Humanitarian Logistic

Sonia Toubaline

Contact: sonia.toubaline@dauphine.fr

November 21, 2018
Course 1

First part

- Mathematical modelling: Linear programming (LP)
- Examples e.g. storage problem
- Excel optimisation solver

Second part

- Graph theory introduction
Course 2

Shortest path problem

- Mathematical modelling

- Graph algorithms:
 - Bellman algorithm (no cycle)
 - Dijkstra algorithm (positive weights)

- Examples
Course 3

Maximum flow problem

- Mathematical modelling

- Graph algorithms:
 - Ford & Fulkerson algorithm

- Examples
Facility location

Examples: Warehouse location (preparedness), temporary distribution center location (response), …

- Mathematical modelling
- Graph algorithms

Tasks scheduling - Planning

- Mathematical modelling
- Graph approaches: Bellman algorithm, GANTT diagram
Facility location

– Network planning –
Facility location

Data:
- n locations
- d_{ij}: distance between locations i and j
- q: number of distribution centers to open

Problem:
- Where to open the q distribution centers?
- Determine location clusters
 Cluster: group of locations served by the same distribution center
- **Objective**: Minimise the total distance
MATHEMATICAL MODELLING

\[n = 4 \text{ and } q = 2 \]

Decision variables
MATHEMATICAL MODELLING

\(n = 4 \) and \(q = 2 \)

Decision variables

For \(j = 1, \ldots, n \):

\[
y_j = \begin{cases}
1 & \text{if a distribution center is open at location } j \\
0 & \text{otherwise}
\end{cases}
\]
Mathematical modelling

\(n = 4 \) and \(q = 2 \)

Decision variables

For \(i, j = 1, \ldots, n \):

\[
x_{ij} = \begin{cases}
1 & \text{if } i \text{ is served by the opened distribution center } j \\
0 & \text{otherwise}
\end{cases}
\]
Mathematical modelling

$n = 4$ and $q = 2$

Constraints

- q distribution centers to open:

$$
\sum_{j=1}^{n} y_j = q
$$
Mathematical modelling

\(n = 4\) and \(q = 2\)

Constraints

- Each location is served by one opened distribution centers
For \(i = 1, \ldots, n\):

\[
\sum_{j=1}^{n} x_{ij} = 1
\]
Mathematical modelling

$n = 4$ and $q = 2$

Constraints

- A location cannot be served by a non opened distribution centers

For $i, j = 1, \ldots, n$: \[x_{ij} \leq y_j \]
Mathematical modelling

\(n = 4 \) and \(q = 2 \)

 Objective function

\[
\min \sum_{i=1}^{n} \sum_{j=1}^{n} d_{ij} x_{ij}
\]
Mathematical modelling

$n = 4$ and $q = 2$

Optimal solution: total distance = 15
Mathematical modelling

\[
\begin{align*}
\text{min} \quad & \sum_{i=1}^{n} \sum_{j=1}^{n} d_{ij} \ x_{ij} \\
\text{s.t.} \quad & \sum_{j=1}^{n} y_{j} = q \\
& \sum_{j=1}^{n} x_{ij} = 1 \quad i = 1, \ldots, n \\
& x_{ij} \leq y_{j} \quad i, j = 1, \ldots, n \\
& y_{j} \in \{0, 1\} \quad j = 1, \ldots, n \\
& x_{ij} \in \{0, 1\} \quad i, j = 1, \ldots, n
\end{align*}
\]
Graph approaches

- Facility location problem is hard to solve (NP-hard problem)

- Approached solution methods
 - Local search
 - Algorithm

 0. Choose initially any q nodes (chose randomly one node, and consider the farthest node from it, and so on until selecting q nodes)

 1. Swap. While there exists a swap between a current facility location and another node which improves the current objective function, execute the swap

- Approximation algorithms

- Other problems
 - Maximal covering location problem: Explosive attacks
Tasks scheduling
Tasks scheduling

Aim: Planning a project

Examples:
- Building - realisation of a warehouse
- Organization of a product in a workshop on machines
- Transport, distribution & delivery of goods

Implementing a project is decomposable into n tasks $1, 2, \ldots, n$

Problem

How to best order/schedule theses tasks in order to implement the project?
Tasks scheduling

A task i is perfectly described by

- Its duration (processing time) d_i
- Earliest start time (in French: date de début au plus tôt) t_i (or λ_i)
- Latest finish time (in French: date de fin au plus tard) t'_i (or λ'_i)
- The means necessary for its implementation of human, financial, material, … type

