1

Some results on more flexible versions of Graph Motif

Romeo Rizzi¹ <u>Florian Sikora</u>²

¹Universitá di Udine – Italy ²Lehrstuhl Bioinformatik Jena – Germany

florian.sikora@uni-jena.de

CSR 2012

Outline

Introduction

Graph Motif : Querying motifs without topology

Approximate motifs

Outline

Introduction

Graph Motif : Querying motifs without topology

Approximate motifs

Motivations

• Human complexity $\Leftrightarrow \#$ of genes ?

Proteins network

- ▶ Proteins can (physically) interact with other proteins (PPI).
- Biologically obtained... with noise !

Proteins network

- ► Use a **graph** representation:
 - ► Proteins are nodes.
 - Interactions are edges.

Issues

► New techniques: increase the available data [SHARAN ET IDEKER 2006].

- ▶ 2001: some hundreds.
- ▶ 2006: thousands.
- Lot of databases:
 - ► BIND,
 - ► DIP,
 - KEGG,
 - ► MINT,
 - ▶ ...

Issues

► New techniques: increase the available data [SHARAN ET IDEKER 2006].

- ▶ 2001: some hundreds.
- ▶ 2006: thousands.
- Lot of databases:
 - BIND,
 - ► DIP,
 - KEGG,
 - ► MINT,
 - ▶ ...
- Computational solutions are needed.

Intro

Motif search

 Goal: find a subnetwork with both labels and topology of a given motif.

Motif search

Intro

 Goal: find a subnetwork with both labels and topology of a given motif.

- Look for motifs to retrieve some known functions.
- Deduce information from well known species to less known species.

Outline

Introduction

Graph Motif : Querying motifs without topology

Approximate motifs

 Large part of the literature deals with motif provided with a topology.

- Large part of the literature deals with motif provided with a topology.
- ► Fact : biological data are very noisy [Edwards et al. 2002]:
 - ▶ Missing informations (false negatives). About 50%.
 - ▶ Erroneous informations (false positives). About 50%.
- Topology of the motif can be unknown a priori.
- Different functions can have a same topology.

- Large part of the literature deals with motif provided with a topology.
- ► Fact : biological data are very noisy [Edwards et al. 2002]:
 - ▶ Missing informations (false negatives). About 50%.
 - ▶ Erroneous informations (false positives). About 50%.
- Topology of the motif can be unknown a priori.
- Different functions can have a same topology.
- Topology can be irrelevant.

Graph Motif [Lacroix et al. 2006]

- ► Each network node is colored by its "function".
- Motif is a (multi) set of colors
- Does the motif appears as a connected subgraph of the network ?

Graph Motif [Lacroix et al. 2006]

- ► Each network node is colored by its "function".
- Motif is a (multi) set of colors
- Does the motif appears as a connected subgraph of the network ?
- Topology is only the connectivity of the solution.

Graph Motif – A toy example

Graph Motif – A toy example

Graph Motif – A toy example

- Applied to different type of biological networks.
 - ▶ Initially for metabolic networks [LACROIX ET AL. 2006].
 - ▶ Useful for PPI networks [BRUCKNER ET AL. 2009].
- ▶ But also for social networks [BETZLER ET AL. 2008, S. 2011].

Graph Motif – Complexity

- ► Problem is NP-complete.
 - Even on strong conditions (tree of maximum degree 3, tree of depth 2...) [Fellows et al. 2007, Ambalath et al. 2010]

Graph Motif – Complexity

Problem is NP-complete.

- ▶ Even on strong conditions (tree of maximum degree 3, tree of depth 2...) [Fellows et al. 2007, Ambalath et al. 2010]
- Must cope with hardness:
 - Some FPT algorithms.
 - k is the size of the solution.
 - \$\mathcal{O}^*(2^k)\$ for colorful motifs,
 - $\mathcal{O}^*(4^k)$ for multiset motifs [Guillemot and S. 2010].
 - Hard if the parameter is the number of different colors.

Graph Motif – Complexity

Problem is NP-complete.

- ▶ Even on strong conditions (tree of maximum degree 3, tree of depth 2...) [Fellows et al. 2007, Ambalath et al. 2010]
- Must cope with hardness:
 - Some FPT algorithms.
 - k is the size of the solution.
 - \$\mathcal{O}^*(2^k)\$ for colorful motifs,
 - $\mathcal{O}^*(4^k)$ for multiset motifs [Guillemot and S. 2010].
 - Hard if the parameter is the number of different colors.
 - Approximation.

Outline

Introduction

Graph Motif : Querying motifs without topology

Approximate motifs

Variants

- Experimental data, **noisy**.
- Ask for an exact occurrence is likely to fail.
- ▶ Must allow insertions, deletions...: optimisation problems!

A variant for Graph Motif : Minimum Substitutions

- ► A variant: MINIMUM SUBSTITUTIONS [DONDI ET AL. 2011].
- ► Find an occurrence with a maximum number of colors from the motif, but with the same size.
- Substitution of motif colors by new colors.

ntro

Minimum Substitutions: Toy example

Minimum Substitutions: Toy example

Minimum Substitutions: Toy example

A variant for Graph Motif : Minimum Substitutions

- ▶ NP-hard even if G is a tree of maximum degree 4 where each color occurs at most twice but FPT [DONDI ET AL. 2011].
- ▶ Result: there is no approximation ratio within c log |V|, unless P = NP, even if the motif is colorful (at most one occurrence of each color) and G is a depth 2 tree.
- ▶ Reduction from SET COVER.

$$X = \{x_1, x_2, x_3\}, S = \{\{x_1, x_2\}, \{x_2, x_3\}, \{x_2\}\}\$$

0000 0000 0000

$$X = \{x_1, x_2, x_3\}, S = \{\{x_1, x_2\}, \{x_2, x_3\}, \{x_2\}\}$$

$X = \{x_1, x_2, x_3\}, S = \{\{x_1, x_2\}, \{x_2, x_3\}, \{x_2\}\}$

$$X = \{x_1, x_2, x_3\}, S = \{\{x_1, x_2\}, \{x_2, x_3\}, \{x_2\}\}$$

$$X = \{x_1, x_2, x_3\}, S = \{\{x_1, x_2\}, \{x_2, x_3\}, \{x_2\}\}$$

$$X = \{x_1, x_2, x_3\}, S = \{\{x_1, x_2\}, \{x_2, x_3\}, \{x_2\}\}$$

$$X = \{x_1, x_2, x_3\}, S = \{\{x_1, x_2\}, \{x_2, x_3\}, \{x_2\}\}$$

$$X = \{x_1, x_2, x_3\}, S = \{\{x_1, x_2\}, \{x_2, x_3\}, \{x_2\}\}$$

$$X = \{x_1, x_2, x_3\}, S = \{\{x_1, x_2\}, \{x_2, x_3\}, \{x_2\}\}$$

Result

▶ There is no approximation ratio within $c \log |X|$ for MINIMUM SET COVER (unless P = NP) [RAZ ET SAFRA 1997].

Result

- ► There is no approximation ratio within $c \log |X|$ for MINIMUM SET COVER (unless P = NP) [RAZ ET SAFRA 1997].
- ► There is no approximation ratio within $c \log |V|$ for MINIMUM SUBSTITUTIONS (unless P = NP).

- NP-complete
- Exponential number of modules...
- ▶ ... but "generators" can be store in a linear tree.
- Using this to have FPT algorithms.

Other result in the paper

► MAX MOTIF is hard to approximate.

