 <alternative id="x2" name="Blue Corvette">
 <type>real</type>
 <active>true</active>
 <reference>false</reference>
 </alternative>
 <alternative id="x3" name="UFO">
 <type>fictive</type>
 </alternative>
</alternatives>
XMCDA: How to define criteria / attributes?

```xml
<criteria>
  <criterion id="g1">
    <description>
      <comment>Power in horsepowers</comment>
    </description>
    <attributeReference>att1</attributeReference>
    <scale>
      <quantitative>
        <preferenceDirection>
          max
        </preferenceDirection>
        <minimum><real>50</real></minimum>
        <maximum><real>200</real></maximum>
      </quantitative>
    </scale>
  </criterion>
  <criterion id="g2"/>
</criteria>
```
XMCDA: How to define categories?

```xml
<categories>
  <category id="g" name="goodStudents">
    <active>true</active>
  </category>
  <category id="m" name="mediumStudents">
    <active>false</active>
  </category>
</categories>
```
<performanceTable>
 <alternativesPerformance>
 <alternativeID>alt1</alternativeID>
 <performance>
 <criterionID>g1</criterionID>
 <value><real>72.10</real></value>
 </performance>
 <performance>
 <criterionID>g2</criterionID>
 <value><real>82.62</real></value>
 </performance>
 </alternativesPerformance>
 <alternativesPerformance>
 <alternativeID>alt2</alternativeID>
 [..]
 </alternativesPerformance>
</performanceTable>
You’ve got the general ideas!

Also possible to store advanced preferential information on alternatives, criteria, attributes and categories.

For further details: http://www.decision-deck.org/xmcda.

In particular, have a look at the *Quick guide to XMCD*A.
XMCDA: time for a demo

- An XMCDA instance;
- XSD;
- XSL + CSS: visualisation in a web browser.
XMCDA : The specifications committee

Maintenance of XMCDA & management of its future versions;

Proposal of evolutions, according to needs expressed by users of XMCDA;

Regular specifications meetings and discussions;

Dissemination issues of the XMCDA releases;

Forthcoming work on XMCDA;

Don’t hesitate to join us, if you’re interested!
A few general types to represent a lot of concepts;

Your participation is welcome;

Some things are certainly missing;

Try to implement your method and tell us what is wrong;

General idea for programmers: try to make compromises and be flexible!
Focus on three initiatives

2. MCDA web services
Observations:

- MCDA researchers are often not computer scientists;
- MCDA researchers have programmed their algorithm(s) in the programming language they know best;
- MCDA researchers are generally not interested in reimplementing their algorithm(s) in an imposed programming language.
Observations:

- MCDA researchers are often not computer scientists;
- MCDA researchers have programmed their algorithm(s) in the programming language they know best;
- MCDA researchers are generally not interested in reimplementing their algorithm(s) in an imposed programming language.
Observations:

- MCDA researchers are often not computer scientists;
- MCDA researchers have programmed their algorithm(s) in the programming language they know best;
- MCDA researchers are generally not interested in reimplementing their algorithm(s) in an imposed programming language.

MCDA web services

Raymond Bisdorff’s idea (2007)

Instead of asking researchers to rewrite their MCDA algorithms in a specific programming language, allow them to publish their programs online s.t. they can be accessed over a network, as publicly available web services.

Consequences:

- Programming language independence (+);
- GUI-less:
 - Exclusive focus on the algorithmic part (+);
- Harder to interact with the program (-);
- At any time, the latest version of the program (+).
MCDA web services

Raymond Bisdorff’s idea (2007)

Instead of asking researchers to rewrite their MCDA algorithms in a specific programming language, allow them to publish their programs online s.t. they can be accessed over a network, as publicly available web services.

Consequences:

- Programming language independence (+);
- GUI-less:
 - Exclusive focus on the algorithmic part (+);
 - Harder to interact with the program (−);
- At any time, the latest version of the program (+).
MCDA web services

Raymond Bisdorff’s idea (2007)

Instead of asking researchers to rewrite their MCDA algorithms in a specific programming language, allow them to publish their programs online so they can be accessed over a network, as publicly available web services.

