An (almost complete) state of the art around the
GRAPH MOTIF problem

Florian Sikora
Université Paris-Est, LIGM - UMR CNRS 8049, France
florian.sikora@univ-mlv.fr

March 30, 2012

Abstract
Here is a (tentative) resume of results around the GRAPH MOTIF problem. For any mistakes, missing results, or comments on this document, please feel free to contact me!

Contents

1 Notations

2 The Graph Motif problem
 2.1 Network is a tree
 2.2 Network is a graph

3 The List-colored Graph Motif problem

4 The Biconnected subgraph problem

5 The Bridge-connected subgraph problem

6 The Max Motif problem
 6.1 Network is a tree
 6.2 Network is a graph

7 The Min Add problem
 7.1 Network is a tree
 7.2 Network is a graph

8 The Min Substitution problem
 8.1 Network is a tree
 8.2 Network is a graph

9 The Min-CC problem
 9.1 Network is a path
 9.2 Network is a tree
 9.3 Network is a graph

1
10 The Edge-Weighted Graph Motif problem
10.1 Network is a graph

11 The #Graph Motif problem

12 The Constrained Graph Motif problem
12.1 Network is a graph

13 The Module Graph Motif problem
13.1 Network is a forest
13.2 Network is a graph

14 Softwares
1 Notations

- Let $G = (V, E)$ be the vertex colored target network, $n = |V|$, $m = |E|$
- Let M be the motif. Let k be the size of the solution. Let c be number of colors in the motif.
- If $|M| = c$, then M is colorful. (Otherwise, it is a multiset)

2 The Graph Motif problem

Input: A vertex-colored graph G, a multiset of colors M.
Question: Does G have a connected subset of vertices whose multiset of colors equals M?

2.1 Network is a tree

- NP-Complete [LFS06]
- NP-Complete, even for colorful motifs and for trees of maximum degree 3. [FFHV07]
• Polynomial when the motif is colorful on caterpillars [ABH+10]
• Polynomial when the motif is colorful and each color occurs at most 2 times in G [DFV11, Sik11]
• NP-Complete for colorful motifs and rooted trees of height two [ABH+10]
• NP-Complete for colorful motifs on trees, even if a specific node (a root) is asked [ABH+10]
• W[1]-hard when the parameter is c. [FFHV07]
• No polynomial kernel on comb-graphs [ABH+10]

2.2 Network is a graph
• NP-Complete for motifs with 2 colors, even if G is bipartite with maximum degree 4 [FFHV07]
• NP-Complete for colorful motifs on graphs of diameter two [ABH+10]
• Polynomial-time solvable when c is constant and G has a constant treewidth $O(n^{2cw+2})$, where w is the treewidth of G [FFHV07]
• For colorful motifs : FPT : $O(3^k.m)$ [BFKN08]
• For colorful motifs : FPT : $\tilde{O}(2^k k^2m)$ time and $\tilde{O}(kn)$ space [GS10]
• For colorful motifs : FPT : $O(3^k.m.N_{ins})$ [BHK+09]
• For colorful motifs but allows multiset in the solution : FPT : $O(3^k.m.N_{ins})$ [BHK+09]
• For multiset motifs : FPT : $O(8^k.k.n^2)$ [FFHV07]
• For multiset motifs : FPT : $O(4.32^k.k^2.m)$ time, $O(2.47^k.n)$ space [BFKN08]
• For multiset motifs: FPT : $\tilde{O}(4^k k^2m)$ time and $\tilde{O}(kn)$ space [GS10]
• For multiset motifs with deletions and r insertions: FPT : $\tilde{O}(4^k(k+r)^2m)$ time and $\tilde{O}((k+r)n)$ space [GS10]

3 The List-colored Graph Motif problem
A set of colors is associated to each network node

Network is a graph
• For colorful motifs but allows multiset in the solution : FPT : $O(k!.3^k.m.N_{ins})$ [BHK+09]
• For multiset motifs : FPT : $O(10.88^k.m)$ [BFKN08]
• For multiset motifs: FPT : $\tilde{O}(4^k k^2m)$ time and $\tilde{O}(kn)$ space (implicit algorithm) [GS10]
4 The Biconnected subgraph problem
The solution must be biconnected instead of connected

