

Querying Protein-Protein Interaction Networks

Guillaume Blin Florian Sikora¹ Stéphane Vialette¹

Université Paris-Est, LIGM - UMR CNRS 8049 - France {gblin,sikora,vialette}@univ-mlv.fr

ISBRA May 2009

Outline

Motivations and state of the art

Our Algorithm, PADA1

Experimental Results

Outline

Motivations and state of the art

Our Algorithm, PADA1

Experimental Results

Motivations

- ► Human complexity ⇔ # of genes ?
- ► Human complexity ⇔ proteins ?

Proteins...

- ► New interest on proteins...
- ... and on their interactions: Protein-Protein Interactions (PPI)
- ► Biologically obtained... with noise!

Proteins network

► Proteins can interact with others proteins

Proteins network

- Proteins are nodes
- ► Interactions are edges
- Edges can be weighed by interaction probability

Searching patterns

- Searching patterns (set of proteins with a topology) in a PPI Network
- ► A protein is said to be **homologous** to another protein according to a BLAST sequence analysis

Searching patterns

- Searching patterns (set of proteins with a topology) in a PPI Network
- A protein is said to be **homologous** to another protein according to a BLAST sequence analysis
- Can allow a bounded number of insertions and deletions

Searching patterns

- Searching patterns (set of proteins with a topology) in a PPI Network
- A protein is said to be **homologous** to another protein according to a BLAST sequence analysis
- Can allow a bounded number of insertions and deletions

Motivation to search patterns

- Retrieve known functions
- Deduce information from well-known species to less known species

Graph Query

- ► Problem equivalent to **NP-hard** problem Graph Homeomorphism [Garey&Johnson 1979]
- ► Exact solution → exponential runtime

Graph Query

- ► Problem equivalent to **NP-hard** problem Graph Homeomorphism [Garey&Johnson 1979]
- ► Exact solution → exponential runtime
- ▶ Idea: exploit the fact that **patterns are smaller** ($\sim 5 15$) than the network (e.g. ~ 5.000 for the yeast)
- Restrict the exponential part to k instead of n: parametrized complexity

FPT Algorithms

- An FPT algorithm [Downey & Fellows 1999]: exact algorithm exponential only in its parameter k (not in the input size n)
- $ightharpoonup f(k).n^c$, with c a constant and f any function

State of the art

- ▶ When the pattern is a **path**:
 - Algorithm with a factorial complexity by [Kelley et al. 2003]
 - ► QPath, a faster FPT algorithm by [SHLOMI ET AL. 2006]
- When the pattern is a tree
 - ► The network must be a forest [PINTER ET AL. 2005]
 - ▶ QNet, FPT algorithm [Dost et al. 2007]
- When the pattern is a graph
 - ► QNet [Dost et al. 2007]
 - Complexity exponential in the treewidth
 - Using the color-coding technique
 - Only theoretical result

Outline

Motivations and state of the art

Our Algorithm, PADA1

Experimental Results

PADA1 Outline

Provide another pratical exact algorithm to query graphs in a PPI Network not depending on the treewidth

PADA1 Outline

- Provide another pratical exact algorithm to query graphs in a PPI Network not depending on the treewidth
- Adapt the FPT algorithm when the pattern is a tree
- ▶ 2 steps
 - **1. Transform** the query in a tree without loss (with VFS and duplication)
 - 2. Find an occurrence of that tree in the network by dynamic programming

► As long as there are cycles in the graph, duplicate a node involved in the cycle (lossless)

Original Graph

► As long as there are cycles in the graph, duplicate a node involved in the cycle (lossless)

▶ Find a cycle

► As long as there are cycles in the graph, duplicate a node involved in the cycle (lossless)

Duplicate a node

► As long as there are cycles in the graph, duplicate a node involved in the cycle (lossless)

► Delete an edge which create a cycle

► As long as there are cycles in the graph, duplicate a node involved in the cycle (lossless)

► Add a new edge to the new node

► As long as there are cycles in the graph, duplicate a node involved in the cycle (lossless)

Repeat for all cycles

► As long as there are cycles in the graph, duplicate a node involved in the cycle (lossless)

Repeat for all cycles

► As long as there are cycles in the graph, duplicate a node involved in the cycle (lossless)

Repeat for all cycles

 As long as there are cycles in the graph, duplicate a node involved in the cycle (lossless)

► Can choose a different node

 As long as there are cycles in the graph, duplicate a node involved in the cycle (lossless)

► Can choose a different node

► As long as there are cycles in the graph, duplicate a node involved in the cycle (lossless)

► Can choose a different node

 \triangleright v_1 , $v_{1,1}$ and $v_{1,2}$ represents the same node v_1

- \triangleright v_1 , $v_{1,1}$ and $v_{1,2}$ represents the same node v_1
- F is the set of nodes which have been duplicate at the end

