On the Approximability of Partial VC Dimension

Cristina Bazgan¹ Florent Foucaud² <u>Florian Sikora¹</u>

¹LAMSADE, Université Paris Dauphine, CNRS – France ²LIMOS, Université Blaise Pascal, Clermont-Ferrand – France

COCOA 2016

On the Approximability of Partial VC Dimension

Cristina Bazgan¹ Florent Foucaud² <u>Florian Sikora¹</u>

¹LAMSADE, Université Paris Dauphine, CNRS – France ²LIMOS, Université Blaise Pascal, Clermont-Ferrand – France

COCOA 2016

On the Approximability of Partial VC Dimension

Cristina Bazgan¹ Florent Foucaud² <u>Florian Sikora¹</u>

¹LAMSADE, Université Paris Dauphine, CNRS – France ²LIMOS, Université Blaise Pascal, Clermont-Ferrand – France

COCOA 2016

Outline

Introduction

Distinguishing Transversal VC-dimension Studied Problem: Partial VC-dimension

Positive results

Negative results

Outline

Introduction Distinguishing Transversal VC-dimension

VC-dimension Studied Problem: Partial VC-dimension

Positive results

Negative results

Figure and example: A. Parreau

- Detector can detect fire in their room or in their neighborhood.
- Each room must contain a detector or have a detector in a neighboring room.

- Vertices V: rooms
- Edges E: between two neighboring rooms

Where is the fire ?

Where is the fire ?

Where is the fire ?

Where is the fire ?

To locate the fire, we need more detectors.

Locate the fire

Locate the fire

In each room, the set of detectors in the neighborhood is unique.

Distinguishing Transversal C = subset of vertices which is separating : $\forall u, v \in V, N[u] \cap C \neq N[v] \cap C$.

Distinguishing Transversal C = subset of vertices which is separating : $\forall u, v \in V, N[u] \cap C \neq N[v] \cap C$.

Distinguishing Transversal C = subset of vertices which is separating : $\forall u, v \in V, N[u] \cap C \neq N[v] \cap C$.

Distinguishing Transversal C = subset of vertices which is separating : $\forall u, v \in V, N[u] \cap C \neq N[v] \cap C$.

Distinguishing Transversal C = subset of vertices which is separating : $\forall u, v \in V, N[u] \cap C \neq N[v] \cap C$.

Given a graph G, what is the minimum size of C?

• Each neighborhood equivalence class is of size 1.

Distinguishing Transversal (a.k.a. Test Cover)

- Generalization on hypergraphs H = (X, E):
 - ▶ find k vertices $C \subseteq X$ inducing |E| classes $(e \cap C \neq f \cap C, \forall e, f \in E)$.

- Distinguish all pairs of hyperedges with minimum vertices.
- Each neighborhood equivalence class must have size 1.

Distinguishing Transversal (a.k.a. Test Cover)

- Generalization on hypergraphs H = (X, E):
 - ▶ find k vertices $C \subseteq X$ inducing |E| classes $(e \cap C \neq f \cap C, \forall e, f \in E)$.

- ► Distinguish all pairs of hyperedges with minimum vertices.
- Each neighborhood equivalence class must have size 1.

Outline

Introduction

Distinguishing Transversal VC-dimension Studied Problem: Partial VC-dimension

Positive results

Negative results

Shattered set

- H = (X, E) a hypergraph
- A set C ⊆ X is shattered if for all Y ⊆ C, there exists e ∈ E, s.t e ∩ C = Y.

A 2-shattered set

A 3-shattered set

- A set C is shattered if $\forall Y \subseteq C$, $\exists e \in E$, s.t $e \cap C = Y$.
- ► VC-dimension of *H*: largest size of a shattered set.

- A set C is shattered if $\forall Y \subseteq C$, $\exists e \in E$, s.t $e \cap C = Y$.
- ► VC-dimension of *H*: largest size of a shattered set.

No 3-shattered set \Rightarrow VC-dim ≤ 2

- A set C is shattered if $\forall Y \subseteq C$, $\exists e \in E$, s.t $e \cap C = Y$.
- ► VC-dimension of *H*: largest size of a shattered set.

No 3-shattered set \Rightarrow VC-dim \leq 2 A 2-shattered set \Rightarrow VC-dim = 2

- A set C is shattered if $\forall Y \subseteq C$, $\exists e \in E$, s.t $e \cap C = Y$.
- ► VC-dimension of *H*: largest size of a shattered set.

- ▶ A set C is shattered if $\forall Y \subseteq C$, $\exists e \in E$, s.t $e \cap C = Y$.
- ► VC-dimension of *H*: largest size of a shattered set.

- A set C is shattered if $\forall Y \subseteq C$, $\exists e \in E$, s.t $e \cap C = Y$.
- ► VC-dimension of *H*: largest size of a shattered set.

- A set C is shattered if $\forall Y \subseteq C$, $\exists e \in E$, s.t $e \cap C = Y$.
- ► VC-dimension of *H*: largest size of a shattered set.

