
Querying Protein-Protein Interaction Networks

Guillaume Blin, Florian Sikora, and Stéphane Vialette

Université Paris-Est, LIGM - UMR CNRS 8049, France
{gblin, sikora, vialette}@univ-mlv.fr

Abstract. Recent techniques increase the amount of our knowledge of
interactions between proteins. To filter, interpret and organize this data,
many authors have provided tools for querying patterns in the shape
of paths or trees in Protein-Protein Interaction networks. In this paper,
we propose an exact algorithm for querying graphs pattern based on
dynamic programming and color-coding. We provide an implementation
which has been validated on real data.

1 Introduction

Contrary to what was predicted years ago, the human genome project has high-
lighted that human complexity may not only rely on its genes (only 25 000
for human compared to the 30 000 and 45 000 for the mouse and the poplar
respectively). This observation has yield to an increase in the interest of pro-
teins (e.g. their numbers, functions, complexity and interactions). Among oth-
ers protein properties, the set of all their interactions for an organism, called
Protein-Protein Interactions (PPI) networks, have recently attracted lot of in-
terest. Knowledge on them increases in an exponential manner due to the use of
various genome-scale screening techniques [10,12,23]. Unfortunately, acquiring
such valuable resources is prone to high noise rate [10,19].

Comparative analysis of PPI tries to determine the extent to which protein
networks are conserved among species. Indeed, numerous evidences suggest that
proteins functioning together in a pathway (i.e., a path in the interaction graph)
or a structural complex (i.e., an assembling of strongly connected proteins) are
likely to evolve in a correlated fashion, and during evolution, all such functionally
linked proteins tend to be either preserved or eliminated in a new species [17].

In this article, we focus on the following related problem called Graph
Query (formaly defined later). Given a PPI network and a pattern in the shape
of graph, query the pattern in the network consist of find a subnetwork of the PPI
network which is most similar as possible to the pattern. Similarity is measured
both in terms of sequence similarity and graph topology conservation.

Unfortunately, this problem is clearly equivalent to the NP-complete sub-
graph homeomorphism problem [9]. Recently, several techniques have been pro-
posed to overcome the difficulty of this problem. By restricting the query to a
path, Kelley et al. [16] were able to define a Fixed-Parameter Tractable (FPT)
algorithm parameterized by the size of the query. Recall that a parameterized
problem is FPT if it can be determined in f(k)nO(1) time where f is a function

2

only depending on the parameter k, and n is the size of the input [8]. Pinter et
al. [18] proposed an algorithm dealing with tree shape query that is restricted
to forest PPI networks (i.e., collection of trees).

Later on, Shlomi et al. [21] proposed an alternative, called QPath [16], for
querying paths in a PPI network which is based on the color-coding technique
introduced by Alon, Yuster and Zwick [1]. In addiction of being faster, QPath
allows more flexibility by considering non-exact matches. Finally, Dost et al. [7]
developed QNet, an algorithm to handle tree query in the general context of
PPI networks. The authors also gave some theoretical approaches for querying
graphs by using the tree decomposition of the query.

Since QNet is the major reference in this field and is quite related to the work
presented in this article, let us present it briefly. QNet is an exact FPT algorithm
for querying trees in a PPI network. The complexity is 2O(k)m, where k is the
number of proteins in the query and m the number of edges of the PPI network.
As QPath, QNet uses dynamic programming and color-coding. For querying
graphs in a network, QNet uses, as a subroutine, an exact algorithm to query
trees. To do so, they perform a tree decomposition. A formal definition of a tree
decomposition can be found in [4]. Roughly speaking, it is a transformation of a
graph into a tree. A tree node (or a bag) can contain several graph nodes. There
are several ways to perform such a transformation. The treewidth of a graph is the
minimum (among all decompositions) of the cardinality of the largest bag minus
one. Computing this treewidth is NP-Hard [3]. From this tree decomposition,
the time complexity of QNet is O(2O(k)nt+1) time, where k is the size of the
query, n is the size of the PPI network, and t is the treewidth of the query.

QNet is an exact algorithm for querying trees in a PPI network. A logical
extension would be to query graphs. The authors of [7] provides a theoretical
solution, without implementation and which depends on the query treewidth. We
propose in this article an exact alternative solution, using color-coding (Section
2). We provide in Section 3 some experimental results.

