

Guillaume Blin¹ <u>Florian Sikora</u>¹ Romeo Rizzi² Stéphane Vialette¹

¹LIGM, Université Paris-Est Marne-la-Vallée - France

Guillaume Blin¹ <u>Florian Sikora</u>¹ Romeo Rizzi² Stéphane Vialette¹

¹LIGM, Université Paris-Est Marne-la-Vallée - France

Guillaume Blin¹ <u>Florian Sikora</u>¹ Romeo Rizzi² Stéphane Vialette¹

¹LIGM, Université Paris-Est Marne-la-Vallée - France

Guillaume Blin¹ <u>Florian Sikora</u>¹ Romeo Rizzi² Stéphane Vialette¹

¹LIGM, Université Paris-Est Marne-la-Vallée - France

Outline

Introduction

NP-Hardness

Exact Algorithms

Conclusion

florian.sikora@univ-mlv.fr Mosaic Problem (2/25)

Outline

Introduction

NP-Hardness

Exact Algorithms

Conclusion

florian.sikora@univ-mlv.fr Mosaic Problem (3/25)

SNPs

- SNP (Single Nucleotide Polymorphism)
- When a single nucleotide (A,C,G,T) differs in the genome of two members of a specie (or paired chromosome in a individual)

Figure by D. Hall

SNPs

- SNP (Single Nucleotide Polymorphism)
- When a single nucleotide (A,C,G,T) differs in the genome of two members of a specie (or paired chromosome in a individual)
- Represents 90% of the human genetic variation
- Must cheaper to collect than full sequence data

Figure by D. Hall

SNPs

► In most SNPs, two (of four) different nucleotides occurs

florian.sikora@univ-mlv.fr Mosaic Problem (5/25)

- In most SNPs, two (of four) different nucleotides occurs
- Can use 0 and 1 binary data

Principal process inducing these genetic variations

- Principal process inducing these genetic variations
- Two equal length sequences...

110001111111001

000110000001111

- Principal process inducing these genetic variations
- Two equal length sequences...
- ...generates a third of same length

110001111111001

000110000001111

11000 0000001111

florian.sikora@univ-mlv.fr Mosaic Problem (6/25)

- Principal process inducing these genetic variations
- Two equal length sequences...
- ...generates a third of same length
- Concatenation of a prefix in the first one and a suffix in the second one [KOIVISTO ET AL. 04]

- Principal process inducing these genetic variations
- Two equal length sequences...
- ...generates a third of same length
- Concatenation of a prefix in the first one and a suffix in the second one [KOIVISTO ET AL. 04]

Founders sequences

- Current sequences are descendant of a small number of founders sequences
- A current sequence is composed of blocks from the founders, due to recombination

Mosaic

Really look like a mosaic !

Generated by RecBlock

Mosaic Problem [UKKONEN 02]

- ► Input : A set of *m* sequences (current population) of length *n*, an integer *K*
- Output : A set of K founders sequences that induce a minimum number of breakpoints