Tasks are subjects to constraints:

- Technological: a task can starts only if other tasks are achieved
- Commercial: Some tasks need to be finished before a fixed delay
- Material: a machine can treat only one task at once
- Manpower: limited staffing
- Financial: limited budget
Tasks scheduling

Central problem of scheduling

- Determine the **earliest start times** t_i, \forall task i
- "Potential" constraints
- Minimise the total project duration
Mathematical modelling

Variables

\(t_i \): earliest start time of task \(i \), for \(i = 1, \ldots, n \)

Two fictive tasks 0 and \(n + 1 \):

\begin{itemize}
 \item \(i = 0 \): \(t_0 = 0 \) starting project
 \item \(i = n + 1 \): \(t_{n+1} \) achievement of the project
\end{itemize}

Constraints

\begin{itemize}
 \item Potential constraints: general form
 \[t_j - t_i \geq a_{ij} \]
\end{itemize}
Mathematical modelling

Potential constraints

- **Temporal location**
 - Task j cannot start before a certain time $e_j: t_j - t_0 \geq e_j$
 - Task j must be achieved before a certain limit $\ell_j > d_j: t_j + d_j - t_0 \leq \ell_j$

- **Succession**
 - **Simple**
 Task j can start only if task i is achieved: $t_j - t_i \geq d_i$
 - **With delay** $d'_{ij}: t_j - t_i \geq d_i + d'_{ij}$
 - **Immediate**
 Task j starts immediately after task i: $t_j - t_i = d_i$

Objective function

$$\min \ t_{n+1} - t_0$$
Mathematical modelling

\[
\begin{align*}
\min & \quad t_{n+1} - t_0 \\
\text{s.t.} & \quad t_j - t_i \geq a_{ij} \\
& \quad \ldots \\
& \quad t_i \geq 0 \quad \forall i = 0, \ldots, n + 1
\end{align*}
\]
Task scheduling - Example

A logistic operations with 9 tasks

<table>
<thead>
<tr>
<th>Task designation</th>
<th>Condition</th>
<th>Duration (h)</th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td>Can starts 5h after the origin</td>
<td>16</td>
</tr>
<tr>
<td>b</td>
<td>-</td>
<td>14</td>
</tr>
<tr>
<td>c</td>
<td>3h after the origin</td>
<td>20</td>
</tr>
<tr>
<td>d</td>
<td>a & b completed</td>
<td>8</td>
</tr>
<tr>
<td>e</td>
<td>b completed</td>
<td>18</td>
</tr>
<tr>
<td>f</td>
<td>b & c completed</td>
<td>25</td>
</tr>
<tr>
<td>g</td>
<td>d, e, f completed</td>
<td>15</td>
</tr>
<tr>
<td>h</td>
<td>e completed, c half completed</td>
<td>17</td>
</tr>
<tr>
<td>i</td>
<td>d, e, f completed</td>
<td>10</td>
</tr>
</tbody>
</table>
Graph modelling

<table>
<thead>
<tr>
<th></th>
<th>a</th>
<th>b</th>
<th>c</th>
<th>d</th>
<th>e</th>
<th>f</th>
<th>g</th>
<th>h</th>
<th>i</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>a,b</td>
<td>b</td>
<td>b,c</td>
<td>d,e,f</td>
<td>e,c</td>
<td>d,e,f</td>
</tr>
</tbody>
</table>

Graph potential task

- a
- b
- c
Graph modelling

<table>
<thead>
<tr>
<th></th>
<th>a</th>
<th>b</th>
<th>c</th>
<th>d</th>
<th>e</th>
<th>f</th>
<th>g</th>
<th>h</th>
<th>i</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>a,b</td>
<td>b</td>
<td>b,c</td>
<td>d,e,f</td>
<td>e,c</td>
<td>d,e,f</td>
</tr>
</tbody>
</table>

Graph potential task

```
  a
  
  b          e
  
  c          f
```
Graph modelling

<table>
<thead>
<tr>
<th>a</th>
<th>b</th>
<th>c</th>
<th>d</th>
<th>e</th>
<th>f</th>
<th>g</th>
<th>h</th>
<th>i</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>a,b</td>
<td>b</td>
<td>b,c</td>
<td>d,e,f</td>
<td>e,c</td>
<td>d,e,f</td>
</tr>
</tbody>
</table>