2 PADA1 as an alternative to QNet

In this section, we propose an alternative to QNet called PADA1 (Protein Align-
ment Dealing with grAphs). At the broadest level, QNet and PADA1 use the
very same approach: transform the query into a tree and find an occurrence
of that tree in the PPI network by dynamic programming. However, whereas
QNet uses tree decompositions, PADA1 combines feedback vertex sets together
with nodes duplications (Algorithm Graph2Tree). It is worth mentioning that,
following QPath and QNet, we will consider non-exact matches (i.e., allowing
indels). Since we allow queries to be graphs, PADA1 is clearly an extension of
QPath and an alternative to QNet.

2.1 Transforming the query into a tree

We begin by presenting Algorithm Graph2Tree to transform a graph G =
(V,E) into a tree, without loss of information (i.e., one can reconstruct the graph

3

starting from the tree). Informally, the main idea of Algorithm Graph2Tree is
to transform the graph into a tree by iteratively finding a cycle C, duplicating
a node of C, and finally breaking cycle C by one edge deletion. Central is our
approach is thus the node duplication procedure (Algorithm Duplicate), see
Figure 1 for an illustration to break a cycle at vertex v1. For each u ∈ V , write
d(u) for the set of all copies of vertex u including itself.

Function Graph2Tree(G)1

begin2

d(u)← u for all u of V ;3

for (i = 0 ; i < |V | ; i + +) do4

foreach subgraph G′ = (V ′, E′) of G such that |V ′| = |V | − i do5

if G′ is acyclic then6

foreach node u of V \V ′ do7

foreach (u, v) ∈ E do8

tmp← G;9

Duplicate(v, u, d);10

if G is not connected anymore then11

G← tmp;12

end13

end14

end15

return G;16

end17

end18

end19

end20

Algorithm 1: “Brute-force” transformation algorithm

Function Duplicate(G = (V, E), va, vb, d)1

begin2

Let i← |d(vb)|;3

V ← V ∪ {vb i};4

d(vb)← d(vb) ∪ {vb i} ;5

E ← E − {(va, vb)};6

E ← E ∪ {(va, vb i)};7

end8

Algorithm 2: Algorithm to duplicate a node when a cycle is detected.

Let F denote the set of all nodes of G that have been duplicated at the end
of Algorithm Graph2Tree, i.e., F = {v ∈ V : |d(v)| > 1}. The cardinality

4

Fig. 1. Steps when Duplicate(G, v3, v1, d) is called on graph a). b) A node v1 1 from v1

is created. c) The edge (v3,v1) is deleted: the cycle is then broken. d) The edge (v3,v1 1)
is added. Finally, the resulting graph is acyclic, and d(v1) = {v1, v1 1}.

of F turns out to be an important parameter since, as we will prove soon,
the overall time complexity of PADA1 mostly depends on |F | and not on the
overall number of duplications. Minimizing the cardinality of F is the well-known
NP-complete Feedback Vertex Set problem [15]: Given a graph G, find a
minimum cardinality subset of vertices with the property that removal of these
vertices from the graph eliminates all cycles.

We only have implemented an algorithm using a “brute-force” solution for the
Feedback Vertex Set problem. Since there are 2|V | potential subgraphs, its
complexity is O(2|V |× |E|), but it is still running in seconds. Indeed, the overall
complexity of PADA1 considerably limits the size of our graph query. However,
one may also consider an efficient FPT algorithm such as the one of Guo et al.
[11], using iterative compression, or a cubic [5] or quadratic kernalization [22].

2.2 Tree matching

We now assume that the query has been transformed into a tree (with duplicated
nodes) by Algorithm Graph2Tree, and hence we only consider tree queries
from this point. We show that an occurrence of such a tree can be found in a
PPI network by dynamic programming.

Let us fix notations. PPI networks are represented by undirected weighted
graphs GN = (VN , EN , w) ; each node of VN represents a protein and each
weighted edge (vi, vj) ∈ EN represents an interaction between two proteins. A
query is given by a tree TQ = (VQ, EQ) (output of Algorithm Graph2Tree on
the graph query). The set VQ represents proteins while EQ represents interac-
tions between these proteins. There is no weight for these later.

