Minimum Mosaic Inference of a Set of Recombinants

Guillaume Blin1 Florian Sikora1 Romeo Rizzi2 Stéphane Vialette1

1LIGM, Université Paris-Est Marne-la-Vallée - France

2DIMI, Università di Udine - Italy
Minimum Mosaic Inference of a Set of Recombinants

Guillaume Blin¹ Florian Sikora¹ Romeo Rizzi² Stéphane Vialette¹

¹LIGM, Université Paris-Est Marne-la-Vallée - France
²DIMI, Università di Udine - Italy
Minimum Mosaic Inference of a Set of Recombinants

Guillaume Blin1 Florian Sikora1 Romeo Rizzi2 Stéphane Vialette1

1LIGM, Université Paris-Est Marne-la-Vallée - France

2DIMI, Università di Udine - Italy
Minimum Mosaic Inference of a Set of Recombinants

Guillaume Blin1 Florian Sikora1 Romeo Rizzi2 Stéphane Vialette1

1LIGM, Université Paris-Est Marne-la-Vallée - France

2DIMI, Università di Udine - Italy
Outline

Introduction

NP-Hardness

Exact Algorithms

Conclusion
Outline

Introduction

NP-Hardness

Exact Algorithms

Conclusion
SNPs

- SNP (Single Nucleotide Polymorphism)
- When a single nucleotide (A,C,G,T) differs in the genome of two members of a specie (or paired chromosome in an individual)

Figure by D. Hall
SNPs

- SNP (Single Nucleotide Polymorphism)
- When a single nucleotide (A,C,G,T) differs in the genome of two members of a specie (or paired chromosome in an individual)
- Represents 90% of the human genetic variation
- Must cheaper to collect than full sequence data

Figure by D. Hall
SNPs

- In most SNPs, two (of four) different nucleotides occurs.
In most SNPs, **two** (of four) different nucleotides occurs.

- Can use 0 and 1 – **binary** data.
Recombination

- Principal process inducing these genetic variations
Recombination

- Principal process inducing these genetic variations
- Two equal length sequences...

110001111111001
000110000001111

florian.sikora@univ-mlv.fr Mosaic Problem (6/25)
Recombination

- Principal process inducing these genetic variations
- Two equal length sequences...
- ...generates a third of same length

110001111111001
000110000001111

11000 000001111
000110000001111
Recombination

- Principal process inducing these genetic variations
- Two equal length sequences...
- ...generates a third of same length
- Concatenation of a prefix in the first one and a suffix in the second one [Koivisto et al. 04]
Recombination

- Principal process inducing these genetic variations
- Two equal length sequences...
- ...generates a third of same length
- Concatenation of a prefix in the first one and a suffix in the second one [Koivisto et al. 04]
Founders sequences

- Current sequences are descendant of a small number of **founders sequences**
- A current sequence is composed of **blocks from the founders**, due to recombination
Really look like a mosaic!

Generated by RecBlock
Mosaic Problem [UKKONEN 02]

- **Input**: A set of \(m \) **sequences** (current population) of length \(n \), an integer \(K \)
- **Output**: A set of \(K \) **founders sequences** that induce a minimum number of breakpoints
State of the art

- Polynomial in $O(mn)$ if $K = 2$ [Ukkonen 02, Wu et al. 07]
- Exact exponentials algorithms [Ukkonen 02, Wu et al. 07]
- Heuristics [Roly & Blum 09]
- Lower bounds on the minimum number of breakpoints needed [Wu 10]
State of the art

- Polynomial in $O(mn)$ if $K = 2$ [Ukkonen 02, Wu et al. 07]
- Exact exponentials algorithms [Ukkonen 02, Wu et al. 07]
- Heuristics [Roly & Blum 09]
- Lower bounds on the minimum number of breakpoints needed [Wu 10]
- What about the complexity if $K > 2$?
Outline

Introduction

NP-Hardness

Exact Algorithms

Conclusion
A first step in an answer: the problem is NP-Complete if the number of founders is not bounded.
Tool 1: Using arbitrary string

- If the problem on arbitrary strings is NP-hard, then so is the problem on binary strings.
Tool 1: Using arbitrary string

If the problem on arbitrary strings is NP-hard, then so is the problem on binary strings
 - Suppose an alphabet Σ

Example
 - $\Sigma = A, B, C$
Tool 1: Using arbitrary string

- If the problem on **arbitrary strings** is NP-hard, then so is the problem on binary strings
 - Suppose an alphabet Σ
 - Take any encoding δ of symbols in Σ by binary strings of length $\log_2 |\Sigma|$e

Example
- $\Sigma = A, B, C$
- $\delta(A) = 00$
- $\delta(B) = 01$
- $\delta(C) = 10$
Tool 1: Using arbitrary string

(⇒) Any solution with strings over \(\Sigma \) maps into a solution for binary strings without changing the number of breakpoints.

