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DEALING WITH INTERACTIVITY BETWEEN BI-POLAR MULTIPLE
CRITERIA PREFERENCES IN OUTRANKING METHODS

ABSTRACT

In this paper we introduce the modelling of specific interactions between criteria
expressing positive and negative preferences considered as reasons in favor and rea-
sons against the comprehensive preferences. We can call this method the bi-polar
approach to MCDA. In order to take into account, specific interactions between cri-
teria in this context, especially the power of the opposing criteria, multiple criteria
positive and negative preferences are aggregated using the bi-polar Choquet integral.
The bi-polar approach is applied to the two most well-known classes of outranking
methods: ELECTRE and PROMETHEE. The final result is a new way to deal with
the outranking approach, which permits to take into account some very important
preferential information which could not be modelled before by the existing MCDA
methodologies. Our approach is related with most of the current advanced research
subjects in MCDA and more specifically with the following domains: outranking ap-
proach, fuzzy integral approach, four-valued logic approach, non-additive and non-
transitive models of conjoint measurement, non-compensatory preference structures,
interpretation of the importance of criteria, methods for assessing the non-additive
weights, and the aggregation functions.

Key-words: Multiple criteria outranking methods, Interactive between criteria, Bi-
polar Choquet integral, Bi-polar Choquet bi-integral.
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1 Introduction

When dealing with decision problems, enumerating the reasons in favor and the reasons
against of a certain action is an activity so common that it makes part of the main con-
cerns of decision makers (DMs) and analysts. But what kind of decision problems do we
actually have in real-world? There are so many... Let us start by a few but typical exam-
ples of decision problems. How shall we choose the best site for locating a power plant?
How shall we establish a ranking of different companies asking for financial support in a
bank? How shall we assign retail shops to different performance categories? These are
barely some examples of complex decision problems involving a set of different actions
(sites, companies, retail shops) evaluated on the basis of several and conflicting criteria.
Choosing, ranking and sorting out actions into categories are thus the three major problem
statements studied in multiple criteria decision analysis (MCDA) ([37]).

Over the last three decades, many MCDA methodologies have been developed to deal
with this kind of multiple criteria decision problems. Very good references on this topic
are the works by [37], [38], [46].

But, the problem of evaluating and comparing possible actions is not a recent issue
and, even if in an informal way, some very interesting reflections have been proposed
in the past centuries ([1], [21], [28], [33]). In this line, let us go back to the eighteenth
century, and discuss the suggestion presented by Benjamin Franklin to one of his friends,
Joseph Prestly, when dealing with a particular decision problem ([21]):

London, Sept 19, l772

Dear Sir,

In the affair of so much importance to you, wherein you ask my advice, I cannot, for want of
sufficient premises, advise you what to determine, but if you please I will tell you how. When
those difficult cases occur, they are difficult, chiefly because while we have them under con-
sideration, all the reasons pro and con are not present to the mind at the same time; but some-
times one set present themselves, and at other times another, the first being out of sight.
Hence the various purposes or inclinations that alternatively prevail, and the uncertainty that
perplexes us. To get over this, my way is to divide half a sheet of paper by a line into two
columns; writing over the one Pro, and over the other Con. Then, during three or four days
consideration, I put down under the different heads short hints of the different motives, that
at different times occur to me, for or against the measure. When I have thus got them all
together in one view, I endeavor to estimate their respective weights; and where I find two,
one on each side, that seem equal, I strike them both out. If I find a reason pro equal to
some two reasons con, I strike out the three. If I judge some two reasons con, equal to three
reasons pro, I strike out the five; and thus proceeding I find at length where the balance lies;
and if, after a day or two of further consideration, nothing new that is of importance occurs
on either side, I come to a determination accordingly. And, though the weight of the reasons
cannot be taken with the precision of algebraic quantities, yet when each is thus considered,
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separately and comparatively, and the whole lies before me, I think I can judge better, and
am less liable to make a rash step, and in fact I have found great advantage from this kind of
equation, and what might be called moral or prudential algebra.

Wishing sincerely that you may determine for the best, I am ever, my dear friend, yours most
affectionately.

B. Franklin

It is quite clear that Benjamin Franklin’s approach for dealing with this decision problem
is based on the enumeration of the reasons for and against it. In line with his way of
thinking, we can ask the following question: given a pair of actions a and b how can the
current MCDA methods take into account the comparisons and weighting of the reasons
in favor and against each of them?

In our opinion, and in view of the tremendous development in MCDA methodologies
especially over the past two decades, some important aspects of the question above must
still be considered. Let us give some more explanations on this topic.

From a methodological point of view, the preference model more concordant with
Benjamin Franklin’s suggestion is given by non-compensatory preference structures, in-
troduced in the seventies ([19]). The definition considers a (strict) preference between
actions a and b based on the comparison between the importance of the criteria in favor
of a, on the one side, and the importance of the criteria in favor of b, on the other.

However, many MCDA methods which build a comprehensive relation of preference
between pairs of actions (in particular the ELECTRE family methods, [36]), are based on
another idea: a is considered to be ”at least as good as” b if there are enough important
criteria concordant with this assertion and there is no criterion among the discordant cri-
teria for which b is so strongly preferred to a that it makes a veto to this assertion. In this
second approach, we can observe that when evaluating if a is ”at least as good” as b the
arguments in favor are always considered, but the arguments against are only taken into
account if they provoke and extreme negative effect on the above assertion.

A first observation is thus that, if we want to take into account the suggestion of Ben-
jamin Franklin regarding the reasons in favor and the reasons against, when comparing
actions a and b, we should consider in all the available methodologies both, i.e. the crite-
ria in favor and the criteria against. This is also consistent with the suggestions of some
old and recent works within MCDA focusing on the idea that the pairwise comparisons
are based on the reasons in favor as well as on the reasons against ([20], [29], [34], [43],
[44]).

However, the extension to all the MCDA methodologies of the comparison of the
reasons in favor and against is important but it is only a part of the question. Indeed, after
recognizing the criteria in favor and the criteria against of the preference of a over b,
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there is the very tricky question of comparing them. In this second step, some important
observations must be taken into account.

One element that should be considered is the synergy or the redundancy of criteria in
favor.

As an example of criteria which create a synergy effect, let us consider the case of
risk evaluation of two firms a and b. Let us consider the case in which firm a is less
indebted than b because its debt ratio, given by total debt on total assets, is smaller than
the corresponding ratio of b. Moreover, the growth rate of a is also higher than the growth
rate of b. In this case the two criteria, debt ratio (the less the better) and growth rate (the
higher the better) are in favor of b and reinforce each one. Indeed, in general, there is no
relation between the debt ratio and the growth rate of a firm. Therefore, intuitively, the
preference of a over b is stronger than the sum of the preferences of a over b with respect
to the debt ratio and the growth rate. This means that there is a synergy effect of debt ratio
and growth rate.

As an example of redundant criteria consider the case of a car a having a maximum
speed and acceleration better than a car b. Since one can expect that if the maximum speed
of car a is higher than the maximum speed of car b, the acceleration of a is also higher
than the acceleration of b. Intuitively, the preference of car a over car b is smaller than
the sum of the preferences of a over b with respect to maximum speed and acceleration.
This means that there is a redundancy effect of both criteria, the maximum speed and the
acceleration.

Of course there are similar effects of synergy and redundancy regarding the criteria
against the comprehensive preference of a over b.

To model the synergy and redundancy of criteria in favor and against, the typical tool
which has been recently strongly developed within an MCDA framework are the non-
additive integrals (called also fuzzy integrals). The most important of these integrals is
the Choquet integral ([12]). The Choquet integral allows to calculate a specific weighted-
sum which takes into account the possibility that the weight representing the importance
of a set of criteria C is different from the sum of the weights of all the single criteria
from C. Thus in the example given above, we can have 0.4 as the value of the weight of
maximum speed and also as the weight of acceleration; however, the weight of maximum
speed and acceleration together is 0.6, which is smaller than the sum of the weights of
the two criteria considered separately. Similarly, in the other example we can have 0.3 as
the value of the weight of both the criterion ”debt ratio” and the criterion ”growth rate”.
However, the weight of debt ratio and growth rate together is ”0.8” which is larger than
the sum of the two criteria considered separately.

The interactivity between criteria for the reasons in favor and the reasons against is
very important for the construction of realistic preference models for multiple criteria
comparisons. Anyway, there are other aspects of the comparison of criteria in favor and
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criteria against which must be examined.
One of these is the fact that we can have different types of interactivity between criteria

in favor and criteria against.
Let us consider again the comparison of car a and car b with respect to maximum

speed and acceleration. If car a performs worse than car b with respect to both maximum
speed and acceleration, then the ”negative preference” of a over b is larger than the sum
of the negative preferences with respect to maximum speed and acceleration considered
separately. This can be explained as follows: the negative preference with respect to
maximum speed and acceleration reinforce each one, because in this case there is no pos-
sibility to compensate the loss of one criterion with a gain on the evaluation of the other.
Therefore the final result of negative preferences of maximum speed and acceleration to-
gether is a synergy effect. What should be noticed in this case, is that while there is the
perception of a redundancy regarding the positive preferences, there is, on the contrary, a
synergy effect regarding the negative preferences.

In order to model these different interactions on the positive and the negative sides, we
have to calculate two Choquet integrals, one for the positive preferences and the other for
the negative preferences. To take into account the redundancy for the positive preferences
and the synergy for the negative preferences we can continue to use the above weights
of 0.4 for maximum speed as well as for the acceleration when considered separately.
However, when maximum speed and acceleration are taken into account together for the
positive preferences we consider a comprehensive weight of 0.6 (which is smaller than
the sum of the weights of the two single criteria), while for the negative preferences we
consider a comprehensive weight of 0.9 (which is larger than the sum of the weights of the
two single criteria). This idea of considering different Choquet integrals for the positive
and the negative sides is consistent with the Cumulative Prospect Theory ([45]), which is
one of the most adopted models to represent decisions under uncertainty.

The above cases of interactions do not completely represent the field of all the possible
interactions relative to comparisons of criteria in favor and criteria against.

Let us continue to consider the case of the comparison of car a and car b with respect
to maximum speed and acceleration. Let us suppose that car a performs better than car
b with respect to maximum speed but it is worse ”with the same intensity” with respect
to the acceleration. If we consider the above weights (0.4 for maximum speed as well
as for the acceleration), then the fact that the two criteria are equally important when
considered separately could suggest that the two cars are indifferent. However, the DM
can feel that when there are opposite preferences with respect to maximum speed and
acceleration, he/she chooses the car which is preferred with respect to acceleration. This
type of interaction related to the effects of the opposing criteria cannot be represented
using the two Choquet integrals, one for the positive preferences and the other for the
negative preferences, because they do not take into account the fact that the importance
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of criteria depends also on the criteria which are opposed to them. In these cases a new,
more general extension of the Choquet integral must be considered ([24], [25]). The bi-
polar Choquet integral gives a specific weighted average where the criteria are weighted
by means of a bi-polar capacity which gives a numerical evaluation of the comparison of
the set of criteria in favor (expressing positive preferences) opposed to the set of criteria
against (thus expressing negative preferences).

The use of the Choquet bi-polar integral in MCDA ([24]) is based on the idea of
calculating a multiple criteria utility function that aggregates evaluations from different
points of view which are under or above a neutral point. In our opinion, this specific use
of the bi-polar Choquet integral has a quite problematic aspect: what is the neutral point?
How to determine it? Is it reasonable to ask directly to the DM what the neutral point is?

The use of the bi-polar Choquet integral that we are proposing in this paper avoids
the problem concerning the nature and the determination of the neutral point. Indeed, in
multiple criteria pairwise comparisons of actions, the neutral point is clearly the indif-
ference on the criterion considered, and this is natural and immediate for the DM. These
considerations allow us to conclude that the context of the multiple criteria pairwise com-
parison of actions is the most adequate framework to the bi-polar Choquet integral. In this
sense the bi-polar Choquet integral is a fundamental tool to deal with important aspects
of the problem: how can we compare positive and negative reasons in multiple criteria
decisions? A confirmation in this direction comes from a recent result ([27]) that proved
that to consider a non-compensatory preference structure is equivalent to weighting cri-
teria by means of a bi-polar capacity. From this point of view, the methodology we are
proposing in this paper corresponds to an extension of the non-compensatory approach.
Indeed, in the non-compensatory approach only the sign of the preferences is considered:
positive, negative, or neutral. In this paper we consider not only the sign, but also the
intensity of these preferences. From this point of view, our paper presents a methodology
consistent with a very general non-additive and non-transitive model of conjoint measure-
ment presented in ([7]). This model represents the multiple criteria comparisons of two
alternatives as an aggregation of the positive and the negative preferences with respect
to the considered criteria. Our methodology is a specific one, but a very general case of
the non-additive and non-transitive model of conjoint measurement, in which the pref-
erences on each single criterion are aggregated using the bi-polar Choquet integral. Let
us also observe that our approach permits to decompose the comprehensive preferences
into the difference of the comprehensive positive preferences and the comprehensive neg-
ative preferences. This is concordant with the non-transitive and non-additive conjoint
measurement model of four-valued outranking presented in ([26]).

In this paper, besides the reformulation of some well-known methods (PROMETHEE
and ELECTRE) in terms of a comparison of the criteria in favor and the criteria against
by means of the bi-polar Choquet integral, we consider an important question related to
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the real-world applications: how is it possible to determine the bi-polar capacity, i.e. the
non-additive weights, necessary to calculate the bi-polar Choquet integral? We know that
even in the case of the additive weights, inferring these preferential parameters is a very
complex and difficult task, because of the cognitive efforts that it is required from DMs.
Moreover, the bi-polar capacity gives a weight to each pair of disjoint subsets of criteria.
This means that if the number of criteria is n, then 3n is the number of weights to be deter-
mined: this is a huge number. With respect to the use of Choquet integral a quite effective
methodology to determine the weights has been proposed in ([30]). It is based on a linear
programming model which determines non-additive weights which are concordant with
some qualitative preferential information provided by the DM about the importance of
and the interactivity between the criteria considered (the same kind of approach was ap-
plied to an outranking method, ELECTRE TRI [31]). An important aspect of this method
of inferring non-additive weights is that a 2−order capacity ([22]) is considered. From an
intuitive point of view a 2−order capacity means that only interaction between pairs of
criteria is considered, while it is not taken into account the interaction between triplets,
quadruplets and in general k−tuples of criteria with k > 2. A similar approach is also very
important for the bi-polar Choquet integral. The problem, however, is the following: how
can we define a 2-order bi-capacity? In this paper we propose a specific definition of a
2-order bi-capacity which permits a meaningful and manageable extension for determin-
ing non-additive weights to the bi-polar case of the method proposed in [30]. The specific
decomposition of the bi-capacity derived from the considered 2-order bi-capacity is very
meaningful and can be related with some interesting works on the notion of the relative
importance of criteria ([39]).