Let h(p1, p2) be a function that returns a similarity score between two pro-
teins p1 and p2. The similarity considered here will be computed according to
amino-acid sequences similarity (using BLAST [2]). In the following, given two
nodes v1 and v2 of VQ (or VN), we write h(v1, v2) for the similarity between
the two proteins corresponding to v1 and v2. A node v1 is considered to be ho-
mologous to a node v2 if the corresponding similarity score h(v1, v2) is above a
given threshold. Biologically, one can assume that two homologous proteins have
probably common functions. Clearly, for every node v of F , all nodes in d(v) are
homologous with the same protein.

5

An alignment of the query TQ and GN is defined as: (i) a subgraph GA =
(VA, EA, w) ⊆ GN = (VN , EN , w), such that VA ⊆ VN and EA ⊆ EN , and (ii) a
mapping σ : VQ → VA∪{del}. More precisely, the function σ is defined such that
for all q of VQ, σ(q) = v if and only if q and v are homologous, and σ(q) = del
otherwise.

Fig. 2. a) The graph query with a cycle, before calling Graph2Tree algorithm. c)
The query after calling Graph2Tree where q1 has been duplicated. Thus, q1 and q1 1

have to be aligned with the same node of the network. b) and d) denote the resulting
graph alignment GA, subgraph of the network GN . The horizontal dashed lines denote
a match between two proteins.

for a given alignment of TQ and GN , a node q of VQ is said to be deleted
if σ(q) = del and matched otherwise. Moreover, any node va of VA such that
σ−1(va) is undefined is said to be inserted. Note that, similarly to QNet, only
nodes of degree two can be deleted. For practical applications, the number of in-
sertions (resp. deletions) is limited to be at most Nins (resp. Ndel), each involving
a penalty score δi (resp. δd).

The Graph Query problem can be thus defined as follow: Given a query
TQ, a PPI network GN , a similarity function h, penalty scores δi and δd for
each insertion and deletion, find an alignment (GA, σ) between TQ and GN of
maximal score. The score of an alignment is defined as the sum of (i) similar-
ity scores of aligned nodes (i.e.,

∑
v∈VA

σ−1(v) defined
h(v, σ−1(v))), (ii) the sum of all

edges involved in GA (i.e.,
∑
e∈EA w(e)), (iii) a penalty score δd for each node

deletion (i.e.,
∑

q∈VQ
σ(q)=del

δd), and (iv) a penalty score δi for each node insertion

(i.e.,
∑

v∈VA
σ(v)−1 undefined

δi).

6

The general problem is NP-complete. However, it is Fixed Parameter Tractable
in case the query is a tree by a combination of the color-coding technique [1] and
dynamic programming. This randomized technique allows to find simple paths
of length k in a network in O(2k) time (instead of the brute-force O(nk) time
algorithm), where n is the number of proteins in the network [20]. In [7], the
authors of QNet adapted this technique for their query algorithm. Since one is
looking for an alignment, each node of the query has to be considered once (and
only once) in an incremental build of the alignment by dynamic programming.
Thus, one has to maintain a list of the nodes already considered in the query.
Therefore, on the whole, one has to consider all O(nk) potential alignments, with
n = |VN | and k = |VQ|.

Using color-coding, one may decrease this complexity to O(2k). First, nodes
of the network are colored randomly using k colors, where k = |VQ|. Then,
looking for a colorful alignment (i.e., an alignment that contains each color once)
leads to a potential solution (i.e., not necessarily optimal). Therefore, one only
needs to maintain a list of the colors already used in the alignment, storable
in a table of size in O(2k). In order to get an optimal solution, this process
is repeated. More precisely, according to QNet [7], since a colorful alignment
happens with probability k!

kk
' e−k, the coloration step has to be done log(1

ε)ek

times to obtain an optimal alignment with high probability (1− ε, for any ε).
The QNet dynamic programming algorithm can be summarized as follows.

