
Minimum Mosaic Inference of a Set of
Recombinants

Guillaume Blin1 Florian Sikora1 Romeo Rizzi2

Stéphane Vialette1

1LIGM, Université Paris-Est Marne-la-Vallée - France

2DIMI, Università di Udine - Italy

Minimum Mosaic Inference of a Set of
Recombinants

Guillaume Blin1 Florian Sikora1 Romeo Rizzi2

Stéphane Vialette1

1LIGM, Université Paris-Est Marne-la-Vallée - France

2DIMI, Università di Udine - Italy

Minimum Mosaic Inference of a Set of
Recombinants

Guillaume Blin1 Florian Sikora1 Romeo Rizzi2

Stéphane Vialette1

1LIGM, Université Paris-Est Marne-la-Vallée - France

2DIMI, Università di Udine - Italy

Minimum Mosaic Inference of a Set of
Recombinants

Guillaume Blin1 Florian Sikora1 Romeo Rizzi2

Stéphane Vialette1

1LIGM, Université Paris-Est Marne-la-Vallée - France

2DIMI, Università di Udine - Italy

Intro NP-Hardness Exact Algorithms

Outline

Introduction

NP-Hardness

Exact Algorithms

Conclusion

florian.sikora@univ-mlv.fr Mosaic Problem (2/25)

Intro NP-Hardness Exact Algorithms

Outline

Introduction

NP-Hardness

Exact Algorithms

Conclusion

florian.sikora@univ-mlv.fr Mosaic Problem (3/25)

Intro NP-Hardness Exact Algorithms

SNPs

I SNP (Single Nucleotide
Polymorphism)

I When a single nucleotide (A,C,G,T)
differs in the genome of two
members of a specie (or paired
chromosome in a individual)

I Represents 90% of the human
genetic variation

I Must cheaper to collect than full
sequence data

Figure by D. Hall

florian.sikora@univ-mlv.fr Mosaic Problem (4/25)

Intro NP-Hardness Exact Algorithms

SNPs

I SNP (Single Nucleotide
Polymorphism)

I When a single nucleotide (A,C,G,T)
differs in the genome of two
members of a specie (or paired
chromosome in a individual)

I Represents 90% of the human
genetic variation

I Must cheaper to collect than full
sequence data

Figure by D. Hall

florian.sikora@univ-mlv.fr Mosaic Problem (4/25)

Intro NP-Hardness Exact Algorithms

SNPs

I In most SNPs, two (of four) different nucleotides occurs

I Can use 0 and 1 – binary data

florian.sikora@univ-mlv.fr Mosaic Problem (5/25)

Intro NP-Hardness Exact Algorithms

SNPs

I In most SNPs, two (of four) different nucleotides occurs
I Can use 0 and 1 – binary data

florian.sikora@univ-mlv.fr Mosaic Problem (5/25)

Intro NP-Hardness Exact Algorithms

Recombination

I Principal process inducing these genetic variations

I Two equal length sequences...
I ...generates a third of same length
I Concatenation of a prefix in the first one and a suffix in the

second one [KOIVISTO ET AL. 04]

florian.sikora@univ-mlv.fr Mosaic Problem (6/25)

Intro NP-Hardness Exact Algorithms

Recombination

I Principal process inducing these genetic variations
I Two equal length sequences...

I ...generates a third of same length
I Concatenation of a prefix in the first one and a suffix in the

second one [KOIVISTO ET AL. 04]

110001111111001

000110000001111

florian.sikora@univ-mlv.fr Mosaic Problem (6/25)

Intro NP-Hardness Exact Algorithms

Recombination

I Principal process inducing these genetic variations
I Two equal length sequences...
I ...generates a third of same length

I Concatenation of a prefix in the first one and a suffix in the
second one [KOIVISTO ET AL. 04]

110001111111001

000110000001111
11000 0000001111

florian.sikora@univ-mlv.fr Mosaic Problem (6/25)