This paper is organized as follows. Section 2 presents an illustrative example. Section
3 contains the elementary definitions and notation with respect to outranking methods.
Sections 4 and 5 are devoted to PROMETHEE and ELECTRE methods. Section 6 is
dedicated to the Choquet integral and several variants. Section 7 and 8 deal with two new
variants of PROMETHEE and ELECTRE methods. Section 9 is devoted to the problem of
the determination of the coefficients of the relative importance of criteria, the interaction
between criteria and the power of the opposing criteria in PROMETHEE and ELECTRE
methods according to the new concepts introduced in the previous sections. Section 10
concludes the paper and presents some avenues for future research.
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2 Grading students: An illustrative example

In this section we present an example which is so common in the real-world of academics
at Universities, Colleges, and High Schools. It was inspired on the example presented in
[24].

In the example below, when comparing two actions a and b, if the action a is better
than b, we also try to measure in some sense the intensity of that preference. This is very
close to the MACBETH way of assessing preferences ([4], [5]), where the attractiveness
between a and b can be modelled according to several different levels: very weak, weak,
moderate, strong, very strong, extreme. In what follows, we will use mainly three levels:
weak, moderate and strong.

2.1 Problem description

Let us consider the problem of evaluating High School students according to their grades
in Mathematics, Physics and Literature.

The director thinks that scientific subjects (Mathematics and Physics) are more im-
portant than Literature. However, when students a and b are compared, if a is better than
b both at Mathematics and Physics but a is much worse than b at Literature, then the
director has some doubts about the comprehensive preference of a over b.

Mathematics and Physics are in some sense redundant with respect to the compari-
son of students, since usually students which are good at Mathematics are also good at
Physics. As a consequence, if a is better than b at Mathematics, the comprehensive pref-
erence of the student a over the student b is stronger if a is better than b at Literature
rather than if a is better than b at Physics.

According to this reasoning, the director considers the following two intuitive rules.

R1. Let us consider a student a weakly better than a student b with respect to Math-
ematics. In this case, to have a moderate comprehensive preference of the student
a over the student b, the director wants a strong preference of a over b in Physics
even if it is opposed to a moderate preference of b over a in Literature. On the con-
trary, a moderate preference in Physics even if it is opposed to a weak preference in
Literature is not enough to have moderate comprehensive preference.

R2. Let us consider a student a moderately better than a student b with respect to
Mathematics. In this case, to have a strong comprehensive preference of the student
a over the student b, the director wants that a is not much worse than b, with respect
to Literature. Thus, a is strongly preferred to b when there is weak preference of b
over a in Literature, if there is also a moderate preference of a over b in Physics. On
the contrary, a strong preference of a over b in Physics, if it is opposed to a moderate
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preference of b over a in Literature is not enough to have a strong comprehensive
preference of a over b.

On the basis of these rules let us consider the students whose grades (belonging to the
range [0,20]) are represented in Table 1.

Students Mathematics Physics Literature

a1 16 17 16
a2 15 14 18
a3 18 18 14
a4 17 16 15
a5 19 18 17
a6 17 15 19
a7 18 20 15
a8 16 18 16

Table 1: Evaluations of the students

2.2 An intuitive representation of valued preferences

Let us consider the following formulation of the preference of a over b with respect to
each criterion g j, for all j = (M) Mathematics, (Ph) Physics, (L) Literature.

Pj(a,b) =




0 if g j(b) ≥ g j(a)

(g j(a)−g j(b))/4 if 0 ≤ g j(a)−g j(b) ≤ 4

1 otherwise

Note that, according to the above formula if Pj(a,b) > 0, then Pj(b,a) = 0. From the
values of the partial preferences Pj(a,b) we obtain the positive and the negative partial
preferences PB

j (a,b) with respect to each criterion g j, for j = M,Ph,L. These preferences
are defined as follows,

PB
j (a,b) =




Pj(a,b) if Pj(a,b) > 0

−Pj(b,a) if Pj(a,b) = 0
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Let us remark that,

1. PB
j (a,b) = −PB

j (b,a);

2. If PB
j (a,b) > 0, then we have a preference of a over b with respect to criterion

g j; and, PB
j (a,b) represents the value of this preference; this means that there is a

positive preference of a over b whose value is PB
j (a,b);

3. If PB
j (a,b) < 0, then we have a preference of b over a with respect to criterion g j;

and, −PB
j (b,a) is the value of this preference; this means that there is a negative

preference of a over b whose value is PB
j (a,b);

4. If PB
j (a,b) = PB

j (b,a) = 0 then we have an indifference of a and b with respect to
criterion g j; this means that the preference of a over b is neither positive nor nega-
tive and thus its value is PB

j (a,b) = 0; the criterion g j is thus considered neutral.

Table 2 presents the values of the positive and negative preference of a over b, Pj(a,b),
for the following pairs of students from Table 1: (a1,a2), (a3,a4), (a5,a6) and (a7,a8).
This Table presents also a verbal evaluation of the comprehensive preference of the above
four pairs of students.

Students Mathematics Physics Literature Comprehensive
Preferences

PB
j (a1,a2) 0.25 0.75 -0.50 moderate

PB
j (a3,a4) 0.25 0.50 -0.25 weak

PB
j (a5,a6) 0.50 0.75 -0.50 moderate

PB
j (a7,a8) 0.50 0.50 -0.25 strong

Table 2: Positive and negative preferences of the pairs (a,b)

The different levels of preference intensities, PB
j (a,b), can be interpreted as follows,

• PB
j (a,b) = 0, means that a is indifferent to b w.r.t. the criterion g j;

• PB
j (a,b) = 0.25, means that a is weakly preferred to b w.r.t. the criterion g j;

• PB
j (a,b) = 0.50, means that a is moderately preferred to b w.r.t. the criterion g j;
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• PB
j (a,b) = 0.75, means that a is strongly preferred to b w.r.t. the criterion g j;

• PB
j (a,b) = 1, means that a is extremely preferred to b w.r.t. the criterion g j.

Note that the above relation between qualitative levels and numerical values is only
used for a better understanding of the example.

2.3 Determining the comprehensive preferences

According to the above rule (R1), the director says that he has a comprehensive moderate
preference of a1 over a2, while he only weakly prefers a3 to a4. Indeed, with respect to
Mathematics, a1 is weakly preferred to a2 as well as a3 is weakly preferred to a4. Let us
remark that the positive preference of a1 over a2 with respect to Physics is strong. In this
case, even if there is also a moderate preference of a2 over a1 (i.e. a negative preference of
a1 over a2) with respect to Literature, on the basis of (R1), the director clearly prefers a1

to a2. On the contrary, even if the preference of a3 over a4 (i.e. a negative preference of a3

over a4) with respect to Literature is only weak, there is also only a moderate preference
of a3 over a4 with respect to Physics, which on the basis of (R1) determines only a weak
preference of a3 over a4.

According to the above rule (R2), the director says that a5 is comprehensively mod-
erately preferred to a6, but a7 is comprehensively strong preferred to a8. Indeed, with
respect to Mathematics, the preference of a5 over a6 as well as the preference of a7 over
a8 are moderate. However, the preference of a6 over a5 (i.e, a negative preference of a5

over a6) with respect to Literature is moderate, and therefore, on the basis of (R2), a5 is
considered moderately better but not strongly better than a6, even if there is also a strong
preference of a5 over a6 with respect to Physics. On the contrary, even if the preference of
a7 over a8 with respect to Physics is only moderate, on the basis of (R2), the comprehen-
sive preference of a7 over a8 is strong because with respect to Literature the preference of
a8 over a7 (i.e. a negative preference of a7 over a8) is only weak.

Now we try to represent the preferences of the director using the following formulation
which is concordant with the PROMETHEE method: for each pair of students (a,b), we
have,

1. The positive preference of a over b,

P(a,b) = wMPM(a,b)+wPhPPh(a,b)+wLPL(a,b);

2. The negative preference of a over b,

P(b,a) = wMPM(b,a)+wPhPPh(b,a)+wLPL(b,a)
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3. The comprehensive preference of a over b.

PC(a,b) = −PC(b,a) = P(a,b)−P(b,a)

where, wj, j = M,Ph,L is the weight of the considered criterion. Let us remark that
wj represents the importance of the criterion g j and therefore the more important g j the
larger wj. Moreover, we have that,

• 0 ≤ wj ≤ 1, for all j = M,Ph,L;

• wM +wPh +wL = 1.

Observe that, for all pairs of students a and b,

PC(a,b) = wMPB
M(a,b)+wPhPB

Ph(a,b)+wLPB
L (a,b)

Consequently, the comprehensive preferences of a1 over a2 is,

PC(a1,a2) = wM ×0.25+wPh ×0.75+wL × (−0.5)

Let us assume that wM = wPh > wL. Figure 1 gives a representation of the PC(a1,a2) as
the sum of the areas of the two first rectangles (A and B), minus the area of the third one
(C).

2.4 How this methodology works or does not work in our example?

This sub-section is divided into several paragraphs, which introduce in a didactic way
the concepts developed later on, in a more formal way. We start by the most frequent
case, where all the criteria are considered to be independent. Then, we will introduce the
interactivity between criteria. Finally, we will consider the opposing power of the criteria.

2.4.1 A PROMETHEE like technique: The criteria are considered independent

To represent the preferences of the director, we should have that

(i) PC(a1,a2) > PC(a3,a4)

since a1 is comprehensively moderately better than a2, while a3 is comprehensively
weakly better than a4

(ii) PC(a5,a6) < PC(a7,a8)
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A

B

C

Assuming that: wM = wPh > wL

PC(a1,a2) = A+B−C

A = 0.25×wM

B = 0.75×wPh

C = 0.50×wL

0.25

0.75

−0.50

wM wPh

wL

PB
j (a1,a2)

wj

Figure 1: Geometric representation of preference aggregation with independent criteria

since a5 is comprehensively moderately better than a6, while a7 is comprehensively
strongly better than a8.

From (i) we have that,

wMPB
M(a1,a2)+wPhPB

Ph(a1,a2)+wLPB
L (a1,a2) >

> wMPB
M(a3,a4)+wPhPB

Ph(a3,a4)+wLPB
L (a3,a4),

that is,

(iii) wM ×0.25+wPh ×0.75+wL × (−0.5) >

> wM ×0.25+wPh ×0.5+wL × (−0.25).

which means that (iii) is equivalent to,

(iv) wPh > wL.

Analogously, from (ii) we obtain that,

(v) wPh < wL.

16



(iv) and (v) are clearly contradictory. Therefore (i) and (ii) cannot be satisfied for any
possible values of wM, wPh, and wL. Thus the PROMETHEE like model cannot represent
the preferences of the director. This can be explained with the observation that, according
to rule (R1), Physics is more important than Literature when the preference of the student
a over the student b with respect to Mathematics is rather weak, while Literature is more
important than Physics when the preference of student a over student b with respect to
Mathematics is moderate.

2.4.2 On the interactivity between criteria

To represent the preference of the director, we can try to use the Choquet integral in order
to represent the interaction between criteria. More particularly, for each pair of students
(a,b), we calculate the Choquet integral of the,

• positive preferences (i.e. the positive preferences of a over b on each single subject);

• negative preferences (i.e. the negative preferences of a over b on each single sub-
ject).

This is equivalent to calculate the Sipos integral ([42]) of preferences PB
j (a,b).

The Choquet integral gives a specific weighted average in which weights relative to all
possible subsets of criteria are considered. Thus, for example, µ({M,Ph}) is the weight
expressing the importance of Mathematics and Physics when they are considered together,
while µ({M}) and µ({Ph}) are the weights expressing the importance of Mathematics and
Physics, respectively, when they are considered separately. In general, we can have that
µ({M,Ph}) �= µ({M})+ µ({Ph}). This is the case in the above example, because, due
to the redundancy between Mathematics and Physics, one can expect that µ({M,Ph}) <
µ({M})+µ({Ph}).

The set of weights µ(.) considered to calculate the Choquet integral, are technically
defined as a capacity.

We shall try to model the importance of the criteria and the interaction between cri-
teria in the same way both for the positive and the negative preferences. This means that
we shall use the same capacity for the Choquet integral of the positive preferences and
the Choquet integral of the negative preferences.

To explain how the Choquet integral is calculated, let us consider the pair of student
(a1,a2). Given a capacity µ, the positive preferences can be aggregated as follows. Let us
start by ordering all the preferences from the smallest to the largest intensity, that is 0.25
for Mathematics and 0.75 for Physics. After, starting from the smallest, we observe that
there is a preference of at least 0.25 for Mathematics and Physics. Therefore we multiply
0.25 by µ({M,Ph}) which is the weight of these two criteria considered together. Then,
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we can see that there is a preference of at least 0.75 only for Physics. We have, thus, an
increasing of 0.75−0.25 = 0.50 which is relative only to Physics. Therefore, we multiply
0.50 by µ({Ph}) which is the weight of Physics considered separately. Finally, we can
add the two products and obtain the Choquet integral of the positive preferences of a1

over a2, which is,

µ({M,Ph})×0.25+µ({Ph})×0.50

Now, let us calculate the Choquet integral of the negative preferences, which in our
example gives in a very simple way,

µ({L})×0.50

Finally, subtracting, from the Choquet integral of the positive preferences, the Cho-
quet integral of the negative preferences, we obtain the comprehensive strength of the
preferences of a1 over a2, which is (see also Figure 2),

PC(a1,a2) =
(

µ({M,Ph})×0.25+µ({Ph})×0.50
)
−

(
µ({L})×0.50

)
.

A

B

C

d1 d2 d3

PC(a1,a2) = A+B−C

A = 0.25×µ({M,Ph})
B = 0.50×µ({Ph})
C = 0.50×µ({L})

Note that: A = d2 +d3 −d1

0.25

0.75

−0.50

µ({M,Ph})
µ({Ph})

µ({L})

PB
j (a1,a2)

µ(.)

Figure 2: Preference aggregation with interaction of preferences of the same sign

The same kind of calculation can be made with respect to the other three pairs of
students, then obtaining,
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PC(a3,a4) = µ({M,Ph})×0.25+µ({Ph})×0.25−µ({L})×0.25;

PC(a5,a6) = µ({M,Ph})×0.5+µ({Ph})×0.25−µ({L})×0.50;

PC(a7,a8) = µ({M,Ph})×0.5−µ({L})×0.25.

In this context we have that the above (i), i.e.,

PC(a1,a2) > PC(a3,a4)

gives

(vi) µ({M,Ph})×0.25+µ({Ph})×0.5−µ({L})×0.5 >

> µ({M,Ph})×0.25+µ({Ph})×0.25−µ({L})×0.25

while (ii), i.e.,

PC(a5,a6) < PC(a7,a8)

gives

(vii) µ({M,Ph})×0.5+µ({Ph})×0.25−µ({L})×0.5 <

< µ({M,Ph})×0.5−µ({L})×0.25.

