Guillaume Blin¹ Paola Bonizzoni² Riccardo Dondi³ <u>Florian Sikora</u>⁴

¹LIGM, Université Paris Est, CNRS – France
²DISCo, Università Milano-Bicocca – Italy
³Università Bergamo – Italy
⁴LAMSADE, Université Paris Dauphine, CNRS – France

Guillaume Blin¹ Paola Bonizzoni² Riccardo Dondi³ Florian Sikora⁴

¹LIGM, Université Paris Est, CNRS – France ²DISCo, Università Milano-Bicocca – Italy ³Università Bergamo – Italy ⁴LAMSADE, Université Paris Dauphine, CNRS – France

Guillaume Blin¹ Paola Bonizzoni² Riccardo Dondi³ Florian Sikora⁴

¹LIGM, Université Paris Est, CNRS – France ²DISCo, Università Milano-Bicocca – Italy ³Università Bergamo – Italy ⁴LAMSADE, Université Paris Dauphine, CNRS – France

Guillaume Blin¹ Paola Bonizzoni² Riccardo Dondi³ Florian Sikora⁴

¹LIGM, Université Paris Est, CNRS – France ²DISCo, Università Milano-Bicocca – Italy ³Università Bergamo – Italy ⁴LAMSADE, Université Paris Dauphine, CNRS – France

Outline

Introduction

Kernelization

FPT

2/21

Outline

Introduction

Kernelization

FPT

 $Genome \ 1: \ \dots cgtaggtcgttacgtaactattacgaggttcagtacactcgctagactgca\dots$

 $Genome \ 1: \ \dots cgtaggtcgttacgtaactattacgaggttcagtacactcgctagactgca\dots$

Genomes

 $Genome \ 1: \ \dots cgtaggtcgttacgtaactattacgaggttcagtacactcgctagactgca\dots$

Genomes

Genome 1: ...cgtaggtcgttacgtaactattacgaggttcagtacactcgctagactgca...

Motivations

- Recent approach: Consider evolutionary model for genomes.
- Goal: inference ancestral genomes, evolutionary events that originated two genomes.
- Approach based on alignment of genomes, measure similarities and differences.

Longuest Common Subsequence (LCS)

Well known problem in Computational Biology.

LCS:

- Input: Two strings.
- Output: A string of maximum length which is a subsequence of both strings.

Longuest Common Subsequence (LCS)

Well known problem in Computational Biology.

LCS:

- Input: Two strings.
- Output: A string of maximum length which is a subsequence of both strings.
- ▶ Polynomial for 2 (or a fixed number of) strings in the input via DP [Hsu, Du, 1984].
- ▶ NP-hard otherwise, even with alphabet of size 2 [MAIER, 1978].

Exemplar model

- Fact: evolution implies that genomes contain multiple copies of a gene.
- ► Exemplar model [SANKOFF 1999]: for each family of duplicated genes there is an **exemplar** one, representative gene from which all other genes have originated.

FPT

Exemplar model

- Fact: evolution implies that genomes contain multiple copies of a gene.
- ► Exemplar model [SANKOFF 1999]: for each family of duplicated genes there is an **exemplar** one, representative gene from which all other genes have originated.
- LCS problem under the exemplar model: no repetition of a symbol in the subsequence solution.

FP

Exemplar model

- Fact: evolution implies that genomes contain multiple copies of a gene.
- ► Exemplar model [SANKOFF 1999]: for each family of duplicated genes there is an **exemplar** one, representative gene from which all other genes have originated.
- LCS problem under the exemplar model: no repetition of a symbol in the subsequence solution.

Repetition Free LCS: [Adi et al. 2010]

- ▶ **Input:** Two strings *s*₁, *s*₂ over an alphabet.
- Output: A string s of maximum length which is a subsequence of both strings, s.t. each symbol of the alphabet occurs at most once in s.
- Following the parsimony principle, the exemplar genes are those s.t. the resulting similarity is the best.

FPT

Exemplar model

- Fact: evolution implies that genomes contain multiple copies of a gene.
- ► Exemplar model [SANKOFF 1999]: for each family of duplicated genes there is an **exemplar** one, representative gene from which all other genes have originated.
- LCS problem under the exemplar model: no repetition of a symbol in the subsequence solution.

Decision Repetition Free LCS: [Adi et al. 2010]

- **Input:** Two strings s_1, s_2 over an alphabet, **an integer** k.
- Output: A string s of length at least k which is a subsequence of both strings, s.t. each symbol of the alphabet occurs at most once in s.
- Following the parsimony principle, the exemplar genes are those s.t. the resulting similarity is the best.

