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Intro

Motivations

15000 30000

» Human complexity < # of genes ?



Proteins network

» Proteins can (physically) interact with other proteins (PPI).

» Biologically obtained... with noise !




Proteins network

» Use a graph representation:

> Proteins are nodes.
» Interactions are edges.



Intro

Issues

» New techniques: increase the available data [Siaran BT
IDEKER 2006].
» 2001: some hundreds.
» 2006: thousands.

» Lot of databases:

BIND,
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KEGG,
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IDEKER 2006].
» 2001: some hundreds.
» 2006: thousands.

» Lot of databases:

BIND,
DIP,

KEGG,
MINT,

v

vV vy vy

» Computational solutions are needed.



Motif search

» Goal: find a subnetwork with both labels and topology of a

given motif.
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Motif search

» Goal: find a subnetwork with both labels and topology of a

given motif.
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» Look for motifs to retrieve some known functions.

» Deduce information from well known species to less known
species.
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Graph Motif : Querying motifs without topology



Graph Motif

» Large part of the literature deals with motif provided with a
topology.
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Graph Motif

v

Large part of the literature deals with motif provided with a
topology.

v

Fact : biological data are very noisy [Epbwarps 1 AL. 2002]:

» Missing informations (false negatives). About 50%.
» Erroneous informations (false positives). About 50%.

v

Topology of the motif can be unknown a priori.

v

Different functions can have a same topology.
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Graph Motif

v

Large part of the literature deals with motif provided with a
topology.

v

Fact : biological data are very noisy [Epbwarps 1 AL. 2002]:

» Missing informations (false negatives). About 50%.
» Erroneous informations (false positives). About 50%.

v

Topology of the motif can be unknown a priori.

v

Different functions can have a same topology.

v

Topology can be irrelevant.
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Graph Motif [Lacroix et al. 2006]

» Each network node is colored by its “function”.
» Motif is a (multi) set of colors

» Does the motif appears as a connected subgraph of the
network 7
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Graph Motif [Lacroix et al. 2006]

v

Each network node is colored by its “function”.

v

Motif is a (multi) set of colors

v

Does the motif appears as a connected subgraph of the
network 7

v

Topology is only the connectivity of the solution.
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Graph Motif

Graph Motif — A toy example
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Graph Motif

Graph Motif — A toy example
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Graph Motif — A toy example
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Graph Motif

» Applied to different type of biological networks.

> Initially for metabolic networks [LAacroix BT AL. 2006].
» Useful for PPl networks [BRUCKNER ET AL. 2009].

» But also for social networks [Berzier 51T AL, 2008, S. 2011].
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Graph Motif — Complexity

» Problem is NP-complete.

» Even on strong conditions (tree of maximum degree 3, tree of
depth 2...) [FELLOWS ET AL. 2007, AMBALATH ET AL. 2010]
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Graph Motif — Complexity

» Problem is NP-complete.
» Even on strong conditions (tree of maximum degree 3, tree of
depth 2...) [FELLOWS ET AL. 2007, AMBALATH ET AL. 2010]
» Must cope with hardness:
» Some FPT algorithms.

> k is the size of the solution.

> O*(2%) for colorful motifs,

> O*(4%) for multiset motifs [GUILLEMOT AND S. 2010].
» Hard if the parameter is the number of different colors.
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Graph Motif — Complexity

» Problem is NP-complete.
» Even on strong conditions (tree of maximum degree 3, tree of
depth 2...) [FELLOWS ET AL. 2007, AMBALATH ET AL. 2010]
» Must cope with hardness:
» Some FPT algorithms.

> k is the size of the solution.

> O*(2%) for colorful motifs,
> O*(4%) for multiset motifs [GUILLEMOT AND S. 2010].
» Hard if the parameter is the number of different colors.

» Approximation.
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Approximate motifs
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Approximate motifs

Variants

» Experimental data, noisy.

» Ask for an exact occurrence is likely to fail.

» Must allow insertions, deletions...: optimisation problems!
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Approximate motifs

A variant for Graph Motif : Minimum Substitutions

» A variant: MINIMUM SUBSTITUTIONS [DoNDI ET AL. 2011].

» Find an occurrence with a maximum number of colors from
the motif, but with the same size.

» Substitution of motif colors by new colors.
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Minimum Substitutions: Toy example
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Minimum Substitutions: Toy example
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Minimum Substitutions: Toy example
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A variant for Graph Motif : Minimum Substitutions

» NP-hard even if G is a tree of maximum degree 4 where each
color occurs at most twice but FPT [Doxbr g1 aL. 2011].

» Result: there is no approximation ratio within clog|V/|, unless
P = NP, even if the motif is colorful (at most one occurrence
of each color) and G is a depth 2 tree.

» Reduction from SET COVER.
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Approximate motifs

Construction

X = {x1,x,x3},S = {{x1, %},{x2, x3},{x2}}
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Approximate motifs

Construction
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Result

» There is no approximation ratio within clog|X| for MINIMUM
SET COVER (unless P = NP) [Raz &1 Sarra 1997].
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Result

» There is no approximation ratio within clog|X| for MINIMUM
SET COVER (unless P = NP) [Raz &1 Sarra 1997].

» There is no approximation ratio within clog|V/| for MINIMUM
SUBSTITUTIONS (unless P = NP).
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Approximate motifs

Using graph modules

» Introduction of the (well-known) notion of graph modules
into GRAPH MOTIF .
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Using graph modules

» Introduction of the (well-known) notion of graph modules
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» NP-complete
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Approximate motifs

Using graph modules

» Introduction of the (well-known) notion of graph modules
into GRAPH MOTIF .

v

NP-complete

v

Exponential number of modules...

> ... but “generators” can be store in a linear tree.

v

Using this to have FPT algorithms.
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Other result in the paper

» MAX MOTIF is hard to approximate.
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