Intro NP-Hardness Exact Algorithms

Recombination

I Principal process inducing these genetic variations
I Two equal length sequences...
I ...generates a third of same length
I Concatenation of a prefix in the first one and a suffix in the

second one [KOIVISTO ET AL. 04]

110001111111001

000110000001111

prefix

suffix

11000 0000001111

florian.sikora@univ-mlv.fr Mosaic Problem (6/25)

Intro NP-Hardness Exact Algorithms

Recombination

I Principal process inducing these genetic variations
I Two equal length sequences...
I ...generates a third of same length
I Concatenation of a prefix in the first one and a suffix in the

second one [KOIVISTO ET AL. 04]

110001111111001

000110000001111

prefix

suffix

11000 0000001111

breakpoint

florian.sikora@univ-mlv.fr Mosaic Problem (6/25)

Intro NP-Hardness Exact Algorithms

Founders sequences

I Current sequences are descendant of a small number of
founders sequences

I A current sequence is composed of blocks from the
founders, due to recombination

florian.sikora@univ-mlv.fr Mosaic Problem (7/25)

Intro NP-Hardness Exact Algorithms

Mosaic

I Really look like a mosaic !

Generated by RecBlock

florian.sikora@univ-mlv.fr Mosaic Problem (8/25)

Intro NP-Hardness Exact Algorithms

Mosaic Problem [UKKONEN 02]

I Input : A set of m sequences (current population) of
length n, an integer K

I Output : A set of K founders sequences that induce a
minimum number of breakpoints

florian.sikora@univ-mlv.fr Mosaic Problem (9/25)

Intro NP-Hardness Exact Algorithms

State of the art

I Polynomial in O(mn) if K = 2 [UKKONEN 02, WU ET AL. 07]

I Exact exponentials algorithms [UKKONEN 02, WU ET AL. 07]

I Heuristics [ROLY & BLUM 09]

I Lower bounds on the minimum number of breakpoints
needed [WU 10]

I What about the complexity if K > 2?

florian.sikora@univ-mlv.fr Mosaic Problem (10/25)

Intro NP-Hardness Exact Algorithms

State of the art

I Polynomial in O(mn) if K = 2 [UKKONEN 02, WU ET AL. 07]

I Exact exponentials algorithms [UKKONEN 02, WU ET AL. 07]

I Heuristics [ROLY & BLUM 09]

I Lower bounds on the minimum number of breakpoints
needed [WU 10]

I What about the complexity if K > 2?

florian.sikora@univ-mlv.fr Mosaic Problem (10/25)

Intro NP-Hardness Exact Algorithms

Outline

Introduction

NP-Hardness

Exact Algorithms

Conclusion

florian.sikora@univ-mlv.fr Mosaic Problem (11/25)

Intro NP-Hardness Exact Algorithms

Hardness

I A first step in a answer : the problem is NP-Complete if the
number of founders is not bounded

I Just some tricks for the proof...

florian.sikora@univ-mlv.fr Mosaic Problem (12/25)

Intro NP-Hardness Exact Algorithms

Tool 1: Using arbitrary string

I If the problem on arbitrary
strings is NP-hard, then so is the
problem on binary strings

I Suppose an alphabet Σ
I Take any encoding δ of symbols

in Σ by binary strings of length
dlog2 |Σ|e

I Example

I Σ = A,B,C
I δ(A) = 00
I δ(B) = 01
I δ(C) = 10

florian.sikora@univ-mlv.fr Mosaic Problem (13/25)

Intro NP-Hardness Exact Algorithms

Tool 1: Using arbitrary string

I If the problem on arbitrary
strings is NP-hard, then so is the
problem on binary strings

I Suppose an alphabet Σ

I Take any encoding δ of symbols
in Σ by binary strings of length
dlog2 |Σ|e

I Example
I Σ = A,B,C

I δ(A) = 00
I δ(B) = 01
I δ(C) = 10

florian.sikora@univ-mlv.fr Mosaic Problem (13/25)

Intro NP-Hardness Exact Algorithms

Tool 1: Using arbitrary string

I If the problem on arbitrary
strings is NP-hard, then so is the
problem on binary strings