Graph potential task

- a
- d
- g
- b
- e
- i
- c
- f
- h
Graph modelling

Graph potential task
Graph modelling

<table>
<thead>
<tr>
<th>a</th>
<th>b</th>
<th>c</th>
<th>d</th>
<th>e</th>
<th>f</th>
<th>g</th>
<th>h</th>
<th>i</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>a,b</td>
<td>b</td>
<td>b,c</td>
<td>d,e,f</td>
<td>e,c</td>
<td>d,e,f</td>
</tr>
</tbody>
</table>

Graph potential task
Graph modelling

A logistic operations with 9 tasks

<table>
<thead>
<tr>
<th>Task designation</th>
<th>Condition</th>
<th>Duration (h)</th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td>Can starts 5h after the origin</td>
<td>16</td>
</tr>
<tr>
<td>b</td>
<td></td>
<td>14</td>
</tr>
<tr>
<td>c</td>
<td>3h after the origin</td>
<td>20</td>
</tr>
<tr>
<td>d</td>
<td>a & b completed</td>
<td>8</td>
</tr>
<tr>
<td>e</td>
<td>b completed</td>
<td>18</td>
</tr>
<tr>
<td>f</td>
<td>b & c completed</td>
<td>25</td>
</tr>
<tr>
<td>g</td>
<td>d, e, f completed</td>
<td>15</td>
</tr>
<tr>
<td>h</td>
<td>e completed, c half completed</td>
<td>17</td>
</tr>
<tr>
<td>i</td>
<td>d, e, f completed</td>
<td>10</td>
</tr>
</tbody>
</table>
Graph modelling

<table>
<thead>
<tr>
<th>a</th>
<th>b</th>
<th>c</th>
<th>d</th>
<th>e</th>
<th>f</th>
<th>g</th>
<th>h</th>
<th>i</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>a,b</td>
<td>b</td>
<td>b,c</td>
<td>d,e,f</td>
<td>e,c</td>
<td>d,e,f</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Graph potential task
How to compute t_g?
How to compute t_g?
Graph algorithm

How to compute t_g:

$$t_g = \max\{21 + 8, 14 + 18, 23 + 25\} = \max\{t_d + d_{dg}, t_e + d_{eg}, t_f + d_{fg}\} = 48$$
How to compute t_j:

$$t_j = \max_{i \in \Gamma^{-1}(j)} \{t_i + d_{ij}\}$$
Graph algorithm - Bellman algorithm

Condition: No cycle

Algorithm

Initialise $t_0 : t_0 = 0$

Mark node 0

While (There exist nodes not marked) **do**

Select a non marked node j that has all its predecessors nodes marked

Compute t_j using $t_j = \max_{i \in \Gamma^{-1}(j)} \{ t_i + d_{ij} \}$

Mark node j
APPLICATION OF BELLMAN ALGORITHM

Critical path: 0 → c → f → g → 10
Critical tasks: 0, c, f and g
How to compute t'_e?
Graph algorithm - Latest finish time

How to compute t'_e?
Graph Algorithm - Latest Finish Time

How to compute t'_e:

\[
t'_e = \min \{ 48 - 18, 53 - 18, 46 - 18 \} = \min \{ t'_g - d_{eg}, t'_i - d_{ei}, t'_h + d_{eh} \} = 28
\]
Graph algorithm

How to compute t'_i:

$$t'_i = \min_{j \in \Gamma(i)} \{ t'_j - d_{ij} \}$$
Task i is critical: $t'_i = t_i$
Margin $m_i = t'_i - t_i$, ∀ task i. If $m_i = 0$ then i is critical.
GANTT DIAGRAM REPRESENTATION

<table>
<thead>
<tr>
<th></th>
<th>a</th>
<th>b</th>
<th>c</th>
<th>d</th>
<th>e</th>
<th>f</th>
<th>g</th>
<th>h</th>
<th>i</th>
</tr>
</thead>
<tbody>
<tr>
<td>t_i</td>
<td>5</td>
<td>0</td>
<td>3</td>
<td>21</td>
<td>14</td>
<td>23</td>
<td>48</td>
<td>48</td>
<td>32</td>
</tr>
</tbody>
</table>

Resource

Time
GANTT DIAGRAM REPRESENTATION

<table>
<thead>
<tr>
<th></th>
<th>a</th>
<th>b</th>
<th>c</th>
<th>d</th>
<th>e</th>
<th>f</th>
<th>g</th>
<th>h</th>
<th>i</th>
</tr>
</thead>
<tbody>
<tr>
<td>t_i</td>
<td>5</td>
<td>0</td>
<td>3</td>
<td>21</td>
<td>14</td>
<td>23</td>
<td>48</td>
<td>48</td>
<td>32</td>
</tr>
</tbody>
</table>

