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1LIGM, Université Paris Est, CNRS – France
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2DISCo, Università Milano-Bicocca – Italy
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1LIGM, Université Paris Est, CNRS – France
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Introduction Kernelization FPT

Motivations

I Recent approach: Consider evolutionary model for genomes.

I Goal: inference ancestral genomes, evolutionary events that
originated two genomes.

I Approach based on alignment of genomes, measure
similarities and differences.
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Longuest Common Subsequence (LCS)

I Well known problem in Computational Biology.

LCS:

I Input: Two strings.

I Output: A string of maximum length which is a
subsequence of both strings.

I Polynomial for 2 (or a fixed number of) strings in the input
via DP [Hsu, Du, 1984].

I NP-hard otherwise, even with alphabet of size 2 [Maier, 1978].
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Exemplar model
I Fact: evolution implies that genomes contain multiple copies

of a gene.
I Exemplar model [Sankoff 1999]: for each family of duplicated

genes there is an exemplar one, representative gene from
which all other genes have originated.

I LCS problem under the exemplar model: no repetition of a
symbol in the subsequence solution.

Repetition Free LCS: [Adi et al. 2010]

I Input: Two strings s1, s2 over an alphabet.

I Output: A string s of length which is a subsequence of both
strings, s.t. each symbol of the alphabet occurs at most
once in s.

I Following the parsimony principle, the exemplar genes are
those s.t. the resulting similarity is the best.
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Decision Repetition Free LCS: [Adi et al. 2010]

I Input: Two strings s1, s2 over an alphabet, an integer k.

I Output: A string s of length at least k which is a
subsequence of both strings, s.t. each symbol of the alphabet
occurs at most once in s.
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Example

s1: A B C C B

s2: C C A A B

LCS: C C B

A RFLCS: A B
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RFLCS - Known results

I Polynomial-time solvable if [Adi et al. 2010]:
I Each symbol occurs at most once in one string (=LCS).
I There is a fixed number of symbols with multiple occurrences.

I APX-hard, even with at most 2 occurrences of each symbol
[Adi et al. 2010].

I “Trivially” o-approximable, where o is the maximum number
of occurrences of a symbol [Adi et al. 2010].

I Compute a LCS (an upper-bound) and remove repetitions...

I In FPT for the parameter size of the solution by color-coding,
O∗((2e)k) if randomized [Bonizzoni et al. 2010].
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Introduction Kernelization FPT

A negative result

I RFLCS is in FPT: admit a kernel.
I Our result: RFLCS does not admit a polynomial-size

kernel (unless NP ⊆ coNP/Poly).
I The derived classical problem is NP-complete, remains to show

the OR-composition.
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Compose two instances

I We can assume that the 2 instances are on different alphabet
(otherwise, we can build an equivalent instance).

Instance 1

s1
1 : A B C

s1
2 : B C A

Instance 2

s2
1 : D E F

s2
2 : D D F

Composed instance

s1,2
1 : A B C D E F

s1,2
2 : D D F B C A
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OR-composition

Composed instance

s1:

Instance 1 Instance 2

. . .

Instance t − 2
Instance t − 1

Instance t

s2:

Instance t
Instance t − 1

Instance t − 2

. . .

Instance 2 Instance 1

I Since the alphabet are disjoints, there is a RFLCS of size k in
one of the t instances iff there is a RFLCS of size k in the
composed instance.
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RFLCS and polynomials

I Known: RFLCS in FPT w.r.t. the parameter size of the
solution.

I Randomized algorithm in O∗((2e)k) time and O∗(2k) space,
via color-coding (worse running time for the deterministic
one).

I Improvement of these complexity using the framework of
Koutis and Williams [2008,2009].

I Key result:
I There is a randomized algorithm to decide in time O∗(2k)

and polynomial space, if a polynomial represented by an
arithmetic circuit contains a multilinear monomial of degree
k .
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Polynomials

I Framework successfully applied for different problems:
I k-Path.
I k-Tree.
I k-Leaf Spanning Tree.
I t-Dominating Set.
I Graph Motif.
I Exemplar Breakpoint Distance.
I ...
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Polynomials

I A monomial is multilinear if each variable of the monomial
occurs at most once.

I By definition, the degree of a multilinear monomial is the
number of its variables.

I Example: P(X ) = (x2
1x3x5 + x1x2x4x6):

I x1x2x4x6 is a multilinear monomial of degree 4.
I x2

1 x3x5 is not a multilinear monomial.
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Polynomials

I An arithmetic circuit over a set of variables X is a DAG s.t.:
I internal nodes are the operations × or +,
I leafs are the elements of X .

I Example for P(X ) = (x1 + x2 + x3)(x3 + x4 + x5).

+

×

+

x1

x2

x3

x4

x5
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RFLCS and polynomials

I To solve RFLCS:
I We introduce a variable for each symbol of the alphabet.
I We build a circuit representing the subsequences of s1 and s2.
I There is a multilinear monomial of degree k in the circuit iff

there is a common subsequence of size k without repetitions.
I We can solve RFLCS in O∗(2k) time and polynomial space by

a randomized algorithm.

19/21



Introduction Kernelization FPT

Conclusion

I Better parameters? (e.g. when there is few duplications,
difference between smallest string and the solution?)

I Prove a lower-bound on the time-complexity? Find a
deterministic O∗(2k) algorithm?

I Constant factor approximable?
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Construction of the circuit

I Via Dynamic Programming.
I Idea: The set of monomials representing the LCS of length k

between s1[0...i ] and s2[0...j ] is the sum of:
I the set of monomials representing the LCS of length k

between s1[0...i − 1] and s2[0...j ],
I the set of monomials representing the LCS of length k

between s1[0...i ] and s2[0...j − 1],
I the set of monomials representing the LCS of length k − 1

between s1[0...i − 1] and s2[0...j − 1] times xa if
s1[i ] = s2[j ] = a, otherwise of the set for the LCS of length k.
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