- $W[1]$-complete with respect to k \[BFKN08\]

5 The Bridge-connected subgraph problem
The solution must be bridge connected instead of connected

- $W[1]$-complete with respect to k \[BFKN08\]

6 The Max Motif problem
Want an maximum sized connected occurrence of M in G.

Hardness results of the Graph Motif problem hold since it is a special case of the Max Motif problem. For the same reason, FPT algorithm is unlikely if the parameter is the number of deletions.

6.1 Network is a tree

- APX-Hard even when G is a tree of maximum degree 3, colorful motif and each color occurs at most twice in G \[DFV09\]
- Not approximable within factor $|V|^{|1-{\epsilon}}$, for any $\epsilon > 0$, even if the motif is colorful and each color occurs at most twice in G \[RST12\]
- Not approximable within factor $2^{|\log^2 n}$, for any $\delta < 1$ (equivalent to no constant approximation ratio) even if the motif is colorful \[DFV09\]
- Colorful Motifs : Exponential algorithm : $O(1.33^n . poly(n))$ \[DFV09\]
- Multiset Motifs : Exponential algorithm : $O(1.62^n . poly(n))$ \[DFV09\]
- Multiset motifs : FPT : $O(2^{-k} n^3 \log n)2^{O(k)}$ \[DFV09\]

6.2 Network is a graph

- Multiset motifs : FPT : $O(2^{-k} n^2 \log^2 n)4^{O(k)}$ \[DFV09\]
- For multiset motifs: FPT : $O(4^{k^2} m)$ time and $O(n)$ space \[GS10\]

7 The Min Add problem
Want an occurrence of M in G with the minimum number of insertions. Equivalent to the Graph Motif problem with a bounded number of insertions.

Hardness results of the Graph Motif problem hold since it is a special case of the Min Add problem. For the same reason, FPT algorithm is unlikely if the parameter is the number of additions.
7.1 Network is a tree
- NP-hard, even with G is a tree of max degree 4, the motif is colorful and each color occurs twice in G [DFV11]

7.2 Network is a graph
- For colorful motifs: FPT $\mathcal{O}(3^k m N_{ins})$ [BHK+09]
- For colorful motifs but allows multiset in the solution: FPT $\mathcal{O}(3^k m N_{ins})$ [BHK+09]
- For multiset motifs with deletions and r insertions: FPT $\tilde{\mathcal{O}}(4^k (k+r)^2 m)$ time and $\tilde{\mathcal{O}}((k+r)n)$ space [GSI10]

8 The Min Substitution problem
Want an occurrence of M in G with the minimum number of substitutions

Hardness results of the Graph Motif problem hold since it is a special case of the Min Substitution problem. For the same reason, FPT algorithm is unlikely if the parameter is the number of substitutions.

8.1 Network is a tree
- NP-hard, even with G is a tree of max degree 4, the motif is colorful and each color occurs twice in G [DFV11]
 - Not approximable within factor $c \log |V|$, c a constant, even if the motif is colorful and G a tree of depth 2. [RST2]
 - $W[2]$-hard when parametrized by the number of substitutions even if M is colorful [RST2]

8.2 Network is a graph
- FPT $\mathcal{O}^*(3e^{O(k)})$ [DFV11]

9 The Min-CC problem
Want an occurrence of the motif with the minimum number of connected components in the solution

Hardness results of the Graph Motif problem hold since it is a special case of the Min-CC problem. For the same reason, FPT algorithm is unlikely if the parameter is the number of CC.