0001																																	
0110	0.0	0	0.		-	1	2	2	1	1	2	1	2	9	2	2	9	0	0	9	4	2	0	0	1	4	1	9	0	0	-		1.1
									2																						2		-
0100								0	÷		1		0	2	2	2	2	0	0		÷	2	0	2	2		÷	÷					0
			•		-			~		~			•	~	~	~	~	~	~							~					~	~	~
0010	10	1	1	1.0		0	1	1	1	4	0	n	1	n	o	O	O	1	1	1	1	O	n		0	1	0	1	0	0	1		0
0001	0.0	0	0 1		1	1	1	1	1							0	0	0	0	0	0	0	0					0	0	0	0	0	
0010	0.1	1	11) C	1	1	1	ł.	1							o	0	1	1	1	1	0	0	0	0	1	1	1	0	0	1		1
																																0	1
		0	0	11	0	D				0	1	1	0	0	0	0	0	0	0	1	1	1	0	۰	0								1
	01							1	1		0		1	0	۰	٥	0	0	0	0	٥	0	0	0								0	1
																0	0	0	0	0	٥	0	0									0	1
0001	01	1	11	0.0	11	1	1	а	1	1	0	1	1	0	0	o	0	0	0	o	۰	0	0	1	1	0	1	0	0	0	0	0	1
0100	11	0	0		0	4	4	0	4	٥	4	1	0	0	٥	0	0	0	0	1	4	1	0	4	4	0	4	4	4	4	0	0	0
0001	00	0	01) C	1	1	1	0	0	0	0	1	1	0	0	0	0	0	0	1	1	0	0	0	1	0	1	0	0	0	0	0	1
0100	2.1.1	0	0	1.4	0	4	1	0	1	0	1	1	0	0	0	0	0	0	0	0	0	0	0	1	4	0	1	0	0	1	0	0	0
0010	94.0	4		3.0		4	4	4	4	4	0	1	4	0	0											4	4	4	0	0	1		4
0001	00	0	1																							0	1	0	0	0	0	0	1
0001	00	0	0			4	1	0	9												1												0
0110		0	0.		- 0	-	1	U	1																						2	2	з.
		2	_	-		0	4	4	1	1	9										2										2	9	2.1
		2		2				1		1	2	1	2	2	2	2	2	1	2	1	1	2	2	2	2	1	1	1	2	2	2		2
0100	-	2	2			-	-	2	2	č.	ч	2	2	2	2	2	2	0	0	2	2	2	0	2	2	2	2	2	2	2	2		2
0100		-		1						2	1	1		2	2	2	2	2			2	2	2		1		1	2	2	2	2		2

State of the art

- ▶ Polynomial in $\mathcal{O}(mn)$ if K = 2 [Ukkonen 02, WU et al. 07]
- Exact exponentials algorithms [UKKONEN 02, WU ET AL. 07]
- ► Heuristics [Roly & Blum 09]
- Lower bounds on the minimum number of breakpoints needed [WU 10]

State of the art

- ▶ Polynomial in $\mathcal{O}(mn)$ if K = 2 [Ukkonen 02, WU et al. 07]
- Exact exponentials algorithms [UKKONEN 02, WU ET AL. 07]
- ► Heuristics [Roly & Blum 09]
- Lower bounds on the minimum number of breakpoints needed [WU 10]
- ▶ What about the complexity if *K* > 2?

Outline

Introduction

NP-Hardness

Exact Algorithms

Conclusion

florian.sikora@univ-mlv.fr Mosaic Problem (11/25)

Hardness

- A first step in a answer : the problem is NP-Complete if the number of founders is not bounded
- Just some tricks for the proof...

 If the problem on arbitrary strings is NP-hard, then so is the problem on binary strings

- If the problem on arbitrary strings is NP-hard, then so is the problem on binary strings
 - Suppose an alphabet Σ

Example
 Σ = A, B, C

- If the problem on arbitrary strings is NP-hard, then so is the problem on binary strings
 - Suppose an alphabet Σ
 - Take any encoding δ of symbols in Σ by binary strings of length [log₂ |Σ|]

- Example
 - ► $\Sigma = A, B, C$
 - $\delta(A) = 00$
 - δ(B) = 01
 - δ(C) = 10

► (⇒) Any solution with strings over Σ maps into a solution for binary strings without changing the number of breakpoints

Example

•
$$\Sigma = A, B, C$$

•
$$\delta(A) = 00$$

- ► (⇒) Any solution with strings over Σ maps into a solution for binary strings without changing the number of breakpoints
- (⇐) If we cannot map the binary founders sequence to symbols of Σ, then we can replace the missing "word" by its longest suffix in common in Σ without increasing the cost

- Example
 - $\Sigma = A, B, C$
 - ▶ δ(A) = 00
 - δ(B) = 01
 - δ(C) = 10

- One can force K' < K founders to be part of the solution
- Add nm copies of each forced founders in the input

- One can force K' < K founders to be part of the solution
- Add nm copies of each forced founders in the input
- If the "forced founder" is not in the solution founders:

- One can force K' < K founders to be part of the solution
- Add nm copies of each forced founders in the input
- If the "forced founder" is not in the solution founders:
 - Induce at least 1 breakpoint for one sequence

- One can force K' < K founders to be part of the solution
- Add nm copies of each forced founders in the input
- If the "forced founder" is not in the solution founders:
 - Induce at least 1 breakpoint for one sequence
 - Therefore induce nm breakpoints on the whole...

