@

Minimum Mosaic Inference of a Set of
Recombinants

Guillaume Blin' Florian Sikora' Romeo Rizzi?
Stéphane Vialette'

TLIGM, Université Paris-Est Marne-la-Vallée - France

2DIMI, Universita di Udine - Italy

@

Minimum Mosaic Inference of a Set of
Recombinants

Guillaume Blin' Florian Sikora' Romeo Rizzi?
Stéphane Vialette'

TLIGM, Université Paris-Est Marne-la-Vallée - France

2DIMI, Universita di Udine - ltaly

Minimum Mosaic Inference of a Set of
Recombinants

Guillaume Blin' Florian Sikora' Romeo Rizzi?
Stéphane Vialette'

TLIGM, Université Paris-Est Marne-la-Vallée - France

2DIMI, Universita di Udine - ltaly

@

Minimum Mosaic Inference of a Set of
Recombinants

Guillaume Blin' Florian Sikora' Romeo Rizzi?
Stéphane Vialette'

TLIGM, Université Paris-Est Marne-la-Vallée - France

2DIMI, Universita di Udine - ltaly

Outline

Introduction

NP-Hardness

Exact Algorithms

Conclusion

florian.sikora@univ-miv.fr Mosaic Problem (2/25)

Intro

Outline

Introduction

florian. a@univ-miv.fr Mosaic Problem (3/25)

SNPs

» SNP (Single Nucleotide
Polymorphism)

» When a single nucleotide (A,C,G,T)
differs in the genome of two
members of a specie (or paired
chromosome in a individual)

Figure by D. Hall

florian.sikora@univ-mliv.fr Mosaic Problem (4/25)

SNPs

» SNP (Single Nucleotide
Polymorphism)

» When a single nucleotide (A,C,G,T)
differs in the genome of two
members of a specie (or paired
chromosome in a individual)

» Represents 90% of the human
genetic variation

» Must cheaper to collect than full Figure by D. Hall
sequence data

florian.sikora@univ-mliv.fr Mosaic Problem (4/25)

Intro

SNPs

» In most SNPs, two (of four) different nucleotides occurs

florian.sikora@univ-mliv.fr Mosaic Problem (5/25)

Intro

SNPs

» In most SNPs, two (of four) different nucleotides occurs
» Can use 0 and 1 — binary data

florian.sikora@univ-mliv.fr Mosaic Problem (5/25)

Intro

Recombination

» Principal process inducing these genetic variations

florian.sikora@univ-mliv.fr Mosaic Problem (6/25)

Recombination

» Principal process inducing these genetic variations
» Two equal length sequences...

1110001111111001 |

1000110000001111 |

florian.sikora@univ-mlv.fr Mosaic Problem (6/25)

Recombination

» Principal process inducing these genetic variations
» Two equal length sequences...
» ...generates a third of same length

1110001111111001 |

111000| 0000001111

1000110000001111 |

florian.sikora@univ-miv.fr Mosaic Problem (6/25)

Recombination

v

Principal process inducing these genetic variations
Two equal length sequences...

v

v

...generates a third of same length

Concatenation of a prefix in the first one and a suffix in the
second one [KOIVISTO ET AL. 04]

v

prefix
/-/H
1110001111111001 |

111000/ 0000001111 |

1000110000001111 |

%/—/
suffix

florian.sikora@univ-mlv.fr Mosaic Problem (6/25)

Recombination

v

Principal process inducing these genetic variations

v

Two equal length sequences...

v

...generates a third of same length

Concatenation of a prefix in the first one and a suffix in the
second one [KOIVISTO ET AL. 04]

v

prefix breakpoint
1110001111111001 |
111000/ 0000001111 |
1000110000001111 |
%/—/
suffix

florian.sikora@univ-miv.fr Mosaic Problem (6/25)

Founders sequences

» Current sequences are descendant of a small number of
founders sequences

» A current sequence is composed of blocks from the
founders, due to recombination

mosaic

founders
000000 000000

= 11110 >
111111 %

current
population

florian.sikora@univ-mliv.fr Mosaic Problem (7/25)

Mosaic

» Really look like a mosaic !