Form (vi) we obtain

(viii) µ({Ph}) > µ({L}).

while from (vii) we obtain

(ix) µ({Ph}) < µ({L})

It is easy to see that (viii) and (ix) are clearly contradictory and this means that the Cho-
quet integral with the same capacity on the positive preferences and on the negative pref-
erences cannot represent the preferences of the director.
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2.4.3 A more sophisticated technique is required

Therefore, we try to represent the preference of the director using the Choquet integral
with different capacities for the positive and the negative preferences. In this way we
try to represent a different importance and interaction of criteria for the positive and the
negative preferences.

This means that we shall use the capacity µ+ to calculate the Choquet integral of the
positive preferences and the capacity µ− to calculate the Choquet integral of the negative
preferences.

For example, µ+({M,Ph}) is the weight of Mathematics and Physics considered to-
gether when they express positive preferences, while µ−({M,Ph}) is the weight of the
same criteria when they express negative preferences. Thus, we have that

PC(a1,a2) = µ+({M,Ph})×0.25+µ+({Ph})×0.50−µ−({L})×0.50;

PC(a3,a4) = µ+({M,Ph})×0.25+µ+({Ph})×0.25−µ−({L})×0.25;

PC(a5,a6) = µ+({M,Ph})×0.5+µ+({Ph})×0.25−µ−({L})×0.50;

PC(a7,a8) = µ+({M,Ph})×0.5−µ−({L})×0.25.

In this context we have that the above (i) gives,

(x) µ+({M,Ph})×0.25+µ+({Ph})×0.5−µ−({L})×0.5 >

> µ+({M,Ph})×0.25+µ+({Ph})×0.25−µ−({L})×0.25

while (ii) gives

(xi) µ+({M,Ph})×0.5+µ+({Ph})×0.25−µ−({L})×0.5 <

< µ+({M,Ph})×0.5−µ−({L})×0.25

From (x) we obtain,

(xii) µ+({Ph}) > µ−({L})
while from (xi) we obtain

(xiii) µ+({Ph}) < µ−({L}).
And (xii) and (xiii) are clearly contradictory and this means that the Choquet integral even
with the capacity on the positive preferences different from the capacity on the negative
preferences cannot represent the preferences of the director.
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2.4.4 The power of the opposing criteria: Criteria in favor and against

Finally, let us consider the bi-polar Choquet integral using a bi-capacity µ̂.
The bi-polar Choquet integral gives a specific weighted average in which weights rel-

ative to all possible pairs of disjoint subsets of criteria are considered. Thus, for example,
µ̂({M,Ph},{L}) is the weight concerning the difference of the importance of Mathemat-
ics and Physics, expressing positive preferences, on one side, and Literature, expressing
negative preferences, on the other side.

In this way we try to represent the importance and the interaction of criteria for pos-
itive and negative preferences which depend on the fact that the criteria are in favor or
against to the comprehensive preference.

To explain how the bi-polar Choquet integral is calculated, let us consider again the
pair of student (a1,a2). Given a bi-polar capacity µ̂, the preferences can be aggregated
as follows. Let us start by ordering all the preferences from the smallest to the largest
absolute value of their intensity, that is 0.25 for Mathematics, 0.50 for Literature and
0.75 for Physics. After, starting from the smallest absolute value, we observe that there
is a positive preference of at least 0.25 for Mathematics and Physics against a negative
preference of at least 0.25 for Literature. Therefore we multiply 0.25 by µ̂({M,Ph},{L}).
Then, we can see that there is a positive preference of at least 0.50 for Physics against
a negative preference of at least 0.50 for Literature. We have, thus, an increasing of
0.50−0.25 = 0.25 which is relative to a positive preference of Physics against a negative
preference of Literature. Therefore, we multiply 0.25 by µ̂({Ph},{L}). Now, we can
see that there is a positive preference of 0.75 for Physics and that this positive preference
is not counterbalanced by any negative preference of the same or larger intensity. We
have, thus, an increasing of 0.75−0.50 = 0.25 which is relative to a positive preference
on Physics against no negative preference. Therefore, we multiply 0.25 by µ̂({Ph}, /0).
Finally, we can add the three products and obtain the bi-polar Choquet integral of the
preferences of a1 over a2, which is,

PC(a1,a2) = µ̂({M,Ph},{L})×0.25+ µ̂({Ph},{L})×0.25+ µ̂({Ph}, /0)×0.25

The calculation is similar for the remaining pairs of students.

In this context we have that the above (i) gives,

(xiv) µ̂({M,Ph},{L})×0.25+ µ̂({Ph},{L})×0.25+ µ̂({Ph}, /0)×0.25 >

> µ̂({M,Ph},{L})×0.25+ µ̂({Ph}, /0)×0.25

while (ii) gives,

(xv) µ̂({M,Ph},{L})×0.5+ µ̂({Ph}, /0)×0.25 <
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< µ̂({M,Ph},{L})×0.25+ µ̂({M,Ph}, /0)×0.25.

From (xiv) we obtain,

(xvi) µ̂({Ph},{L}) > 0

while from (xv) we obtain,

(xvii) µ̂({M,Ph},{L})+ µ̂({Ph}, /0) < b({M,Ph}, /0)

(xvi) and (xvii) means that, differently from the previous cases, the bi-polar Choquet
integral can represent the preferences of the director. For example, a bi-polar capacity
such that

µ̂({Ph},{L}) = 0.1

µ̂({M,Ph},{L}) = 0.2

µ̂({Ph}, /0) = 0.5

µ̂({M,Ph}, /0) = 0.8

satisfies conditions (xiv) and (xv) and therefore, using µ̂, the Choquet bi-polar integral
of the valued marginal preferences PB

j (a,b) permits to represent the preferences of the
director of the school.

2.4.5 On the use of a decomposition procedure

The above bi-capacity, µ̂, can be decomposed in a meaningful way. This decomposition
splits the values of the bi-capacity in three types of components:

1. A set of components relative to the importance of each criterion considered sepa-
rately: thus aM, aPH and aL is the importance of Mathematics, Physics and Litera-
ture, respectively, considered separately;

2. A set of components relative to the interaction between pairs of criteria expressing
preferences of the same sign (both positive or both negative): thus, for example,
aM,Ph is the interaction between Mathematics and Physics;
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3. A set of components relative to the net result of the opposition of pairs of crite-
ria expressing preferences of different sign (the first positive, the second negative):
thus, for example, aM|L is the net result of the opposition of Mathematics expressing
a positive preference and Literature expressing a negative preference. If aM|L is pos-
itive, this means that the positive preference of Mathematics reduce the importance
of Literature more than the negative preference of Literature reduce the importance
of Mathematics. We have an opposite interpretation if aM|L has a negative value.

In order to have an idea of how this decomposition works, let us consider the weight
concerning the difference of the importance of Mathematics and Physics, expressing posi-
tive preferences, on one side, and Literature, expressing negative preferences, on the other
side, i.e. µ̂({M,Ph},{L}).

We can decompose µ̂({M,Ph},{L}) as follows,

µ̂({M,Ph},{L}) = aM +aPh −aL +aM,Ph +aM|L +aPh|L,

that is,

1. The sum of the components relative to the importance of each criterion expressing
positive preference (aM +aPh);

2. Minus the sum of the components relative to the importance of each criterion ex-
pressing negative preference (aL);

3. Plus the sum of all the components relative to the interaction between pairs of cri-
teria expressing positive preferences (aM,Ph);

4. Minus the sum of all the components relative to the interaction between pairs of
criteria expressing negative preferences (in this example there is no such a kind of
components);

5. Plus the components relative to the net result of the opposition of pair of criteria
expressing preferences of different sign (aM|L +aPh|L).

Figure 3 gives a representation of µ̂({M,Ph},{L}).
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Figure 3: The power of opposing criteria: µ̂({M,Ph},{L})

In this sense conditions (xvi) and (xvii) can be rewritten as follows,

(xviii) µ̂({Ph},{L}) = aPh −aL +aPh|aL > 0

(xix) µ̂({M,Ph},{L})+ µ̂({Ph}, /0)− µ̂({M,Ph}, /0) =

= (aM +aPh +aM,Ph −aL +aPh|aL +aM|aL)+aPh − (aM +aPh +aM,Ph) =

= −aL +aPh|aL +aM|aL +aPh > 0.

On the basis of (xviii) and (xix) we can conclude that a possible decomposition of the
above bi-polar capacity µ̂ is the following:

aM = aPh = 0.5,aL = 0.2,aM,Ph = aPh|L = aM|L = −0.2

This decomposition gives an intuitive interpretation of the importance, the interactions
and the power of opposing criteria of the director:

1. aM = aPh = 0.5, aL = 0.2 means that Mathematics and Physics are clearly more
important than Literature;

2. aM,Ph =−0.2 means that there is a certain redundancy of Mathematics and Physics;

3. aPh|L = aM|L = −0.2 means that Literature has a certain opposition power with
respect to Mathematics and Physics.
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3 Elementary definitions and notation concerning out-
ranking methods

The elementary data consist of a set of actions and a set of criteria and consequently an
evaluation table or matrix where each action is evaluated on each criterion. Let,

◦ A = {a1, . . . ,ai, . . . ,am}, denote a finite set of actions with |A| = m;

◦ F = {g1, . . . ,g j, . . . ,gn}, denote a finite set of criteria with |F| = n;

◦ I , denote the set of the actions indices;

◦ J , denote the set of the criteria indices;

◦ g j(ai), denote the evaluation of action g j on criterion g j.

When comparing, in a comprehensive way, two actions a and b according to all the
criteria considered together, several situations may occur,

1. a is strictly preferred to b, (aPb), if there are enough reasons to justify the prefer-
ence of a over b. An analogous interpretation can be applied when b is preferred to
a.

2. a is indifferent to b, (aIb), if there are enough reasons to justify an indifference
between both actions.

3. a is weakly preferred to b, (aQ b), if there is an hesitation between strictly preference
and indifference.

4. a is incomparable to b, aR b, if there are no reasons which permit us to define a
preference (strict or weak) or an indifference of a over b or vice-vera.

It should be remarked that in outranking methods the expression weakly preferred
means an hesitation while in the example presented in the previous section it was related
with the intensity of preference of a over b.

In outranking methods and in particular in ELECTRE methods, when comparing a
and b, it is frequent to define an outranking relation aSb, which means that a is ”at least
as good” as b.
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Definition 1 [outranking relation] (Roy, 1974 [35]).
An outranking relation is a binary relation defined in A such that aSb if, given what is
known about the decision maker’s preferences and given the quality of the performances
of the actions and the nature of the problem, the arguments to decide that a is at least as
good as b, while there is no essential argument to refute that statement.

In addition to the basic data, we need to introduce some preferential parameters. Let,

◦ wj, denote the relative importance coefficient attached to criterion g j;

◦ q j (p j), denote the indifference (preference) threshold for criterion g j;

◦ v j, the veto threshold with respect to criterion g j.

This thresholds may be constant or vary with the evaluations of the actions along the scale
of each criterion.

Outranking methods are decomposed in two main phases: construction of one or sev-
eral outranking relation(s) followed by an exploitation procedure.

1. The construction of one or several outranking relation(s) aims at comparing in a
comprehensive way each pair of actions.

2. The exploitation procedure is used to elaborate recommendations from the results
obtained in the first phase. The nature of the recommendations obviously depends
on the problem statement.

For more details on outranking methods the reader can consult the following refer-
ences: [15], [37], [38], [46].

4 The PROMETHEE method

PROMETHEE was created in the ealier eighties. It was particularly designed for rank-
ing actions from the best to the worst option ([8], [11]). Over the last two decades,
PROMETHEE was applied to a huge variety of real-world decision making situations
([10]). It is perhaps the most simple and intuitive outranking method. A comprehensive
description of PROMETHEE can be found in [9].

4.1 The construction of an outranking relation

As an outranking method PROMETHEE preference structures are based on pairwise com-
parisons. When comparing two actions a and b on criterion g j the difference of evalua-
tions or preferences between these two actions should be taken into account. Assuming
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that, g j(a) ≥ g j(b), the difference between the evaluations of a and b on criterion g j can
be stated as follows,

d j(a,b) = g j(a)−g j(b)

When the difference d j(a,b) is very small and the DM can neglect it, there is no reason
to say that a is preferred to b and so the actions are indifferent. The higher the value of
d j, the larger the preference Pj(a,b) in favor of a over b, on criterion g j. This preference
can be defined through a function in the following way,

Pj(a,b) = f j(d j(a,b)), ∀ a,b ∈ A

and we can assume that Pj(a,b) ∈ [0,1] and if Pj(a,b) > 0, then Pj(b,a) = 0.
The pair (g j,Pj(a,b)) is called a generalized function associated with criterion g j, for

all j ∈ J . Several types of generalized functions can be provided ([9]). In each case we
may define some intra-criterion preferential parameters. The most common generalized
function is the following,

Pj(a,b) = f j(d j(a,b)) =




0 if d j(a,b) ≤ q j

d j(a,b)
p j−q j

if q j < d j(a,b) ≤ p j

1 if d j(a,b) > p j

where,

• q j, an indifference threshold;

• p j, a preference threshold,

In Figure 4, we present an example of a generalized function of type 5 (see [9]) requiring
the definition of both q j and p j.
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Figure 4: Generalized function

4.1.1 Comprehensive preferences

The preferences Pj(a,b), for j ∈ J must be aggregated for all pairs of actions (a,b) be-
longing to A to obtain a comprehensive index π(a,b) expressing the degree in which a is
preferred to b, as follows, 


π(a,b) = ∑

j∈J
Pj(a,b)wj

π(b,a) = ∑
j∈J

Pj(b,a)wj

It is clear that π(a,b) ∈ [0,1]. When π(a,b) is close to one, a strong preference in
favor of a over b exists. On the contrary, when π(a,b) is close to zero, a weak preference
exists.