Example

- \(\Sigma = A, B, C \)
- \(\delta(A) = 00 \)
- \(\delta(B) = 01 \)
- \(\delta(C) = 10 \)
Tool 1: Using arbitrary string

- \(\Rightarrow\) Any solution with strings over \(\Sigma\) maps into a solution for binary strings without changing the number of breakpoints

- \(\Leftarrow\) If we cannot map the binary founders sequence to symbols of \(\Sigma\), then we can replace the missing "word" by its longest suffix in common in \(\Sigma\) without increasing the cost

Example
- \(\Sigma = A, B, C\)
- \(\delta(A) = 00\)
- \(\delta(B) = 01\)
- \(\delta(C) = 10\)
Tool 2: Forcing Founders

- One can force $K' < K$ founders to be part of the solution
- Add nm copies of each forced founders in the input
Tool 2: Forcing Founders

- One can force $K' < K$ founders to be part of the solution
- **Add nm copies of each forced founders** in the input
- If the ”forced founder” is not in the solution founders:
Tool 2: Forcing Founders

- One can force $K' < K$ founders to be part of the solution
- **Add nm copies of each forced founders** in the input
- If the ”forced founder” is not in the solution founders:
 - Induce at least 1 breakpoint for one sequence
Tool 2: Forcing Founders

- One can force \(K' < K \) founders to be part of the solution
- **Add \(nm \) copies of each forced founders** in the input
- If the "forced founder" is not in the solution founders:
 - Induce at least 1 breakpoint for one sequence
 - Therefore induce \(nm \) breakpoints on the whole...
Proof idea

- From the NP-Complete problem VERTEX COVER
Vertex Cover
Vertex Cover
Reduction idea
Reduction idea

Input:

\[
\begin{align*}
&Z \overline{Z} X_u X_u Z \overline{Z} \overline{Z} \overline{Z} X_u X_u Z Z \\
&Z \overline{Z} X_v X_v Z \overline{Z} \overline{Z} \overline{Z} X_w X_w Z Z
\end{align*}
\]

\[6. |E|\]
Reduction idea

Input:
$$ZZX_uX_uZZZZX_uX_uZZ$$
$$ZZX_vX_vZZZZX_wX_wZZ$$

6.$|E|$
Reduction idea

Input:
\[Z \ Z X_u X_u Z \ Z \]
\[Z \ Z X_v X_v Z \ Z \]
\[X_u X_u X_u X_u X_u X_u (\times 6 \cdot |E| + 1 = 7) \]
\[X_v X_v X_v X_v X_v X_v \ (\times 7) \]
Reduction idea

Input:
\[Z \ Z \ X_u \ X_u \ Z \ \ Z \]
\[Z \ Z \ X_v \ X_v \ Z \ \ Z \]
\[X_u X_u X_u X_u X_u X_u \ (\times 7) \]
\[X_v X_v X_v X_v X_v X_v \ (\times 7) \]

Forced founders:
\[X_u X_u X_u Z \ Z \ Z \ Z \ Z \]
\[Z \ Z \ Z \ X_u X_u X_u \]
\[X_v X_v X_v Z \ Z \ Z \]
\[Z \ Z \ Z \ X_v X_v X_v \]
Reduction idea

Input:

\[
Z \ Z \ X_u X_u \ Z \ Z \\
Z \ Z \ X_v X_v \ Z \ Z \\
X_u X_u X_u X_u X_u X_u (\times 7) \\
X_v X_v X_v X_v X_v X_v (\times 7)
\]

Forced founders:

\[
X_u X_u X_u Z \ Z \ Z \\
Z \ Z \ Z \ X_u X_u X_u \\
X_v X_v X_v Z \ Z \ Z \\
Z \ Z \ Z \ X_v X_v X_v
\]
Reduction idea

Input:
- $Z \ Z \ X_u X_u \ Z \ Z$
- $Z \ Z \ X_v X_v \ Z \ Z$
- $X_u X_u X_u X_u X_u X_u (\times 7)$
- $X_v X_v X_v X_v X_v X_v (\times 7)$

Forced founders:
- $X_u X_u X_u Z \ Z \ Z$
- $Z \ Z \ Z X_u X_u X_u$
- $X_v X_v X_v Z \ Z \ Z$
- $Z \ Z \ Z X_v X_v X_v$