I Suppose an alphabet Σ
I Take any encoding δ of symbols

in Σ by binary strings of length
dlog2 |Σ|e

I Example
I Σ = A,B,C
I δ(A) = 00
I δ(B) = 01
I δ(C) = 10

florian.sikora@univ-mlv.fr Mosaic Problem (13/25)

Intro NP-Hardness Exact Algorithms

Tool 1: Using arbitrary string

I (⇒) Any solution with strings over
Σ maps into a solution for binary
strings without changing the
number of breakpoints

I (⇐) If we cannot map the binary
founders sequence to symbols of
Σ, then we can replace the
missing ”word” by its longest
suffix in common in Σ without
increasing the cost

I Example
I Σ = A,B,C
I δ(A) = 00
I δ(B) = 01
I δ(C) = 10

florian.sikora@univ-mlv.fr Mosaic Problem (13/25)

Intro NP-Hardness Exact Algorithms

Tool 1: Using arbitrary string

I (⇒) Any solution with strings over
Σ maps into a solution for binary
strings without changing the
number of breakpoints

I (⇐) If we cannot map the binary
founders sequence to symbols of
Σ, then we can replace the
missing ”word” by its longest
suffix in common in Σ without
increasing the cost

I Example
I Σ = A,B,C
I δ(A) = 00
I δ(B) = 01
I δ(C) = 10

florian.sikora@univ-mlv.fr Mosaic Problem (13/25)

Intro NP-Hardness Exact Algorithms

Tool 2: Forcing Founders

I One can force K ′ < K founders to be part of the solution
I Add nm copies of each forced founders in the input

I If the ”forced founder” is not in the solution founders:

I Induce at least 1 breakpoint for one sequence
I Therefore induce nm breakpoints on the whole...

florian.sikora@univ-mlv.fr Mosaic Problem (14/25)

Intro NP-Hardness Exact Algorithms

Tool 2: Forcing Founders

I One can force K ′ < K founders to be part of the solution
I Add nm copies of each forced founders in the input
I If the ”forced founder” is not in the solution founders:

I Induce at least 1 breakpoint for one sequence
I Therefore induce nm breakpoints on the whole...

florian.sikora@univ-mlv.fr Mosaic Problem (14/25)

Intro NP-Hardness Exact Algorithms

Tool 2: Forcing Founders

I One can force K ′ < K founders to be part of the solution
I Add nm copies of each forced founders in the input
I If the ”forced founder” is not in the solution founders:

I Induce at least 1 breakpoint for one sequence

I Therefore induce nm breakpoints on the whole...

florian.sikora@univ-mlv.fr Mosaic Problem (14/25)

Intro NP-Hardness Exact Algorithms

Tool 2: Forcing Founders

I One can force K ′ < K founders to be part of the solution
I Add nm copies of each forced founders in the input
I If the ”forced founder” is not in the solution founders:

I Induce at least 1 breakpoint for one sequence
I Therefore induce nm breakpoints on the whole...

florian.sikora@univ-mlv.fr Mosaic Problem (14/25)

Intro NP-Hardness Exact Algorithms

Proof idea

I From the NP-Complete problem VERTEX COVER

florian.sikora@univ-mlv.fr Mosaic Problem (15/25)

Intro NP-Hardness Exact Algorithms

Vertex Cover

florian.sikora@univ-mlv.fr Mosaic Problem (16/25)

Intro NP-Hardness Exact Algorithms

Vertex Cover

florian.sikora@univ-mlv.fr Mosaic Problem (16/25)

Intro NP-Hardness Exact Algorithms

Reduction idea

v w

u

florian.sikora@univ-mlv.fr Mosaic Problem (17/25)

Intro NP-Hardness Exact Algorithms

Reduction idea

v w

u Input :
ZZXuXuZZZZ Xu Xu ZZ
ZZXv Xv ZZZZXwXwZZ

6.|E |

florian.sikora@univ-mlv.fr Mosaic Problem (17/25)