Resource

<table>
<thead>
<tr>
<th>b</th>
</tr>
</thead>
<tbody>
<tr>
<td>14</td>
</tr>
</tbody>
</table>
GANTT diagram representation

<table>
<thead>
<tr>
<th></th>
<th>a</th>
<th>b</th>
<th>c</th>
<th>d</th>
<th>e</th>
<th>f</th>
<th>g</th>
<th>h</th>
<th>i</th>
</tr>
</thead>
<tbody>
<tr>
<td>t_i</td>
<td>5</td>
<td>0</td>
<td>3</td>
<td>21</td>
<td>14</td>
<td>23</td>
<td>48</td>
<td>48</td>
<td>32</td>
</tr>
</tbody>
</table>

- **Resource**

- **b**
 - Start: 3
 - End: 14

- **C**
 - Start: 3
 - End: 23
Gantt Diagram Representation

<table>
<thead>
<tr>
<th>i</th>
<th>a</th>
<th>b</th>
<th>c</th>
<th>d</th>
<th>e</th>
<th>f</th>
<th>g</th>
<th>h</th>
<th>i</th>
</tr>
</thead>
<tbody>
<tr>
<td>t_i</td>
<td>5</td>
<td>0</td>
<td>3</td>
<td>21</td>
<td>14</td>
<td>23</td>
<td>48</td>
<td>48</td>
<td>32</td>
</tr>
</tbody>
</table>

![Gantt Chart](image)
GANTT DIAGRAM REPRESENTATION

<table>
<thead>
<tr>
<th></th>
<th>a</th>
<th>b</th>
<th>c</th>
<th>d</th>
<th>e</th>
<th>f</th>
<th>g</th>
<th>h</th>
<th>i</th>
</tr>
</thead>
<tbody>
<tr>
<td>t_i</td>
<td>5</td>
<td>0</td>
<td>3</td>
<td>21</td>
<td>14</td>
<td>23</td>
<td>48</td>
<td>48</td>
<td>32</td>
</tr>
</tbody>
</table>
Gantt diagram representation

<table>
<thead>
<tr>
<th></th>
<th>a</th>
<th>b</th>
<th>c</th>
<th>d</th>
<th>e</th>
<th>f</th>
<th>g</th>
<th>h</th>
<th>i</th>
</tr>
</thead>
<tbody>
<tr>
<td>t_i</td>
<td>5</td>
<td>0</td>
<td>3</td>
<td>21</td>
<td>14</td>
<td>23</td>
<td>48</td>
<td>48</td>
<td>32</td>
</tr>
</tbody>
</table>
GANTT DIAGRAM REPRESENTATION

<table>
<thead>
<tr>
<th></th>
<th>a</th>
<th>b</th>
<th>c</th>
<th>d</th>
<th>e</th>
<th>f</th>
<th>g</th>
<th>h</th>
<th>i</th>
</tr>
</thead>
<tbody>
<tr>
<td>t_i</td>
<td>5</td>
<td>0</td>
<td>3</td>
<td>21</td>
<td>14</td>
<td>23</td>
<td>48</td>
<td>48</td>
<td>32</td>
</tr>
</tbody>
</table>
Gantt Diagram Representation

<table>
<thead>
<tr>
<th></th>
<th>a</th>
<th>b</th>
<th>c</th>
<th>d</th>
<th>e</th>
<th>f</th>
<th>g</th>
<th>h</th>
<th>i</th>
</tr>
</thead>
<tbody>
<tr>
<td>t_i</td>
<td>5</td>
<td>0</td>
<td>3</td>
<td>21</td>
<td>14</td>
<td>23</td>
<td>48</td>
<td>48</td>
<td>32</td>
</tr>
</tbody>
</table>

Resource

- **a**
 - Start: 5
 - End: 29

- **b**
 - Start: 14
 - End: 49

- **c**
 - Start: 3
 - End: 23

- **d**
 - Start: 14
 - End: 29

- **e**
 - Start: 23
 - End: 49

- **f**
 - Start: 32
 - End: 48

- **g**
 - Start: 21
 - End: 49

- **h**
 - Start: 14
 - End: 49

- **i**
 - Start: 14
 - End: 49
Minimum resources needed = 3
Exercises