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Florian Sikora1
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Introduction Hardness FPT Approximation

An Example from Viral Marketing

XiAngela

Barack Nicolas

I Angela and Xi own an
iPhone

I Barack: “If three of my
friends have an iPhone, I
buy an iPhone too”

I Nicolas: “If two of my
friends have an iPhone, I
buy an iPhone too”

I Apple sold two iPhones without any advertisement!
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Introduction Hardness FPT Approximation

An Example from Viral Marketing

I The first customers (target set) had an iPhone (Apple gave
bonuses, free phones...).

I Goal: get the fewest customers with advertisement in order to
attract the maximum number of customers at the end.

I What is the target set of customers to attract?

I Other applications:
I Spreading of information/influence in social networks via

word-of-mouth recommendations.
I Diseases in populations.
I Faults in distributed computing.
I ...
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Introduction Hardness FPT Approximation

Problem Definition

I Diffusion (threshold model):
I A vertex of the graph is activated if it is in the target set or

if at least thr(v) of its neighbors are activated.

I Optimization problem [Kempe et al. 2003]:

Influence:

I Input: A graph, a threshold for each vertex, an integer k.

I Output: A subset of vertices of size at most k s.t. the
number of activated vertices is .
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I Diffusion (threshold model):
I A vertex of the graph is activated if it is in the target set or

if at least thr(v) of its neighbors are activated.

I Optimization problem [Kempe et al. 2003]:

Decision Influence:

I Input: A graph, a threshold for each vertex, an integer k, an
integer l .

I Output: A subset of vertices of size at most k s.t. the
number of activated vertices is at least l .
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Activation Process - Example
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Introduction Hardness FPT Approximation

Thresholds

I Different types of thresholds:
I General.
I Constant.
I Majority (thr(v) = ddegree(v)/2e).
I Unanimity (thr(v) = degree(v)).
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Introduction Hardness FPT Approximation

Cardinality Constraint Problems

I Our problem is part of a larger class of problems formalized in
[Cai 2008].

I Find a solution of cardinality k (given in the input) s.t. an
objective is maximized (or minimized).

I Examples:
I Max Vertex Cover: Find k vertices s.t. the number

covered edges is maximum.
I Classical Vertex Cover is FPT.
I Decision version of Max Vertex Cover is W[1]-hard.

I Max Dominating Set.
I Same problems with minimization.
I ...
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Introduction Hardness FPT Approximation

(FPT)-Approximation – Better ratio

I Can achieve better ratios if we remove the polynomial-time
constraint [Cai et al. 2006, Chen et al. 2006, Downey et al. 2006].

I Problem is f (n)-approximable in fpt-time with respect to a
parameter k (could be anything...) if:

I Algorithm achieve a f (n)-approximation.
I With running time g(k) · nc .

I Pertinent for cardinality constraint problems!
I Time parameterized by k.
I Minimize/Maximize the objective.

I Example for Max Vertex Cover:
I No polynomial-time approximation scheme, W[1]-hard.
I Admits a fpt-time approximation scheme [Marx 2008].
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Introduction Hardness FPT Approximation

Known results

I (Of course), NP-hard, even in bipartite graphs and
thresholds=2 [Chen 2009].

I Hard to approximate within O(2log1−ε n), even if thresholds
are bounded by 2 and the graph is bipartite [Chen 2009].

I W[2]-hard for parameter solution size, even on majority and
bounded thresholds [Nichterlein et al. 2012].

I Our problem is hard to approximate and W[2]-hard:
I Can we have better approximation ratio if we allow fpt-time?
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Introduction Hardness FPT Approximation

Reduction

Dominating Set

I Input: A graph, an integer k .

I Output: A subset of the vertices of size at most k s.t. each
vertex of the graph has at least a neighbor in the solution.

v4

v3v2

13/22



Introduction Hardness FPT Approximation

Reduction

Dominating Set

I Input: A graph, an integer k .

I Output: A subset of the vertices of size at most k s.t. each
vertex of the graph has at least a neighbor in the solution.

v4

v3v2

v1

v5

13/22



Introduction Hardness FPT Approximation

Reduction

Dominating Set

I Input: A graph, an integer k .

I Output: A subset of the vertices of size at most k s.t. each
vertex of the graph has at least a neighbor in the solution.

v4

v3v2

v1

v5

13/22



Introduction Hardness FPT Approximation

Reduction
I From an instance of Dominating Set with parameter k .

I Build an instance of our problem.

I Two copies of the vertex set .
I For each edge {u, v}, add the edges {ut , vb}, {ub, v t}.
I Threshold = 1 for bottom vertices, degree(v) for top ones.
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I Dominating set of size k ⇒ Target set of size k activating all
the vertices.