Consequences:

- Programming language independence (➕);
- GUI-less:
 - Exclusive focus on the algorithmic part (➕);
 - Harder to interact with the program (➖);
- At any time, the latest version of the program (➕).
Raymond Bisdorff’s idea (2007)

Instead of asking researchers to rewrite their MCDA algorithms in a specific programming language, allow them to publish their programs online so they can be accessed over a network, as publicly available web services.

Consequences:

- Programming language independence (+);
- GUI-less:
 - Exclusive focus on the algorithmic part (+);
 - Harder to interact with the program (−);
- At any time, the latest version of the program (+).
Raymond Bisdorff’s idea (2007)

Instead of asking researchers to rewrite their MCDA algorithms in a specific programming language, allow them to publish their programs online s.t. they can be accessed over a network, as publicly available web services.

Consequences:

- Programming language independence (+);
- GUI-less:
 - Exclusive focus on the algorithmic part (+);
 - Harder to interact with the program (−);
- At any time, the latest version of the program (+).
MCDA web services

Raymond Bisdorff’s idea (2007)

Instead of asking researchers to rewrite their MCDA algorithms in a specific programming language, allow them to publish their programs online s.t. they can be accessed over a network, as publicly available web services.

Consequences:

- Programming language independence (†);
- GUI-less:
 - Exclusive focus on the algorithmic part (†);
 - Harder to interact with the program (–);
- At any time, the latest version of the program (†).
MCDA web services

How to use the web services?
Via various client softwares, like:

- D2 (via one of the plugins, called Rubis);
- D3;
- Command line (via a SOAP encapsulation);
- diviz.

What data is exchanged?
XML files respecting the XMCDA standard!
MCDA web services

How to use the web services?
Via various client softwares, like:

- D2 (via one of the plugins, called Rubis);
- D3;
- Command line (via a SOAP encapsulation);
- diviz.

What data is exchanged?
XML files respecting the XMCDA standard!
How to use the web services?
Via various client softwares, like:

- D2 (via one of the plugins, called Rubis);
- D3;
- Command line (via a SOAP encapsulation);
- diviz.

What data is exchanged?
XML files respecting the XMCDA standard!
How to use the web services?
Via various client softwares, like:

- D2 (via one of the plugins, called Rubis);
- D3;
- Command line (via a SOAP encapsulation);
- diviz.

What data is exchanged?
XML files respecting the XMCDA standard!
How to use the web services?
Via various client softwares, like:

- D2 (via one of the plugins, called Rubis);
- D3;
- Command line (via a SOAP encapsulation);
- diviz.

What data is exchanged?
XML files respecting the XMCDA standard!
MCDA web services

How to use the web services?
Via various client softwares, like:

- D2 (via one of the plugins, called Rubis);
- D3;
- Command line (via a SOAP encapsulation);
- diviz.

What data is exchanged?
XML files respecting the XMCDA standard!
MCDA web services

How to use the web services?
Via various client softwares, like:

- D2 (via one of the plugins, called Rubis);
- D3;
- Command line (via a SOAP encapsulation);
- diviz.

What data is exchanged?
XML files respecting the XMCDA standard!
MCDA web services
MCDA web services

Web service architecture:

1. **submitProblem**
 - Input: ticket ID

2. **jobSpooler**
 - Processes the incoming problem

3. **spoolDaemon**
 - Spools the problems

4. **kappalab**
 - Generates solutions from problems

5. **solutions**
 - Stores the generated solutions

6. **requestSolution**
 - Output: solutions

MCDA web services

Properties:

- **Programming language independance**

 Nearly any GUI-less program can be run behind the WS.

- **Asynchronous**

 Use cases include submitProblem & requestSolution,

 Useful in case the calculations are time-consuming.

- **Interoperable**

 The output of a WS can be reinjected into another WS.
MCDA web services

Properties:

- Programming language independance
 Nearly any GUI-less program can be run behind the WS; Java, Python, C, C++, Perl, ..., R, ...