By an incremental construction, for each (qi, qj) of EQ when one considers qi
of VQ aligned with a node vi of VN , check whether the score of the alignment
is improved through: (i) a match of qj and any vj of VN such that qj and vj
are homologous and (vi, vj) ∈ EN , (ii) an insertion of a node vj of VN in the
alignment graph GA, (iii) a deletion of qj . This is made for a given coloration of
the network, and repeated for each coloration.

Hereafter, we define an algorithm, inspired from QNet, which consider a query
tree TQ, a PPI network GN and seeks for an alignment (GA, σ). To deal with
duplicated nodes (cf. Graph2Tree algorithm), we pre-compute all possible as-
signment of the duplicated nodes VQ of TQ. More precisely, for each q of F and
for all q′ of d(q) one assign σ(q′) with each v of VN . We then compute for each
assignment A an alignment with respect to A. We denote BestConstraintAl-
ignment this step (details omitted due to space constraints). The difficulty is
to construct the best alignment by dynamic programming, with respect to A.

As done in QNet, we use a set SC of k + Nins colors (as needed by the
color-coding) which will be used when a node is matched or inserted. Moreover,
in order to deal with potential duplicated nodes in TQ, we have to use another
multi-set of colors (i.e., the colors in this set can appear more than once), rather
than a classical set as in QNet. Indeed, every node in d(q) such that q ∈ F , must
use the same color.

Algorithm 3 may be summarized as follow. Perform log(1
ε)ek random col-

orations of the PPI network GN to ensure optimality with a probability of at
least 1− ε. A coloration consists in affecting a random color of SC to each node
of VN . Then, for each coloration, we build all possible valid assignments A of the

7

Function PADA1 (TQ,GN , h, threshold)1

begin2

BestGA ← ∅; BestScore← −∞;3

for (i = 0; i < log(1
ε
)ek; i + +) do4

randomly colorize GN with k + Nins colors;5

foreach valid assignment A do6

GA ← BestConstraintAlignment(GN , TQ, A, h, threshold);7

if score(GA) > BestScore then8

BestGA ← GA;9

BestScore← score(GA);10

end11

end12

end13

return BestGA;14

end15

Algorithm 3: Sketch of the PADA1 algorithm to align a query graph to
a network.

duplicated nodes. An assignment A is valid if no two non homologous nodes are
matched in A. For each such assignment A, we compute the best alignment ac-
cording to A with Algorithm BestConstraintAlignment. We keep the best
score of these trials, and, get the corresponding alignment by classic backtracking
technique.

Let us analyze the complexity of PADA1. The whole complexity depends
essentially on lines 5 to 12. Let us consider the complexity of one iteration (we
have log(1

ε)ek iterations). The random coloration can be done in O(n), where
n = |VN |. There are n|F | possible assignments. The complexity of BestCon-
straintAlignment is 2O(k+Nins)m as in QNet, where k is the size of the graph
query and m = |EN |, since our modifications are essentially additional tests
which are done in constant time.

Let us note that the complexity of Graph2Tree is negligible compared to
the overall complexity of Algorithm PADA1. Indeed, the complexity of Algo-
rithm Graph2Tree only depends on the query size k, with k � n. Therefore,
on the whole, the complexity of PADA1 is O(n|F |.2O(k+Nins)m) time. Observe
that the time complexity does not depends on the total number of duplicated
nodes but on the size of F .

3 Experimental results

According to the authors of QNet, one may query a PPI network by running
a O(2O(k)nt+1) time algorithm log(1

ε)ek times, where t is the treewidth of the
query. Thus, the difference between the two algorithms is mainly related to t+ 1
versus |F | question (i.e., the size of the set of families of duplicated nodes com-
puted by Algorithm Graph2Tree). These two parameters are not easily com-

8

parable, except for trivial cases. However, we have computed some experimental
tests to compare these two parameters on random graphs. Figure 3 suggests that
parameter |F | is usually smaller for moderate size graphs (i.e., those graphs for
which PADA1 is still practicable). Observe however that there are graphs with
treewidth smaller than |F |, and hence no definitive conclusion can be drawn.