The following proprieties hold for all a,b ∈ A,


π(a,a) = 0

0 ≤ π(a,b) ≤ 1

0 ≤ π(b,a) ≤ 1

0 ≤ π(a,b)+π(b,a) ≤ 1
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4.1.2 Positive, negative, and net flows

The fundamental idea underlying PROMETHEE methods is the quantification of how an
action a outranks all the remaining (m− 1) actions and how a is outranked by the other
(m−1) actions. This idea leads to the definition of the positive and negative outranking
flows as follows,

• The positive outranking flow:

φ+(a) =
1

m−1 ∑b∈A

π(a,b) =
1

m−1 ∑b∈A
∑
j∈J

Pj(a,b)wj

• The negative outranking flow:

φ−(a) =
1

m−1 ∑b∈A

π(b,a) =
1

m−1 ∑b∈A
∑
j∈J

Pj(b,a)wj

We can now define the net flow for each action a ∈ A,

φ(a) = φ+(a)−φ−(a) =
1

m−1 ∑b∈A
∑
j∈J

(
Pj(a,b)−Pj(b,a)

)
wj

4.1.3 Single criterion net flows and the profile of an action

For each action a ∈ A, it is obvious that we can also determine the net flow for each
criterion separately. Let us define the net flow for criterion g j as follows,

φ j(a) =
1

m−1 ∑b∈A

(
Pj(a,b)−Pj(b,a)

)

Consequently, the comprehensive net flow can also be defined in the following way,

φ(a) = ∑
j∈J

φ j(a)wj

The determination of φ j(a), for all j ∈ J allow us to draw the profile of the action a.
The ”quality” of a given action a can be appreciated by DMs through the definition of

the profile of a. This profile is drawn from the single criterion net flow indices, φ j(a), for
all j ∈ J (see Figure 5). It expresses how an action a outranks (φ j(a) > 0) or is outranked
(φ j(a) < 0) by the remaining (m−1) actions in A.
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Figure 5: The single criterion net flows

4.2 The exploitation phase: Two variants of PROMETHEE

There are in fact two variants of PROMETHEE with respect to the output:

• PROMETHEE I was designed to establish a partial ranking over the set of the ac-
tions, allowing thus for the possibility to present some incomparabilities in the final
ranking; and,

• PROMETHEE II was designed to determine a complete ranking.

The next two paragraphs present these two variants.

4.2.1 Identifying a partial pre-order: PROMETHEE I

The first variant of PROMETHEE, identifies a system of the form (P ,I ,R ) comparing
the actions in the following way,



aPb iff




φ+(a) > φ+(b) and φ−(a) < φ−(b), or

φ+(a) = φ+(b) and φ−(a) < φ−(b), or

φ+(a) > φ+(b) and φ−(a) = φ−(b)

aIb iff
{
φ+(a) = φ+(b) and φ−(a) = φ−(b)

aR b iff

{
φ+(a) > φ+(b) and φ−(a) > φ−(b), or

φ+(a) < φ+(b) and φ−(a) < φ−(b)
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4.2.2 Determining a complete pre-order: PROMETHEE II

This variant of PROMETHEE consists of the (P ,I ) complete ranking. It is the balance
between the positive and the negative outranking flows. The higher the net flow, the better
the action, so that: {

aPb iff φ(a) > φ(b)

aIb iff φ(a) = φ(b)

In this case all the actions are comparable. No incomparabilities remain. The follow-
ing properties hold: 


−1 ≤ φ(a) ≤ 1

∑
a∈A

φ(a) = 0

5 The ELECTRE III method

ELECTRE III was designed to improve ELECTRE II and so to deal with imperfect knowl-
edge of data. This purpose was actually achieved and ELECTRE III was applied with
success during the last two decades on a broad area of real-life applications. For a com-
prehensive description of ELECTRE methods the reader can consult [17], [38].

5.1 The construction of an outranking relation

The construction of an outranking relation requires the definition of a credibility index for
the outranking relation aSb; let ρ(aSb) denote this index. It is defined by using both the
concordance index, c(aSb), and a discordance index for each criterion g j in F , that is,
d j(aSb).

The concordance index can be presented as follows. Let us start by building the fol-
lowing two sets:

1. concerning the coalition of criteria in which aSb

J S =
{

j ∈ J : g j(a)+q j
(
g j(a)

) ≥ g j(b)
}

2. concerning the coalition of criteria in which bQa

JQ =
{

j ∈ J : g j(a)+q j
(
g j(a)

)
< g j(a) ≤ g j(b)+ p j

(
g j(b)

)}
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Let us define ϕ j(a,b) as follows,

ϕ j(a,b) =




1 if j ∈ J S

g j(a)+p j

(
g j(a)

)
−g j(b)

p j

(
g j(a)

)
−q j

(
g j(a)

) if j ∈ JQ

0 otherwise

the coefficient ϕ j decreases linearly from 1 to 0, when g j describes the range [g j(a) +
q j

(
g j(a)

)
, g j(a)+ p j

(
g j(a)

)
].

The concordance index will be defined in the following way,

c(aSb) = ∑
j∈J

wjϕ j(a,b)

The discordance of a criterion g j aims to take into account the fact that this criterion is
more or less discordant with the assertion aSb. The discordance index reaches its maximal
value when criterion g j puts its veto to the outranking relation; it is minimal when the
criterion g j is not discordant with that relation. To define the value of the discordance
index on the intermediate zone we simply admitted that this value grows in proportion to
the difference g j(b)−g j(a). This index can be presented as follows:

d j(aSb) =




1 if g j(b) > g j(a)+ v j(g j(a))

0 if g j(b) ≤ g j(a)+ p j(g j(a))

g j(b)−g j(a)−p j(g j(a))
v j(g j(a))−p j(g j(a)) , otherwise

Now, we can define the credibility index,

ρ(aSb) = c(aSb) ∏
{ j∈J : d j(aSb)>c(aSb)}

1−d j(aSb)
1− c(aSb)

Notice that, when d j(aSb) = 1, it implies that ρ(aSb) = 0, since c(aSb) < 1.

5.2 The exploitation phase

In ELECTRE III, a partial pre-order Z is built as the intersection of two complete pre-
orders, Z1 and Z2, which are obtained according to two variants of the same principle,
both acting in an antagonistic way on the floating actions. The partial pre-order Z1 is
defined as a partition of the set A into q ordered classes, Ḡ1, . . . , Ḡh, . . . , Ḡq, where Ḡ1 is
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the head-class in Z1. Each class Ḡh is composed by ex æquo elements according to Z1.
The complete pre-order Z2 is determined in a similar way, where A is partitioned into u
ordered classes, G

¯1, . . . ,G¯h, . . . ,G¯u, G
¯u being the head-class. Each one of these classes is

obtained as a final distilled of a distillation procedure.
The procedure designed to compute Z1 starts (first distillation) by defining an initial

set D0 = A; it leads to the first final distilled Ḡ1. After getting Ḡh, in the distillation h+1,
the procedure sets D0 = A\(Ḡ1 ∪ . . .∪ Ḡh). The actions in class Ḡh are, according to Z1,
preferable to those of class Ḡh+1; for this reason, distillations that lead to these classes
will be called as descendants.

The procedure leading to Z2 is quite similar, but now the actions in Ḡh+1 are preferred
to those in class Ḡh; these distillations will be called ascendants.

The partial pre-order Z will be computed as the intersection of Z1 and Z2.

6 The Choquet integral and other generalizations as ag-
gregation functions

To represent the interaction between criteria we give, in this section, some elementary
concepts concerning Choquet and bi-polar Choquet integrals. Moreover, we also in-
troduce a new generalization of the bi-polar Choquet integral, the bi-polar Choquet bi-
integral, which is a particular case of a new class of aggregation functions, the bi-aggregation
functions. We recall a characterization of the Choquet and the bi-polar Choquet integrals.
Finally, we give an axiomatic characterization of the bi-polar Choquet bi-integral.

6.1 The Choquet integral

Given a finite set J = {1,2, . . . ,n}, a capacity, µ, on this set (also called fuzzy measure) is
a set function of the form,

µ : 2J → [0,1]

such that,

1. µ( /0) = 0;

2. µ(J ) = 1;

3. µ(C) ≥ µ(D) if C ⊇ D, ∀ C,D ∈ J .
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The properties 1) and 2) are the boundary conditions, while the property 3) is the
monotonicity condition.

Consider the n−dimensional vector x = (x1, . . . ,xn) ∈ R
n
+ (all the components of the

vector are positive)
The Choquet integral ([12]) of x with respect to µ can be stated as follows,

Ch(x,µ) = ∑
j∈J

(x( j)− x( j−1))µ(C( j))

where,

• the index (.) indicates a permutation of the elements of J such that,

x(1) ≤ x(2) ≤ . . . ≤ x( j) ≤ . . . ≤ x(n),

• C( j) = {( j), . . . ,(n)}, and

• x(0) = 0.

The Choquet integral can also be re-written as follows,

Ch(x,µ) = ∑
j∈J

x( j)

(
µ(C( j))−µ(C( j+1))

)

where, C(n+1) = /0.

Example 1. The most interesting applications of the Choquet integral in real-world
problems have been based on the 2−order capacity model proposed in ([22]). It
considers the class of capacities which can be represented in the following way,

1. µ({ j}) = a j, ∀ j ∈ J ;

2. µ({ j,k}) = a j +ak +a jk, ∀ { j,k} ⊆ J ;

3. µ(C) = ∑
j∈C

a j + ∑
{ j,k}⊆J

a jk, ∀C ⊆ J , |C| ≥ 2

It is possible to prove that in this case the Choquet integral can be rewritten as,

Ch(x,µ) = ∑
j∈J

a jx j + ∑
{ j,k}⊆J

a jk min{x j,xk}, ∀ x ∈ R
n
+.
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6.2 The bi-polar capacity

Let P(J ) denote a set of pairs of subsets of J , defined as follows ([25]),

P(J ) = {(C,D) : C ⊆ J , D ⊆ J , C∩D = /0}
A bi-polar capacity, µ, on J is a function,

µ : P(J ) → [0,1]× [0,1]

such that,

1. µ(C, /0) = (c,0) and µ( /0,D) = (0,d), with c,d ∈ [0,1];

2. µ(J , /0) = (1,0) and µ( /0,J ) = (0,1).

3. For each (C,D), (E,F) ∈ P(J ), such that C ⊇ E and D ⊆ F , we have µ(C,D) =
(c,d) and µ(E,F) = (e, f ), c,d,e, f ∈ [0,1], with c ≥ e and d ≤ f .

The properties 1) and 2) are the boundary conditions, while the property 3) is the
monotonicity condition.

Given (C,D) ∈ P(J ) with µ(C,D) = (c,d), we use the following notation,

• µ+(C,D) = c;

• µ−(C,D) = d

In the following we consider also a bi-capacity, µ̂, on the set J , being a function ([24]),

µ̂ : P(J ) → [−1,1]

such that,

1. µ̂( /0, /0) = 0;

2. µ̂(J , /0) = 1 and µ̂( /0,J ) = −1;

3. If C ⊇ E and D ⊆ F , then µ̂(C,D) ≥ µ̂(E,F),

The properties 1) and 2) are the boundary conditions, while the property 3) is the
monotonicity condition.

Let us observe that from each bi-polar capacity, µ, on J , we can obtain a corresponding
bi-capacity, µ̂, on J , as follows,

µ̂(C,D) = µ+(C,D)−µ−(C,D), ∀ (C,D) ∈ P(J ).

For a similar concept in cooperative game theory see [6]
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6.3 The bi-polar Choquet integral

For each x ∈ R
n we use the following notation,

• x+ = max{x,0}, is the positive part of x, for each x ∈ R;

• x− = max{−x,0}, is the negative part of x, for each x ∈ R;

• x+ = (x+
1 , . . . ,x+

n ), is the positive part of x = (x1, . . . ,xn) ∈ R
n;

• x− = (x−1 , . . . ,x−n ), is the negative part of x = (x1, . . . ,xn) ∈ R
n;

Given x ∈ R
n let us consider a permutation (.) of the elements of J such that,

|x(1)| ≤ |x(2)| ≤ . . . ≤ |x( j)| ≤ . . . ≤ |x(n)|,

For each element j ∈ J let us consider the following two subsets of J ,

1. C( j) = {i ∈ J : xi ≥ |x( j)|};
2. D( j) = {i ∈ J : −xi ≥ |x( j)|}.

Now, considering a bi-polar capacity, µ, on J , and a vector x ∈ R
n, we can define its

bi-polar Choquet integral of the positive part in the following way ([25]),

Ch+(x,µ) = ∑ j∈J>

(
|x( j)|− |x( j−1)|

)
µ+(C( j),D( j)) =

= ∑ j∈J> |x( j)|
(

µ+(C( j),D( j))−µ+(C( j+1),D( j+1))
)

where J> = { j ∈ J : |x j| > 0}.
Analogously, the bi-polar Choquet integral of the negative part can be defined as fol-

lows,

Ch−(x,µ) = ∑ j∈J>

(
|x( j)|− |x( j−1)|

)
µ−(C( j),D( j)) =

= ∑ j∈J> |x( j)|
(

µ−(C( j),D( j))−µ−(C( j+1),D( j+1))
)

And, finally, the bi-polar Choquet integral of x ∈ R
n with respect to µ is defined as the

difference between the above positive and negative bi-polar Choquet integrals,

ChB(x,µ) = Ch+(x,µ)−Ch−(x,µ)
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Let us remark that, if for each (C,D),(C,E)∈P(J ), µ+(C,D)= µ+(C,E) and µ−(D,C)=
µ−(E,C), then there exists two capacities µ+ and µ−, on J such that for each x ∈ R

n,

ChB(x,µ) = Ch(x+,µ+)−Ch(x−,µ−)

The condition µ+(C,D) = µ+(C,E) means that the value given by the bi-polar capac-
ity µ on J to the subset C on the left, does not depend on the subsets on the right. A
similar interpretation can be done for µ−(C,D) = µ−(C,E).

Moreover, if for each, (C,D),(E,C) ∈ P(J ),

µ+(C,D) = µ−(E,C)

then, there exists only one capacity µ on J such that for each x ∈ R
n (see [42]),

ChB(x,µ) = Ch(x+,µ)−Ch(x−,µ).

Condition µ+(C,D) = µ−(E,C) means that the value given by the bi-polar capacity,
µ, on J , to the subset C does not depend on the other subsets, when it is placed on the left
in µ+ and on the right in µ−.

Let us remark that ChB(x,µ) can be formulated as follows ([24]),

ChB(x,µ) = ∑ j∈J>

(
|x( j)|− |x( j−1)|

)
µ̂(C( j),D( j)) =

= ∑ j∈J> |x( j)|
(

µ̂(C( j),D( j))− µ̂(C( j+1),D( j+1))
)

where,

µ̂(C,D) = µ+(C,D)−µ−(C,D), ∀ (C,D) ∈ P(J ).

6.4 The generalized bi-polar capacity

Let P∗(J ) denote a set of pairs of subsets of J , defined as follows,

P∗(J ) = {(C,D) : C ⊆ J , D ⊆ J }

We define the generalized bi-polar capacity, µ∗, on J any function of the form ([23]),

µ∗ : P∗(J ) → [0,1]× [0,1]

such that,
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1. µ∗(C, /0) = (c,0) and µ∗( /0,D) = (0,d), with c,d ∈ [0,1];

2. µ∗(J , /0) = (1,0) and µ∗( /0,J ) = (0,1).