- Asynchronous
 submitProblem & requestSolution
 Useful in case the calculations are time-consuming

- Interoperable
 The output of a WS can be reinjected into another WS.
MCDA web services

Properties:

- **Programming language independance**
 Nearly any GUI-less program can be run behind the WS;

- **Asynchronous**
 submitProblem & requestSolution
 Useful in case the calculations are time-consuming.

- **Interoperable**
 The output of a WS can be reinjected into another WS.
Properties:

- Programming language independance
 Nearly any GUI-less program can be run behind the WS; Java, Python, C, C++, Perl, ..., R, ...

- Asynchronous
 submitProblem & requestSolution
 Useful in case the calculations are time-consuming.

- Interoperable
 The output of a WS can be reinjected into another WS.
MCDA web services

Properties:

- Programming language independance
 Nearly any GUI-less program can be run behind the WS;

- Asynchronous
 submitProblem & requestSolution
 Useful in case the calculations are time-consuming;

- Interoperable
 The output of a WS can be reinjected into another WS.
MCDA web services

Properties:

- Programming language independance
 Nearly any GUI-less program can be run behind the WS;

- Asynchronous
 submitProblem & requestSolution
 Useful in case the calculations are time-consuming;

- Interoperable
 The output of a WS can be reinjected into another WS.
MCDA web services

Properties:

- Programming language independance
 Nearly any GUI-less program can be run behind the WS;

- Asynchronous
 submitProblem & requestSolution
 Useful in case the calculations are time-consuming;

- Interoperable
 The output of a WS can be reinjected into another WS.
MCDA web services

Properties :

- Programming language independance
 Nearly any GUI-less program can be run behind the WS;

- Asynchronous
 submitProblem & requestSolution
 Useful in case the calculations are time-consuming;

- Interoperable
 The output of a WS can be reinjected into another WS.
MCDA web services

Properties:

- **Programming language independance**
 Nearly any GUI-less program can be run behind the WS;

- **Asynchronous**
 `submitProblem` & `requestSolution`
 Useful in case the calculations are time-consuming;

- **Interoperable**
 The output of a WS can be reinjected into another WS.
Focus on three initiatives

3. diviz
Goals:

- help researchers to construct algorithmic MCDA workflows (= methods) from elementary components;
- help teachers to present MCDA methods and let the students experiment their own creations;
- help to easily compare results of different methods and workflows;
- allow to easily add new MCDA components;
- avoid heavy calculations on your local computer by executing the methods on distant servers;
Goals:

- help *researchers* to construct algorithmic MCDA workflows (= *methods*) from elementary components;

- help *teachers* to present MCDA methods and let the students experiment their own creations;

- help to easily *compare* results of different methods and workflows;

- allow to easily add new MCDA components;

- avoid heavy calculations on your local computer by executing the methods on distant servers;
Goals:

- help researchers to construct algorithmic MCDA workflows (= methods) from elementary components;

- help teachers to present MCDA methods and let the students experiment their own creations;

- help to easily compare results of different methods and workflows;

- allow to easily add new MCDA components;

- avoid heavy calculations on your local computer by executing the methods on distant servers;
Goals:

- help researchers to construct algorithmic MCDA workflows (\(= \textit{methods} \)) from elementary components;

- help teachers to present MCDA methods and let the students experiment their own creations;

- help to easily \textit{compare} results of different methods and workflows;

- allow to easily add new MCDA components;

- avoid heavy calculations on your local computer by executing the methods on distant servers;
Goals:

- help **researchers** to construct algorithmic MCDA workflows (\(= \text{methods}\)) from elementary components;

- help **teachers** to present MCDA methods and let the students experiment their own creations;

- help to easily **compare** results of different methods and workflows;

- allow to easily add new MCDA components;

- avoid heavy calculations on your local computer by executing the methods on distant servers;
Goals:

- help researchers to construct algorithmic MCDA workflows (= methods) from elementary components;

- help teachers to present MCDA methods and let the students experiment their own creations;

- help to easily compare results of different methods and workflows;

- allow to easily add new MCDA components;