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

 4 6 8 10 12 14 16

V
al

u
e

Graph size

Algorithms Comparison

QNet (Treewidth+1)
PADA1 (|F|)

Fig. 3. Comparison between QNet (i.e., the treewidth+1 value) and PADA1 (i.e.,
the size of F computed after running the Graph2Tree algorithm). The method is
as follows: for each different size of graph, we get the average treewidth and F val-
ues over 30 000 connected graphs, randomly constructed with the NetworkX library
(http://networkx.lanl.gov/). Treewidth is computed with the exact algorithm provided
by http://www.treewidth.com/, while the size of F is computed with our Graph2Tree
algorithm.

In practice, our upper-bound is largely over estimated. Indeed, each element
of F must be assigned to a different node of the network. So, there are not
n possibilities for each element of F . The number of executions of BestCon-
straintAlignment is n!

(n−|F |)! , the number of combinations.

Moreover, we only consider valid assignments and there are only few such
assignments. Indeed, a protein is, on average, homologous to dozens of proteins,
which is quite less than the number of proteins in a classical PPI network (e.g.
n ' 5.000 for the yeast). For example, if |F | = 3 and if the protein represented by
this unique element of F is homologous to ten proteins in the PPI network, then,
the number of assignment will not be n3 but only 103. Here, the running time is
largely less than the worst case time complexity. Therefore, and not surprisingly,
the BLAST threshold used to determine if a protein is homologous to another
have a huge impact on the running time of the algorithm.

9

Finally, observe that in QNet, for a given treewidth, the query graph can be
very different. For example, in the resulting tree decomposition of the graph,
there is no limit on the number of bags of size t. Furthermore, in a given bag,
the topology is arbitrary (e.g., a clique), potentially requiring an exhaustive
enumeration upper-bounded by nt+1. Therefore, the treewidth value does not
indicate how many times an exhaustive enumeration has to be done.

We would have liked to compare in practice our algorithm to QNet, but,
unfortunately, their version querying graphs is not yet implemented. Comparing
our algorithm for simple trees queries with QNet would not make sense since
PADA1 is not optimized for this special cases.

In order to validate our algorithm, we perform the experimental tests on real
data, proposed by QNet [7]. In our experiments, the data for the PPI network
of the fly and the yeast have been obtained from the DIP database1[24]. The
yeast network contains 4 738 proteins and 15 147 interactions, whereas the fly
network contains 7 481 proteins and 26 201 interactions.

The first experiment consists in retrieving trees. To do so, the authors of
QNet extract randomly trees queries of size 5 to 9 from the yeast network and
try to retrieve them in this network. Each query is modified with at most two
insertions or deletions. We also have successfully retrieved these queries.

The second experiment was performed across species. The Mitogen-Activated
Protein Kinase (MAPK) are a collection of signal transduction queries. Accord-
ing to [6], they have a critical function in the cellular response to extracellular
stimuli. They are known to be conserved through different species. We obtained
the human MAPK from the KEGG database [14] and tried to retrieve them in
the fly network as done in QNet. While QNet uses only trees, we were able to
query graphs. The results were satisfying since we retrieved them, with few or
without modifications. The Figure 4 shows a sample of our results on real data.
This suggests a potential conservation of patterns across species. The BLAST
threshold have deep impact on the running time. |F |. Moreover, we probably
could certainly speed-up the running time by using the Hüffner et al. technique
[13], which basically consists in increasing the number of colors used during the
coloration step.

4 Conclusion

In this paper, we have tried to improve our understanding in PPI networks by
developing a tool called PADA1 (available uppon request), to query graphs in
PPI networks. The time complexity of this algorithm is n|F |2O(k), where n is
the size of the PPI network, k is the size of the query, and |F | is the minimum
number of nodes which have to be duplicated to transform the query graph
into a tree (solving the Feedback Vertex Set problem). This is the main
difference with QNet of Dost et al. [7], which uses the treewidth of the query
(unimplemented algorithm). We have performed some tests on real data and have

1 http://dip.doe-mbi.ucla.edu/

10

Fig. 4. A result sample of our algorithm. a) A MAPK human query, get from [14], with
three cycles. b) The alignment graph given by our algorithm in the fly PPI network.
Dashed lines denotes the BLAST homology scores between the two proteins. Our al-
gorithm retrieves a query graph in an other network. As in QNet [7], it seems to be
that there is some conservation between these two species.

retrieved known paths in the yeast PPI network. Moreover, we have retrieved
known human paths in the fly PPI network.