3. For each (C,D), (E,F) ∈ P∗(J ), such that C ⊇ E and D ⊆ F , we have µ∗(C,D) =
(c,d) and µ∗(E,F) = (e, f ), c,d,e, f ∈ [0,1], with c ≥ e and d ≤ f .

The properties 1) and 2) are the boundary conditions, while the property 3) is the
monotonicity condition.

Given (C,D) ∈ P∗(J ) with µ∗(C,D) = (c,d), µ∗+(C,D) = c and µ∗−(C,D) = d.
In the following we consider also a generalized bi-capacity, µ̂, on J , being a function

µ̂ : P∗(J ) → [−1,1]

such that,

1. µ̂∗( /0, /0) = 0;

2. µ̂∗(J , /0) = 1, and µ̂∗( /0,J ) = −1;

3. If C ⊇ E and D ⊆ F , then µ̂∗(C,D) ≥ µ̂∗(E,F).

The properties 1) and 2) are the boundary conditions, while the property 3) is the
monotonicity condition.

Let us observe that from the generalized bi-polar capacity, µ∗, on J we can obtain a
corresponding generalized bi-capacity, µ̂∗, on J , as follows,

µ̂∗(C,D) = µ∗+(C,D)−µ∗−(C,D), ∀ (C,D) ∈ P∗(J ).

6.5 The bi-polar Choquet bi-integral

For each (x+,x−) ∈ R
n
+ ×R

n
+, x+ = (x+

1 , . . . ,x+
n ) ∈ R

n
+ and x− = (x−1 , . . . ,x−n ) ∈ R

n
+, we

call x+ the positive part of (x+,x−) while x− is its negative part.
For each (x+,x−) ∈ R

n
+ ×R

n
+, let us consider the following one-to-one correspon-

dence,

{1, . . . ,2n}→ J = {1+, . . . ,n+,1−, . . . ,n−}

such that ,

x(1) ≤ x(2) ≤ . . . ≤ x( j) ≤ . . . ≤ x(n) ≤ . . . ≤ x(2n),
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where,

x( j) =




x+
i if ( j) = i+

x−i if ( j) = i−

For each j ∈ J let us consider also the following two subsets of J :

1. C( j) = {i ∈ J : x+
i ≥ x( j)};

2. D( j) = {i ∈ J : x−i ≥ x( j)}.

Given a generalized bi-polar capacity, µ∗, on J , and (x+,x−) ∈ R
n
+ ×R

n
+, we can define

the positive part of the bi-polar Choquet bi-integral in the following way,

Ch∗+((x+,x−),µ∗) = ∑2n
j=1

(
x( j)− x( j−1)

)
µ∗+(C( j),D( j)) =

= ∑2n
j=1 x( j)

(
µ̂∗+(C( j),D( j))− µ̂∗+(C( j+1),D( j+1))

)

Analogously, the negative part of the bi-polar Choquet bi-integral can be defined as
follows:

Ch∗−((x+,x−),µ∗) = ∑2n
j=1

(
x( j)− x( j−1)

)
µ∗−(C( j),D( j)) =

= ∑2n
j=1 x( j)

(
µ̂∗−(C( j),D( j))− µ̂∗−(C( j+1),D( j+1))

)
And, finally, the bi-polar Choquet bi-integral of (x+,x−) ∈ R

n
+ ×R

n
+, with respect to

the generalized capacity µ∗ is defined as follows,

ChB∗((x+,x−),µ∗) = Ch∗+((x+,x−),µ∗)−Ch∗−((x+,x−),µ∗)

Let us remark that ChB∗((x+,x−),µ∗), can be formulated as follows,

ChB∗((x+,x−),µ∗) = ∑2n
j=1

(
x( j)− x( j−1)

)
µ̂∗(C( j),D( j)) =

= ∑2n
j=1 x( j)

(
µ̂∗(C( j),D( j))− µ̂∗(C( j+1),D( j+1))

)
where,

µ̂∗(C,D) = µ∗+(C,D)−µ∗−(C,D), ∀ (C,D) ∈ P∗(J ).
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6.6 A characterization of the Choquet and the bi-polar Choquet in-
tegrals

In what follows we remember some properties which permit to characterize the Choquet
and the bi-polar Choquet integrals.

Any function of the type,
F : R

n → R

is called an aggregation function.
The following properties of an aggregation function F are useful to characterize the

Choquet integral as well as the bi-polar Choquet integral.

1. F is monotonic iff, for each x,y ∈R
n, x ≥ y ⇒ F(x)≥ F(y), where x ≥ y means that

x j ≥ y j, for all j ∈ J ;

2. F is idempotent iff, for each x ∈ R
n such that x = (α, . . . ,α), F(x) = α;

3. F is positively homogeneous iff for each x ∈ R
n and λ ∈ R+, F(λx) = λF(x);

4. F is co-monotonic additive iff for each x,y∈R
n such that the two vectors (x1, . . . ,xn)

and (y1, . . . ,yn) are co-monotonic, i.e, there exists a permutation (.) of the elements
of J such that x(1) ≤ . . . ≤ x(n) and y(1) ≤ . . . ≤ y(n), we have that,

F(x+ y) = F(x)+F(y).

5. F is absolutely co-monotonic co-sign additive iff for each x,y ∈ R
n such that,

(a) the two vectors (|x1|, . . . , |xn|) and (|y1|, . . . , |yn|) are co-monotonic, i.e., there
exists a permutation (.) of the elements of J such that |x(1)| ≤ . . . ≤ |x(n)| and
|y(1)| ≤ . . . ≤ |y(n)|, and

(b) x and y are co-signed, i.e., x j × y j ≥ 0 for each j ∈ J , we have

F(x+ y) = F(x)+F(y)

Theorem 1. (Dellacherie, 1970, [13]; and, Schmeidler, 1986, [40])
An aggregation function F : R

n
+ → R is monotonic, positively homogeneous, idempotent

and co-monotonic additive iff there is a capacity µ on J such that for each x ∈ R
n, F(x) =

Ch(x,µ).

Theorem 2. (Greco et al., 2002, [25])
An aggregation function F : R

n → R is monotonic, positively homogeneous, idempotent
and absolutely co-monotonic co-sign additive iff there is a bi-capacity µ̂ on J such that
for each x ∈ R

n, F(x) = ChB(x, µ̂).
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6.7 A characterization of bi-polar Choquet bi-integral

In this sub-section we introduce a characterization of the bi-polar Choquet bi-integral. We
define any function,

F : R
n
+×R

n
+ → R

as a bi-aggregation function ([16]).
The following properties of a bi-aggregation function F are useful to characterize the

bi-polar Choquet bi-integral:

1. F is monotonic iff for each (x+,x−), (y+,y−) ∈ R
n
+×R

n
+,

(x+,x−) ≥B (y+,y−) ⇒ F(x+,x−) ≥ F(y+,y−),

where (x+,x−) ≥B (y+,y−) means x+ ≥ y+ and x− ≤ y−;

2. F is idempotent iff

(a) for each (x,0)∈R
n
+×R

n
+such that x = (α, . . . ,α) and 0 = (0, . . . ,0), F(x,0) =

α, and

(b) for each (0,x)∈R
n
+×R

n
+such that x = (α, . . . ,α) and 0 = (0, . . . ,0), F(0,x) =

−α;

3. F is positively homogeneous iff for each (x+,x−) ∈ R
n and λ ∈ R+, F(λx+,λx−) =

λF(x+,x−)

4. F is bi-co-monotonic additive iff for each (x+,x−),(y+,y−) ∈ R
n
+ ×R

n
+ such that

(x+,x−) and (y+,y−) are bi-co-monotonic, i.e., there exists a one-to-one correspon-
dence as defined in sub-section 6.5, such that x(1) ≤ . . . ≤ x(2n) and y(1) ≤ . . . |y(2n),
we have

F(x+ + y+,x− + y−) = F(x+,x−)+F(y+,y−)

Theorem 3. A bi-aggregation function F : R
n
+×R

n
+ →R is monotonic, positively homo-

geneous, idempotent and bi-co-monotonic additive iff there is a generalized bi-capacity
µ̂∗ on J such that for each (x+,x−) ∈ R

n
+×R

n
+, F(x+,x−) = ChB∗((x+,x−), µ̂∗).

PROOF. Let us consider the two vectors 1C, 1D, for C,D ⊆ J , defined in R
n
+ as

follows. Let 1C j, denote the jth component of 1C.
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1C j =




1 if j ∈C

0 if j /∈C

A similar definition holds for 1D j.

Now, each vector (x+,x−) ∈ R
n
+ ×R

n
+ can be expressed as a linear combination of

pairs of vectors of type (1C,1D) as follows,

(i) (x+,x−) =
2n

∑
j=1

(x( j)− x( j−1))(1C( j) ,1D( j))

Let us remark that the bi-vectors (1C( j) ,1D( j)) and (1C( j′) ,1D( j′) ), for j, j′ = 1, . . . ,2n,
in (i) are bi-co-monotonic. Therefore, since F is bi-co-monotonic additive and posi-
tively homogeneous, we have that,

(ii) F(x+,x−) =
2n

∑
j=1

(x( j)− x( j−1))F(1C( j) ,1D( j))

Due to the monotonicity of F we have that for each (C,D),(E,F) ∈ P∗(J ) such that
C ⊇ E and D ⊆ F , we have,

1) F(1C,1D) ≥ F(1E ,1F)

Moreover, due to the property of idempotency we have that,

2) F(1 /0,1 /0) = 0

3) F(1J ,1 /0) = 1

4) F(1 /0,1J ) = −1

Now we can set,

F(1C,1D) = µ∗(C,D)

where the property 1) ensures the monotonicity and the properties 2), 3) and 4)
ensure the boundary conditions of a generalized bi-capacity, µ̂∗, on J . Thus, µ̂∗, is a
generalized bi-capacity and since on the basis of (ii) we can re-write

(ii) F(x+,x−) =
2n

∑
j=1

(x( j)− x( j−1))µ̂
∗(C( j),D( j))

we can conclude that F(x+,x−) is a bi-polar Choquet bi-integral.

�
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7 New variants of PROMETHEE

This section will introduce some material which allows to build two new variants of
PROMETHEE for ranking problems. We only define the positive, negative and net flows,
that is, all the concepts we need to build an outranking relation. It is easy to see how to
build a partial or a complete ranking as in the classical PROMETHEE method.

7.1 The bi-polar generalized preference function

Let us define the bi-polar generalized function, for each criterion, in the following manner,

PB
j (a,b) =




Pj(a,b) if Pj(a,b) > 0

−Pj(b,a) if Pj(a,b) = 0

It is easy to see that the above function may be re-written as follows,

PB
j (a,b) = Pj(a,b)−Pj(b,a).

Let us remark that PB
j (a,b) = −PB

j (b,a), for all j and for all possible pairs (a,b) and
(b,a).

7.2 Determining comprehensive preferences

When computing the bi-polar generalized function PB
j (a,b) for all the criteria j ∈ J , the

absolute values of this function should be re-order in a non-decreasing way,

|PB
(1)(a,b)| ≤ |PB

(2)(a,b)| ≤ . . . ≤ |PB
( j)(a,b)| ≤ . . . ≤ |PB

(n)(a,b)|

The comprehensive bi-polar Choquet integral for the pair (a,b) can now be determined,

ChB(PB(a,b), µ̂) = ∑
j∈J>

|PB
( j)(a,b)|

[
µ̂(C( j),D( j))− µ̂(C( j+1),D( j+1))

]

where,

• PB(a,b) =
[
PB

j (a,b), j ∈ J
]
;

• C(n+1) = D(n+1) = /0;
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• J> = { j ∈ J : |PB
( j)(a,b)| > 0};

• C( j) = { j ∈ J> : PB
j (a,b) ≥ |PB

( j)(a,b)|};

• D( j) = { j ∈ J> : −PB
j (a,b) ≥ |PB

( j)(a,b)|}.

The value ChB(PB(a,b), µ̂) gives the comprehensive preference of a over b and it is
equivalent to π(a,b)− π(b,a) = PC(a,b) in the classical PROMETHEE method. Let
us remark that it is reasonable to expect that PC(a,b) = −PC(b,a). This leads to the
following symmetry condition,

ChB(PB(a,b), µ̂) = −ChB(PB(b,a), µ̂).

The following proposition gives a necessary and sufficient condition on the bi-capacity,
which permits that the above symmetry condition holds.

Proposition 1. ChB(PB(a,b)) =−ChB(PB(b,a)), for all possible a,b, iff µ̂(C,D) =
−µ̂(D,C) for each (C,D) ∈ P(J ).

PROOF. Let us prove that if µ̂(C,D) =−µ̂(D,C), thenChB(PB(a,b), µ̂) =−ChB(PB(b,a), µ̂).
Since PB

j (a,b) = −PB
j (a,b) for all j ∈ J , we have that,

|PB
( j)(a,b)| = |−PB

( j)(b,a)| = |PB
( j)(b,a)|

and

(i) C( j)(a,b) = { j ∈ J> : PB
j (a,b) ≥ |PB

( j)(a,b)|} = { j ∈ J> : −PB
j (b,a) ≥ |PB

( j)(b,a)|} =
= D( j)(b,a);

(ii) D( j)(a,b) = { j ∈ J> : −PB
j (a,b) ≥ |PB

( j)(a,b)|} = { j ∈ J> : PB
j (b,a) ≥ |PB

( j)(b,a)|} =
= C( j)(b,a).

From (i) and (ii) we have that

(iii) ChB(PB(a,b), µ̂) =

∑
j∈J>

|PB
( j)(a,b)|

[
µ̂(C( j)(a,b),D( j)(a,b))− µ̂(C( j+1)(a,b),D( j+1)(a,b))

]
=

= ∑
j∈J>

|PB
( j)(b,a)|

[
µ̂(D( j)(b,a),C( j)(b,a))− µ̂(D( j+1)(b,a),C( j+1)(b,a))

]
.

If µ̂(C,D) = −µ̂(D,C), from (iii) we have that,

44



(iv) ChB(PB(b,a), µ̂) =
= ∑

j∈J>

|PB
( j)(b,a)|

[
µ̂(C( j)(b,a),D( j)(b,a))− µ̂(C( j+1)(b,a),D( j+1)(b,a))

]
=

= ∑
j∈J>

|PB
( j)(b,a)|

[
− µ̂(D( j)(b,a),C( j)(b,a))+ µ̂(D( j+1)(b,a),C( j+1)(b,a))

]
= −ChB(PB(a,b), µ̂)

Let us now prove that ifChB(PB(a,b), µ̂) =−ChB(PB(b,a), µ̂), then µ̂(C,D) =−µ̂(D,C).
Let us consider the pair (a,b) such that,

PB
j (a,b) = 1 if j ∈C and PB

j (a,b) = −1 if j ∈ D.