- avoid heavy calculations on your local computer by executing the methods on distant servers;
Properties:

- all components are (opensource) web services;
- history of past executions;
- use of XMCDA to make elementary components interoperable;
- use of XMCDA + XSL for a standardised visualisation of input and output data.
Properties:

- All components are (opensource) web services;
- History of past executions;
- Use of XMCDA to make elementary components interoperable;
- Use of XMCDA + XSL for a standardised visualisation of input and output data.
Properties:

- all components are (opensource) **web services**;
- **history** of past executions;
- use of XMCDA to make elementary components **interoperable**;
- use of XMCDA + XSL for a standardised **visualisation** of input and output data.
Properties:

- all components are (opensource) web services;
- history of past executions;
- use of XMCDA to make elementary components interoperable;
- use of XMCDA + XSL for a standardised visualisation of input and output data.
Properties:

- all components are (opensource) web services;
- history of past executions;
- use of XMCDA to make elementary components interoperable;
- use of XMCDA + XSL for a standardised visualisation of input and output data.
The name? diviz

diviz means *decision* in Breton ... 🇧🇷 ...
A live demo
diviz: Architecture

- **Registry**: Platforms and descriptions
- **Planification**: Execution
- **Local execution**
- **Distant execution (rsh/ssh)**
- **Web services**
- **diviz platform**

A single description for each resource
diviz : Architecture

A generic framework driven by programs’ descriptions only!

Key points:

- Different deployment configurations;
- Execution engine:
 - Fail safe & error recovery;
 - Support for redundancy;
 - Load balancing capable;
- XML-based resources’ description:
 - Name, types;
 - Domain of validity;
 - Inter-dependencies;
 - I/O are typed.
diviz : Architecture

A generic framework driven by programs' descriptions only!

Key points:

- Different deployment configurations;

- Execution engine:
 Fail safe & error recovery;
 Support for redundancy;
 Load balancing capable;

- XML-based resources' description:
 name, types;
 domain of validity;
 inter-dependencies;
 I/O are typed.
diviz : Architecture

A generic framework driven by programs’ descriptions only!

Key points:

- Different deployment configurations;

- Execution engine:
 - Fail safe & error recovery;
 - Support for redundancy;
 - Load balancing capable.

- XML-based resources’ description:
 - Name, types;
 - Domain of validity;
 - Inter-dependencies;
 - I/O are typed.
diviz : Architecture

A generic framework driven by programs’ descriptions only!

Key points:

- Different deployment configurations;
- Execution engine:
 - Fail safe & error recovery;
 - Support for redundancy;
 - Load balancing capable.
- XML-based resources’ description:
 - Name, type;
 - Domain of validity;
 - Inter-dependencies;
 - I/O are typed.
diviz : Architecture

A generic framework driven by programs’ descriptions only!

Key points:

- Different deployment configurations;

- Execution engine:
 Fail safe & error recovery;
 Support for redundancy;
 Load balancing capable.

- XML-based resources’ description:
 name, types;
 domain of validity;
 inter-dependencies;
 I/O are typed.
A generic framework driven by programs’ descriptions only!

Key points:

- Different deployment configurations;
- Execution engine:
 - Fail safe & error recovery;
 - Support for redundancy;
 - Load balancing capable.
- XML-based resources’ description:
 - name, types;
 - domain of validity;
 - inter-dependencies;
 - I/O are typed.
A generic framework driven by programs’ descriptions only!

Key points:

- Different deployment configurations;

- Execution engine:
 - Fail safe & error recovery;
 - Support for redundancy;
 - Load balancing capable.

- XML-based resources’ description:
 - name, types;
 - domain of validity;
 - inter-dependencies;
 - I/O are typed.
A generic framework driven by programs’ descriptions only!

Key points:

- Different deployment configurations;

- Execution engine:
 - Fail safe & error recovery;
 - Support for redundancy;
 - Load balancing capable.

- XML-based resources’ description:
 - name, types;
 - domain of validity;
 - inter-dependencies;
 - I/O are typed.
diviz : Architecture

A generic framework driven by programs’ descriptions only!