I Target set of size k activating all the vertices ⇒ Dominating
set of size k .
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Introduction Hardness FPT Approximation

Parameterized Intractibility

I With additional gadgets, we can prove that our problem
cannot be approximated within n1−ε in fpt-time unless
FPT = W[2].

I Even if:
I The graph is bipartite.
I Majority thresholds.
I Thresholds are at most 2.
I All the activated vertices (including the target set) are counted.
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Introduction Hardness FPT Approximation

Unanimity Thresholds

I All the neighbors of a vertex must be activated.
I Only one round!
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Introduction Hardness FPT Approximation

Unanimity Thresholds

I We prove that the problem is W[1]-hard for combined
parameter (k , l) even for bipartite graphs.

I Cannot be approximated within n1−ε in polynomial time...

I But it is 2k-approximable in polynomial time!

I Therefore, it is r(n)-approximable in fpt-time, for any
strictly increasing function r .

18/22



Introduction Hardness FPT Approximation

Unanimity Thresholds

I We prove that the problem is W[1]-hard for combined
parameter (k , l) even for bipartite graphs.

I Cannot be approximated within n1−ε in polynomial time...

I But it is 2k-approximable in polynomial time!

I Therefore, it is r(n)-approximable in fpt-time, for any
strictly increasing function r .

18/22



Introduction Hardness FPT Approximation

Unanimity Thresholds

I We prove that the problem is W[1]-hard for combined
parameter (k , l) even for bipartite graphs.

I Cannot be approximated within n1−ε in polynomial time...

I But it is 2k-approximable in polynomial time!

I Therefore, it is r(n)-approximable in fpt-time, for any
strictly increasing function r .

18/22



Introduction Hardness FPT Approximation

Approximation in fpt-time within arbitrarily small ratios

I We know that our problem is 2k -approximable in
polynomial-time.

I We want to prove that it is also log2(n)-approximable in
fpt-time.

I Distinguish two cases for our problem.

I k < log2 log2(n):
I The 2k -approximation becomes a 2log2 log2 n =

log2 n-approximation (in polynomial time).

I k > log2 log2(n)⇒ n < 22k

.
I Apply any brute-force algorithm testing all subsets of size k

for the solution and take the one making the better solution.
Exact algorithm in fpt-time.

I All together: approximation algorithm in fpt-time
(log2(n)-approximation in time O∗(2k2k )).

I Generalization: replace log2(n) by any strictly increasing
function of n.

I A worse running time implies a better ratio.
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Approximation in fpt-time within arbitrarily small ratios

I Apply to all cardinality constraint problems.

I We can make a E-reduction from Densest k-Subgraph to
our problem with unanimity thresholds.

I ⇒ Densest k-Subgraph is also r(n)-approximable in
fpt-time, for any increasing function r .
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Conclusion

I Problem hard to approximate, even in fpt-time.

I If the thresholds are unanimity, the problem is a bit easier.

I In the paper, more positive results (approximation, fpt) if we
focus on bounded degree graphs.
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Fixed-Parameter Tractability

“Measuring complexity only in terms of the input size means
ignoring any structural information about the instances”

J. Flum et M. Grohe

“Question : When will the input of a problem coming from “real
life” have no more structure than its size?
Answer : Never!”

R. Downey et M. Fellows

“The fundamental idea is to restrict the combinatorial explosion,
seemingly unavoidable, that causes the exponential growth in the
running time of certain problem-specific parameters...”

R. Niedermeier
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Fixed-Parameter Tractability
I Examples:

I Solution size k in a n-vertices graph.
I n voters for k candidates.
I Requests of size k in a n-sized database.
I ...

I A problem is in the class FPT if any instance (I , k) can be
solved exactly in f (k) · |I |c .

I Complexity classes: FPT ⊆
presumably 6⊂ FPT︷ ︸︸ ︷

W[1] ⊆W[2] ⊆ . . .
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Approximation

I For an NP-hard optimisation problem, no polynomial-time
algorithm is possible (unless P = NP)...

I ... if the solution must be exact!

I Allow errors to obtain a polynomial-time algorithm.

I With a bound on the error.

I An algorithm is a f (n)-approximation if it runs in
polynomial-time and if the cost of the returned solutions is
bounded in the worst case by r × Opt (for minimization
problems).

Solutions

Opt f (n)× Opt
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Unanimity Thresholds - A 2k approximation in
poly-time

I Find the largest set of “false-twins” with all vertices degree
bounded by k .

I Make the neighbors of this set as the solution (the target set)
I There is at most k neighbors.
I This will activate all the vertices in the false-twins set in the

next round.

I There is at most 2k different false-twins set.
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