In this case we have that ChB(PB(a,b), µ̂) = µ̂(C,D) and ChB(PB(b,a), µ̂) = µ̂(D,C).
Thus if ChB(PB(a,b), µ̂) = −ChB(PB(b,a), µ̂), from (iv) we obtain that µ̂(C,D) =
−µ̂(D,C) and the proof is concluded.

�

The above redefinition in bi-polar terms of π(a,b)−π(b,a) leads to the following bi-polar
redefinition of the net flows,

φB(a) =
1

m−1 ∑b∈A

ChB(PB(a,b), µ̂)

7.3 Positive, negative, and net flows

A complete ranking can now be determined over the set of actions. But, a question re-
mains: are we able to design a procedure which distinguishes the positive from the neg-
ative bi-polar Choquet flows? In other words, what is the corresponding expression of
π(a,b) and π(b,a) in the bi-polar case? π(a,b) and π(b,a) can be redefined in a bi-polar
context considering a bi-polar capacity µ.

Using µ+ we can compute the bi-polar comprehensive positive preference of a over b,
πB+(a,b), as the positive bi-polar Choquet integral of PB(a,b) as follows,

πB+
(a,b) = ChB+(PB(a,b),µ) = ∑

j∈J>

|PB
( j)(a,b)|

[
µ+(C( j),D( j))−µ+(C( j+1),D( j+1))

]

Analogously, using µ− we can compute the bi-polar comprehensive positive prefer-
ence of a over b, πB−(a,b), as the positive bi-polar Choquet integral of PB(a,b) as fol-
lows,
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πB−
(a,b) = −ChB−(PB(a,b),µ) = − ∑

j∈J>

|PB
( j)(a,b)|

[
µ−(C( j),D( j))−µ−(C( j+1),D( j+1))

]

It is reasonable to expect that πB+
(a,b) = −πB−

(b,a) for all possible a and b. This
leads to the following symmetry condition,

CB+
(PB(a,b),µ) = −CB−

(PB(b,a),µ)

The following proposition gives a necessary and sufficient condition on the bi-polar
capacity, which permits that the above symmetry condition holds.

Proposition 2. ChB+(PB(a,b),µ) = −ChB−(PB(b,a),µ), for all possible a,b, iff
µ+(C,D) = µ−(D,C) for each (C,D) ∈ P(J ). Moreover, in this case we also have
that, ChB(PB(a,b),µ) = −ChB(PB(b,a),µ).

PROOF. Analogous to Proposition 1.

The positive and negative flows can now be determined, as follows:

1. The positive flows

φB+(a) =
1

m−1 ∑b∈A

ChB+(PB(a,b),µ)

2. The negative flows

φB−(a) = − 1
m−1 ∑b∈A

ChB−(PB(b,a),µ)

7.4 The bi-polar aggregation of the single criterion net flow

In this sub-section we propose a different formulation of the bi-polar net flow, which is
concordant with the aggregation of the single criterion net flows of the classical PROMETHEE
(see 4.1.3.).

According to this perspective, the net flow can be defined as follows,

φB′
(a) = ChB(φ j(a), µ̂) = ChB

( 1
m−1 ∑b∈A

Pj(a,b)−Pj(b,a), µ̂
)
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Let us remark that, differently from the classic PROMETHEE, the bi-polar net flows
φB(a) and φB′

(a), in general, are different.
When computing the bi-polar generalized function φB′

j (a) for all the criteria j ∈ J , the
absolute values of this function should be re-ordered in a non-decreasing way.

|φB′
(1)(a)| ≤ |φB′

(2)(a)| ≤ . . . ≤ |φB′
( j)(a)| ≤ . . . ≤ |φB′

(n)(a)|

The comprehensive bi-polar Choquet integral for the each a,

ChB(φB′
(a), µ̂) = ∑

j∈J>

|φB′
( j)(a)|

[
µ̂(C( j),D( j))− µ̂(C( j+1),D( j+1))

]

where,

• φB′
(a) =

[
φB′

j (a), j ∈ J
]
;

• C(n+1) = D(n+1) = /0;

• J> = { j ∈ J : |φB′
( j)(a)| > 0};

• C( j) = { j ∈ J> : φB′
j (a) ≥ |φB′

( j)(a)|};

• D( j) = { j ∈ J> : −φB′
j (a) ≥ |φB′

( j)(a)|}.

8 A new variant of ELECTRE III

In this section we propose a new concordant index based on the concepts developed in
Section 5 which leads to a new variant of ELECTRE III, but it can also be applied other
ELECTRE methods, for example, ELECTRE IS, for choice problems, and ELECTRE
TRI, for sorting problems. The exploitation phase is the same as in the classical ELEC-
TRE method.

8.1 The bi-polar outranking relation

A modification of the definition of outranking in a bi-polarity context can be stated as
follows.
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Definition 2 [bi-polar outranking relation].
A bi-polar outranking relation is a binary relation defined in A such that aSb if, given what
is known about the decision maker’s preferences and given the quality of the performances
of the actions and the nature of the problem, the arguments to decide that a is at least
as good as b compared to the arguments to decide that a is not at least as good as b are
enough, while there is no essential argument to refute that statement.

In the above definition we underlined the fragments of the definition of the bi-polar
outranking relation which differs from the definition given by B. Roy (1974).

8.2 Redefining the concordance index

On the basis of the above definition, the bi-polar concordance index can be modified. Let
us start by building the following four sets:

1. concerning the coalition of criteria which constitutes the arguments totally in favor
of aSb

J S+
=

{
j ∈ J : g j(a)+q j

(
g j(a)

) ≥ g j(b)
}

2. concerning the coalition of criteria which constitutes the arguments totally against
of aSb

J S− =
{

j ∈ J : g j(a)+ p j
(
g j(a)

)
< g j(b)

}
3. concerning the coalition of criteria which constitutes the arguments partially in fa-

vor of aSb

JQ+
=

{
j ∈ J : g j(a)+q j

(
g j(a)

)
< g j(a) ≤ g j(b)+ p j

(
g j(b)

)}

4. concerning the coalition of criteria which constitutes the arguments partially against
of aSb

JQ−
=

{
j ∈ J : g j(a)+q j

(
g j(a)

)
< g j(a) ≤ g j(b)+ p j

(
g j(b)

)}

Let us define ϕ+
j (a,b) and ϕ+

j (a,b) as follows,

ϕ+
j (a,b) =




1 if j ∈ J S+

g j(a)+p j

(
g j(a)

)
−g j(b)

p j

(
g j(a)

)
−q j

(
g j(a)

) if j ∈ JQ+

0 otherwise

48



ϕ−j (a,b) =




1 if j ∈ J S−

1− g j(a)+p j

(
g j(a)

)
−g j(b)

p j

(
g j(a)

)
−q j

(
g j(a)

) if j ∈ JQ−

0 otherwise

The following figure give us an idea of the representation of each function of type
φ j(a,b).

φ j(a,b)

g j(b)
φ j(a,b) = 0

g j(a) g j(a)+q j(g j(a)) g j(a)+ p j(g j(a))

φ j(a,b) = 1

Figure 6: Reasons in favor and against w.r.t. g j

It should be remarked, however, that in the above Figure 6 and previous definitions
of φ+

j and φ−j the sets JQ+
and JQ−

are the same because when the arguments partially
in favor of aSb decrease the arguments against of the same assertion increase in the same
proportion. But, this is not always the case as it can be seen by observing Figure 7. We
will not present more material on this topic and in what follows, for the sake of simplicity,
we assume that the first situation occurs.
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φ j(a,b)

g j(b)
φ j(a,b) = 0

g j(a) g j(a)+q j(g j(a)) g j(a)+ p j(g j(a))

φ j(a,b) = 1

α β
α = g j(a)+q+

j (g j(a))

β = g j(a)+ p+
j (g j(a))

Figure 7: A more complex situation of the reasons in favor and against w.r.t. g j

Contrary to PROMETHEE method, in ELECTRE method ϕ+
j (a,b) > 0 does not imply

that ϕ−j (a,b) = 0, j ∈ J . Therefore, to aggregate the value φ+
j (a,b) and φ−j (a,b) in a bi-

polar concordance index, the bi-polar Choquet integral is not enough powerful, because
it considers only a vector of values, which can be positive or negative. On the contrary, in
the current situation we know that φ+

j (a,b) ≥ 0 and φ−j (a,b) ≥ 0, for each j ∈ J , that is,
each criterion g j can be, at the same moment, partially in favor and partially against the
outranking relation.

The concordance index can now be defined as a bi-polar Choquet bi-integral,

cB(a,b) = ChB
(
ϕ+(a,b),ϕ−(a,b), µ̂∗

)
where,

φ+(a,b) =
[
φ+

j (a,b), j ∈ J
]
;

φ−(a,b) =
[
φ−j (a,b), j ∈ J

]
.

Also with respect to ELECTRE III it can be useful to calculate the negative and the
positive part, cB+

(a,b) and cB−
(a,b), of the concordance index cB(a,b). The values of

cB+
(a,b) and cB−

(a,b) can be calculated as the positive and the negative parts of the
bi-polar bi-integral of [φB+

(a,b),φB−
(a,b)] with respect to the generalized bi-polar bi-

capacity µ∗ such that,
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µ∗+(C,D)−µ∗−(C,D) = µ̂∗(C,D), ∀ (C,D) ∈ P∗(J ).

Thus we have

cB+
(a,b) = ChB+

(
φ+(a,b),φ−(a,b),µ∗

)
and,

cB−
(a,b) = ChB−(

φ+(a,b),φ−(a,b),µ∗
)

of course we have,

cB(a,b) = cB+
(a,b)− cB−

(a,b).

In this case we do not expect any symmetry condition, because the outranking of a
over b does not create any constraint on the outranking of b over a.

8.3 Comprehensive outranking and bi-aggregation functions

Let us remark that cB(a,b) is a bi-aggregation of the marginal outranking φ+
j (a,b) and

φ−j (a,b), for all j ∈ J . The analytical formulation of cB(a,b) can shed light on this point.
Let us now consider the definition of φ( j)(a,b) as follows,

ϕ( j)(a,b) =




φ+
i (a,b) if ( j) = i+

φ−i (a,b) if ( j) = i−

where, ( j) is a permutation of {1+,2+, . . . ,n+,1−,2−, . . . ,n−}. And, thus we have,

ϕ(1)(a,b) ≤ ϕ(2)(a,b) ≤ . . . ≤ ϕ( j)(a,b) ≤ . . . ≤ ϕ(n)(a,b) ≤ . . . ≤ ϕ(2n)(a,b).

The bi-polar Choquet bi-integral can be calculated as follows,

ChB
(
φ+(a,b),φ−(a,b), µ∗

)
= ∑

j∈J
φ( j)(a,b)

[
µ̂∗(C( j),D( j))− µ̂∗(C( j+1),D( j+1))

]

where,

1. C( j) = {i ∈ J : φ+
i (a,b) ≥ φ+

( j)(a,b)};

2. D( j) = {i ∈ J : −φ−i (a,b) ≥ φ+
( j)(a,b)}.
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9 Determining the importance, the interaction and the
power of the opposing criteria

Several studies dealing with the determination of the relative importance of criteria were
proposed over the past two decades. A recent work [18] presents a very simple and
intuitive technique (the so called ”play cards technique”, firstly created by J. Simos, [41])
for determining the weights of criteria for outranking methods. In this work, the criteria
are considered independent. But, a recent extension has been proposed to deal with the
interactivity between criteria [3]. The question of the interactivity between criteria was
also studied in the context of MAUT methods ([30]). In this, section we present a quite
similar technique for outranking methods, which takes into account also the power of the
opposing criteria. Our method will be applied to PROMETHEE and ELECTRE, but it
can also be easily extended to the MAUT like methods.

9.1 The case of PROMETHEE method

The use of the bi-polar Choquet integral is based on a bi-polar capacity which assigns
numerical values to each element P(J ). Let us remark that the number of elements of
P(J ) is 3n. This means that the definition of a bi-polar capacity requires a rather huge and
unpractical number of parameters. Moreover, the interpretation of these parameters is not
always simple for the DM. Therefore, the use of bi-polar Choquet integral in real-world
decision making problems requires some methodology assisting the DMs in assessing the
preferential parameters (bi-polar capacity). Thus, in the following we consider 2−order
decomposable capacities, a particular class of bi-polar capacity.

9.1.1 Defining a manageable and meaningful bi-polar capacity measure

We define a 2−order decomposable, the bi-polar capacity, such that

• µ+(C,D) = ∑
j∈C

a+({k}, /0)+ ∑
{ j,k}⊆C

a+({ j,k}, /0)+ ∑
j∈C, k∈D

a+({ j},{k})

• µ−(C,D) = ∑
j∈D

a−( /0,{ j})+ ∑
{ j,k}⊆D

a−( /0,{ j,k})+ ∑
j∈D, k∈C

a−({k},{ j})

The interpretation of each a±(.) is the following:

• a+({ j}, /0), represents the power of the criterion g j by itself; this value is always
positive.
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• a+({ j,k}, /0), represents the interaction between g j and gk, when they are in favor
of the preference of a over b; when its value is zero there is no interaction; on the
contrary, when the value is positive there is a synergy effect when putting together
g j and gk; a negative value means that the two criteria are redundant.

• a+({ j},{k}), represents the power of the criterion gk against the criterion g j, when
the criterion g j is in favor of and gk is against to the preference of a over b; this
provokes always a reduction or no effect on the value of µ+ since this value is
always non-positive.

Analogous interpretation can be applied to the value of a−( /0,{ j}), a−( /0,{ j,k}), and
a−({k},{ j}).

In what follows, for the sake of simplicity, we will use a+
j , a+

jk, a+
j|k, instead of

a+({ j}, /0), a+({g j,gk}, /0), and, a+({ j},{k}), respectively; and a−j , a−jk, a−j|k, instead

of a−( /0,{ j}), a−( /0,{ j,k}), and a−({k},{ j}), respectively.
The above 2−order decomposable bi-polar capacities cannot represent all the pos-

sible preferential information relative to the interaction and the power of the opposing
criteria. For example, a parameter a+

jk|p meaning the power of criterion gp against criteria
{g j,gk} when considered together cannot be represented by these 2−order decomposable
bi-capacity, µ. However, the DM would be serious cognitive difficulties to understand
the meaning of such an additional parameter. This is the reasons which limited us to
use the above 2−order of decomposition, neglecting more sophisticated, but unpractical
decompositions. Anyway, the complete decomposition of the bi-polar capacity has been
developed in [14].