- \triangleright v_1 , $v_{1,1}$ and $v_{1,2}$ represents the same node v_1
- F is the set of nodes which have been duplicate at the end
- ► On the left side, #duplicated nodes = 2 **but** |F| = 1 $(F = [v_1])$

- \triangleright v_1 , $v_{1,1}$ and $v_{1,2}$ represents the same node v_1
- F is the set of nodes which have been duplicate at the end
- ► On the left side, #duplicated nodes = 2 **but** |F| = 1 $(F = [v_1])$
- Overall complexity depends only of |F|
- ► To minimize this set: compute the Vertex Feedback Set and duplicate only these nodes

Step 2: Tree matching

- ▶ Now, the query is a tree (with duplicated nodes)
- General problem is NP-hard, exact algorithms are exponential

Step 2: Tree matching

- Now, the query is a tree (with duplicated nodes)
- General problem is NP-hard, exact algorithms are exponential
- ► Problem FPT with the color-coding technique [ALON ET AL. 1995]

Tree matching - Color-coding [ALON ET AL. 1995]

- ▶ Query with *k* nodes, network of *n* nodes
- \triangleright Exhaustive search : n^k potential subgraphs
- Color-coding idea :
 - Randomly color the graph with k different colors
 - ▶ Look for a colorful (one occurrence for each color) result in $\mathcal{O}(2^k)$
 - ► Colorful probability of $\frac{k!}{k^k}$
 - Repeat until it is reasonably certain that the result appears
- Exponential part of the runtime only depends on k

Initialization has to be done with each homologous node of the network

► Constraint: All nodes of a same family (i.e. they are duplicated from the same node) must perform the same action (i.e., match or deletion), since they represent the same protein

- ► **Solution**: Pre-compute the action for each families before running the dynamic programming algorithm
- ► We launch the dynamic programming algorithm with each possibilities (a family with each nodes of the network)

- ► **Solution**: Pre-compute the action for each families before running the dynamic programming algorithm
- ► We launch the dynamic programming algorithm with each possibilities (a family with each nodes of the network)

- ► **Solution**: Pre-compute the action for each families before running the dynamic programming algorithm
- ► We launch the dynamic programming algorithm with each possibilities (a family with each nodes of the network)

- ► **Solution**: Pre-compute the action for each families before running the dynamic programming algorithm
- ► We launch the dynamic programming algorithm with each possibilities (a family with each nodes of the network)

 $ightharpoonup n^{|F|}$ possibilities

- ► **Solution**: Pre-compute the action for each families before running the dynamic programming algorithm
- ► We launch the dynamic programming algorithm with each possibilities (a family with each nodes of the network)

- $ightharpoonup n^{|F|}$ possibilities
- The dynamic programming algorithm must respect the pre-computation

Tree Matching – Complexity

- ▶ There are $n^{|F|}$ pre-computed assignments
- For each one, we launch the $2^{\mathcal{O}(k)}.m$ time complexity dynamic programming
- ▶ On the whole, $\mathcal{O}(n^{|F|}2^{\mathcal{O}(k)}.m)$

Comparison with QNet

PADA1

- $\triangleright \mathcal{O}(n^{|\mathbf{F}|}2^{\mathcal{O}(k)}.m)$
- Exponential in |F|, |F| is the size of the Vertex Feedback Set

QNet

- $\triangleright \mathcal{O}(n^{t+1}2^{\mathcal{O}(k)})$
- ► Exponential in *t* + 1, *t* is the treewidth
- No theoretical results between the treewidth value and Vertex Feedback Set size

Comparison with QNet

► Experimental comparison on random graphs between treewidth and Vertex Feedback Set size

Comparison with QNet

- ightharpoonup Our bound of $n^{|F|}$ is over-estimated
- ► Launch the dynamic programming algorithm only if the nodes of *F* are homologous to the network node in the pre-computed assignation
- For example, if
 - a protein is homologous with in average 10 proteins
 - ► |*F*| = 3
 - ▶ then, $n^3 \ll 10^3$ (very blast dependant)

Outline

Motivations and state of the art

Our Algorithm, PADA1

Experimental Results

Experimental tests

- Perform a Python implementation
- Cannot compare experimentaly (no implementation of QNet with graphs)
- ► Tests on real data : retrieve known yeast patterns

Experimental tests

- Cross specie experimentation
- Search human MAPK pattern in fly network

Conclusion

- Algorithm to retrieve graphs pattern in a PPI network using the Vertex Feedback Set, node duplication and color-coding technique
- Find an average time complexity ?
- ► Abstraction of the pattern's topology (GRAPHMOTIF problem [Lacroix et al. 2006], [Fellows et al. 2007], [Betzler et al. 2008], [Dondi et al. 2007, 2009], [Bruckner et al. 2009])

Questions on Querying Protein-Protein Interaction Networks?

Guillaume Blin Florian Sikora¹ Stéphane Vialette¹

Université Paris-Est, LIGM - UMR CNRS 8049 - France {gblin,sikora,vialette}@univ-mlv.fr

ISBRA May 2009