Example

Example

Example

FPT

RFLCS - Known results

- ► Polynomial-time solvable if [ADI ET AL. 2010]:
 - ► Each symbol occurs at most once in one string (=LCS).
 - ► There is a fixed number of symbols with multiple occurrences.
- ► APX-hard, even with at most 2 occurrences of each symbol [ADI ET AL. 2010].
- ► "Trivially" *o*-approximable, where *o* is the maximum number of occurrences of a symbol [ADI ET AL. 2010].
 - ► Compute a LCS (an upper-bound) and remove repetitions...
- ► In FPT for the parameter size of the solution by color-coding, O*((2e)^k) if randomized [BONIZZONI ET AL. 2010].

Outline

Introduction

Kernelization

FPT

A negative result

- RFLCS is in FPT: admit a kernel.
- ► Our result: RFLCS does not admit a polynomial-size kernel (unless NP ⊆ coNP/Poly).
 - The derived classical problem is NP-complete, remains to show the OR-composition.

Compose two instances

We can assume that the 2 instances are on different alphabet (otherwise, we can build an equivalent instance).

Compose two instances

 We can assume that the 2 instances are on different alphabet (otherwise, we can build an equivalent instance).

Composed instance

OR-composition

OR-composition

Since the alphabet are disjoints, there is a RFLCS of size k in one of the t instances iff there is a RFLCS of size k in the composed instance.

Outline

Introduction

Kernelization

FPT

RFLCS and polynomials

- Known: RFLCS in FPT w.r.t. the parameter size of the solution.
- ► Randomized algorithm in O*((2e)^k) time and O*(2^k) space, via color-coding (worse running time for the deterministic one).
- ► Improvement of these complexity using the framework of Koutis and Williams [2008,2009].
- Key result:
 - ► There is a randomized algorithm to decide in time O*(2^k) and polynomial space, if a polynomial represented by an arithmetic circuit contains a multilinear monomial of degree k.

- ► Framework successfully applied for different problems:
 - ► *k*-Path.
 - k-TREE.
 - ► *k*-Leaf Spanning Tree.
 - ► *t*-Dominating Set.
 - ► GRAPH MOTIF.
 - ► EXEMPLAR BREAKPOINT DISTANCE.
 - ▶ ...

- A monomial is multilinear if each variable of the monomial occurs at most once.
- By definition, the degree of a multilinear monomial is the number of its variables.
- Example: $P(X) = (x_1^2 x_3 x_5 + x_1 x_2 x_4 x_6)$:
 - $x_1x_2x_4x_6$ is a multilinear monomial of degree 4.
 - $x_1^2 x_3 x_5$ is not a multilinear monomial.

► An arithmetic circuit over a set of variables X is a DAG s.t.:

- \blacktriangleright internal nodes are the operations \times or +,
- leafs are the elements of X.

- ► An arithmetic circuit over a set of variables X is a DAG s.t.:
 - \blacktriangleright internal nodes are the operations \times or +,
 - leafs are the elements of X.
- Example for $P(X) = (x_1 + x_2 + x_3)(x_3 + x_4 + x_5)$.

RFLCS and polynomials

- ► To solve RFLCS:
 - ▶ We introduce a variable for each symbol of the alphabet.
 - We build a **circuit** representing the subsequences of s_1 and s_2 .
 - There is a multilinear monomial of degree k in the circuit iff there is a common subsequence of size k without repetitions.
 - ▶ We can solve RFLCS in O^{*}(2^k) time and polynomial space by a randomized algorithm.

Conclusion

- Better parameters? (e.g. when there is few duplications, difference between smallest string and the solution?)
- Prove a lower-bound on the time-complexity? Find a deterministic O*(2^k) algorithm?
- Constant factor approximable?

Construction of the circuit

- Via Dynamic Programming.
- ► Idea: The set of monomials representing the LCS of length k between s₁[0...i] and s₂[0...j] is the sum of:
 - ▶ the set of monomials representing the LCS of length k between s₁[0...i − 1] and s₂[0...j],
 - ▶ the set of monomials representing the LCS of length k between s₁[0...i] and s₂[0...j − 1],
 - ▶ the set of monomials representing the LCS of length k − 1 between s₁[0...i − 1] and s₂[0...j − 1] times x_a if s₁[i] = s₂[j] = a, otherwise of the set for the LCS of length k.