Intro NP-Hardness Exact Algorithms

Reduction idea

v w

u Input :
ZZXuXuZZZZ Xu Xu ZZ
ZZXv Xv ZZZZXwXwZZ

6.|E |

florian.sikora@univ-mlv.fr Mosaic Problem (17/25)

Intro NP-Hardness Exact Algorithms

Reduction idea

v

u
Input :
Z Z XuXu Z Z
Z Z Xv Xv Z Z
XuXuXuXuXuXu(×6.|E |+ 1 = 7)
Xv Xv Xv Xv Xv Xv (×7)

florian.sikora@univ-mlv.fr Mosaic Problem (17/25)

Intro NP-Hardness Exact Algorithms

Reduction idea

v

u

Input :
Z Z XuXu Z Z
Z Z Xv Xv Z Z
XuXuXuXuXuXu (×7)
Xv Xv Xv Xv Xv Xv (×7)

Forced founders :
XuXuXu Z Z Z
Z Z Z XuXuXu
Xv Xv Xv Z Z Z
Z Z Z Xv Xv Xv

florian.sikora@univ-mlv.fr Mosaic Problem (17/25)

Intro NP-Hardness Exact Algorithms

Reduction idea

v

u

Input :
Z Z XuXu Z Z
Z Z Xv Xv Z Z
XuXuXuXuXuXu(×7)
Xv Xv Xv Xv Xv Xv (×7)

Forced founders :
XuXuXu Z Z Z
Z Z Z XuXuXu
Xv Xv Xv Z Z Z
Z Z Z Xv Xv Xv

I Remains
|Vertex Cover|
founders (here 1)

I Will be sequences
”XiXi ...” due to (×7)

I It is a vertex cover
otherwise first
sequences generate
more breakpoints

florian.sikora@univ-mlv.fr Mosaic Problem (18/25)

Intro NP-Hardness Exact Algorithms

Reduction idea

v

u

Input :
Z Z XuXu Z Z
Z Z Xv Xv Z Z
XuXuXuXuXuXu(×7)
Xv Xv Xv Xv Xv Xv (×7)

Forced founders :
XuXuXu Z Z Z
Z Z Z XuXuXu
Xv Xv Xv Z Z Z
Z Z Z Xv Xv Xv

I Remains
|Vertex Cover|
founders (here 1)

I Will be sequences
”XiXi ...” due to (×7)

I It is a vertex cover
otherwise first
sequences generate
more breakpoints

florian.sikora@univ-mlv.fr Mosaic Problem (18/25)

Intro NP-Hardness Exact Algorithms

Reduction idea

v

u

Input :
Z Z XuXu Z Z
Z Z Xv Xv Z Z
XuXuXuXuXuXu(×7)
Xv Xv Xv Xv Xv Xv (×7)

Forced founders :
XuXuXu Z Z Z
Z Z Z XuXuXu
Xv Xv Xv Z Z Z
Z Z Z Xv Xv Xv

I Remains
|Vertex Cover|
founders (here 1)

I Will be sequences
”XiXi ...” due to (×7)

I It is a vertex cover
otherwise first
sequences generate
more breakpoints

florian.sikora@univ-mlv.fr Mosaic Problem (18/25)

Intro NP-Hardness Exact Algorithms

Outline

Introduction

NP-Hardness

Exact Algorithms

Conclusion

florian.sikora@univ-mlv.fr Mosaic Problem (19/25)

Intro NP-Hardness Exact Algorithms

Polynomial-time Algorithm

I Suppose one knows where the breakpoints are

florian.sikora@univ-mlv.fr Mosaic Problem (20/25)

Intro NP-Hardness Exact Algorithms

Polynomial-time Algorithm

I Suppose one knows where the breakpoints are

Input :

I Each substring without breakpoints must by definition
appears in the solution

I Add the substring with the leftmost startpoint in the output
I O(|Breakpoints| × |Output| × |Longest block|)

florian.sikora@univ-mlv.fr Mosaic Problem (20/25)

Intro NP-Hardness Exact Algorithms

Polynomial-time Algorithm

I Suppose one knows where the breakpoints are

Input :

