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2DIMI, Università di Udine - Italy



Intro NP-Hardness Exact Algorithms

Outline

Introduction

NP-Hardness

Exact Algorithms

Conclusion

florian.sikora@univ-mlv.fr Mosaic Problem (2/25)



Intro NP-Hardness Exact Algorithms

Outline

Introduction

NP-Hardness

Exact Algorithms

Conclusion

florian.sikora@univ-mlv.fr Mosaic Problem (3/25)



Intro NP-Hardness Exact Algorithms

SNPs

I SNP (Single Nucleotide
Polymorphism)

I When a single nucleotide (A,C,G,T)
differs in the genome of two
members of a specie (or paired
chromosome in a individual)

I Represents 90% of the human
genetic variation

I Must cheaper to collect than full
sequence data

Figure by D. Hall
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SNPs

I In most SNPs, two (of four) different nucleotides occurs

I Can use 0 and 1 – binary data
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Recombination

I Principal process inducing these genetic variations

I Two equal length sequences...
I ...generates a third of same length
I Concatenation of a prefix in the first one and a suffix in the

second one [KOIVISTO ET AL. 04]
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Intro NP-Hardness Exact Algorithms

Founders sequences

I Current sequences are descendant of a small number of
founders sequences

I A current sequence is composed of blocks from the
founders, due to recombination
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Mosaic

I Really look like a mosaic !

Generated by RecBlock
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Intro NP-Hardness Exact Algorithms

Mosaic Problem [UKKONEN 02]

I Input : A set of m sequences (current population) of
length n, an integer K

I Output : A set of K founders sequences that induce a
minimum number of breakpoints
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Intro NP-Hardness Exact Algorithms

State of the art

I Polynomial in O(mn) if K = 2 [UKKONEN 02, WU ET AL. 07]

I Exact exponentials algorithms [UKKONEN 02, WU ET AL. 07]

I Heuristics [ROLY & BLUM 09]

I Lower bounds on the minimum number of breakpoints
needed [WU 10]

I What about the complexity if K > 2?
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Intro NP-Hardness Exact Algorithms

Hardness

I A first step in a answer : the problem is NP-Complete if the
number of founders is not bounded

I Just some tricks for the proof...
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Intro NP-Hardness Exact Algorithms

Tool 1: Using arbitrary string

I If the problem on arbitrary
strings is NP-hard, then so is the
problem on binary strings

I Suppose an alphabet Σ
I Take any encoding δ of symbols

in Σ by binary strings of length
dlog2 |Σ|e

I Example

I Σ = A,B,C
I δ(A) = 00
I δ(B) = 01
I δ(C) = 10
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Σ maps into a solution for binary
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Intro NP-Hardness Exact Algorithms

Tool 2: Forcing Founders

I One can force K ′ < K founders to be part of the solution
I Add nm copies of each forced founders in the input

I If the ”forced founder” is not in the solution founders:

I Induce at least 1 breakpoint for one sequence
I Therefore induce nm breakpoints on the whole...
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Intro NP-Hardness Exact Algorithms

Proof idea

I From the NP-Complete problem VERTEX COVER
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Intro NP-Hardness Exact Algorithms

Reduction idea

v

u
Input :
Z Z XuXu Z Z
Z Z Xv Xv Z Z
XuXuXuXuXuXu(×6.|E |+ 1 = 7)
Xv Xv Xv Xv Xv Xv (×7)
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Polynomial-time Algorithm

I Suppose one knows where the breakpoints are
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Input :

I Each substring without breakpoints must by definition
appears in the solution

I Add the substring with the leftmost startpoint in the output
I O(|Breakpoints| × |Output| × |Longest block|)
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Intro NP-Hardness Exact Algorithms

Polynomial-time algorithm

I If one only knows the number of breakpoints Bi for
each input sequence of size n:

I One can ”guess” where all breakpoints can be :
I And launch the previous algorithm
I Overall complexity : O(nB1 .nB2 . . . nBm .BKn) = O(nB.BKn)

n

B1
B2
B3

B4
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Intro NP-Hardness Exact Algorithms

Polynomial-time algorithm

I If one only knows the number of overall breakpoints B

I Maximum number of different input sequences

I Decide which have the breakpoints :
(K+B

B

)
= O((K + B)B)

I For each, run the O(nK 2m) Ukkonen’s algorithm

I Our sequences of interest are m = B

I Overall complexity : O((K + B)B.nK 2B)
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I Our sequences of interest are m = B

I Overall complexity : O((K + B)B.nK 2B)
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Conclusion

I If K = 2, Mosaic Problem is polynomial time solvable
I If K is not bounded, NP-Complete

I What about the complexity when K is bounded? FPT?
I What about the existence of a PTAS?
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Questions?
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