0100110011011010110000000111011011110001

Generated by RecBlock

Mosaic Problem (8/25)

Mosaic Problem [uxkonen 02]

» Input : A set of m sequences (current population) of
length n, an integer K

» Output : A set of K founders sequences that induce a
minimum number of breakpoints

0100110011011010110000000111011011110001

florian.sikora@univ-mliv.fr Mosaic Problem (9/25)

Intro

State of the art

v

Polynomial in O(mn) if K = 2 [UkkoNEN 02, WU ET AL. 07]
Exact exponentials algorithms [UkkonEN 02, WU ET AL. 07]
Heuristics [RoLy & BLum 09]

Lower bounds on the minimum number of breakpoints
needed [Wu 10]

v

v

v

florian.sikora@univ-mliv.fr Mosaic Problem (10/25)

State of the art

v

Polynomial in O(mn) if K = 2 [UkkoNEN 02, WU ET AL. 07]

v

Exact exponentials algorithms [UkkonEN 02, WU ET AL. 07]
Heuristics [RoLy & BLum 09]

Lower bounds on the minimum number of breakpoints
needed [Wu 10]

v

v

v

What about the complexity if K > 2?

florian.sikora@univ-miv.fr Mosaic Problem (10/25)

NP-Hardness

Outline

NP-Hardness

florian. a@univ-miv.fr Mosaic Problem (11/25)

NP-Hardness

Hardness

» A first step in a answer : the problem is NP-Complete if the
number of founders is not bounded

» Just some tricks for the proof...

florian.sikora@univ-mliv.fr Mosaic Problem (12/25)

NP-Hardness

Tool 1: Using arbitrary string

» If the problem on arbitrary
strings is NP-hard, then so is the
problem on binary strings

florian.sikora@univ-miv.fr Mosaic Problem (13/25)

NP-Hardness

Tool 1: Using arbitrary string

» If the problem on arbitrary
strings is NP-hard, then so is the » Example
problem on binary strings » Y=AB,C
» Suppose an alphabet

florian.sikora@univ-mliv.fr Mosaic Problem (13/25)

NP-Hardness

Tool 1: Using arbitrary string

» If the problem on arbitrary

strings is NP-hard, then so is the » Example
problem on binary strings » Y=AB,C
» Suppose an alphabet » §(A) =00
» Take any encoding § of symbols » §(B) =01
in X by binary strings of length » §(C)=10
[log, [X]]

florian.sikora@univ-miv.fr Mosaic Problem (13/25)

NP-Hardness

Tool 1: Using arbitrary string

» (=) Any solution with strings over
¥ maps into a solution for binary
strings without changing the

number of breakpoints > Example
» Y =AB,C
> §(A) = 00
> §(B) = 01
> 5(C) = 10

florian.sikora@univ-mlv.fr Mosaic Problem (13/25)

NP-Hardness

Tool 1: Using arbitrary string

» (=) Any solution with strings over
¥ maps into a solution for binary
strings without changing the

number of breakpoints > Example

» (<) If we cannot map the binary : §(:)i lg(,)c
founders sequence to symbols of > §(B) =01
¥, then we can replace the » 5(C) =10

missing "word” by its longest
suffix in common in X without
increasing the cost

florian.sikora@univ-mlv.fr Mosaic Problem (13/25)

NP-Hardness

Tool 2: Forcing Founders

» One can force K’ < K founders to be part of the solution
» Add nm copies of each forced founders in the input

florian.sikora@univ-mlv.fr Mosaic Problem (14/25)

NP-Hardness

Tool 2: Forcing Founders

» One can force K’ < K founders to be part of the solution
» Add nm copies of each forced founders in the input
» If the "forced founder” is not in the solution founders:

florian.sikora@univ-mliv.fr Mosaic Problem (14/25)

NP-Hardness

Tool 2: Forcing Founders

» One can force K’ < K founders to be part of the solution
» Add nm copies of each forced founders in the input

» If the "forced founder” is not in the solution founders:
» Induce at least 1 breakpoint for one sequence

florian.sikora@univ-mliv.fr Mosaic Problem (14/25)

NP-Hardness

Tool 2: Forcing Founders

» One can force K’ < K founders to be part of the solution
» Add nm copies of each forced founders in the input

