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Introduction

Fire detection in a museum?

» Detector can detect fire in their room or in their
neighborhood.

» Each room must contain a detector or have a detector in a
neighboring room.

Figure and example: A. Parreau
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Modelization with a graph

» \ertices V: rooms

» Edges E: between two neighboring rooms
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Where is the fire ?

To locate the fire, we need more detectors.
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Introduction

Locate the fire

In each room, the set of detectors in the neighborhood is unique.

6/27



Modelization with a graph

Distinguishing Transversal C = subset of vertices which is
separating : Yu,v € V,N[u]n C # N[v]n C.

VNC|a|b]c]|d

a C d 1 e|eo|-|-
b 2 -le]-1]-

3 - e o] -

4 -l -1e] e

5 oo | o] -

6 - |e]|e| e

Given a graph G, what is the minimum size of C?
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Modelization with a graph

Distinguishing Transversal C = subset of vertices which is
separating : Yu,v € V,N[u]n C # N[v]n C.

VNC|a|b]c]|d

a C d 1 e|eo]-|-
b 2 -le]-1]-

3 - e o] -

4 -l -1e] e

5 oo | o] -

6 - |e]|e| e

Given a graph G, what is the minimum size of C?

» Each neighborhood equivalence class is of size 1.
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Introduction

Distinguishing Transversal (a.k.a. Test Cover)

» Generalization on hypergraphs H = (X, E):
» find k vertices C C X inducing |E| classes
(enC#fNC,Ve feE).

X E
a 1={a b}

b 2= (b} @
c 3={b,c,d} ‘e)

d 4 ={c,d}
5={d}
» Distinguish all pairs of hyperedges with minimum vertices.

» Each neighborhood equivalence class must have size 1.
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Introduction

Shattered set

» H = (X, E) a hypergraph
» A set C C X is shattered if for all Y C C, there exists e € E,
stenC=Y.
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Introduction

VC dimension of a graph

» VC-dimension of G: VC-dim of the hypergraph of closed
neighborhoods

N J

(@)

12/27



Outline

Introduction

Studied Problem: Partial VC-dimension
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Introduction

Cardinality Constraint Problems

» Find a solution of cardinality k (given in the input) s.t. an
objective is maximized (or minimized).
» Examples:

» MaAX VERTEX COVER: Find k vertices s.t. the number of
covered edges is maximum.

» Classical VERTEX COVER is FPT.
> Decision version of MAX VERTEX COVER is W[1]-hard.
» MAX DOMINATING SET.

» Same problems with minimization.
> .
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Introduction

Cardinality Constraint Versions

» PARTIAL VC DIMENSION (decision).
» Generalize VC DIMENSION and DISTINGUISHING TRANSVERSAL.

» Given a Hypergraph H = (X, E) and integers k and /, find a
set C C X of size k inducing at least ¢ equivalence classes.
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Cardinality Constraint Versions

» PARTIAL VC DIMENSION (decision).
» Generalize VC DIMENSION and DISTINGUISHING TRANSVERSAL.

» Given a Hypergraph H = (X, E) and integers k and /, find a
set C C X of size k inducing at least ¢ equivalence classes.

» If £ =2k VC DIMENSION.
» If ¢ = |E|: DISTINGUISHING TRANSVERSAL.

» MAX PARTIAL VC DIMENSION: maximum number of
equivalence classes with k vertices.
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Introduction

Partial VC-Dimension

X E

a 1={a,b,c}

b 2= {b}

c 3={b,d}

d 4={ac}

e 5={b,c.d}

f 6 = {c,d}

4 7={cef.g}
8={f¢g}

» ¢ < min{|E|,2¥}
» k=3,¢=6: YES.
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Introduction

Known Results for Partial VC Dimension

» Generalization of DISTINGUISHING TRANSVERSAL:

» NP-hard on many restricted classes (hypergraphs where each
vertex belongs to at most 2 hyperedges,...).

» Generalization of VC DIMENSION:
» WJ[1]-complete w.r.t. k.
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Introduction

Known Results for Partial VC Dimension

» Generalization of DISTINGUISHING TRANSVERSAL:

» NP-hard on many restricted classes (hypergraphs where each
vertex belongs to at most 2 hyperedges,...).

» Generalization of VC DIMENSION:
» WJ[1]-complete w.r.t. k.