Key points:

- Different deployment configurations;

- Execution engine:
 Fail safe & error recovery;
 Support for redundancy;
 Load balancing capable.

- XML-based resources’ description:
 name, types;
 domain of validity;
 inter-dependencies;
 I/O are typed.
diviz : Architecture

A generic framework driven by programs’ descriptions only!

Key points:

- Different deployment configurations;

- Execution engine:
 Fail safe & error recovery;
 Support for redundancy;
 Load balancing capable.

- XML-based resources’ description:
 name, types;
 domain of validity;
 inter-dependencies;
 I/O are typed.
A generic framework driven by programs’ descriptions only!

Key points:

- Different deployment configurations;

- Execution engine:
 Fail safe & error recovery;
 Support for redundancy;
 Load balancing capable.

- XML-based resources’ description:
 name, types;
 domain of validity;
 inter-dependencies;
 I/O are typed.
What diviz is

- A tool for MCDA components workflow (*methods*)
 - *design*,
 - *execution*,
 - and *deployment*;

- A simple and standardised data visualisation tool;

- Platform independent;

- Open source.
What diviz is

- A tool for MCDA components workflow (methods)
 - design,
 - execution,
 - and deployment;

- A simple and standardised data visualisation tool;

- Platform independent;

- Open source.
What *diviz* is

- A tool for MCDA components workflow (*methods*)
 - *design*,
 - *execution*,
 - and *deployment*;
- A simple and standardised data visualisation tool;
- Platform independent;
- Open source.
What diviz is

- A tool for MCDA components workflow (*methods*)
 - design,
 - execution,
 - and deployment;

- A simple and standardised data visualisation tool;

- Platform independent;

- Open source.
What diviz is

- A tool for MCDA components workflow (*methods*)
 - design,
 - execution,
 - and deployment;

- A simple and standardised data visualisation tool;

- Platform independent;

- Open source.
What diviz is

- A tool for MCDA components workflow (methods)
 - design,
 - execution,
 - and deployment;

- A simple and standardised data visualisation tool;

- Platform independent;

- Open source.
What diviz is

- A tool for MCDA components workflow (*methods*)
 - design,
 - execution,
 - and deployment;
- A simple and standardised data visualisation tool;
- Platform independent;
- Open source.
What diviz is not

- A decision aid process designer and manager;
- A role manager.
What diviz is **not**

- A decision aid process designer and manager;
- A role manager.
The future & what you can do.
How you can help the project

- Join the Decision Deck Consortium (contact me at patrick.meyer@telecom-bretagne.eu); or,

- Support our project (development, standardisation, ...); or,

- Test the software solutions & let us know your opinion.
How you can help the project

- Join the Decision Deck Consortium (contact me at patrick.meyer@telecom-bretagne.eu); or,
- Support our project (development, standardisation, ...); or,
- Test the software solutions & let us know your opinion.
How you can help the project

- Join the Decision Deck Consortium (contact me at patrick.meyer@telecom-bretagne.eu); or,
- Support our project (development, standardisation, ...); or,
- Test the software solutions & let us know your opinion.
Developing web services

WS architecture, independent from diviz.
What you have to do to develop a web service (with integration into diviz)

Rough recipe:

- **Determine** the XMCDA data types that your command line program needs;

- **Adapt** your program to read and write XMCDA files;

 existing R library & Python library!

- 2 input parameters for your program:
 - Input data directory
 - Output data directory

- Specify the mandatory and optional input and output data files and XMCDA data types;

- Send us the program with the specifications.

See also http://www.decision-deck.org/diviz for detailed instructions.
What you have to do to develop a web service (with integration into diviz)

Rough recipe:

- **Determine** the XMCDA data types that your command line program needs;
- **Adapt** your program to read and write XMCDA files;

 existing R library & Python library!

 - 2 input parameters for your program:
 - Input data directory;
 - Output data directory;

- Specify the mandatory and optional input and output data files and XMCDA data types;
- Send us the program with the specifications.