» |f the "forced founder” is not in the solution founders:

» Induce at least 1 breakpoint for one sequence
» Therefore induce nm breakpoints on the whole...

florian.sikora@univ-mliv.fr Mosaic Problem (14/25)

NP-Hardness

Proof idea

» From the NP-Complete problem VERTEX COVER

florian.sikora@univ-mliv.fr Mosaic Problem (15/25)

NP-Hardness

Vertex Cover

florian.sikora@univ-mliv.fr Mosaic Problem (16/25)

NP-Hardness

Vertex Cover

florian.sikora@univ-mliv.fr Mosaic Problem (16/25)

NP-Hardness

Reduction idea

florian.sik univ-miv.fr Mosaic Problem (17/25)

NP-Hardness

Reduction idea

Input :

2ZX X, ZZ2ZZ X, Xy ZZ

ZZX X ZZZZXuXwZZ
6.|E|

florian.sikora@univ-mlv.fr Mosaic Problem (17/25)

NP-Hardness

Reduction idea

Input :

2ZX X ZZ2Z2Z X, X, ZZ

ZZX X ZZZZXyXwZZ
6.|E|

florian.sikora@univ-mlv.fr Mosaic Problem (17/25)

NP-Hardness

Reduction idea

Input :

Z2ZXXuZ Z

Z2ZX X ZZ
XuXuXuXuXuXu(x6.|E|+1=7)
Xy Xy Xy Xy Xy Xy (x7)

florian.sikora@univ-miv.fr Mosaic Problem (17/25)

NP-Hardness

Reduction idea

Input :

Z2ZXXuZ Z
Z2ZX X ZZ
XuXuXuXuXuXu (X7)
Xy Xy Xy Xy Xy Xy (X7)

Forced founders :
XXXy Z Z Z
Z Z Z XyXuXy
X XvXvZ Z Z
ZZ ZX, Xy Xy

florian.sikora@univ-mliv.fr Mosaic Problem (17/25)

NP-Hardness

Reduction idea

Input :

Z2ZXXuZ Z
ZZX X ZZ
XuXuXuXuXuXu(x7)
Xy Xy Xy Xy Xy Xy (X7)

Forced founders :
XXXy Z Z Z
Z Z Z XyXyXy
XXXy Z2 Z Z
ZZZX, Xy X,

florian.sikora@univ-mlv.fr Mosaic Problem (18/25)

NP-Hardness

Reduction idea

Input :

ZZXXyZ Z » Remains
ZZX X Z Z |Vertex Cover|
XuXuXuXuXuXu(x7) founders (here 1)
Xy Xy Xy Xy Xy X (x7)

Forced founders :
XXXy Z Z Z
Z Z Z XyXyXy
XXXy Z2 Z Z
ZZZX, Xy X,

florian.sikora@univ-miv.fr Mosaic Problem (18/25)

NP-Hardness

Reduction idea

Input :

ZZXXyZ Z » Remains
ZZX X Z Z |Vertex Cover|
XuXuXuXuXuXu(x7) founders (here 1)
Xu Xu Xy Xy Xy Xy (X7) » Will be sequences

"X X;...” due to (x7)

Forced founders : .
» It is a vertex cover

XuXuXoZ Z Z ot
77
XXy Xy Z Z Z moqre breakgoints
Z Z Z X, Xy Xy P

florian.sikora@univ-miv.fr Mosaic Problem (18/25)

Exact Algorithms

Outline

Exact Algorithms

florian. a@univ-miv.fr Mosaic Problem (19/25)

Exact Algorithms

Polynomial-time Algorithm

» Suppose one knows where the breakpoints are

florian.sikora@univ-mliv.fr Mosaic Problem (20/25)

Exact Algorithms

Polynomial-time Algorithm

» Suppose one knows where the breakpoints are

Input :

florian.sikora@univ-mlv.fr Mosaic Problem (20/25)

Exact Algorithms

Polynomial-time Algorithm

» Suppose one knows where the breakpoints are

Input :

» Each substring without breakpoints must by definition
appears in the solution

florian.sikora@univ-mlv.fr Mosaic Problem (20/25)