Proof idea

From the NP-Complete problem VERTEX COVER

florian.sikora@univ-mlv.fr Mosaic Problem (15/25)

Vertex Cover

florian.sikora@univ-mlv.fr

Mosaic Problem (16/25)

Vertex Cover

florian.sikora@univ-mlv.fr

Mosaic Problem (16/25)

Reduction idea

florian.sikora@univ-mlv.fr Mosaic Problem (17/25)

Reduction idea

Input : $ZZX_{u}X_{u}ZZZZX_{u}X_{u}ZZ$ $ZZX_{v}X_{v}ZZZZX_{w}X_{w}ZZ$

6.|*E*|

florian.sikora@univ-mlv.fr Mosaic Problem (17/25)

Input : $ZZX_uX_uZZZX_uX_uZZ$ $ZZX_vX_vZZZZX_wX_wZZ$ 6.|E|

florian.sikora@univ-mlv.fr Mosaic Problem (17/25)

Input : $Z Z X_u X_u Z Z$ $Z Z X_v X_v Z Z$ $X_u X_u X_u X_u X_u X_u (\times 6.|E| + 1 = 7)$ $X_v X_v X_v X_v X_v X_v (\times 7)$

и

V

Input : $Z Z X_u X_u Z Z$ $Z Z X_v X_v Z Z$ $X_u X_u X_u X_u X_u X_u$ (×7) $X_v X_v X_v X_v X_v X_v (×7)$

Forced founders : $X_u X_u X_u Z Z Z$ $Z Z Z X_u X_u X_u$ $X_v X_v X_v Z Z Z$ $Z Z Z X_v X_v X_v$ Input :

Reduction idea

 $\begin{array}{c}
Z \ Z \ X_u X_u Z \ Z \\
Z \ Z \ X_v X_v Z \ Z \\
X_u X_u X_u X_u X_u X_u X_u (\times7) \\
X_v X_v X_v X_v X_v X_v (\times7)
\end{array}$

Forced founders : $X_u X_u X_u Z Z Z$ $Z Z Z X_u X_u X_u$ $X_v X_v X_v Z Z Z$ $Z Z X_v X_v X_v$

florian.sikora@univ-mlv.fr Mosaic Problem (18/25)

и

V

Input : $Z Z X_u X_u Z Z$ $Z Z X_v X_v Z Z$ $X_u X_u X_u X_u X_u X_u (\times 7)$ $X_v X_v X_v X_v X_v X_v (\times 7)$

Forced founders : $X_u X_u X_u Z Z Z$ $Z Z Z X_u X_u X_u$ $X_v X_v X_v Z Z Z$ $Z Z X_v X_v X_v$ Remains
 |Vertex Cover|
 founders (here 1)

и

V

Input : $Z Z X_u X_u Z Z$ $Z Z X_v X_v Z Z$ $X_u X_u X_u X_u X_u X_u (\times 7)$ $X_v X_v X_v X_v X_v X_v (\times 7)$

Forced founders : $X_u X_u X_u Z Z Z$ $Z Z Z X_u X_u X_u$ $X_v X_v X_v Z Z Z$ $Z Z X_v X_v X_v$

- Remains
 |Vertex Cover| founders (here 1)
- ► Will be sequences "X_iX_i..." due to (×7)
- It is a vertex cover otherwise first sequences generate more breakpoints

Outline

Introduction

NP-Hardness

Exact Algorithms

Conclusion

florian.sikora@univ-mlv.fr Mosaic Problem (19/25)

Suppose one knows where the breakpoints are

 Each substring without breakpoints must by definition appears in the solution

- Each substring without breakpoints must by definition appears in the solution
- Add the substring with the leftmost startpoint in the output