See also http://www.decision-deck.org/diviz for detailed instructions.
What you have to do to develop a web service (with integration into diviz)

Rough recipe :

- **Determine** the XMCDA data types that your command line program needs;

- **Adapt** your program to read and write XMCDA files;

 existing R library & Python library!

- 2 input parameters for your program :

 - Input data directory;

 - Output data directory;

- Specify the mandatory and optional input and output data files and XMCDA data types;

- Send us the program with the specifications.

See also http://www.decision-deck.org/diviz for detailed instructions.
What you have to do to develop a web service (with integration into diviz)

Rough recipe:

- **Determine** the XMCDA data types that your command line program needs;

- **Adapt** your program to read and write XMCDA files;

 existing R library & Python library!

- 2 input parameters for your program:
 - Input data directory;
 - Output data directory;

- Specify the mandatory and optional input and output data files and XMCDA data types;

- Send us the program with the specifications.

See also http://www.decision-deck.org/diviz for detailed instructions.
What you have to do to develop a web service (with integration into diviz)

Rough recipe:

- **Determine** the XMCDA data types that your command line program needs;

- **Adapt** your program to read and write XMCDA files;

 existing R library & Python library!

- 2 input parameters for your program:
 - Input data directory;
 - Output data directory;

- **Specify** the mandatory and optional input and output data files and XMCDA data types;

- Send us the program with the specifications.

See also http://www.decision-deck.org/diviz for detailed instructions.
What you have to do to develop a web service (with integration into diviz)

Rough recipe:

- **Determine** the XMCDA data types that your command line program needs;

- **Adapt** your program to read and write XMCDA files;
 existing R library & Python library!

- 2 input parameters for your program:
 - Input data directory;
 - Output data directory;

- **Specify** the mandatory and optional input and output data files and XMCDA data types;

- **Send** us the program with the specifications.

See also http://www.decision-deck.org/diviz for detailed instructions.
What you have to do to develop a web service (with integration into diviz)

Rough recipe:

- **Determine** the XMCDA data types that your command line program needs;

- **Adapt** your program to read and write XMCDA files;

 existing R library & Python library!

- 2 input parameters for your program:

 - Input data directory;
 - Output data directory;

- **Specify** the mandatory and optional input and output data files and XMCDA data types;

- **Send** us the program with the specifications.

See also http://www.decision-deck.org/diviz for detailed instructions.
What you have to do to develop a web service (with integration into diviz)

Rough recipe:

- **Determine** the XMCDA data types that your command line program needs;

- **Adapt** your program to read and write XMCDA files;

 existing R library & Python library!

- 2 input parameters for your program:
 - Input data directory;
 - Output data directory;

- **Specify** the mandatory and optional input and output data files and XMCDA data types;

- **Send** us the program with the specifications.

See also http://www.decision-deck.org/diviz for detailed instructions.
What you have to do to develop a web service (with integration into diviz)

Rough **recipe**:

- **Determine** the XMCDA data types that your command line program needs;

- **Adapt** your program to read and write XMCDA files;
 existing R library & Python library!

- 2 input parameters for your program:
 - Input data directory;
 - Output data directory;

- **Specify** the mandatory and optional input and output data files and XMCDA data types;

- **Send** us the program with the specifications.

See also http://www.decision-deck.org/diviz for detailed instructions.
What you have to do to develop a web service (with integration into diviz)

Rough recipe:

- **Determine** the XMCDA data types that your command line program needs;
- **Adapt** your program to read and write XMCDA files;

 existing R library & Python library!

- 2 input parameters for your program:
 - Input data directory;
 - Output data directory;

- **Specify** the mandatory and optional input and output data files and XMCDA data types;

- **Send** us the program with the specifications.

See also http://www.decision-deck.org/diviz for detailed instructions.
How to stay informed?

Low traffic informational mailing list of the Decision Deck project:
https://mlistes.telecom-bretagne.eu/wws/subscribe/decisiondeck-info

Low traffic informational mailing list of the diviz software:
https://mlistes.telecom-bretagne.eu/wws/subscribe/diviz-announcements