I Each substring without breakpoints must by definition
appears in the solution

I Add the substring with the leftmost startpoint in the output
I O(|Breakpoints| × |Output| × |Longest block|)

florian.sikora@univ-mlv.fr Mosaic Problem (20/25)

Intro NP-Hardness Exact Algorithms

Polynomial-time Algorithm

I Suppose one knows where the breakpoints are

Input :

I Each substring without breakpoints must by definition
appears in the solution

I Add the substring with the leftmost startpoint in the output

I O(|Breakpoints| × |Output| × |Longest block|)

florian.sikora@univ-mlv.fr Mosaic Problem (20/25)

Intro NP-Hardness Exact Algorithms

Polynomial-time Algorithm
I Suppose one knows where the breakpoints are

Input :

I Each substring without breakpoints must by definition
appears in the solution

I Add the substring with the leftmost startpoint in the output

I O(|Breakpoints| × |Output| × |Longest block|)

Output :

florian.sikora@univ-mlv.fr Mosaic Problem (20/25)

Intro NP-Hardness Exact Algorithms

Polynomial-time Algorithm
I Suppose one knows where the breakpoints are

Input :

I Each substring without breakpoints must by definition
appears in the solution

I Add the substring with the leftmost startpoint in the output

I O(|Breakpoints| × |Output| × |Longest block|)

Output :

florian.sikora@univ-mlv.fr Mosaic Problem (20/25)

Intro NP-Hardness Exact Algorithms

Polynomial-time Algorithm
I Suppose one knows where the breakpoints are

Input :

I Each substring without breakpoints must by definition
appears in the solution

I Add the substring with the leftmost startpoint in the output

I O(|Breakpoints| × |Output| × |Longest block|)

Output :

florian.sikora@univ-mlv.fr Mosaic Problem (20/25)

Intro NP-Hardness Exact Algorithms

Polynomial-time Algorithm
I Suppose one knows where the breakpoints are

Input :

I Each substring without breakpoints must by definition
appears in the solution

I Add the substring with the leftmost startpoint in the output

I O(|Breakpoints| × |Output| × |Longest block|)

Output :

florian.sikora@univ-mlv.fr Mosaic Problem (20/25)

Intro NP-Hardness Exact Algorithms

Polynomial-time Algorithm
I Suppose one knows where the breakpoints are

Input :

I Each substring without breakpoints must by definition
appears in the solution

I Add the substring with the leftmost startpoint in the output

I O(|Breakpoints| × |Output| × |Longest block|)

Output :

florian.sikora@univ-mlv.fr Mosaic Problem (20/25)

Intro NP-Hardness Exact Algorithms

Polynomial-time Algorithm
I Suppose one knows where the breakpoints are

Input :

I Each substring without breakpoints must by definition
appears in the solution

I Add the substring with the leftmost startpoint in the output

I O(|Breakpoints| × |Output| × |Longest block|)

Output :

florian.sikora@univ-mlv.fr Mosaic Problem (20/25)

Intro NP-Hardness Exact Algorithms

Polynomial-time Algorithm
I Suppose one knows where the breakpoints are

Input :

I Each substring without breakpoints must by definition
appears in the solution

I Add the substring with the leftmost startpoint in the output

I O(|Breakpoints| × |Output| × |Longest block|)

Output :

florian.sikora@univ-mlv.fr Mosaic Problem (20/25)

Intro NP-Hardness Exact Algorithms

Polynomial-time Algorithm
I Suppose one knows where the breakpoints are

Input :

I Each substring without breakpoints must by definition
appears in the solution

I Add the substring with the leftmost startpoint in the output

I O(|Breakpoints| × |Output| × |Longest block|)

Output :

florian.sikora@univ-mlv.fr Mosaic Problem (20/25)

Intro NP-Hardness Exact Algorithms

Polynomial-time Algorithm
I Suppose one knows where the breakpoints are

Input :

I Each substring without breakpoints must by definition
appears in the solution

I Add the substring with the leftmost startpoint in the output

I O(|Breakpoints| × |Output| × |Longest block|)