VC dimension of a graph

 VC-dimension of G: VC-dim of the hypergraph of closed neighborhoods

VC-dim(G) = 2

Outline

Introduction

Distinguishing Transversal VC-dimension Studied Problem: Partial VC-dimension

Positive results

Negative results

Cardinality Constraint Problems

- ► Find a solution of **cardinality** *k* (given in the input) s.t. an objective is **maximized** (or minimized).
- Examples:
 - ▶ MAX VERTEX COVER: Find *k* vertices s.t. the number of covered edges is maximum.
 - Classical VERTEX COVER is FPT.
 - Decision version of MAX VERTEX COVER is W[1]-hard.
 - ► MAX DOMINATING SET.
 - Same problems with minimization.
 - ▶ ...

Cardinality Constraint Versions

- ▶ PARTIAL VC DIMENSION (decision).
 - ► Generalize VC DIMENSION and DISTINGUISHING TRANSVERSAL.
- Given a Hypergraph H = (X, E) and integers k and ℓ, find a set C ⊆ X of size k inducing at least ℓ equivalence classes.

Cardinality Constraint Versions

- ▶ PARTIAL VC DIMENSION (decision).
 - ► Generalize VC DIMENSION and DISTINGUISHING TRANSVERSAL.
- Given a Hypergraph H = (X, E) and integers k and ℓ, find a set C ⊆ X of size k inducing at least ℓ equivalence classes.
- If $\ell = 2^k$: VC DIMENSION.
- If $\ell = |E|$: Distinguishing Transversal.

Cardinality Constraint Versions

- ▶ PARTIAL VC DIMENSION (decision).
 - ► Generalize VC DIMENSION and DISTINGUISHING TRANSVERSAL.
- Given a Hypergraph H = (X, E) and integers k and ℓ, find a set C ⊆ X of size k inducing at least ℓ equivalence classes.
- If $\ell = 2^k$: VC DIMENSION.
- If $\ell = |\mathbf{E}|$: Distinguishing Transversal.
- ► MAX PARTIAL VC DIMENSION: maximum number of equivalence classes with *k* vertices.

Partial VC-Dimension

ℓ ≤ min{|E|, 2^k}
k = 3, ℓ = 6: YES.

Partial VC-Dimension

- $\ell \leq \min\{|E|, 2^k\}$
- ▶ k = 3, $\ell = 6$: YES.

Known Results for Partial VC Dimension

- Generalization of DISTINGUISHING TRANSVERSAL:
 - ▶ **NP-hard** on many restricted classes (hypergraphs where each vertex belongs to at most 2 hyperedges,...).
- Generalization of VC DIMENSION:
 - ▶ W[1]-complete w.r.t. k.

Known Results for Partial VC Dimension

- Generalization of DISTINGUISHING TRANSVERSAL:
 - NP-hard on many restricted classes (hypergraphs where each vertex belongs to at most 2 hyperedges,...).
- Generalization of VC DIMENSION:
 - ▶ W[1]-complete w.r.t. k.
- ► Approximation of MAX PARTIAL VC DIMENSION open.

Outline

Introduction

Distinguishing Transversal VC-dimension Studied Problem: Partial VC-dimension

Positive results

Negative results

Greedy Approximation

- On a twin-free hypergraph H = (X, E).
 - ▶ 2 twins are always in the same neighborhood equivalence class.
- Find k vertices inducing k + 1 equivalence classes.

Greedy Approximation

- On a twin-free hypergraph H = (X, E).
 - ▶ 2 twins are always in the same neighborhood equivalence class.
- Find k vertices inducing k + 1 equivalence classes.
- ► Add *k* vertices iteratively, choosing the one maximizing the number of classes.
 - At least one class is added at each step, or we have |E| classes
 - ► Less than |*E*| classes: there is a class with at least 2 edges *e*₁, *e*₂.
 - There is a vertex $x \in e_1, x \notin e_2$ (twin-free).
 - Adding *x* increase by one.

Greedy Approximation

- On a twin-free hypergraph H = (X, E).
 - ▶ 2 twins are always in the same neighborhood equivalence class.
- Find k vertices inducing k + 1 equivalence classes.
- ► Add *k* vertices iteratively, choosing the one maximizing the number of classes.
 - At least one class is added at each step, or we have |E| classes
 - Less than |E| classes: there is a class with at least 2 edges e_1, e_2 .
 - There is a vertex $x \in e_1, x \notin e_2$ (twin-free).
 - Adding x increase by one.
- There are at most $min\{2^k, |E|\}$ possible classes.
- $\frac{\min\{2^k, |E|\}}{k+1}$ approximation.

Approximation - Corollaries

- ▶ If $d(H) \leq \Delta$: at most $(k(\Delta + 1) + 2)/2$ classes [Lots of people]
- Ratio is then: $\frac{k(\Delta+1)+2}{2(k+1)} \leq (\Delta+1)/2.$

Approximation - Corollaries

- ▶ If $d(H) \leq \Delta$: at most $(k(\Delta + 1) + 2)/2$ classes [Lots of people]
- Ratio is then: $\frac{k(\Delta+1)+2}{2(k+1)} \leq (\Delta+1)/2$.
- ▶ If $VC(H) \leq d$: at most $k^d + 1$ classes. [Sauer-Shelah Lemma]
- Ratio is then: $\frac{k^d+1}{k+1} \leq k^{d-1}$.
- Can be extended to $|E|^{d-1/d}$.

