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1LAMSADE, Université Paris Dauphine, CNRS – France
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Fire detection in a museum?

I Detector can detect fire in their room or in their
neighborhood.

I Each room must contain a detector or have a detector in a
neighboring room.

Figure and example: A. Parreau
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Introduction Positive results Negative results Conclusion

Modelization with a graph

I Vertices V : rooms

I Edges E : between two neighboring rooms
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Locate the fire
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In each room, the set of detectors in the neighborhood is unique.
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Modelization with a graph

Distinguishing Transversal C = subset of vertices which is
separating : ∀u, v ∈ V ,N[u] ∩ C 6= N[v ] ∩ C .
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1 6 4

V \ C a b c d

1 • • - -
2 - • - -
3 - • • -
4 - - • •
5 • • • -
6 - • • •

Given a graph G , what is the minimum size of C?

I Each neighborhood equivalence class is of size 1.
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Distinguishing Transversal (a.k.a. Test Cover)

I Generalization on hypergraphs H = (X ,E ):
I find k vertices C ⊆ X inducing |E | classes

(e ∩ C 6= f ∩ C ,∀e, f ∈ E ).

X
a

b

c

d

E
1 = {a, b}

2 = {b}

3 = {b, c , d}

4 = {c , d}

5 = {d}

a
b

c d

I Distinguish all pairs of hyperedges with minimum vertices.

I Each neighborhood equivalence class must have size 1.
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Shattered set

I H = (X ,E ) a hypergraph

I A set C ⊆ X is shattered if for all Y ⊆ C , there exists e ∈ E ,
s.t e ∩ C = Y .

A 2-shattered set A 3-shattered set
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Vapnik Chervonenkis (VC) dimension of a
hypergraph

I A set C is shattered if ∀Y ⊆ C , ∃e ∈ E , s.t e ∩ C = Y .

I VC-dimension of H: largest size of a shattered set.

No 3-shattered set ⇒ VC-dim ≤ 2

A 2-shattered set ⇒ VC-dim = 2
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VC dimension of a graph

I VC-dimension of G : VC-dim of the hypergraph of closed
neighborhoods

⇒
VC-dim(G ) = 2
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Cardinality Constraint Problems

I Find a solution of cardinality k (given in the input) s.t. an
objective is maximized (or minimized).

I Examples:
I Max Vertex Cover: Find k vertices s.t. the number of

covered edges is maximum.
I Classical Vertex Cover is FPT.
I Decision version of Max Vertex Cover is W[1]-hard.

I Max Dominating Set.
I Same problems with minimization.
I ...
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Cardinality Constraint Versions

I Partial VC Dimension (decision).
I Generalize VC Dimension and Distinguishing Transversal.

I Given a Hypergraph H = (X ,E ) and integers k and `, find a
set C ⊆ X of size k inducing at least ` equivalence classes.

I If ` = 2k : VC Dimension.

I If ` = |E |: Distinguishing Transversal.

I Max Partial VC Dimension: maximum number of
equivalence classes with k vertices.
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Partial VC-Dimension

X

a

b

c

d

e

f

g

E

2 = {b}

1 = {a, b, c}

3 = {b, d}

4 = {a, c}

5 = {b, c , d}

6 = {c , d}

7 = {c , e, f , g}

8 = {f , g}

a b

c d

e

f
g

I ` 6 min{|E |, 2k}
I k = 3, ` = 6: YES.
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Known Results for Partial VC Dimension

I Generalization of Distinguishing Transversal:
I NP-hard on many restricted classes (hypergraphs where each

vertex belongs to at most 2 hyperedges,...).

I Generalization of VC Dimension:
I W[1]-complete w.r.t. k .

I Approximation of Max Partial VC Dimension open.
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Greedy Approximation

I On a twin-free hypergraph H = (X ,E ).
I 2 twins are always in the same neighborhood equivalence class.

I Find k vertices inducing k + 1 equivalence classes.

I Add k vertices iteratively, choosing the one maximizing the
number of classes.

I At least one class is added at each step, or we have |E | classes
I Less than |E | classes: there is a class with at least 2 edges

e1, e2.
I There is a vertex x ∈ e1, x /∈ e2 (twin-free).
I Adding x increase by one.

I There are at most min{2k , |E |} possible classes.

I min{2k ,|E |}
k+1 approximation.
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Approximation - Corollaries

I If d(H) 6 ∆: at most (k(∆+ 1) + 2)/2 classes [Lots of people]

I Ratio is then: k(∆+1)+2
2(k+1) ≤ (∆+ 1)/2.

I If VC(H) 6 d : at most kd + 1 classes. [Sauer-Shelah lemma]

I Ratio is then: kd+1
k+1 6 kd−1.

I Can be extended to |E |d−1/d .

I Hypergraphs with no 4-cycles in its bipartite incidence graph:
VC 6 3→ |E |2/3-approx.

I Hypergraphs with maximum edge size d : VC 6 d .
I Neighborhood hypergraphs of interval graphs: VC

6 2 : E 1/2-approx.
I Many other (but not bipartite or split).
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fpt-time approximation within arbitrarily small ratios

I Known: 2k -approximation in polynomial-time.

I Goal: log2(n)-approximable in fpt-time.

I Two cases:

1. k < log2 log2(n):
I 2k -approximation → 2log2 log2 n : log2 n-approximation (in

polynomial time).