Output :

florian.sikora@univ-mlv.fr Mosaic Problem (20/25)

Intro NP-Hardness Exact Algorithms

Polynomial-time Algorithm
I Suppose one knows where the breakpoints are

Input :

I Each substring without breakpoints must by definition
appears in the solution

I Add the substring with the leftmost startpoint in the output
I O(|Breakpoints| × |Output| × |Longest block|)

Output :

florian.sikora@univ-mlv.fr Mosaic Problem (20/25)

Intro NP-Hardness Exact Algorithms

Polynomial-time algorithm

I If one only knows the number of breakpoints Bi for
each input sequence of size n:

I One can ”guess” where all breakpoints can be :
I And launch the previous algorithm
I Overall complexity : O(nB1 .nB2 . . . nBm .BKn) = O(nB.BKn)

n

B1
B2
B3

B4

florian.sikora@univ-mlv.fr Mosaic Problem (21/25)

Intro NP-Hardness Exact Algorithms

Polynomial-time algorithm

I If one only knows the number of breakpoints Bi for
each input sequence of size n:

I One can ”guess” where all breakpoints can be :

I And launch the previous algorithm
I Overall complexity : O(nB1 .nB2 . . . nBm .BKn) = O(nB.BKn)

n

B1
B2
B3

B4

⇒
(n

B1

)
= O(nB1)

⇒
(n

B2

)
= O(nB2)

⇒
(n

B3

)
= O(nB3)

⇒
(n

B4

)
= O(nB4)

florian.sikora@univ-mlv.fr Mosaic Problem (21/25)

Intro NP-Hardness Exact Algorithms

Polynomial-time algorithm

I If one only knows the number of breakpoints Bi for
each input sequence of size n:

I One can ”guess” where all breakpoints can be :
I And launch the previous algorithm

I Overall complexity : O(nB1 .nB2 . . . nBm .BKn) = O(nB.BKn)

n

B1
B2
B3

B4

⇒
(n

B1

)
= O(nB1)

⇒
(n

B2

)
= O(nB2)

⇒
(n

B3

)
= O(nB3)

⇒
(n

B4

)
= O(nB4)

florian.sikora@univ-mlv.fr Mosaic Problem (21/25)

Intro NP-Hardness Exact Algorithms

Polynomial-time algorithm

I If one only knows the number of breakpoints Bi for
each input sequence of size n:

I One can ”guess” where all breakpoints can be :
I And launch the previous algorithm
I Overall complexity : O(nB1 .nB2 . . . nBm .BKn) = O(nB.BKn)

n

B1
B2
B3

B4

⇒
(n

B1

)
= O(nB1)

⇒
(n

B2

)
= O(nB2)

⇒
(n

B3

)
= O(nB3)

⇒
(n

B4

)
= O(nB4)

florian.sikora@univ-mlv.fr Mosaic Problem (21/25)

Intro NP-Hardness Exact Algorithms

Polynomial-time algorithm

I If one only knows the number of overall breakpoints B

I Maximum number of different input sequences

I Decide which have the breakpoints :
(K+B

B

)
= O((K + B)B)

I For each, run the O(nK 2m) Ukkonen’s algorithm

I Our sequences of interest are m = B

I Overall complexity : O((K + B)B.nK 2B)

florian.sikora@univ-mlv.fr Mosaic Problem (22/25)

Intro NP-Hardness Exact Algorithms

Polynomial-time algorithm

I If one only knows the number of overall breakpoints B
I Maximum number of different input sequences

I Decide which have the breakpoints :
(K+B

B

)
= O((K + B)B)

I For each, run the O(nK 2m) Ukkonen’s algorithm

I Our sequences of interest are m = B

I Overall complexity : O((K + B)B.nK 2B)

florian.sikora@univ-mlv.fr Mosaic Problem (22/25)

Intro NP-Hardness Exact Algorithms

Polynomial-time algorithm

I If one only knows the number of overall breakpoints B
I Maximum number of different input sequences = B

B

I Decide which have the breakpoints :
(K+B

B

)
= O((K + B)B)

