Finding Disjoint Paths on Edge-Colored Graphs: A Multivariate Complexity Analysis

Riccardo Dondi¹ <u>Florian Sikora</u>²

¹Universita degli Studi di Bergamo – Italy ²LAMSADE, Université Paris Dauphine, CNRS – France

COCOA 2016

Finding Disjoint Paths on Edge-Colored Graphs: A Multivariate Complexity Analysis

Riccardo Dondi¹ <u>Florian Sikora</u>²

¹Universita degli Studi di Bergamo – Italy ²LAMSADE, Université Paris Dauphine, CNRS – France

COCOA 2016

Outline

Introduction

FPT Vertex Cover

Parameterized Inapproximability

Motivations

- Originates from **Social Network Analysis**.
- Computing the connectivity between 2 nodes is an important problem.
 - measurement of information flow,
 - cohesion group and centrality.

Motivations

- Originates from Social Network Analysis.
- Computing the connectivity between 2 nodes is an important problem.
 - measurement of information flow,
 - cohesion group and centrality.
- Different kind of relationship:
 - Different colors on the edges.
 - Integration of different type of information.
 - Different media.
 - Different protocol.
 - ► ...

- ▶ Monochromatic: Info. spread among relation of the same kind.
- Number: More connected.
- Length: short paths are considered more significant.
- Vertex disjoint: security, traffic congestion...

- ▶ Monochromatic: Info. spread among relation of the same kind.
- Number: More connected.
- Length: short paths are considered more significant.
- Vertex disjoint: security, traffic congestion...
- Introduce vertex disjoint and color-disjoint version.
 - How different relations in a network connects 2 vertices

MaxCDP: Known results

- Not approximable within with $c^{1-\varepsilon}$ [Dondi et al. 13],
 - ▶ but *c*-approximable [WU 12].
- W[1]-hard w.r.t. number of paths [Dondi et al. 13].
 - ▶ Even not in XP (NP-C for 2 paths) [GOURVES ET AL. 12].

MaxCDP: Known results

- Not approximable within with $c^{1-\varepsilon}$ [Dondi et al. 13],
 - ▶ but *c*-approximable [Wu 12].
- ► W[1]-hard w.r.t. number of paths [Dondi et al. 13].
 - ▶ Even not in XP (NP-C for 2 paths) [Gourves et al. 12].
- When the length of the paths are bounded by ℓ :
 - Polynomial if $\ell < 4$, NP-C otherwise [Wu 12].
 - ▶ FPT w.r.t. number of paths + ℓ [DONDI ET AL. 13].
 - ▶ But no polynomial kernel [GOLOVACH THILIKOS 11]

Related problems

- ► 1 color:
 - ▶ 1 source-target: Polynomial (flow).
 - ▶ *k* sources-targets: NP-C but FPT for *k*. [ROBERTSON SEYMOUR]

Fixed-Parameter Tractability

• Problem in FPT: any instance (I, k) solved in $f(k) \cdot |I|^c$.

- Examples:
 - ▶ Solution of size *k* in a *n*-vertices graph.
 - n voters for k candidates.
 - ▶ Requests of size *k* in a *n*-sized database.
 - ▶ ...

Fixed-Parameter Tractability

• Problem in FPT: any instance (I, k) solved in $f(k) \cdot |I|^c$.

- Examples:
 - ▶ Solution of size *k* in a *n*-vertices graph.
 - n voters for k candidates.
 - ▶ Requests of size *k* in a *n*-sized database.
 - ▶ ...
- Many way to parameterize.
 - Solution size.

Fixed-Parameter Tractability

• Problem in FPT: any instance (I, k) solved in $f(k) \cdot |I|^c$.

- Examples:
 - ▶ Solution of size *k* in a *n*-vertices graph.
 - n voters for k candidates.
 - ▶ Requests of size *k* in a *n*-sized database.
 - ▶ ..
- Many way to parameterize.
 - Solution size.
 - Structure of the input.

Structural results MaxCDP

- ► Real-data is **not random** (e.g. small world phenomenon).
- Information on the structure.
- Use it in parameterized complexity.

Structural results MaxCDP

- ▶ Real-data is **not random** (e.g. small world phenomenon).
- Information on the structure.
- Use it in parameterized complexity.

Outline

Introduction

FPT Vertex Cover

Parameterized Inapproximability

• Aim: $f(\tau)n^{O(1)}$ exact algorithm.

FPT Vertex Cover

• τ computed in FPT time.

• Aim: $f(\tau)n^{O(1)}$ exact algorithm.

FPT Vertex Cover

• τ computed in FPT time.

- For all paths (s, v, t) (length 3): remove v.
 - Only one path can use v in an optimal solution.

- Aim: $f(\tau)n^{O(1)}$ exact algorithm.
- τ computed in FPT time.

- For all paths (s, v, t) (length 3): remove v.
 - Only one path can use v in an optimal solution.
- In any s t path (length > 3) of the solution:
 - A vertex in IS is adjacent to one in VC or s or t.

• Aim: $f(\tau)n^{O(1)}$ exact algorithm.

FPT Vertex Cover

• τ computed in FPT time.

- For all paths (s, v, t) (length 3): remove v.
 - ▶ Only one path can use *v* in an optimal solution.
- In any s t path (length > 3) of the solution:
 - ► A vertex in IS is adjacent to one in VC or *s* or *t*.
 - Paths are of length at most 2τ .
 - At most τ different paths.

• Aim: $f(\tau)n^{O(1)}$ exact algorithm.

FPT Vertex Cover

• τ computed in FPT time.

- For all paths (s, v, t) (length 3): remove v.
 - Only one path can use v in an optimal solution.
- In any s t path (length > 3) of the solution:
 - ▶ A vertex in IS is adjacent to one in VC or *s* or *t*.
 - Paths are of length at most 2τ .
 - At most τ different paths.
 - ► Known FPT [BONIZZONI ET AL. 13].

MaxCDDP and Vertex Cover

• For MaxCDDP: cannot remove length 3 paths.

MaxCDDP and Vertex Cover

For MaxCDDP: cannot remove length 3 paths.

▶ $(s, d, v, e, t) \cup (s, a, b, c, t)$ better than (s, v, t).

Outline

Introduction

FPT Vertex Cover

Parameterized Inapproximability

Coping with the hardness

Coping with the hardness

FPT-Approximation

- ► A (minimization) problem is **fpt**-*ρ*-**approximable** if for any input (*I*, *k*):
 - ► If $opt(I) \leq k$, computes a solution of value bounded by $\rho(k) \cdot k$ in time $f(k)|I|^{O(1)}$,
 - Otherwise, output can be arbitrary .

Example: computing treewidth

Example: computing treewidth

A maximum solution: $T = \{1, 2\} \subseteq U$

A maximum solution: $T = \{1, 2\} \subseteq U$

• INDEPENDENT SET when U = V, S = E, weights all 1.

A maximum solution: $T = \{1, 2\} \subseteq U$

- INDEPENDENT SET when U = V, S = E, weights all 1.
- No fpt cost ρ-approximation, for any ρ function (unless FPT=W[1]) [MARX 2013].

 (S_3^2)

 (S_3^1)

(t)

Reduction with one-to-one correspondence between solutions.

 MaxCDP (and MaxCDDP du to the s_i) are not fpt-ρ-approximable, for any function ρ (unless FPT=W[1]).

Open questions

- ► Complexity on **special class** of graphs? (planar + 2 colors ?)
- Parameterized complexity w.r.t. feedback vertex set ? (XP ? FPT ?)
- Fine grained complexity lower bounds?