» Approximation of MAX PARTIAL VC DIMENSION open.
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Positive results
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Greedy Approximation

» On a twin-free hypergraph H = (X, E).

> 2 twins are always in the same neighborhood equivalence class.

» Find k vertices inducing k + 1 equivalence classes.
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» On a twin-free hypergraph H = (X, E).
» 2 twins are always in the same neighborhood equivalence class.

» Find k vertices inducing k + 1 equivalence classes.

> Add k vertices iteratively, choosing the one maximizing the
number of classes.
» At least one class is added at each step, or we have |E| classes
> Less than |E]| classes: there is a class with at least 2 edges
€1, €2.
> There is a vertex x € e1, x ¢ e (twin-free).
» Adding x increase by one.
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Positive results

Greedy Approximation

» On a twin-free hypergraph H = (X, E).
» 2 twins are always in the same neighborhood equivalence class.

» Find k vertices inducing k + 1 equivalence classes.

> Add k vertices iteratively, choosing the one maximizing the
number of classes.
» At least one class is added at each step, or we have |E| classes

> Less than |E| classes: there is a class with at least 2 edges
€1, €2.

> There is a vertex x € e1, x ¢ e (twin-free).

» Adding x increase by one.

» There are at most min{2*, |E|} possible classes.

min{2X |E|} . .
ki approximation.
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Positive results

Approximation - Corollaries

> If d(H) < A: at most (k(A + ].) + 2)/2 classes [LOTS OF PEOPLE]

» Ratio is then: % <(A+1)/2.
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v

If d(H) < A: at most (k(A + 1) + 2)/2 classes [LOTS OF PEOPLE
Ratio is then: K&+U¥2 < (A 4 1) /2,

2(k+1)

If VC(H) < d: at most k9 + 1 classes. [SAUER-SHELAH LEMMA

Ratio is then: K+l < fd-1,

k+1

Can be extended to |E|9 1/

>

Hypergraphs with no 4-cycles in its bipartite incidence graph:
VC < 3 — |E|*/3-approx.

» Hypergraphs with maximum edge size d: VC < d.
» Neighborhood hypergraphs of interval graphs: VC

< 2: EY2-approx.
Many other (but not bipartite or split).
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Positive results

fpt-time approximation within arbitrarily small ratios

» Known: 2X-approximation in polynomial-time.

» Goal: log,(n)-approximable in fpt-time.
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Positive results

fpt-time approximation within arbitrarily small ratios

» Known: 2X-approximation in polynomial-time.

» Goal: log,(n)-approximable in fpt-time.
» Two cases:
1. k < log, log,(n):
» 2*_approximation — 2'°62'°62" : |og, n-approximation (in
polynomial time).
2. k> log,logy(n) = n< 22",
> Brute force (}) = (2ik): Exact algorithm in fpt-time.
» All together: approximation algorithm in fpt-time
(logy(n)-approximation in time O*(2k2k)).
» Generalization: replace log,(n) by any strictly increasing

function of n.
> A worse running time implies a better ratio.
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Positive results

Scheme

» Using Baker: MAX PARTIAL VC DIMENSION admits an
EPTAS on neighborhood hypergraph of planar graphs.
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Negative results
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Negative results

Bounded degree graphs

» MAX PARTIAL VC DIMENSION in APX for neighborhood
hypergraphs of bounded degree graphs.

» MAX PARTIAL VC DIMENSION APX-hard for neighborhood
hypergraphs of graphs with degree at most 7.
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Negative results

Bounded degree graphs

» MAX PARTIAL VC DIMENSION in APX for neighborhood
hypergraphs of bounded degree graphs.
» MAX PARTIAL VC DIMENSION APX-hard for neighborhood
hypergraphs of graphs with degree at most 7.
» L-reduction from MAX PARTIAL VERTEX COVER in cubic
graphs (APX-complete).
» Select k vertices to cover the max number of edges.
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Negative results
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Negative results

» Add the 4 f for each selected vertex of VC.

» 2% — 4 classes in the vertex-gadget.
» The edge vertex of covered edges is alone in its class.
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Conclusion

Final words

» Generalization of VC-DIMENSION & DISTINGUISHING
TRANSVERSAL.

» Constant-ratio approximation?
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