And now, we can define µ(C,D) as follows,

µ(C,D) = µ+(C,D)−µ−(C,D) = ∑
j∈C

a+
j −∑

j∈D
a−j + ∑

{ j,k}⊆C

a+
jk− ∑

{ j,k}⊆D

a−jk + ∑
j∈C, k∈D

a j|k

where, a j|k = a+
j|k −a−j|k.

There are two monotonicity conditions that should be fulfilled.
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Monotonicity conditions

1. µ+(C,D) ≤ µ+(C∪{ j},D), ∀ j ∈ J , ∀(C∪{ j},D) ∈ P(J )

∑
h∈C

a+
h + ∑

{h,k}⊆C

a+
hk + ∑

h∈C,k∈D

a+
h|k ≤ ∑

h∈C∪{ j}
a+

h + ∑
{h,k}⊆C∪{ j}

a+
hk + ∑

h∈C∪{ j},k∈D

a+
h|k

⇐⇒

a+
j + ∑

k∈C

a+
jh + ∑

k∈D

a+
j|k ≥ 0, ∀ j ∈ J , ∀(C∪{ j},D) ∈ P(J )

2. µ+(C,D) ≥ µ+(C,D∪{ j}), ∀(C,D∪{ j}) ∈ P(J )

∑
h∈C

a+
h + ∑

{h,k}⊆C

a+
hk + ∑

h∈C,k∈D

a+
h|k ≥ ∑

h∈C

a+
h + ∑

{h,k}⊆C

a+
hk + ∑

h∈C,k∈D∪{ j}
a+

h|k

⇐⇒

∑
h∈C

a+
h| j ≤ 0, ∀ j ∈ J , ∀(C,D∪{ j}) ∈ P(J )

Conditions 1) and 2) are clearly equivalent to the general monotonicity for µ+, i.e.,

∀ (C,D), (E,F) ∈ P(J ) such that C ⊇ E, D ⊆ F, µ+(C,D) ≥ µ+(E,F).

As can be seen condition 2 is always satisfied because gk provokes always a negative
effect on g j.

The same kind of monotonicity should be satisfied for µ−.

3. µ−(C,D) ≤ µ−(C∪{ j},D), ∀ j ∈ J , ∀(C∪{ j},D) ∈ P(J )

∑
h∈C

a−h + ∑
{h,k}⊆C

a−hk + ∑
h∈C,k∈D

a−h|k ≤ ∑
h∈C∪{ j}

a−h + ∑
{h,k}⊆C∪{ j}

a−hk + ∑
h∈C∪{ j},k∈D

a−h|k

⇐⇒

a−j + ∑
k∈C

a−jh + ∑
k∈D

a−j|k ≥ 0, ∀ j ∈ J , ∀(C∪{ j},D) ∈ P(J )
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4. µ−(C,D) ≥ µ−(C,D∪{ j}), ∀(C,D∪{ j}) ∈ P(J )

∑
h∈C

a−h + ∑
{h,k}⊆C

a−hk + ∑
h∈C,k∈D

a−h|k ≥ ∑
h∈C

a−h + ∑
{h,k}⊆C

a−hk + ∑
h∈C,k∈D∪{ j}

a−h|k

⇐⇒

∑
h∈C

a−h| j ≤ 0, ∀ j ∈ J , ∀(C,D∪{ j}) ∈ P(J )

Conditions 3) and 4) are equivalent to the general monotonicity for µ−, i.e.,

∀ (C,D), (E,F) ∈ P(J ) such that C ⊇ E, D ⊆ F, µ−(C,D) ≤ µ−(E,F).

Conditions 1), 2), 3) and 4) together ensure the monotonicity of the bi-capacity, µ̂, on J ,
obtained as the difference of the above bi-capacities, µ+ and µ−, that is,

∀ (C,D), (E,F) ∈ P(J ) such that C ⊇ E, D ⊆ F, µ̂(C,D) ≥ µ̂(E,F).

Boundary conditions

1. µ+(J , /0) = 1, i.e., ∑
j∈J

a+
j + ∑

{ j,k}⊆J
a+

jk = 1

2. µ−( /0,J ) = 1, i.e., ∑
j∈J

a−j + ∑
{ j,k}⊆J

a−jk = 1

We have also the symmetry condition,

Symmetry condition µ+(C,D) = µ−(D,C) which means that

1. ∀ j ∈ J , a+
j = a−j ;

2. ∀{ j,k} ⊆ J , a+
jk = a−jk;

3. ∀ j,k ∈ J , a+
j|k = a−j|k.
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9.1.2 The 2-order bi-polar Choquet integral

The following theorem expresses the bi-polar Choquet integral in terms of the above 2-
order decomposition.

Theorem 4 If the bi-polar capacity µ is 2−order decomposable, then for all x ∈ R
n

ChB(x,µ) = ∑
j∈J ,x j>0

a+
j x j + ∑

j∈J ,x j<0
a−j x j+

+ ∑
j,k∈J , j �=k,x j,xk>0

a+
jk min{xk,x j}+ ∑

j,k∈J , j �=k,x j,xk<0

a−jk max{xk,x j}+

∑
j,k∈J ,x j>0,xk<0

a+
j|k min{x j,−xk}+ ∑

j,k∈J ,x j>0,xk<0

a−j|k max{−x j,xk}

PROOF. If the bi-polar capacity µ is 2−order decomposable, then

ChB(x,µ) = ∑
j∈J>

|x( j)|
[
µ(C( j),D( j))−µ(C( j+1),D( j+1))

]
=

= ∑
j∈J>

|x( j)|
[(

∑
k∈J>,xk≥|x( j)|

a+
k − ∑

k∈J>,−xk≥|x( j)|
a−k +

+ ∑
h,k∈J>,h�=k,xh,xk≥|x( j)|

a+
hk − ∑

h,k∈J>,h�=k,−xh,−xk≥|x( j)|
a−hk+

∑
h,k∈J>,xh,−xk≥|x( j)|

a+
h|k − ∑

h,k∈J>,xh,−xk≥|x( j)|
a−h|k

)
−

−
(

∑
k∈J>,xk≥|x( j+1)|

a+
k − ∑

k∈J>,−xk≥|x( j+1)|
a−k +

+ ∑
h,k∈J>,h�=k,xh,xk≥|x( j+1)|

a+
hk − ∑

h,k∈J>,h�=k,−xh,−xk≥|x( j+1)|
a−hk+

∑
h,k∈J>,xh,−xk≥|x( j+1)|

a+
h|k − ∑

h,k∈J>,xh,−xk≥|x( j+1)|
a−h|k

)]
=
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χ) = ∑
j∈J>

|x( j)|
[(

∑
k∈J>,xk≥|x( j)|

a+
k − ∑

k∈J>,xk≥|x( j+1)|
a+

k

)
−

−
(

∑
k∈J>,−xk≥|x( j)|

a−k − ∑
k∈J>,−xk≥|x( j+1)|

a−k
)
+

+
(

∑
h,k∈J>,h�=k,xh,xk≥|x( j)|

a+
hk − ∑

h,k∈J>,h�=k,xh,xk≥|x( j+1)|
a+

hk

)
−

−
(

∑
h,k∈J>,h�=k,−xh,−xk≥|x( j)|

a−hk − ∑
h,k∈J>,h�=k,−xh,−xk≥|x( j+1)|

a−hk

)
+

+
(

∑
h,k∈J>,xh,−xk≥|x( j)|

a+
h|k − ∑

h,k∈J>,xh,−xk≥|x( j+1)|
a+

h|k
)
−

−
(

∑
h,k∈J>,xh,−xk≥|x( j)|

a−h|k − ∑
h,k∈J>,xh,−xk≥|x( j+1)|

a−h|k
)]

Let us remark that,

a)
(

∑
k∈J>,xk≥|x( j)|

a+
k − ∑

k∈J>,xk≥|x( j+1)|
a+

k

)
=




a+
( j) if x( j) > 0

0 otherwise

b)
(

∑
k∈J>,xk≥|x( j)|

a−k − ∑
k∈J>,xk≥|x( j+1)|

a−k
)

=




a−( j) if x( j) < 0

0 otherwise

c)
(

∑
h,k∈J>,h�=k,xh,xk≥|x( j)|

a+
hk− ∑

h,k∈J>,h�=k,xh,xk≥|x( j+1)|
a+

hk

)
=




∑
k∈J>,xk≥|x( j)|

a+
( j)k if x( j) > 0

0 otherwise

d)
(

∑
h,k∈J>,h�=k,xh,xk≥|x( j)|

a−hk− ∑
h,k∈J>,h�=k,xh,xk≥|x( j+1)|

a−hk

)
=




∑
k∈J>,−xk≥|x( j)|

a−( j)k if x( j) < 0

0 otherwise
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e)
(

∑
h,k∈J>,xh,−xk≥|x( j)|

a+
h|k− ∑

h,k∈J>,xh,−xk≥|x( j+1)|
a+

h|k
)

=




∑
h∈J>,xh≥|x( j)|

a+
h|( j) if x( j) < 0

∑
k∈J>,−xk≥|x( j)|

a+
( j)|k if x( j) > 0

0 otherwise

f )
(

∑
h,k∈J>,xh,−xk≥|x( j)|

a−h|k− ∑
h,k∈J>,xh,−xk≥|x( j+1)|

a−h|k
)

=




∑
h∈J>,xh≥|x( j)|

a−h|( j) if x( j) < 0

∑
k∈J>,−xk≥|x( j)|

a−( j)|k if x( j) > 0

0 otherwise

With respect to χ) and a) we have that,

|x( j)|
(

∑
k∈J>,xk≥|x( j)|

a+
k − ∑

k∈J>,xk≥|x( j+1)|
a+

k

)
=




x( j)a
+
( j) if x( j) > 0

0 otherwise

and thus,

∑
j∈J>

|x( j)|
(

∑
k∈J>,xk≥|x( j)|

a+
k − ∑

k∈J>,xk≥|x( j+1)|
a+

k

)
= ∑

j∈J>, x j>0

x( j)a
+
( j)

Considering in the same way b), c), d), e), and f ), we obtain the thesis of this
theorem.

�

Proposition 4. If µ̂ is decomposable then µ̂(C,D) = −µ̂(D,C) for each (C,D) ∈ P(J ) iff

1. for each j ∈ J , a+
j = a−j

2. for each { j,k} ⊆ J , a+
jk = a−jk
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3. for each j,k ∈ J , j �= k, a+
j|k = a−k| j.

PROOF. First, let us prove that

(i) µ̂(C,D) = −µ̂(D,C)

implies 1), 2) and 3). For each j ∈ J ,

(ii) µ̂({ j}, /0) = a+
j and µ̂( /0,{ j}) = a−j

From (i) and (ii) we have,

a+
j = µ̂({ j}, /0) = −µ̂( /0,{ j}) = −a−j

which is 1).

For each { j,k} ⊆ J we have that,

(iii) µ̂({i, j}, /0) = a+
j +a+

k +a+
jk and µ̂( /0,{i, j}) = a−j +a−k +a−jk

On the basis of 1) we have that a+
j = a−j and a+

k = a−k . Thus from (iii) we have that
for each { j,k} ⊆ J , a+

jk = a−jk, i.e. 2).

Now, let us prove that 1), 2), and 3) implies (i). We have

(iv) µ̂(C,D) = ∑
j∈C

a+
j −∑

j∈D

a−j + ∑
{ j,k}⊆C

a+
jk − ∑

{ j,k}⊆D

a−jk + ∑
j∈C,k∈D

a+
j|k − ∑

j∈C,k∈D

a−j|k

and,

(iv) µ̂(D,C) = ∑
j∈D

a+
j −∑

j∈C

a−j + ∑
{ j,k}⊆D

a+
jk − ∑

{ j,k}⊆C

a−jk + ∑
j∈D,k∈C

a+
j|k − ∑

j∈D,k∈C

a−j|k

From 1), 2), and 3) and (iv) and (v) we have,

µ̂(C,D) = −µ̂(D,C)

which is what we wanted to prove.

�
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9.1.3 Assessing the preferential information

On the basis of the above 2−order decomposition, we propose the following methodology
which simplifies the assessment of preferential information. We consider the following
information given by the DM and their representation in terms of linear constraints:

1. Comparing pairs of actions. The constraints represent some pairwise comparisons
on a set of training sample actions. As extreme case, this comparison can be a
complete pre-order over this sample set, but it can be also a simple partial pre-
order. Given two actions a and b, DMs may prefer a to b, b to a or indifferent to
both actions.

(a) The linear constraint associated with aPb is ChB(PB(a,b), µ̂) > 0;

(b) The linear constraint associated with aIb is ChB(PB(a,b), µ̂) = 0.

2. Comparison of the intensity of preferences between pairs of actions. This compari-
son can be stated as follows,

ChB(PB(a,b), µ̂) > ChB(PB(c,d), µ̂) if (a,b)P (c,d)

where, (a,b)P (c,d) means that the comprehensive preference of a over b is larger
than the comprehensive preference of c over d.

3. Importance of criteria. A partial ranking over the set of criteria J , both in the
positive and the negative part of the bi-polar scales may be provided by DMs . A
lot of different situations can occur, for example:

(a) Criterion g j is more important than criterion gk when comparing positive pref-
erences, which leads to the constraint a+

j ≥ a+
k ;

(b) Criterion g j is more important when it expresses positive preferences rather
than when it expresses negative preferences; and so we can define the con-
straint a+

j ≥ a−j .

4. Interaction between pairs of criteria. DMs can provide some information about
interaction between criteria. Let us present two examples of such a kind of prefer-
ential information.

(a) If DMs feel that when considering positive preferences, interaction between g j

and gk is more important than the interaction between gp and gq, the constraint
should be defined as follows: a+

jk > a+
pq;
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(b) If DMs feel that interaction between g j and gk, when they express negative
preferences, is more important than the interaction between the same criteria,
when they express negative preferences, the constraint will be the following:
a+

jk > a−jk.

5. The sign of interactions. DMs may be able, for certain cases, to provide the sign
of some interactions. For example, if there is a synergy effect when criterion g j

interacts with criterion gk in the positive part of the scale, the following constraint
should be added to the model: a+

jk > 0. It is not difficult to imagine other situations.

6. The power of the opposing criteria. Concerning the power of the opposing criteria
several situations may occur. For example:

(a) When the opposing power of gk is larger than the opposing power of gh, with
respect to g j, which expresses a positive preference, we can define the follow-
ing constraint: a+

j|k > a+
j|h;

(b) But, if the opposing power of gk, expressing negative preferences, is larger
with g j rather than with gh, the constraint will be a+

j|k > a+
h|k.

