Florian Sikora<sup>1</sup>

Cristina Bazgan<sup>1,4</sup> Morgan Chopin<sup>2</sup> André Nichterlein<sup>3</sup>

<sup>1</sup>LAMSADE, Université Paris Dauphine, CNRS – France <sup>2</sup>IOOR, Ulm – Germany <sup>3</sup>TU Berlin – Germany <sup>3</sup>IUF

Cristina Bazgan<sup>1,4</sup> Morgan Chopin<sup>2</sup> André Nichterlein<sup>3</sup> Florian Sikora<sup>1</sup>

> <sup>1</sup>LAMSADE, Université Paris Dauphine, CNRS – France <sup>2</sup>IOOR, Ulm – Germany <sup>3</sup>TU Berlin – Germany <sup>3</sup>IUF



Cristina Bazgan<sup>1,4</sup> Morgan Chopin<sup>2</sup> André Nichterlein<sup>3</sup> Florian Sikora<sup>1</sup>

> <sup>1</sup>LAMSADE, Université Paris Dauphine, CNRS – France <sup>2</sup>IOOR, Ulm – Germany <sup>3</sup>TU Berlin – Germany <sup>3</sup>IUF



Florian Sikora<sup>1</sup>

Cristina Bazgan<sup>1,4</sup> Morgan Chopin<sup>2</sup> André Nichterlein<sup>3</sup>

<sup>1</sup>LAMSADE, Université Paris Dauphine, CNRS – France <sup>2</sup>IOOR, Ulm – Germany <sup>3</sup>TU Berlin – Germany <sup>3</sup>IUF



#### Outline

#### Introduction

#### **Parameterized Approximation**

Hardness

## Outline

#### Introduction

**Parameterized Approximation** 

Hardness







 Barack: "If three of my friends have an iPhone, I buy an iPhone too"



- Barack: "If three of my friends have an iPhone, I buy an iPhone too"
- François: "If two of my friends have an iPhone, I buy an iPhone too"



- Barack: "If three of my friends have an iPhone, I buy an iPhone too"
- François: "If two of my friends have an iPhone, I buy an iPhone too"



- Barack: "If three of my friends have an iPhone, I buy an iPhone too"
- François: "If two of my friends have an iPhone, I buy an iPhone too"

Apple sold two iPhones without any advertisement!

► Goal: get the **fewest customers** with advertisement in order to **attract all customers** at the end.

- Goal: get the fewest customers with advertisement in order to attract all customers at the end.
- Other applications:
  - Spreading of information/influence in social networks via word-of-mouth recommendations.
  - Diseases in populations.
  - Faults in distributed computing.
  - ▶ ...

# **Problem Definition**

#### Diffusion (threshold model):

A vertex of the graph is activated if it is in the target set or if at least thr(v) of its neighbors are activated.

# **Problem Definition**

- Diffusion (threshold model):
  - ► A vertex of the graph is activated if it is in the target set or if at least thr(v) of its neighbors are activated.
- ► Optimization problem [CHEN 2008]:

#### Min Target Set Selection:

- Input: A graph, a threshold for each vertex.
- Output: A subset of vertices of minimum cardinality s.t. all vertices of the graph are activated at the end of the diffusion process.

# **Problem Definition**

- Diffusion (threshold model):
  - ► A vertex of the graph is activated if it is in the target set or if at least thr(v) of its neighbors are activated.
- ► **Decision problem** [CHEN 2008]:

#### **Target Set Selection:**

- ▶ Input: A graph, a threshold for each vertex, an integer k.
- Output: A subset of vertices of size at most k s.t. all vertices of the graph are activated at the end of the diffusion process.



Numbers in vertex = threshold of the vertex k = 3.











• General. 
$$(1 \leq thr(v) \leq deg(v))$$



- General.  $(1 \leq thr(v) \leq deg(v))$
- Constant.  $(1 \leq thr(v) \leq c)$



- General.  $(1 \leq thr(v) \leq deg(v))$
- Constant.  $(1 \leq thr(v) \leq c)$
- Majority.  $(thr(v) = \lceil deg(v)/2 \rceil)$ .



- General.  $(1 \leq thr(v) \leq deg(v))$
- Constant.  $(1 \leq thr(v) \leq c)$
- Majority.  $(thr(v) = \lceil deg(v)/2 \rceil)$ .
- Unanimity. (thr(v) = deg(v)).



#### Outline

#### Introduction

#### **Parameterized Approximation**

Hardness

"Measuring complexity only in terms of the input size means ignoring any structural information about the instances" J. Flum and M. Grohe

"Question : When will the input of a problem coming from "real life" have no more structure than its size? Answer : Never!"

R. Downey and M. Fellows

"Measuring complexity only in terms of the input size means ignoring any structural information about the instances" J. Flum and M. Grohe

"Question : When will the input of a problem coming from "real life" have no more structure than its size? Answer : Never!"

R. Downey and M. Fellows

"The fundamental idea is to restrict the combinatorial explosion, seemingly unavoidable, that causes the exponential growth in the running time of certain problem-specific parameters..."