2. k > log2 log2(n)⇒ n < 22k

.

I Brute force
(
n
k

)
=

(
22k

k

)
: Exact algorithm in fpt-time.

I All together: approximation algorithm in fpt-time
(log2(n)-approximation in time O∗(2k2k )).

I Generalization: replace log2(n) by any strictly increasing
function of n.

I A worse running time implies a better ratio.

21/27



Introduction Positive results Negative results Conclusion

fpt-time approximation within arbitrarily small ratios

I Known: 2k -approximation in polynomial-time.

I Goal: log2(n)-approximable in fpt-time.
I Two cases:

1. k < log2 log2(n):
I 2k -approximation → 2log2 log2 n : log2 n-approximation (in

polynomial time).

2. k > log2 log2(n)⇒ n < 22k

.

I Brute force
(
n
k

)
=

(
22k

k

)
: Exact algorithm in fpt-time.

I All together: approximation algorithm in fpt-time
(log2(n)-approximation in time O∗(2k2k )).

I Generalization: replace log2(n) by any strictly increasing
function of n.

I A worse running time implies a better ratio.

21/27



Introduction Positive results Negative results Conclusion

fpt-time approximation within arbitrarily small ratios

I Known: 2k -approximation in polynomial-time.

I Goal: log2(n)-approximable in fpt-time.
I Two cases:

1. k < log2 log2(n):
I 2k -approximation → 2log2 log2 n : log2 n-approximation (in

polynomial time).

2. k > log2 log2(n)⇒ n < 22k

.

I Brute force
(
n
k

)
=

(
22k

k

)
: Exact algorithm in fpt-time.

I All together: approximation algorithm in fpt-time
(log2(n)-approximation in time O∗(2k2k )).

I Generalization: replace log2(n) by any strictly increasing
function of n.

I A worse running time implies a better ratio.

21/27



Introduction Positive results Negative results Conclusion

fpt-time approximation within arbitrarily small ratios

I Known: 2k -approximation in polynomial-time.

I Goal: log2(n)-approximable in fpt-time.
I Two cases:

1. k < log2 log2(n):
I 2k -approximation → 2log2 log2 n : log2 n-approximation (in

polynomial time).

2. k > log2 log2(n)⇒ n < 22k

.

I Brute force
(
n
k

)
=

(
22k

k

)
: Exact algorithm in fpt-time.

I All together: approximation algorithm in fpt-time
(log2(n)-approximation in time O∗(2k2k )).

I Generalization: replace log2(n) by any strictly increasing
function of n.

I A worse running time implies a better ratio.

21/27



Introduction Positive results Negative results Conclusion

fpt-time approximation within arbitrarily small ratios

I Known: 2k -approximation in polynomial-time.

I Goal: log2(n)-approximable in fpt-time.
I Two cases:

1. k < log2 log2(n):
I 2k -approximation → 2log2 log2 n : log2 n-approximation (in

polynomial time).

2. k > log2 log2(n)⇒ n < 22k

.

I Brute force
(
n
k

)
=

(
22k

k

)
: Exact algorithm in fpt-time.

I All together: approximation algorithm in fpt-time
(log2(n)-approximation in time O∗(2k2k )).

I Generalization: replace log2(n) by any strictly increasing
function of n.

I A worse running time implies a better ratio.

21/27



Introduction Positive results Negative results Conclusion

fpt-time approximation within arbitrarily small ratios

I Known: 2k -approximation in polynomial-time.

I Goal: log2(n)-approximable in fpt-time.
I Two cases:

1. k < log2 log2(n):
I 2k -approximation → 2log2 log2 n : log2 n-approximation (in

polynomial time).

2. k > log2 log2(n)⇒ n < 22k

.

I Brute force
(
n
k

)
=

(
22k

k

)
: Exact algorithm in fpt-time.

I All together: approximation algorithm in fpt-time
(log2(n)-approximation in time O∗(2k2k )).

I Generalization: replace log2(n) by any strictly increasing
function of n.

I A worse running time implies a better ratio.

21/27



Introduction Positive results Negative results Conclusion

Scheme

I Using Baker: Max Partial VC Dimension admits an
EPTAS on neighborhood hypergraph of planar graphs.
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Bounded degree graphs

I Max Partial VC Dimension in APX for neighborhood
hypergraphs of bounded degree graphs.

I Max Partial VC Dimension APX-hard for neighborhood
hypergraphs of graphs with degree at most 7.

I L-reduction from Max Partial Vertex Cover in cubic
graphs (APX-complete).

I Select k vertices to cover the max number of edges.

k = 2
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f 1
v

f 2
v

f 3
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f 4
v

v

u1

u2

u3

Pv
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Pu2

Pu3

I Add the 4 f for each selected vertex of VC.

I 24 − 4 classes in the vertex-gadget.
I The edge vertex of covered edges is alone in its class.

25/27



Introduction Positive results Negative results Conclusion

f 1
v

f 2
v

f 3
v

f 4
v

v

u1

u2

u3

Pv

Pu1

Pu2

Pu3

I Add the 4 f for each selected vertex of VC.
I 24 − 4 classes in the vertex-gadget.
I The edge vertex of covered edges is alone in its class.

25/27



Introduction Positive results Negative results Conclusion

Final words

I Generalization of VC-Dimension & Distinguishing
Transversal.

I Constant-ratio approximation?
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