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2LAMSADE, Université Paris Dauphine, CNRS – France

COCOA 2016



Finding Disjoint Paths on Edge-Colored
Graphs: A Multivariate Complexity Analysis

Riccardo Dondi1 Florian Sikora2

1Universita degli Studi di Bergamo – Italy
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Motivations

I Originates from Social Network Analysis.
I Computing the connectivity between 2 nodes is an

important problem.
I measurement of information flow,
I cohesion group and centrality.

I Different kind of relationship:
I Different colors on the edges.
I Integration of different type of information.

I Different media.
I Different protocol.
I ...
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MaxCDP

Co-author

Acting

Playing

T. Pratchett S. Hawking

I Max nb monochromatic disjoint paths between 2 nodes.

I Monochromatic: Info. spread among relation of the same kind.
I Number: More connected.
I Length: short paths are considered more significant.
I Vertex disjoint: security, traffic congestion...

I Introduce vertex disjoint and color-disjoint version.
I How different relations in a network connects 2 vertices
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MaxCDP: Known results

I Not approximable within with c1−ε [Dondi et al. 13],
I but c-approximable [Wu 12].

I W[1]-hard w.r.t. number of paths [Dondi et al. 13].
I Even not in XP (NP-C for 2 paths) [Gourves et al. 12].

I When the length of the paths are bounded by `:
I Polynomial if ` < 4, NP-C otherwise [Wu 12].
I FPT w.r.t. number of paths + ` [Dondi et al. 13].

I But no polynomial kernel [Golovach Thilikos 11]
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Related problems

I 1 color:
I 1 source-target: Polynomial (flow).
I k sources-targets: NP-C but FPT for k . [Robertson Seymour]
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Fixed-Parameter Tractability
I Problem in FPT: any instance (I , k) solved in f (k) · |I |c .

I Examples:
I Solution of size k in a n-vertices graph.
I n voters for k candidates.
I Requests of size k in a n-sized database.
I ...

I Many way to parameterize.
I Solution size.

I Structure of the input.
I ...
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Structural results MaxCDP

I Real-data is not random (e.g. small world phenomenon).

I Information on the structure.

I Use it in parameterized complexity.

Vertex Cover

Distance to disjoint paths

Feedback Vertex Set # Pathwidth

Treewidth

Vertex Cover

Distance to disjoint paths
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MaxCDP w.r.t. Vertex Cover number
I Aim: f (τ)nO(1) exact algorithm.
I τ computed in FPT time.

VCIS

I For all paths (s, v , t) (length 3): remove v .
I Only one path can use v in an optimal solution.

I In any s − t path (length > 3) of the solution:
I A vertex in IS is adjacent to one in VC or s or t.

I Paths are of length at most 2τ .
I At most τ different paths.
I Known FPT [Bonizzoni et al. 13].
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MaxCDDP and Vertex Cover

I For MaxCDDP: cannot remove length 3 paths.

s

v

t

a

d e

b c

I (s, d , v , e, t) ∪ (s, a, b, c , t) better than (s, v , t).
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Coping with the hardness

Time Solution
Quality

FPT

Poly. Approx.

FPT Approx.
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FPT-Approximation

I A (minimization) problem is fpt-ρ-approximable if for any
input (I , k):

I If opt(I ) 6 k, computes a solution of value bounded by
ρ(k) · k in time f (k)|I |O(1),

I Otherwise, output can be arbitrary .
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Example: computing treewidth

Time Ratio

FPT 2O(k2) · n 1

aaaaaaa

[Bodlaender 96]

Poly. Approx. poly(n) O(k
√

log k) [Feige et al. 05]

FPT Approx. 2O(k) · n 5

aaaaaaa

[Bodlaender et al. 13]
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Threshold Set

U

A maximum solution: T = {1, 2} ⊆ U

1

2

3

4

S

S1
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S3

w(Si )

2

1

2

I Independent Set when U = V , S = E , weights all 1.

I No fpt cost ρ-approximation, for any ρ function (unless
FPT=W[1]) [Marx 2013].
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Reduction from Threshold Set

U

A maximum solution: T = {1, 2} ⊆ U

1

2

3

4

S

S1

w(Si )

2

s

u1

u2

u3

u4

S1
1

S2
1

S1
2

S1
3

S2
3

t

I Reduction with one-to-one correspondence between solutions.
I MaxCDP (and MaxCDDP du to the si ) are not

fpt-ρ-approximable, for any function ρ (unless FPT=W[1]).
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Open questions

I Complexity on special class of graphs? (planar + 2 colors ?)

I Parameterized complexity w.r.t. feedback vertex set ? (XP
? FPT ?)

I Fine grained complexity lower bounds?
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