The time complexity of our algorithm depends on the number of nodes which
have to be duplicated in the graph query, depends on the initial topology of the
query graph. Obtaining more information about the topology of the queries is of
particular interest in this context. Future works includes using this information
to predict average time complexity.

References

1. N. Alon, R. Yuster, and U. Zwick. Color coding. Journal of the ACM, 42(4):844–
856, 1995.

2. S.F. Altschul, W. Gish, W. Miller, E.W. Myers, and D.J. Lipman. Basic local
alignment search tool. Journal of Molecular Biology, 215(3):403–410, 1990.

3. S. Arnborg, D.G. Corneil, and A. Proskurowski. Complexity of finding embeddings
in a k-tree. Journal on Algebraic and Discrete Methods, 8(2):277–284, 1987.

4. H.L. Bodlaender. A tourist guide through treewidth. Acta Cybernetica, 11:1–23,
1993.

5. H.L. Bodlaender. A cubic kernel for feedback vertex set. In Proceedings 24th
International Symposium on Theoretical Aspects of Computer Sciences, STACS,
pages 320–331, 2007.

6. P. Dent, A. Yacoub, P.B. Fisher, M.P. Hagan, and S. Grant. MAPK pathways in
radiation responses. Oncogene, 22:5885–5896, 2003.

7. B. Dost, T. Shlomi, N. Gupta, E. Ruppin, V. Bafna, and R. Sharan. QNet: A Tool
for Querying Protein Interaction Networks. RECOMB, pages 1–15, 2007.

8. R. Downey and M. Fellows. Parameterized Complexity. Springer-Verlag, 1999.

9. M.R. Garey and D.S. Johnson. Computers and Intractability: a guide to the theory
of NP-completeness. W.H. Freeman, San Franciso, 1979.

10. A.C. Gavin, M. Boshe, et al. Functional organization of the yeast proteome by
systematic analysis of protein complexes. Nature, 414(6868):141–147, 2002.

11

11. J. Guo, J. Gramm, F. Hüffner, R. Niedermeier, and S. Wernicke. Compression-
based fixed-parameter algorithms for feedback vertex set and edge bipartization.
Journal of Computer and System Sciences, 72(8):1386–1396, 2006.

12. Y. Ho, A. Gruhler, et al. Systematic identification of protein complexes in Saccha-
romyces cerevisae by mass spectrometry. Nature, 415(6868):180–183, 2002.

13. F. Huffner, S. Wernicke, and T. Zichner. Algorithm Engineering For Color-Coding
To Facilitate Signaling Pathway Detection. In Proceedings of the 5th Asia-Pacific
Bioinformatics Conference. Imperial College Press, 2007.

14. M. Kanehisa, S. Goto, S. Kawashima, Y. Okuno, and M. Hattori. The KEGG
resource for deciphering the genome. Nucleic acids research, 32:277–280, 2004.

15. R.M. Karp. Reducibility among combinatorial problems. In J.W. Thatcher and
R.E Miller, editors, Complexity of computer computations, pages 85–103. Plenum
Press, New York, 1972.

16. B.P. Kelley, R. Sharan, R.M. Karp, T. Sittler, D. E. Root, B.R. Stockwell, and
T. Ideker. Conserved pathways within bacteria and yeast as revealed by global
protein network alignment. Proceedings of the National Academy of Sciences,
100(20):11394–11399, 2003.

17. M. Pellegrini, E.M. Marcotte, M.J. Thompson, D. Eisenberg, and T.O. Yeates.
Assigning protein functions by comparative genome analysis: protein phylogenetic
profiles. PNAS, 96(8):4285–4288, 1999.

18. R.Y. Pinter, O. Rokhlenko, E. Yeger-Lotem, and M. Ziv-Ukelson. Alignment of
metabolic pathways. Bioinformatics, 21(16):3401–3408, 2005.

19. T. Reguly, A. Breitkreutz, L. Boucher, B.J. Breitkreutz, G.C. Hon, C.L. Myers,
A. Parsons, H. Friesen, R. Oughtred, A. Tong, et al. Comprehensive curation and
analysis of global interaction networks in saccharomyces cerevisiae. Journal of
Biology, 2006.