Remains $|\text{Vertex Cover}|$ founders (here 1)
Reduction idea

Input:

\[
\begin{align*}
Z & \ Z & X_uX_u & Z & Z \\
Z & \ Z & X_vX_v & Z & Z \\
X_uX_uX_u & X_u & X_u & X_u & (\times 7) \\
X_vX_vX_v & X_v & X_v & X_v & (\times 7)
\end{align*}
\]

Forced founders:

\[
\begin{align*}
X_uX_uX_u & Z & Z & Z \\
Z & \ Z & Z & X_uX_u & X_u \\
X_vX_vX_v & Z & Z & Z \\
Z & \ Z & Z & X_vX_vX_v
\end{align*}
\]

- Remains $|\text{Vertex Cover}|$ founders (here 1)
- Will be sequences "$X_iX_i...$" due to $(\times 7)$
- It is a vertex cover otherwise first sequences generate more breakpoints
Outline

Introduction

NP-Hardness

Exact Algorithms

Conclusion
Suppose one *knows* where the breakpoints are
Suppose one knows where the breakpoints are.
Polynomial-time Algorithm

- Suppose one **knows where the breakpoints are**

 \[
 \text{Input : }
 \]

 Each substring without breakpoints must by definition appears in the solution
Polynomial-time Algorithm

- Suppose one knows where the breakpoints are

Input:

- Each substring without breakpoints must by definition appears in the solution
- Add the substring with the leftmost startpoint in the output
Polynomial-time Algorithm

- Suppose one knows where the breakpoints are

Input:

Each substring without breakpoints must by definition appears in the solution

Add the substring with the leftmost startpoint in the output

Output:

florian.sikora@univ-mlv.fr Mosaic Problem (20/25)
Polynomial-time Algorithm

- Suppose one **knows where the breakpoints are**

 Input:

 ![Input Diagram]

- Each substring without breakpoints must by definition appears in the solution
- Add the substring with the leftmost startpoint in the output

Output:

![Output Diagram]
Polynomial-time Algorithm

- Suppose one **knows where the breakpoints are**

 Input:

 ![Input Diagram]

- Each substring without breakpoints must by definition appears in the solution

- Add the substring with the leftmost startpoint in the output

 Output:

 ![Output Diagram]
Polynomial-time Algorithm

- Suppose one **knows where the breakpoints are**

Input:

- Each substring without breakpoints must by definition appears in the solution
- Add the substring with the leftmost startpoint in the output

Output:

florian.sikora@univ-mlv.fr

Mosaic Problem (20/25)
Polynomial-time Algorithm

- Suppose one knows where the breakpoints are

```
Input:
```

- Each substring without breakpoints must by definition appears in the solution
- Add the substring with the leftmost startpoint in the output

```
Output:
```
Polynomial-time Algorithm

- Suppose one knows where the breakpoints are

Input:

<p>| | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- Each substring without breakpoints must by definition appears in the solution
- Add the substring with the leftmost startpoint in the output

Output:

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Polynomial-time Algorithm

- Suppose one knows where the breakpoints are

Input:

```
  1  2  3  4  5
  6  7  8  9  10
  11 12 13 14 15
  16 17 18 19 20
```

- Each substring without breakpoints must by definition appears in the solution
- Add the substring with the leftmost startpoint in the output

Output:

```
  1  2  3  4  5  6  7  8  9  10
  11 12 13 14 15 16 17 18 19 20
```

florian.sikora@univ-mlv.fr Mosaic Problem (20/25)
Polynomial-time Algorithm

- Suppose one knows where the breakpoints are

Input:

```
| | | | | | | | | | |
```

- Each substring without breakpoints must by definition appears in the solution
- Add the substring with the leftmost startpoint in the output

Output:

```
| | | | | | | | | | |
```

florian.sikora@univ-mlv.fr

Mosaic Problem (20/25)
Polynomial-time Algorithm

- Suppose one **knows where the breakpoints are**

 Input:

 ![Input Diagram]

 Each substring without breakpoints must by definition appears in the solution

 Add the substring with the leftmost startpoint in the output

 Output:

 ![Output Diagram]
Polynomial-time Algorithm

- Suppose one **knows where the breakpoints are**

 - Input:

 ![Input Diagram]

 - Each substring without breakpoints must by definition appears in the solution
 - Add the substring with the leftmost startpoint in the output
 - $O(|\text{Breakpoints}| \times |\text{Output}| \times |\text{Longest block}|)$

- Output:

 ![Output Diagram]
Polynomial-time algorithm

- If one only knows the number of breakpoints B_i for each input sequence of size n:

\[O(n B_1 B_2 B_3 B_4) = O(n B_1 B_2 B_3 B_4) \]
Polynomial-time algorithm

- If one only knows the number of breakpoints B_i for each input sequence of size n:
- One can "guess" where all breakpoints can be:

$$n$$

$$B_1 \Rightarrow \binom{n}{B_1} = \mathcal{O}(n^{B_1})$$

$$B_2 \Rightarrow \binom{n}{B_2} = \mathcal{O}(n^{B_2})$$

$$B_3 \Rightarrow \binom{n}{B_3} = \mathcal{O}(n^{B_3})$$

$$B_4 \Rightarrow \binom{n}{B_4} = \mathcal{O}(n^{B_4})$$
Polynomial-time algorithm

- If one only **knows the number of breakpoints** B_i for each input sequence of size n:
- One can "guess" where all breakpoints can be:
- And launch the previous algorithm

$$
\begin{align*}
B_1 & \Rightarrow \binom{n}{B_1} = O(n^{B_1}) \\
B_2 & \Rightarrow \binom{n}{B_2} = O(n^{B_2}) \\
B_3 & \Rightarrow \binom{n}{B_3} = O(n^{B_3}) \\
B_4 & \Rightarrow \binom{n}{B_4} = O(n^{B_4})
\end{align*}
$$
Polynomial-time algorithm

- If one only knows the number of breakpoints B_i for each input sequence of size n:
 - One can "guess" where all breakpoints can be:
 - And launch the previous algorithm
 - Overall complexity: $O(n^{B_1} \cdot n^{B_2} \cdots n^{B_m} \cdot BKn) = O(n^B \cdot BKn)$

$$
\begin{align*}
\binom{n}{B_1} &\Rightarrow O(n^{B_1}) \\
\binom{n}{B_2} &\Rightarrow O(n^{B_2}) \\
\binom{n}{B_3} &\Rightarrow O(n^{B_3}) \\
\binom{n}{B_4} &\Rightarrow O(n^{B_4})
\end{align*}
$$
If one only knows the number of overall breakpoints B.
Polynomial-time algorithm

- If one only knows the number of overall breakpoints B
- Maximum number of different input sequences
Polynomial-time algorithm

- If one only **knows the number of overall breakpoints** \(B \)
- Maximum number of different input sequences = \(B \)

\[
B \begin{array}{c}
\end{array}
\]
Polynomial-time algorithm

- If one only **knows the number of overall breakpoints** B
- Maximum number of different input sequences $= B + K$

\[
\begin{align*}
B & \{ \\
K & \{
\end{align*}
\]
If one only knows the number of overall breakpoints B.

- Maximum number of different input sequences $= B + K$

\[
\binom{K + B}{B} = O((K + B)^B)
\]

- Decide which have the breakpoints.

Overall complexity:

\[
O((K + B)B)
\]
Polynomial-time algorithm

- If one only knows the number of overall breakpoints B
- Maximum number of different input sequences $= B + K$
- Decide which have the breakpoints: $(K^B) = O((K + B)^B)$
- For each, run the $O(nK^{2m})$ Ukkonen’s algorithm
Polynomial-time algorithm

- If one only **knows the number of overall breakpoints** B
- Maximum number of different input sequences $= B + K$

 B

 K

- Decide which have the breakpoints $: \binom{K+B}{B} = O((K + B)^B)$
- For each, run the $O(nK^{2m})$ Ukkonen’s algorithm
 - Our sequences of interest are $m = B$
Polynomial-time algorithm

- If one only **knows the number of overall breakpoints** B
- Maximum number of different input sequences $= B + K$
 $\binom{K + B}{B} = \Theta((K + B)^B)$

- Decide which have the breakpoints:
 $\choose{K+B}{B}$
- For each, run the $O(nK^{2m})$ Ukkonen’s algorithm
 - Our sequences of interest are $m = B$
- Overall complexity: $O((K + B)^B \cdot nK^{2B})$
Outline

Introduction

NP-Hardness

Exact Algorithms

Conclusion
Conclusion

- If $K = 2$, Mosaic Problem is polynomial time solvable
- If K is not bounded, NP-Complete
Conclusion

- If $K = 2$, Mosaic Problem is polynomial time solvable
- If K is not bounded, NP-Complete
- What about the complexity when K is bounded? FPT?
- What about the existence of a PTAS?
Questions?

Guillaume Blin¹ Florian Sikora¹ Romeo Rizzi² Stéphane Vialette¹

¹LIGM, Université Paris-Est Marne-la-Vallée - France
²DIMI, Università di Udine - Italy