9.1 Network is a path
- Polynomial-time solvable if c is a constant in $\mathcal{O}(n^{c+4})$ [DFV07]
 - $W[2]$-hard when parametrized by the number of connected components [BFKN08]
• APX-Hard even for colorful motifs, each color appears exactly twice in \(G \) \[DFV07\]

9.2 Network is a tree
- Solvable in \(O(n^22^{\frac{m}{2}}) \) \[DFV07\]
- FPT in \(O(n^2k(c+1)^2+1) \) \[DFV07\]
- \(W[1] \)-hard when parametrized by \(c \) \[FFHV07\]
- \(W[2] \)-hard when parametrized by the number of connected components even is \(M \) is colorful \[DFV07\]
- Not approximable within \(c \log n \) for a constant \(c>0 \) even if \(M \) is colorful \[DFV07\]

9.3 Network is a graph
- For colorful motifs (search for \(r \) connected components): FPT : \(\tilde{O}(2^k k^2 r^2 m) \) time and \(\tilde{O}(k r n) \) space \[GS10\]
- FPT by \(k \) \[DFV07\]
- FPT in \(O(|\ln(\epsilon)|.4.32^k k^2 m) \) \[BFKN08\]
- For multiset motifs (search for \(r \) connected components): FPT : \(\tilde{O}(4^k k^2 r^2 m) \) time and \(\tilde{O}(k r n) \) space \[GS10\]

10 The Edge-Weighted Graph Motif problem
\(G \) is weighted on the edges.

10.1 Network is a graph
- These three results want to minimize the weight of the edge-cut between the solution and the rest of the graph.
- Multiset motifs : FPT : \(O(|\log(\epsilon)|^{2^{k+d}+dn}) \), with \(d \) maximum degree of \(G \) \[BRS09\]
- Multiset motifs : Branch and bound algorithm : \(O(m \log(m) + n^b) \), with \(b \) maximum number of bounds \[BRS09\]
- Multiset motifs : FPT : \(O(m.k.2^\omega.(m.k.2^k.3^\omega+\omega+d)) \) time, \(O(m.k.2^\omega) \) space, with \(d \) maximum degree of \(G \), \(w \) treewidth of \(G \) \[BRS09\]
- These two results want to minimize the weight of the edges in the solution.
- For colorful motifs (sum of weight in the solution \(< r \)): FPT : \(\tilde{O}(2^k k^2 r^2 m) \) time and \(\tilde{O}(k r n) \) space \[GS10\]
- For multiset motifs (sum of weight in the solution \(< r \)): FPT : \(\tilde{O}(4^k k^2 r^2 m) \) time and \(\tilde{O}(k r n) \) space \[GS10\]
11 The #Graph Motif problem

Network is a graph

- For colorful motifs: FPT : $O(2^k k^3 m)$ time and $O(k^2 n)$ space [GS10]
- For multiset motifs: #W[1]-hard for parameter k, even with two colors in the motif [GS10]

12 The Constrained Graph Motif problem

Given a set of mandatory vertices $V_M \subseteq V$, find an occurrence of M s.t. all the mandatory vertices are in the solution.

12.1 Network is a graph

- FPT with the same complexity of the Graph Motif problem, when the size of the solution is the parameter [DFV11]
- FPT with parameter $t = |M| - |V_M|$ if G is of bounded treewidth [DFV11]
 $O(w^{2w} n^{2w} 4^{2w} t^t)$, where w is the treewidth of the graph. [DFV11]
- W[2]-hard if the parameter is $t = |M| - |V_M|$, even when G is a graph of diameter 2 [DFV11]

13 The Module Graph Motif problem

The solution is G must be a graph module (instead of being simply connected)

13.1 Network is a forest

- NP-Complete even if the motif is colorful and G is a collection of paths of length 3 [RS12]

13.2 Network is a graph

- Polynomial if the module must be strong [RS12]
- FPT in $O(2^k |V|^2)$ time and $O(2^k |V|)$ space, where k is the size of the solution [RS12]
- FPT if parameterized by $(k, |C|)$, where C is the set of colors [RS12]
- FPT if a list of colors is given for each node [RS12]

14 Softwares

- Torque [BHK+09], \url{http://www.cs.tau.ac.il/~bnet/torque.html} Internet server, dynamic programming + Integer Linear Programming (CPLEX). Only colorful motifs. Allow insertions and deletions. Allow list colored graph motif. Only one solution.

References