R. Niedermeier

▶ Problem in FPT: any instance (I, k) solved in  $f(k) \cdot |I|^c$ .





- Examples:
  - ▶ Solution size *k* in a *n*-vertices graph.
  - n voters for k candidates.
  - ▶ Requests of size *k* in a *n*-sized database.
  - ▶ ...

▶ Problem in FPT: any instance (I, k) solved in  $f(k) \cdot |I|^c$ .





- Examples:
  - ▶ Solution size *k* in a *n*-vertices graph.
  - n voters for k candidates.
  - ▶ Requests of size *k* in a *n*-sized database.
  - ▶ ...

► Complexity classes:  $\mathsf{FPT} \subseteq \overset{\mathsf{presumably}}{\bigcup} \underbrace{\mathsf{W}[1] \subseteq \mathsf{W}[2] \subseteq \ldots}$ 

# **Polynomial Approximation (minimization)**



## Coping with the hardness



## Coping with the hardness



# **FPT-Approximation**

- ► A (minimization) problem is **fpt**-*ρ*-**approximable** if for any input (*I*, *k*):
  - ► If  $opt(I) \leq k$ , computes a solution of value bounded by  $\rho(k) \cdot k$  in time  $f(k)|I|^{O(1)}$ ,
  - Otherwise, output can be arbitrary .

## **Example for treewidth**

|               | Time                 | Ratio               |                   |
|---------------|----------------------|---------------------|-------------------|
| FPT           | $2^{O(k^2)} \cdot n$ | 1                   | [Bodlaender 96]   |
| Poly. Approx. | poly(n)              | $O(k\sqrt{\log k})$ | [Feige et al. 05] |

## **Example for treewidth**

|               | Time                 | Ratio               |                        |
|---------------|----------------------|---------------------|------------------------|
| FPT           | $2^{O(k^2)} \cdot n$ | 1                   | [Bodlaender 96]        |
| Poly. Approx. | poly(n)              | $O(k\sqrt{\log k})$ | [Feige et al. 05]      |
| FPT Approx.   | $2^{O(k)} \cdot n$   | 5                   | [Bodlaender et al. 13] |

# **FPT-inapproximability**

- Not fpt-ρ-approximation for any function ρ:
  - ► INDEPENDENT DOMINATING SET [DOWNEY ET AL. 2008]
  - ▶ WEIGHTED CIRCUIT SAT [CHEN ET AL. 2006]

# **FPT-inapproximability**

- Not fpt-ρ-approximation for any function ρ:
  - ► INDEPENDENT DOMINATING SET [DOWNEY ET AL. 2008]
  - ▶ WEIGHTED CIRCUIT SAT [CHEN ET AL. 2006]
- ► Not-monotone problems...
  - ▶ If optimum is k and every feasible solution has cost  $k \rightarrow$  as hard as decision.

# FPT-inapproximability - Monotone problems

► CLIQUE or DOMINATING SET remain open and challenging.

# FPT-inapproximability - Monotone problems

- ► CLIQUE or DOMINATING SET remain open and challenging.
- ► MONOTONE WEIGHTED CIRCUIT SAT (no negation) is not fpt-approximable. [MARX 2013]

#### Outline

#### Introduction

#### **Parameterized Approximation**

#### Hardness

# Known results for Target Set Selection

- ► Hard to approximate in poly-time within  $O(2^{\log^{1-\epsilon} n})$  [CHEN 2009].
- ▶ W[2]-hard for parameter solution size [NICHTERLEIN ET AL. 2012].

# Known results for Target Set Selection

- ► Hard to approximate in poly-time within  $O(2^{\log^{1-\epsilon} n})$  [CHEN 2009].
- ▶ W[2]-hard for parameter solution size [Nichterlein et al. 2012].
- ► TSS is hard to approximate and W[2]-hard:
  - Can we have better approximation ratio if we allow fpt-time?

# Directed edge gadget

u v



# General idea - Bipartite graphs

▶ From MONOTONE WEIGHTED CIRCUIT SAT.





#### Results

- ► Reduction with one-to-one correspondence between solutions.
- ► As MONOTONE CIRCUIT SAT, TARGET SET SELECTION is not fpt-ρ-approximable, for any function ρ.
- Can be extended to majority and constant threshold via additional gadgets.

- All the neighbors of a vertex must be activated.
  - ► Only one round!



- ► All the neighbors of a vertex must be activated.
  - Only one round!



- ► All the neighbors of a vertex must be activated.
  - Only one round!



- All the neighbors of a vertex must be activated.
  - Only one round!



• Equivalent to VERTEX COVER: in FPT.

# Conclusion

• Hard hard hard hard.

## Conclusion

- Hard hard hard hard.
- Dual of the problem?
  - Unanimity thresholds:
    - ▶ Equivalent to INDEPENDENT SET: W[1]-hard.
  - Majority or constant thresholds?
  - fpt-approximation?

# Köszönöm!