20. J. Scott, T. Ideker, R.M. Karp, and R. Sharan. Efficient algorithms for detect-
ing signaling pathways in protein interaction networks. Journal of Computational
Biology, 13:133–144, 2006.

21. T. Shlomi, D. Segal, E. Ruppin, and R. Sharan. QPath: a method for querying
pathways in a protein-protein interaction network. BMC Bioinformatics, 7:199,
2006.

22. S. Thomasse. A quadratic kernel for feedback vertex set. In Unpublished
manuscript. To appear in Proceedings SODA, 2009.

23. P. Uetz, L. Giot, et al. A comprehensive analysis of protein-protein interactions in
Saccharomyces cerevisae. Nature, 403(6770):623–627, 2000.

24. I. Xenarios, L. Salwinski, X.J. Duan, P. Higney, S.M. Kim, and D. Eisenberg. DIP,
the Database of Interacting Proteins: a research tool for studying cellular networks
of protein interactions. Nucleic Acids Research, 30(1):303, 2002.

12

Appendix

In the following,

– S represents the multi-set of colors,
– A represents the pre-computed assignment for duplicated nodes,
– GN = (VN , EN) denotes the PPI network,
– TQ = (VQ, EQ) denotes the query after calling Graph2Tree,
– root is an arbitrary root of TQ,
– v ∈ VN ,
– q ∈ VQ,
– qj denotes the jth child of q,
– nqj denotes the number of child nodes of q,
– c is a function which gives the color of a node v ∈ VN .

Thereafter, we give technical details to compute BestConstraintAlign-
ment, resulting in GA, according to the pre-computed assignment A.

GA ← maxvWM (root, v, S, 1, A)
If |S| ≤ 1 , WM (q, v, S, j, A)← −∞
Else,

WM (q, v, S, j, A)← max
u:(u,v)∈EN

S′⊂S
c(v)∈S′

c(u)∈S−S′

WM (q, v, S′, j−1, A)+

(* Matching, child j *)
WM (qj , u, S − S′, nqj , A) + w(u, v),

(* Insertion, node u *)
W I(qj , u, S − S′, A) + w(u, v),

(* Deletion, child j *)
WD(qj , v, S − S′, A)

To compute this value, we consider q as aligned with v. Then, we perform
the best action for qj (i.e., a match with a neighbor u of v, an insertion of a
neighbor u of v, a deletion of qj).

WM (q, v, S, 0, A)←

if |d(q)| = 1
h(q, v)

else if A(q) 6= v
−∞

else (* |d(q)| > 1 and A(q) = v *)
0

If q is not a duplicated node, the value is the similarity score with v given by
h. Otherwise, the assignment of q has been done in A, and has to be preserved.

13

W I(q, v, S,A)←

if A−1(v) = ∅ and |S| > 1

max u:(u,v)∈EN
c(u)∈S−{c(v)}

{
WM (q, u, S − {c(v)}, nq, A) + w(u, v) + δi,
W I(q, u, S − {c(v)}, A) + w(u, v) + δi,

else
−∞

The node v is consider to be inserted. One has to restart the alignment from
a neighbor u of v. If v has to be aligned with a duplicate node (i.e., A−1(v) 6=
∅), inserting v is forbidden. Indeed, if it is allowed, v will be inserted and the
alignment of v with A−1(v) will be impossible.

WD(q, v, S,A)←

if degree(q) 6= 2
−∞

else if |d(q)| = 1

maxu:(u,v)∈EN

WM (q1, u, S, nq1 , A) + w(u, v) + δd,
W I(q1, u, S,A) + w(u, v) + δd,
WD(q1, v, S,A) + δd

else
if A(q) = deletion

maxu:(u,v)∈EN

WM (q1, u, S, nq1 , A) + w(u, v),
W I(q1, u, S,A) + w(u, v),
WD(q1, v, S,A)

else
−∞

The node v and the father of q are aligned. The node q is considered to be
deleted. The alignment restart from q1, the unique son of q. If q is a duplicated
node, the deletion is only allowed when A(q) = deletion.