I For each, run the O(nK 2m) Ukkonen’s algorithm

I Our sequences of interest are m = B

I Overall complexity : O((K + B)B.nK 2B)

florian.sikora@univ-mlv.fr Mosaic Problem (22/25)

Intro NP-Hardness Exact Algorithms

Polynomial-time algorithm

I If one only knows the number of overall breakpoints B
I Maximum number of different input sequences = B +K

B

K

I Decide which have the breakpoints :
(K+B

B

)
= O((K + B)B)

I For each, run the O(nK 2m) Ukkonen’s algorithm

I Our sequences of interest are m = B

I Overall complexity : O((K + B)B.nK 2B)

florian.sikora@univ-mlv.fr Mosaic Problem (22/25)

Intro NP-Hardness Exact Algorithms

Polynomial-time algorithm

I If one only knows the number of overall breakpoints B
I Maximum number of different input sequences = B +K

B

K

I Decide which have the breakpoints :
(K+B

B

)
= O((K + B)B)

I For each, run the O(nK 2m) Ukkonen’s algorithm

I Our sequences of interest are m = B

I Overall complexity : O((K + B)B.nK 2B)

florian.sikora@univ-mlv.fr Mosaic Problem (22/25)

Intro NP-Hardness Exact Algorithms

Polynomial-time algorithm

I If one only knows the number of overall breakpoints B
I Maximum number of different input sequences = B +K

B

K

I Decide which have the breakpoints :
(K+B

B

)
= O((K + B)B)

I For each, run the O(nK 2m) Ukkonen’s algorithm

I Our sequences of interest are m = B
I Overall complexity : O((K + B)B.nK 2B)

florian.sikora@univ-mlv.fr Mosaic Problem (22/25)

Intro NP-Hardness Exact Algorithms

Polynomial-time algorithm

I If one only knows the number of overall breakpoints B
I Maximum number of different input sequences = B +K

B

K

I Decide which have the breakpoints :
(K+B

B

)
= O((K + B)B)

I For each, run the O(nK 2m) Ukkonen’s algorithm
I Our sequences of interest are m = B

I Overall complexity : O((K + B)B.nK 2B)

florian.sikora@univ-mlv.fr Mosaic Problem (22/25)

Intro NP-Hardness Exact Algorithms

Polynomial-time algorithm

I If one only knows the number of overall breakpoints B
I Maximum number of different input sequences = B +K

B

K

I Decide which have the breakpoints :
(K+B

B

)
= O((K + B)B)

I For each, run the O(nK 2m) Ukkonen’s algorithm
I Our sequences of interest are m = B

I Overall complexity : O((K + B)B.nK 2B)

florian.sikora@univ-mlv.fr Mosaic Problem (22/25)

Intro NP-Hardness Exact Algorithms

Outline

Introduction

NP-Hardness

Exact Algorithms

Conclusion

florian.sikora@univ-mlv.fr Mosaic Problem (23/25)

Intro NP-Hardness Exact Algorithms

Conclusion

I If K = 2, Mosaic Problem is polynomial time solvable
I If K is not bounded, NP-Complete

I What about the complexity when K is bounded? FPT?
I What about the existence of a PTAS?

florian.sikora@univ-mlv.fr Mosaic Problem (24/25)

Intro NP-Hardness Exact Algorithms

Conclusion

I If K = 2, Mosaic Problem is polynomial time solvable
I If K is not bounded, NP-Complete
I What about the complexity when K is bounded? FPT?
I What about the existence of a PTAS?

florian.sikora@univ-mlv.fr Mosaic Problem (24/25)

Intro NP-Hardness Exact Algorithms

Questions?

Guillaume Blin1 Florian Sikora1 Romeo Rizzi2

Stéphane Vialette1

1LIGM, Université Paris-Est Marne-la-Vallée - France

2DIMI, Università di Udine - Italy

florian.sikora@univ-mlv.fr Mosaic Problem (25/25)

	Introduction
	NP-Hardness
	Exact Algorithms
	Conclusion