Exact Algorithms

Polynomial-time Algorithm

» Suppose one knows where the breakpoints are

Input :

» Each substring without breakpoints must by definition
appears in the solution

» Add the substring with the leftmost startpoint in the output

florian.sikora@univ-mlv.fr Mosaic Problem (20/25)

Exact Algorithms

Polynomial-time Algorithm

» Suppose one knows where the breakpoints are

Input :

» Each substring without breakpoints must by definition
appears in the solution

» Add the substring with the leftmost startpoint in the output

Out?ut :

florian.sikora@univ-mliv.fr Mosaic Problem (20/25)

Exact Algorithms

Polynomial-time Algorithm

» Suppose one knows where the breakpoints are

Inp

ut :

» Each substring without breakpoints must by definition
appears in the solution

» Add the substring with the leftmost startpoint in the output

Out

put :

]

florian.sikora@univ-mliv.fr Mosaic Problem (20/25)

Exact Algorithms

Polynomial-time Algorithm
» Suppose one knows where the breakpoints are

Input :

» Each substring without breakpoints must by definition
appears in the solution
» Add the substring with the leftmost startpoint in the output

Out?ut :

florian.sikora@univ-miv.fr Mosaic Problem (20/25)

Exact Algorithms

Polynomial-time Algorithm
» Suppose one knows where the breakpoints are

Input :

» Each substring without breakpoints must by definition
appears in the solution
» Add the substring with the leftmost startpoint in the output

Qutput :

////////
////////
////////
////////

florian.sikora@univ-miv.fr Mosaic Problem (20/25)

Exact Algorithms

Polynomial-time Algorithm
» Suppose one knows where the breakpoints are

Input :

» Each substring without breakpoints must by definition
appears in the solution
» Add the substring with the leftmost startpoint in the output

Output :

|

% 7

7 7
florian.sikora@univ-miv.fr Mosaic Problem (20/25)

Exact Algorithms

Polynomial-time Algorithm
» Suppose one knows where the breakpoints are

Input :

» Each substring without breakpoints must by definition
appears in the solution
» Add the substring with the leftmost startpoint in the output

Output :

F///i ‘
72
727
705
florian.sikora@univ-miv.fr Mosaic Problem (20/25)

Exact Algorithms

Polynomial-time Algorithm
» Suppose one knows where the breakpoints are

Input :

» Each substring without breakpoints must by definition
appears in the solution
» Add the substring with the leftmost startpoint in the output

Output :

florian.sikora@univ-miv.fr Mosaic Problem (20/25)

Exact Algorithms

Polynomial-time Algorithm
» Suppose one knows where the breakpoints are

Input :

» Each substring without breakpoints must by definition
appears in the solution
» Add the substring with the leftmost startpoint in the output

QOutput :

florian.sikora@univ-miv.fr Mosaic Problem (20/25)

Exact Algorithms

Polynomial-time Algorithm
» Suppose one knows where the breakpoints are

Input :

» Each substring without breakpoints must by definition
appears in the solution
» Add the substring with the leftmost startpoint in the output

Output :

florian.sikora@univ-miv.fr Mosaic Problem (20/25)

Exact Algorithms

Polynomial-time Algorithm
» Suppose one knows where the breakpoints are

Input :

» Each substring without breakpoints must by definition
appears in the solution
» Add the substring with the leftmost startpoint in the output

» O(|Breakpoints| x |Output| x |Longest block|)

Output :

florian.sikora@univ-miv.fr Mosaic Problem (20/25)

Exact Algorithms

Polynomial-time algorithm

» If one only knows the number of breakpoints 5; for
each input sequence of size n:

florian.sikora@univ-mliv.fr Mosaic Problem (21/25)

Exact Algorithms

Polynomial-time algorithm

» If one only knows the humber of breakpoints B; for
each input sequence of size n:

» One can "guess” where all breakpoints can be :

n
By = (E;) = O(nB1)
BQ = (an) = 0(/’752)
Bs = (g,) = O(n*)
By = (g,) = O(n™)

florian.sikora@univ-miv.fr Mosaic Problem (21/25)

Exact Algorithms

Polynomial-time algorithm

» If one only knows the humber of breakpoints B; for
each input sequence of size n:

» One can "guess” where all breakpoints can be :
» And launch the previous algorithm

n
B1 = (E;) = O(I’JB‘)
BQ = (an) = 0(/’752)
Bs = (g,) = O(n*)
B4 = (5’1) = O(n54)

florian.sikora@univ-miv.fr Mosaic Problem (21/25)

Exact Algorithms

Polynomial-time algorithm

» If one only knows the humber of breakpoints B; for
each input sequence of size n:

» One can "guess” where all breakpoints can be :
» And launch the previous algorithm
» Overall complexity : O(nP1.nB2 ... nPm BKn) = O(nB.BKn)

n
By = (E;) = O(nB1)
BQ = (an) = 0(/’752)
Bs = (g,) = O(n*)
By = (g,) = O(n™)

florian.sikora@univ-miv.fr Mosaic Problem (21/25)

Exact Algorithms

Polynomial-time algorithm

» If one only knows the number of overall breakpoints B

florian.sikora@univ-miv.fr Mosaic Problem (22/25)

Exact Algorithms

Polynomial-time algorithm

» If one only knows the number of overall breakpoints B
» Maximum number of different input sequences

florian.sikora@univ-miv.fr Mosaic Problem (22/25)

Exact Algorithms

Polynomial-time algorithm

» If one only knows the number of overall breakpoints B
» Maximum number of different input sequences = B

of

florian.sikora@univ-mlv.fr Mosaic Problem (22/25)

Exact Algorithms

Polynomial-time algorithm

» If one only knows the number of overall breakpoints B
» Maximum number of different input sequences = B+K

B

K

florian.sikora@univ-miv.fr Mosaic Problem (22/25)

Exact Algorithms

Polynomial-time algorithm

» If one only knows the number of overall breakpoints B
» Maximum number of different input sequences = B+K

B

K
» Decide which have the breakpoints : (¥58) = O((K + B)B)

florian.sikora@univ-miv.fr Mosaic Problem (22/25)

Exact Algorithms

Polynomial-time algorithm

v

If one only knows the number of overall breakpoints B
Maximum number of different input sequences = B+K

v

B

K

Decide which have the breakpoints : (“4%) = O((K + B)?)
For each, run the O(nK?™) Ukkonen’s algorithm

v

v

florian.sikora@univ-miv.fr Mosaic Problem (22/25)

Exact Algorithms

Polynomial-time algorithm

v

If one only knows the number of overall breakpoints B
Maximum number of different input sequences = B+K

v

B

K

Decide which have the breakpoints : (“4%) = O((K + B)?)

For each, run the O(nK?™) Ukkonen’s algorithm
» Our sequences of interest are m = B

v

v

florian.sikora@univ-miv.fr Mosaic Problem (22/25)

Exact Algorithms

Polynomial-time algorithm

v

If one only knows the number of overall breakpoints B
Maximum number of different input sequences = B+K

v

B

K

Decide which have the breakpoints : (“4%) = O((K + B)?)

For each, run the O(nK?™) Ukkonen’s algorithm
» Our sequences of interest are m = B

Overall complexity : O((K + B)B.nKk?8)

v

v

v

florian.sikora@univ-miv.fr Mosaic Problem (22/25)

Outline

Conclusion

florian.sikora@univ-miv.fr Mosaic Problem (23/25)

Conclusion

» If K = 2, Mosaic Problem is polynomial time solvable
» If K is not bounded, NP-Complete

florian.sikora@univ-mliv.fr Mosaic Problem (24/25)

Conclusion

v

If K =2, Mosaic Problem is polynomial time solvable
If K is not bounded, NP-Complete

What about the complexity when K is bounded? FPT?
What about the existence of a PTAS?

v

v

v

florian.sikora@univ-mliv.fr Mosaic Problem (24/25)

Questions?

Guillaume Blin' Florian Sikora' Romeo Rizzi?
Stéphane Vialette'

TLIGM, Université Paris-Est Marne-la-Vallée - France

2DIMI, Universita di Udine - Italy

florian.sikora@univ-mliv.fr Mosaic Problem (25/25)

	Introduction
	NP-Hardness
	Exact Algorithms
	Conclusion