9.1.4 A linear programming model

All the constraints presented in the previous section along with the boundary and mono-
tonicity conditions, and possibly symmetry condition, can now be put together and form
a system of linear constraints. Strict inequalities can be converted into inequalities adding
a variable ε. It is well-know that such a system has a feasible solution if and only if when
maximizing ε, its value is strictly positive ([30]). The linear programming model can be
stated as follows (where, j+Pk+ means that criterion g j is more important than criterion
gk in the positive part of the scale; the remaining relations have similar interpretation):
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Max z = ε

ChB(PB(a,b)) ≥ ε if aPb
ChB(PB(a,b)) = 0 if aIb

}
Pairwise comparisons

ChB(PB(a,b)) ≥ChB(PB(c,d))+ ε if (a,b)P (c,d)
ChB(PB(a,b)) = ChB(PB(c,d)) if (a,b)I (c,d)

}
Comparing pairs of actions

a+
j −a+

k ≥ ε if j+Pk+

a+
j = a+

k if j+I k+

a−j −a−k ≥ ε if j−Pk−

a−j = a−k if j−I k−

a+
j −a−k ≥ ε if j+Pk−

...
...




Ranking of criteria

a+
jk −a+

pq ≥ ε if { j+,k+}P{p+,q+}
a+

jk = a+
pq if { j+,k+}I{p+,q+}

a−jk −a−pq ≥ ε if { j−,k−}P{p−,q−}
a−jk = a−pq if { j−,k−}I{p−,q−}
a+

jk −a−pq ≥ ε if { j+,k+}P{p−,q−}
...

...




Ranking of pairs of criteria

a+
jk ≥ ε if a+

jk > 0
a+

jk = 0 if a+
jk = 0

a+
jk ≤−ε if a+

jk < 0
a−jk ≥ ε if a−jk > 0
a−jk = 0 if a−jk = 0
a−jk ≤−ε if a−jk < 0




Sign of the interactions

a+
j|k −a+

j|p ≥ ε
a−j|k −a−j|p ≥ ε
a+

j|k −a+
p|k ≥ ε

a−j|k −a−p|k ≥ ε
a+

j|k −a−j|p ≥ ε
...

...




Power of the opposing criteria
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a+
j = a−j , ∀ j ∈ J

a+
jk = a−jk, ∀ { j,k} ⊆ J

a+
j|k = a−j|k, ∀ j,k ∈ J




Symmetric conditions

∑
j∈J

a+
j + ∑

{ j,k}⊆J
a+

jk = 1

∑
j∈J

a−j + ∑
{ j,k}⊆J

a−jk = 1

a+
j , a−j , ≥ 0 ∀ j ∈ J

a+
j|k, a−j|k, ≤ 0 ∀ j,k ∈ J




Boundary conditions

a+
j + ∑

k∈C

a+
jk + ∑

k∈D

a+
j|k ≥ 0, ∀ j ∈ J , ∀(C∪{ j},D) ∈ P(J )

a−j + ∑
k∈C

a−jk + ∑
k∈D

a−k| j ≥ 0, ∀ j ∈ J , ∀(C,D∪{ j}) ∈ P(J )


Monotonicity conditions

µ+(C,D) = ∑
j∈C

a+
j + ∑

{ j,k}⊆C

a+
jk + ∑

j∈C, k∈D

a+
j|k, ∀ (C,D) ∈ P(J )

µ−(C,D) = ∑
j∈C

a−j + ∑
{ j,k}⊆C

a−jk + ∑
j∈C, k∈D

a−j|k, ∀ (C,D) ∈ P(J )

µ̂(C,D) = µ+(C,D)−µ−(C,D), ∀ (C,D) ∈ P(J )
ChB(PB(a,b), µ̂) = ∑

j∈J>

|PB
( j)(a,b)|

[
µ(C( j),D( j))−µ(C( j+1),D( j+1))

]




Definitions
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9.1.5 Restoring PROMETHEE

The two conditions which allows to restore PROMETHEE are the following:

1. ∀ j ∈ J , a+
j = a−j ;

2. ∀ j,k ∈ J , a+
jk = a−jk = a+

j|k = a−j|k = 0.

If a+
jk = a−jk does not satisfies the constraint, then the comprehensive preference of a

over b is calculated as the difference between the Choquet integral of the positive pref-
erence and the Choquet integral of the negative preference, with a common capacity for
the positive and the negative preferences. We shall call this type of aggregation of prefer-
ences, the Choquet integral PROMETHEE method.

9.1.6 A constructive learning preferential information elicitation process

The previous conditions 1) and 2) suggest a proper way to deal with the linear program-
ming model in order to assess the interactive bi-polar criteria coefficients. Indeed, it
is very wise to try before to elicit weights concordant with the classic PROMETHEE
method. If this is not possible, one can consider a PROMETHEE method which aggre-
gates positive and negative preferences using the Choquet integral. If, by proceeding in
this way, we are not able to represent the DM’s preferences, we can take into account a
more sophisticated aggregation procedure by using the bi-polar Choquet integral. This
way to progress from the simplest to the most sophisticated models can be outlined in a
four step procedure as follows,

1. Solve the linear programming model adding the constraints related to the previous
conditions 1) and 2). If the model has a feasible solution with ε > 0, the obtained
preferential parameters are concordant with the classical PROMETHEE method.
Otherwise,

2. Solve the linear programming model adding only condition 2). If there is a solution
with ε > 0, the information is concordant with the Choquet integral PROMETHEE
method. Otherwise,

3. Solve the problem without conditions 1) and 2. A solution with ε > 0 means
that the preferential information is concordant with the bi-polar Choquet integral
PROMETHEE method. Otherwise,

4. We can try to help the DM by providing some information about inconsistent judg-
ments, when it is the case, by using a similar constructive learning procedure pro-
posed in [32].
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In fact, in the linear programming model some of the constraints cannot be relaxed,
that is, the basic properties of the model (conditions and definitions). The remaining
constraints can lead to an unfeasible linear system which means that DMs provided in-
consistent information about their preferences. The methods proposed in [32] can then
be used in this context. And, thus provide to the DM some useful information about
inconsistent judgements.

With respect to the elicitation of a bi-polar capacity a further support for DMs can
be obtained from a procedure using the playing cards method of Simos’ in the bi-polar
context (see [2]).

9.2 The case of ELECTRE method

A specific case of our bi-polar extension of ELECTRE III method is the Choquet integral
ELECTRE method. This is the case in which the comprehensive outranking of a over
b is calculated as the difference between the Choquet integral of the negative marginal
outranking φ+

j and the Choquet integral of the negative marginal outranking φ−j , with a
common capacity for the positive and the negative preferences.

9.2.1 Assessing the preferential information

The process of eliciting preferential information from the DM is very similar to the tech-
nique developed in the previous sub-section concerning the PROMETHEE method. The
following constraints remain unchanged:

1. Pairwise comparisons. In the case where we assume that all the other preferential
parameters (indifference, preference and veto thresholds) are known.

2. Comparing the intensity of preference between pairs of actions

3. Ranking of criteria

4. Ranking of pairs of criteria

5. Sign of the interactions

6. Power of the opposing criteria

Concerning the conditions the following changes should be taken into account:

1. The symmetry conditions should be removed. Contrary, to PROMETHEE method,
ELECTRE does not requires symmetry.
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2. The boundary conditions remain the same, but we should consider P∗(J ) instead of
P(J ).

3. The modifications of the monotonicity conditions are the same as in the previous
item.

The modifications of the definitions are very simple. We only should consider P∗(J )
instead of P(J ) and the expression of

ChB∗
(
φ+(a,b),φ−(a,b), µ̂∗

)
instead of

ChB
(

PB((a,b), µ̂)
)
.

9.2.2 Restoring the Choquet ELECTRE method

The Choquet integral ELECTRE method is restored only in the case where no criterion
has an opposing power,

1. ∀ j,k ∈ J , a+
j|k = a−j|k = 0.

9.2.3 Restoring ELECTRE

The classical ELECTRE method is restored when,

∀ j,k ∈ J , a−j = a−jk = a+
j|k = a−j|k = a+

jk = a−jk = 0,

that is, only when a+
j �= 0, for each j ∈ J .

66



10 Concluding remarks

In this paper we introduced the modelling of specific interactions, between criteria ex-
pressing positive and negative preferences, which are considered the pro and cons of
comprehensive preferences. We defined this methodology as the bi-polar approach to
MCDA. Taking into account the specific interaction between criteria in this context, es-
pecially the power of the opposing criteria, the multiple criteria, positive and negative
preferences, are aggregated using the bi-polar Choquet integral. We believe that the pro-
posed approach is in the main stream of the most current advanced research on MCDA. In
what follows, we briefly remember the subjects of this research, and we explain the links
with the work presented in this paper.

1. The outranking approach. We took into account the two most well-known classes
of outranking methods: ELECTRE and PROMETHEE, and considered them from
the point of view of the bi-polar approach to MCDA. The final result was a new way
to deal with the outranking approach. It allows for the representation of some very
important preferential information, one that could not be modeled by the existing
MCDA methodologies. This crucial preferential information, is the interaction be-
tween criteria expressing preferences of the same sign (synergy and redundancy),
or opposite sign (the power of the opposing criteria).

2. The fuzzy integral approach. To aggregate positive and negative multiple criteria
preferences, we used the bi-polar Choquet integral. This is an aggregation function,
recently introduced in the literature pertaining to non-additive integrals. Our inter-
est in bi-polar Choquet integral is due to the fact that, when aggregating positive
and negative preferences, there is a very natural ”zero”, which is the indifference
between two actions. Let us remark again that this is not the case with MAUT like
approaches. Indeed, in the latter case, the ”zero” is defined as a neutral level which
is often meaningless for DMs. We believe that our approach is the most appro-
priate, and natural application of the bi-polar Choquet integral within an MCDA
framework.

3. The four-valued logic approach. The proposed approach is based on the aggregation
of positive and negative preferences. They are respectively, the reasons in favor
and against of comprehensive preferences. This is concordant with the four-valued
logic approach for MCDA. From this point of view, our approach seems to be a
very promising tool, in dealing with the particular representation of preferences of
this theory. Thus, rendering it effective when applied to real-world problems.

4. The non-additive and non-transitive models of conjoint measurement. Since our
approach considers outranking methods, it does not require the transitivity of the
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comprehensive preference relations. Moreover, the bi-polar Choquet integral is a
very general non-additive aggregation function. Therefore, our approach is concor-
dant with the most advanced models of conjoint measurement. It is then, interesting
from two points of view:

(a) From the point of view of the MCDA preference modelling, because this gives
a perspective for further extension of the model. In other words, what type of
extensions are possible between the use of bi-polar Choquet integral and the
absolutely universal generality of the non-transitive and non-additive models
of conjoint measurement?

(b) From the point of view of the conjoint measurement, because our approach
opens the problem of the proper characterization of some models of conjoint
measurement which are specific cases of the very general non-additive and
non-transitive model. In other words, what are the axiomatic basis of the
aggregation of positive and negative preferences using the bi-polar Choquet
integral?

5. The non-compensatory preference structures. These structures consider only pref-
erences, clearly and definitively in favor and, clearly and definitively against, ex-
cluding the possibility to introduce any graduation of the preferences. From this
point of view, our approach can be seen as a generalization of the non-compensatory
preferences, pertaining to modelling the degrees of preferences. The formal prop-
erties and the effective application of this approach, is a new domain of research
within an MCDA framework.

6. The interpretation of the importance of criteria. The decomposition of bi-capacity
proposed in our approach, gives a very meaningful interpretation of the preferential
parameters, relating to the importance of the criteria. In MCDA there is a large
interest in a correct interpretation of the importance of criteria. Within this line of
research, our approach represents clearly the different influences of one criterion, on
the relative importance of other criteria. From a theoretical point of view, this allows
progression to a deeper understanding of the concept of the importance of criteria.
Moreover, it provides effective tools for real-world applications. It gives a better
explanation to DMs of the preferential parameters of the model, and allows DMs
to learn more about their preferences during the preferential parameters elicitation
processes.

7. The procedures for eliciting non-additive weights. Our approach permits also to
represent a lot of very delicate preferential information, relative to interaction of
criteria. However, the price to pay is a huge number of preferential parameters,
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which is not reasonable to assess directly from DMs. Therefore, the potential of
our approach in real-world problems crucially depends, on the efficiency of some
methods to assess the preferential parameters (bi-polar capacity), on the basis of
the preferential information given by DMs. From this point of view, our approach
requires re-interpretation in this new context of the methods to assess the weights
representing the importance of criteria. In the paper, we considered a generalization
of a well-known method, to infer the capacity of a ”mono-polar” Choquet integral.
But, we are planning future research on the extension of another well-known meth-
ods, to determine weights based on the so called ”Simos’ play cards technique”.

8. The aggregation function. Our approach is based on a specific type of aggregation
functions, which consider positive and negative values. Let us remark, that more
research has been recently devoted to the properties and the characterization of ag-
gregation functions. In this direction our approach suggests some line of research
for the future. To accomplish this in MCDA, it is important to develop a theory of
bi-polar aggregation functions, which allows a better understanding, and general-
ization of the bi-polar Choquet integral. Moreover, let us remark that the definition
of the bi-polar concordance index of ELECTRE III, which we proposed, is based on
the concept of bi-integral and bi-aggregation. We can as well, use the same kind of
concordance index for other ELECTRE methods, i.e. ELECTRE IS and ELECTRE
TRI. Let us point out, that the bi-aggregation is based on the idea that a criterion
can express, at the same time, a partial reason in favor of and partial reason against
a comprehensive preference. It is our view, that it is a very realistic interpretation of
situations, often encountered in real-world problems. Until now, there are not ap-
propriate tools to deal with this kind of situations. We believe that this will become
an important issue for the development of the MCDA methodologies.

At the end of this paper, let us observe that Benjamin Franklin’s letter quoted above, still
remains an interesting perspective for MCDA. We hope that this paper, will give some
contribution to the application of the idea of Benjamin Franklin to MCDA. We also think
that many open problems remain to be dealt with in this direction.
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[29] E. Jacquet-Lagrèze. Binary preference indices: A new look on multicriteria aggre-
gation procedures. European Journal of Operational Research, 10:26–32, 1982.

[30] J. Marichal and M. Roubens. Determination of weights of interacting criteria from
a reference set. European Journal of Operational Research, 124(3):641–650, 2000.

[31] L. Montano-Guzmán. Fuzzy measures and integrals in the MCDA sorting problem-
atic: Methodology and application to the diagnosis of firms. PhD thesis, Université
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de surclassement. Revue d’Économie Politique, 1:1–44, 1974.

[36] B. Roy. The outranking approach and the foundations of ELECTRE methods. The-
ory and Decision, 31:49–73, 1991.

[37] B. Roy. Multicriteria Methodology for Decision Aiding. Nonconvex Optimization
and its Applications. Kluwer Academic Publishers, Dordrecht, 1996.

[38] B. Roy and D. Bouyssou. Aide Multicritère à la Décision: Méthodes et Cas. Eco-
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