Approximation - Corollaries

- ▶ If $d(H) \leq \Delta$: at most $(k(\Delta + 1) + 2)/2$ classes [Lots of people]
- Ratio is then: $\frac{k(\Delta+1)+2}{2(k+1)} \leq (\Delta+1)/2$.
- ▶ If $VC(H) \leq d$: at most $k^d + 1$ classes. [Sauer-Shelah Lemma]
- Ratio is then: $\frac{k^d+1}{k+1} \leq k^{d-1}$.
- Can be extended to $|E|^{d-1/d}$.
 - ► Hypergraphs with no 4-cycles in its bipartite incidence graph: $VC \leq 3 \rightarrow |E|^{2/3}$ -approx.
 - Hypergraphs with maximum edge size d: VC $\leq d$.
 - ▶ Neighborhood hypergraphs of interval graphs: VC ≤ 2 : E^{1/2}-approx.
 - Many other (but not bipartite or split).

- ► Known: 2^k-approximation in polynomial-time.
- Goal: $\log_2(n)$ -approximable in fpt-time.

- ► Known: 2^k-approximation in polynomial-time.
- Goal: $\log_2(n)$ -approximable in fpt-time.
- Two cases:

- ► Known: 2^k-approximation in polynomial-time.
- ► Goal: log₂(*n*)-approximable in fpt-time.
- Two cases:
 - 1. $k < \log_2 \log_2(n)$:
 - ▶ 2^{k} -approximation $\rightarrow 2^{\log_2 \log_2 n} : \log_2 n$ -approximation (in polynomial time).

- ► Known: 2^k-approximation in polynomial-time.
- ▶ Goal: log₂(*n*)-approximable in fpt-time.
- Two cases:
 - 1. $k < \log_2 \log_2(n)$:
 - ▶ 2^{k} -approximation $\rightarrow 2^{\log_2 \log_2 n} : \log_2 n$ -approximation (in polynomial time).

$$2. k > \log_2 \log_2(n) \Rightarrow n < 2^{2^k}$$

• Brute force $\binom{n}{k} = \binom{2^{2^k}}{k}$: Exact algorithm in fpt-time.

- ► Known: 2^k-approximation in polynomial-time.
- Goal: $\log_2(n)$ -approximable in fpt-time.
- Two cases:
 - **1.** $k < \log_2 \log_2(n)$:
 - ▶ 2^{k} -approximation $\rightarrow 2^{\log_2 \log_2 n} : \log_2 n$ -approximation (in polynomial time).

$$2. \ k > \log_2 \log_2(n) \Rightarrow n < 2^{2^k}$$

- Brute force $\binom{n}{k} = \binom{2^{2^k}}{k}$: Exact algorithm in fpt-time.
- ► All together: approximation algorithm in fpt-time (log₂(n)-approximation in time O*(2^{k2^k})).

- ► Known: 2^k-approximation in polynomial-time.
- ▶ Goal: log₂(*n*)-approximable in fpt-time.
- Two cases:
 - **1.** $k < \log_2 \log_2(n)$:
 - ▶ 2^{k} -approximation $\rightarrow 2^{\log_2 \log_2 n} : \log_2 n$ -approximation (in polynomial time).

$$2. k > \log_2 \log_2(n) \Rightarrow n < 2^{2^k}.$$

- Brute force $\binom{n}{k} = \binom{2^{2^k}}{k}$: Exact algorithm in fpt-time.
- ► All together: approximation algorithm in fpt-time (log₂(n)-approximation in time O*(2^{k2^k})).
- ► Generalization: replace log₂(n) by any strictly increasing function of n.
 - A worse running time implies a better ratio.

Scheme

► Using Baker: MAX PARTIAL VC DIMENSION admits an **EPTAS** on neighborhood hypergraph of **planar graphs**.

Outline

Introduction

Distinguishing Transversal VC-dimension Studied Problem: Partial VC-dimension

Positive results

Negative results

Bounded degree graphs

- ► MAX PARTIAL VC DIMENSION in APX for neighborhood hypergraphs of bounded degree graphs.
- ► MAX PARTIAL VC DIMENSION APX-hard for neighborhood hypergraphs of graphs with degree at most 7.

Bounded degree graphs

- ► MAX PARTIAL VC DIMENSION in APX for neighborhood hypergraphs of bounded degree graphs.
- ► MAX PARTIAL VC DIMENSION APX-hard for neighborhood hypergraphs of graphs with degree at most 7.
- ► L-reduction from MAX PARTIAL VERTEX COVER in cubic graphs (APX-complete).
 - Select k vertices to cover the max number of edges.

- ► Add the 4 *f* for each selected vertex of VC.
 - $2^4 4$ classes in the vertex-gadget.
 - ▶ The edge vertex of covered edges is alone in its class.

Final words

- ► Generalization of VC-DIMENSION & DISTINGUISHING TRANSVERSAL.
- Constant-ratio approximation?