- Each substring without breakpoints must by definition appears in the solution
- Add the substring with the leftmost startpoint in the output

- Each substring without breakpoints must by definition appears in the solution
- Add the substring with the leftmost startpoint in the output

- Each substring without breakpoints must by definition appears in the solution
- Add the substring with the leftmost startpoint in the output

- Each substring without breakpoints must by definition appears in the solution
- Add the substring with the leftmost startpoint in the output

- Each substring without breakpoints must by definition appears in the solution
- Add the substring with the leftmost startpoint in the output

- Each substring without breakpoints must by definition appears in the solution
- Add the substring with the leftmost startpoint in the output

- Each substring without breakpoints must by definition appears in the solution
- Add the substring with the leftmost startpoint in the output

- Each substring without breakpoints must by definition appears in the solution
- Add the substring with the leftmost startpoint in the output

- Each substring without breakpoints must by definition appears in the solution
- Add the substring with the leftmost startpoint in the output

- Each substring without breakpoints must by definition appears in the solution
- Add the substring with the leftmost startpoint in the output
- ► $O(|Breakpoints| \times |Output| \times |Longest block|)$

If one only knows the number of breakpoints B_i for each input sequence of size n:

- If one only knows the number of breakpoints B_i for each input sequence of size n:
- One can "guess" where all breakpoints can be :

- If one only knows the number of breakpoints B_i for each input sequence of size n:
- One can "guess" where all breakpoints can be :
- And launch the previous algorithm

- If one only knows the number of breakpoints B_i for each input sequence of size n:
- One can "guess" where all breakpoints can be :
- And launch the previous algorithm
- Overall complexity : $\mathcal{O}(n^{B_1}.n^{B_2}...n^{B_m}.BKn) = \mathcal{O}(n^B.BKn)$

If one only knows the number of overall breakpoints B

- ► If one only knows the number of overall breakpoints B
- Maximum number of different input sequences

- ► If one only knows the number of overall breakpoints B
- Maximum number of different input sequences = B

- If one only knows the number of overall breakpoints B
- Maximum number of different input sequences = B + K

- If one only knows the number of overall breakpoints B
- Maximum number of different input sequences = B + K

► Decide which have the breakpoints : $\binom{K+B}{B} = \mathcal{O}((K+B)^B)$

- If one only knows the number of overall breakpoints B
- Maximum number of different input sequences = B + K

- ► Decide which have the breakpoints : $\binom{K+B}{B} = \mathcal{O}((K+B)^B)$
- ▶ For each, run the $O(nK^{2m})$ Ukkonen's algorithm

- If one only knows the number of overall breakpoints B
- Maximum number of different input sequences = B + K

- ► Decide which have the breakpoints : $\binom{K+B}{B} = \mathcal{O}((K+B)^B)$
- ▶ For each, run the $O(nK^{2m})$ Ukkonen's algorithm
 - ► Our sequences of interest are m = B

- If one only knows the number of overall breakpoints B
- Maximum number of different input sequences = B + K

- ► Decide which have the breakpoints : $\binom{K+B}{B} = \mathcal{O}((K+B)^B)$
- ▶ For each, run the $O(nK^{2m})$ Ukkonen's algorithm
 - ► Our sequences of interest are m = B
- Overall complexity : $\mathcal{O}((K + B)^B . nK^{2B})$

Outline

Introduction

NP-Hardness

Exact Algorithms

Conclusion

florian.sikora@univ-mlv.fr Mosaic Problem (23/25)

Conclusion

- If K = 2, Mosaic Problem is polynomial time solvable
- ▶ If *K* is not bounded, NP-Complete

Conclusion

- If K = 2, Mosaic Problem is polynomial time solvable
- ► If *K* is not bounded, NP-Complete
- ▶ What about the complexity when *K* is bounded? FPT?
- What about the existence of a PTAS?

Questions?

Guillaume Blin¹ <u>Florian Sikora</u>¹ Romeo Rizzi² Stéphane Vialette¹

¹LIGM, Université Paris-Est Marne-la-Vallée - France

²DIMI, Università di Udine - Italy